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Summary
Dynamic HIV/AIDS Parameter Estimation with Applications

by Ruben Arnold Filter, supervisor prof. Xiaohua Xia

Master of Engineering (Electronic Engineering),

Department of Electrical, Electronic and Computer Engineering.

This dissertation is primarily concerned with dynamic HIV/AIDS parameter estimation, set
against the background of engineering, biology and medical science. The marriage of these
seemingly divergent fields creates a dynamic research environment that is the source of many
novel results and practical applications for people living with HIV/AIDS.

A method is presented to extract model parameters for the three-dimensional HIV/AIDS
model in situations where an orthodox LSQ method would fail. This method allows information
from outside the dataset to be added to the cost functional so that parameters can be estimated
even from sparse data. Estimates in literature were for at most two parameters per dataset,
whereas the procedures described herein can estimate all six parameters.

A standard table for data acquisition in hospitals and clinics is analyzed to show that the
table would contain enough information to extract a suitable parameter estimate for the model.

Comparison with a published experiment validates the method, and shows that it becomes
increasingly hard to coordinate assumptions and implicit information when analyzing real data.

Parameter variations during the course of HIV/AIDS are not well understood. The results
show that parameters vary over time. The analysis of parameter variation is augmented with a
novel two-stage approach of model identification for the six-dimensional model. In this context,
the higher-dimensional models allow an explanation for the onset of AIDS from HIV without
any variation in the model parameters.

The developed estimation procedure was successfully used to analyze the data from forty
four patients of Southern Africa in the HIVNET 28 vaccine readiness trial. The results are
important to form a benchmark for the study of vaccination. The results show that after
approximately 17 months from seroconversion, oscillations in viremia flattened to a log10 based
median set point of 4.08, appearing no different from reported studies in subtype B HIV-1
infected male cohorts. Together with these main outcomes, an analysis of confidence intervals
for set point, days to set point and the individual parameters is presented. When estimates for
the HIVNET 28 cohort are combined, the data allows a meaningful first estimate of parameters
of the three-dimensional HIV/AIDS model for patients from southern Africa.

The theoretical basis is used to develop an application that allows medical practitioners
to estimate the three-dimensional model parameters for HIV/AIDS patients. The program
demands little background knowledge from the user, but for practitioners with experience in
mathematical modeling, there is ample opportunity to fine-tune the procedures for special
needs.

Keywords

HIV/AIDS model parameters, dynamic systems, dynamic parameter estimation, parameter
variation, viral set point estimation, bioengineering, optimization and medical systems.
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Opsomming

Hierdie verhandeling se primêre fokus is ’n dinamiese MIV/VIGS parameter beraming, wat op

die agtergrond van ingenieurswese, biologiese– en mediese wetenskappe baseer is. Die samevloei

van hirdie diverse navorsingsvelde skep nuwe geleënthede van waar ’n veelvoud nuwe resultate

en praktiese toepassings gevind is vir mense wat met die MI-virus leef.

’n Metode is voorgestel wat model parameters van die driedimensionele MIV/VIGS model

kan beraam in situasies waar ’n tradisionele methode sou vaal. Hierdie nuwe metode maak

voorsiening om van informasie, wat van externe bronne verkry is, gebruik te maak om te

verseker dat parameters gevind kan word, selfs met ’n tekort aan data. In die literatuur word

op die meeste twee parameters per datastel beraam, waar hierdie prosedure al ses parameters

kan vind.

’n Standaard tabel wat in hospitale en klinieke gebruik word om data in te samel is hier

getoets om te verseker dat die tabel genoeg informasie bevat vir die beraming van parameters.

Die prosedure word gebruik om data van ’n gevestigde experiment te analiseer en om so-

doende die nuwe prosedure in perspektief te stel. Die vergelyking van resultate maak dit

duidelik dat aannames en gempliseerde informasie fyn bestudeer moet word om te verseker dat

resultate met die realiteit klop.

Die verandering van parameters met die verloop van MIV/VIGS is steeds ’n vraagstuk.

Resultate in hierdie verhandeling dui daarop dat daar wel veranderings in die parameters is. Die

analise van die verandering van parameters word gesteun deur ’n nuwe tweefase benadering tot

parameter estimasie vir die sesdimensionele MIV/VIGS model. Die aanslag tot die probleem

in hoër dimensies verduidelik die progressie van MIV tot VIGS, sonder enige verandering in

parameters.

Die ontwikkelde methode is suksesvol gebruik om die data van vier en veertig pasiente van

die Suid-Afrikaanse HIVNET 28 inentingsstudie te analiseer. Die resultate is belangrik om

’n standaard te stel waarteen die effektiwiteit van ’n entstof gemeet kan word in toekomstige

studies. ’n Analiese van statistiese intervalle vir die ekwilibrium, die dae tot ekwilibrium en

individuele parameters is gedoen en ’n eerste braming van parameters vir die driedimensionele

model vir Suid-Afrikaanse pasiënte is gemaak.

Die teoretiese grondslag is gebruik om ’n rekenaar program te ontwikkel wat medici in staat

stel om die parameters van die driedimensionele model vir individuele pasiënte te bepaal. Die

program benodig minimale rekenaar kennis van die gebruiker en gebruikers met ’n agtergrond

in wiskundige modellering kan die program vir spesiale behoeftes aanpas.

Sleutelwoorde

MIV/VIGS model parameters, dinamiese parameter estimasie, parameter variasie, virale ge-

sadigde toestand estimasie, bioingenieurswese, optimisasie and mediese sisteme.
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Abbreviations

HIV Human immunodeficiency virus

AIDS Acquired immunodeficiency syndrome

HAART Highly active antiretroviral therapy

LSQ Least square

ODE Ordinary differential equation

HIVNET 28 A vaccine readiness trial in southern Africa

Nomenclature for the Basis Model

Variables

T Healthy CD4+ T cells

T ∗ Infected CD4+ T cells

v Free virus

Parameters

s Source constant for healthy CD4+ T cells

d Death rate constant of healthy CD4+ T cells

β Infection rate constant

δ Death rate constant for infected CD4+ T cells

c Clearance rate constant of virus particles

k Virus production rate constant

Notational

χ The vector of model parameters [ s d β δ c k ]T

χ̂ The vector of model parameter estimates [ ŝ d̂ β̂ δ̂ ĉ k̂ ]T

~x(t) The state vector [ T (t) T ∗(t) v(t) ]T

~x0 The initial state vector [ T0 T ∗
0 v0 ]T
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Background and Methods
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1. Introduction

1.1. Background

HUMAN IMMUNODEFICIENCY VIRUS (HIV) and the associated Acquired Im-

munodeficiency Syndrome (AIDS) are the focus of active research in numerous

medical institutions. The grave future of millions of people living with HIV/AIDS is one

of the driving forces behind the near frantic effort to find effective ways to combat HIV.

The economic impact on countries like South Africa will be extreme, with difficulties

that are compounded by an increasing number of AIDS orphans in need of care, together

with AIDS patients who need medical attention [1].

In an effort to curb AIDS, several programs have been initiated and new institutions

have come to life. Programs that promote AIDS education are a high priority, since

there is no cure for HIV/AIDS [2].

On the medical side there are two main fronts of research, namely prevention and

treatment of HIV/AIDS. Significant progress in the area of antiretroviral medication

has been made in the past decade, leading to the ability to suppress HIV particles below

detectable levels for standard tests [1,3–5]. This medication is used to treat HIV/AIDS

patients and to lower the probability of mother-child virus transmission. The final step

to eradicate the virus, though, has not been achieved.

In the past, vaccination was an effective tool to fight and eradiate virulent diseases.

Vaccination is thus an actively researched area of HIV/AIDS [6]. Even though a vac-

cine might be found, there are still millions of people living with HIV, underlining the

importance of research in the treatment of infected individuals.

The combination of mathematical modeling with highly active antiretroviral therapy

(HAART) has helped to reshape the perception of the disease. HAART therapy is

extremely effective compared to earlier therapy and a rapid decrease of virus particles

was noted after initiation of therapy in trials. When these findings were interpreted in the

context of mathematical models, key parameters were extracted. Half-lives for infected

cells and virus clearance were estimated to be in the order of days and even hours,

2
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CHAPTER 1 INTRODUCTION

which highlighted the dynamic nature of HIV. This discovery changed the perception

that HIV/AIDS is a slow disease and indicated that more frequent blood samples are

necessary in monitoring the natural history of the disease. Before this discovery samples

were typically taken every six to twelve months [7–10].

Despite many advances and continuous research in HIV/AIDS, a vast amount of top-

ics remain to be explored [5]. The latest addition of experts involved in HIV/AIDS

research are control systems engineers. This addition resulted from the opportunity to

apply established results from the control theoretic field to the mathematical models of

HIV/AIDS. It is in the context of modeling, that control engineers can apply their knowl-

edge and use established techniques to help scientific discovery and formulate guidelines

for clinical tests and practical measurements [1].

As indicated in [5], there are still many uncertainties in the area of HAART. The

best time to initiate therapy, dosage levels and the optimal combination of drugs are

areas currently demanding further research. Together with these problems there is the

dilemma of side effects of the different drugs. There is thus a need to determine the

influence of HAART on the virus and on the immune system on an individual basis.

This is necessary to insure that each patient can be treated according to personal needs.

A model that describes the interaction of HIV with the patient’s immune system and

the influence of drugs on the virus can be a helpful tool to decide on treatment strategies

in HIV/AIDS patients. The dynamic three-dimensional model as described in [11] forms

the basis of this research. Even though there are general observations that can be made

from biological models and their structure, clear benefits in the treatment strategy arise

only when a model is tailored to each patient’s individual parameters. Furthermore,

the viral load in HIV patients may be a critical endpoint in vaccine trials by which to

judge efficacy [6]. In this context, models are used to estimate future viral load levels

for patients with early HIV infection.

In order to use a mathematical model in practical situations, its parameters must

be determined from measurements that are accessible to local health services. Ideally,

the model should also allow for generalizations of parameters from other estimates and

research.

The dynamic three-dimensional HIV/AIDS model is the basis of active research [1].

Since all parameters of this model can be determined from CD4+ T cell levels and

viral load in blood [12]—as opposed to higher-dimensional models [13]—, the three-

dimensional model is a good starting point for practical applications.

Electrical, Electronic and Computer Engineering 3
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CHAPTER 1 INTRODUCTION

This dissertation is primarily concerned with dynamic HIV/AIDS parameter estima-

tion, set against the background of engineering, biology and medical science. As will

become clear in the following pages, the marriage of these seemingly divergent fields

creates a dynamic research environment and is the source of many novel results.

1.2. Problem statement

Currently there are numerous approaches to modeling HIV/AIDS [4]. A common basis

for dynamic models is the three-dimensional model as described in [4,11,14]. Since this

is the proposed basis model for this research, the model must be considered within the

context of other models to determine its strengths and weaknesses. The model choice

should be substantiated with theoretical, simulated and practical results [15].

Until now, much of the research into dynamic HIV/AIDS models has included sim-

plifications and assumptions in order to estimate up to two parameters of the three-

dimensional model for groups of patients. In this research a procedure is developed

to estimate all six parameters of individual patients, subject to the constraints in [12].

Innovative use of optimization methods is called for in this context, where the nonlinear

nature of the problem necessitates the implementation of state-of-the-art procedures.

At the same time, the input from medical experts and practical experience has to be

incorporated in the theoretical field of parameter estimation. Here the ability to translate

medical diagnosis and symptomatic information into tangible guidance mechanisms for

the estimation routines is required.

The three- and four-dimensional basis models cannot account for all observations in

the pathogenesis of HIV/AIDS. Unfortunately, when the model is expanded to broaden

its applicability, each added dimension increases the complexity of the model and its

analysis. Consequently, additional measurements are required to determine patient spe-

cific parameters.

Since the three-dimensional model alone cannot account for the progression from HIV

to AIDS, the variation of parameters must be analyzed to find possible dependencies

between parameters and allow for the refinement of the basis model [15]. There is a

trade-off between model accuracy, model complexity, and the amount of measurements

needed to determine model parameters; in practical situations it is often impossible to

adhere to schedules where frequent blood samples are needed over extended periods. This

Electrical, Electronic and Computer Engineering 4
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research must allow for simplification and adaption of established estimation routines to

help with the analysis of higher-dimensional models.

The relevance of the three-dimensional model in the medical decision making process

should be reviewed. The interpretations of model parameters and recommendations that

can be made from such interpretations must be considered, and those properties that

can be used to support the key decisions in HIV/AIDS treatment must be highlighted.

This will ensure that the medical community can benefit from research conclusions.

The availability of data that can be used to test and analyze results is a key con-

sideration in this research. For each patient there is a set of parameters that must be

determined before the simulation of different treatment scenarios can begin. In order

to determine these parameters, it is necessary that the correct measurements are avail-

able. Medical guidelines are often in disagreement with the requirements for successful

identification of parameters [5, 14]. Also, many data sets are minimal due to the cost

of measurement, or the lack of knowledge about the requirements for HIV/AIDS pa-

rameter identification. Procedures need to be adaptable to make effective use of results

from established research and information from sources outside the direct measurement

set. This is done with the aim to help practitioners who have symptomatic evidence for

patients to refine the results and help with treatment decisions for individual patients.

For both the three-dimensional and four-dimensional HIV/AIDS models, a thorough

analysis of the minimal set of necessary measurements was performed in [12]. This

analysis was extended to a six-dimensional model in [13]. From the results in [12, 13],

it is clear that the theoretical minimal set of measurements is not always applicable

to practical situations where uncertainties in measurements are present together with

external influences. This highlights the need to integrate theoretical knowledge into

practical procedures.

Even though it was shown that the model parameters for the basis model can be

determined from specific measurement sets, the procedures to do so were left for fu-

ture development [14]. This research must rely on results from control theory, numerical

methods and the wealth of information in mathematical modeling, to synthesize a proce-

dure that is applicable to the identification problem at hand. At the same time, dynamic

HIV/AIDS parameter estimation should be accessible to a wide audience, through the

use of current technology.

Data for the HIVNET 28 vaccine readiness trial [6] conforms to the minimum iden-

tification requirements in [12]. Analysis of this data in a group context calls for the

Electrical, Electronic and Computer Engineering 5
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application of parameter identification and the interpretation of results. In addition to

the basic analysis, the results must be analyzed from a statistical perspective in order

to find confidence intervals on the estimate that allow a benchmark to be set for future

comparison.

1.3. Research contribution

A parameter estimation routine with refinable cost function has been synthesized that

can be used to estimate all parameters of the dynamic three-dimensional HIV/AIDS

model [16, 17]. This is the first procedure that endeavors to estimate all six parameters

of the basis model from CD4+ T cell and viral load data for individual patients, following

the findings in [12].

The estimation procedure was used successfully to analyze the data from the HIV-

NET 28 vaccine readiness trial. Even though the data per patient is sparse, the extrac-

tion of the average set point, the time from seroconversion until this set point is reached

and a group estimate of parameters was possible [6, 17]. The results are used to form a

benchmark against which the effectivity of vaccines can be measured [6].

It has been noted that patients’ parameters may change during the course of the

disease [18]. To confirm this, a novel approach is followed to analyze the variation of pa-

rameters for the three-dimensional model over disease progression from HIV infection to

the onset of AIDS. The results also give a phenomenological indication of the parameter

variations [16, 17].

The analysis of parameter variation is used as a foundation to examine the data of [10]

from the perspective of a multi-compartmental model. It is shown how the results

in [17] can be interpreted to allow parameter identification in such models. The results

from the analysis are linked to an established multi-compartmental model and allow a

first explanation for disease progression from HIV to AIDS, based solely on dynamical

compartmental models. This addresses a major concern about earlier models [15].

The estimation routine forms the basis for a computer application that allows patients,

practitioners and researchers to use the developed routine in practical situations [19].

By initially focussing on the problem of parameter identification for the dynamic

three-dimensional HIV/AIDS model, it was possible to implement a procedure that has

Electrical, Electronic and Computer Engineering 6

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  FFiilltteerr,,  RR  AA    ((22000055))  



CHAPTER 1 INTRODUCTION

proven applicable to a wide range of problems. The field of biological modeling, and

specifically HIV/AIDS modeling, is riddled with unsolved questions. This documents

presents solutions to some of these problems – solutions that generate exciting opportu-

nities and, in turn, pose many new questions for the interested researcher. As numerous

researchers have come to know: A good question is worth a thousand answers [42].

1.4. Organization of document

This document is organized in the following manner:

Chapter 1, of which this is a subsection, introduces the background against which

the dissertation is set. The problem statement is laid out, followed by a description

of the contribution that this study has made to research. The introductory chapter is

concluded with a description of the organization of the document.

Chapter 2 gives an overview of dynamic HIV/AIDS models, with specific attention

to the basis model used in the research. The overview of these models is taken from

literature and combined with the description of some fundamental decisions that were

made to establish the model type and scope for this research. The chapter starts with an

introductory overview of biological modeling principles and the role of control engineers

in this field. From here, dynamic HIV/AIDS models are introduced, with a detailed

description of the three-dimensional model, its equations, governing dynamics and steady

state. This is followed by a description of higher dimensional models that are based on,

and extend, the three-dimensional model. Finally the model choice for this research is

discussed in the context of identifiability and the influence of proliferation terms on the

basis model.

Chapter 3 presents different parameter estimation procedures, focussing on the meth-

ods that are implemented for this research. The chapter starts out by discussing a

standard least square estimate for the parameters of the basis model as described in

literature. The drawbacks and limitations of the standard method are considered and

an estimation procedure is presented that is based on least square distance but includes

additional customizable penalty terms. Modifications and variants of this method are

discussed in the context of the basis model and additional refinements of the procedure

are presented. Finally, the search method used in this research is discussed together

with some alternatives.

Chapter 4 is the first of three chapters discussing the results of this research. Results

are grouped together with their relevant discussions and preliminaries to the conclusions
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to facilitate continuity in the document. This allows for a more concise presentation

of the conclusions in chapter 7, with the relevant information grouped together for the

interested reader.

Chapter 4 gathers the general results of this research. The first part of the chapter

contains simulation results that depict the influence of a proliferation term on the three-

dimensional model. This is followed by results from validating the estimation routine

against generated data that show the influence of additional penalty terms in the cost

function. The applicability of data-collection tables with a reduced number of data-

points is investigated in the context of practical data collection at hospitals. Next, a

published experiment [4,8] is reproduced to validate the estimation procedure in the con-

text of accepted results from literature. In this experiment the influence of assumptions

and outside information are exemplified. The chapter is concluded with an investiga-

tion into the variation of parameters of the basis model throughout the pathogenesis of

HIV/AIDS. First a phenomenological approach is followed to find possible variations in

parameters. These results are then interpreted to explore dual compartmental dynam-

ics as an alternative to blind variation of parameters. This exploration exemplifies the

adaption of the estimation procedure to investigate complex systems from the founda-

tion of the basis model. Finally, the results of the dual compartmental dynamics are

linked back to an established model to allow additional perspective on the estimated

parameters.

Chapter 5 presents the results from the HIVNET 28 vaccine readiness study in south-

ern Africa. First the context of the study is described. Since the HIVNET 28 study has

a slightly different emphasis than the primary aim of this research, the procedure is tai-

lored to accommodate the given situation, exemplifying the flexibility of the estimation

procedure. The adaption of the procedure for the application to a cohort of patients

is presented. This includes a strategy to include patients in the study that would not

meet the identifiability requirements under normal circumstances. Next, the necessary

assumptions are laid out for parameter estimation in the HIVNET 28 context. This is

followed by a presentation of the actual set point estimations and other results. Finally

the confidence intervals and sensitivity analysis of estimations for the HIVNET 28 study

are presented.

Chapter 6 introduces a computer program as a practical application of the research.

The link between theory and practice is discussed, and a summary of the key features

of the program are given. Finally, example figures detailing key aspects of the program

are presented with a discussion of necessary additions and possible expansions.
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Chapter 7 exhibits the conclusions for this research. In addition to these, impetus for

further research is presented and open questions are posed.

Appendices at the end of the document contain supplemental information pertaining

to the program code, application usage and other material.

Each chapter is concluded with a short summary, highlighting the main results and

conclusions contained therein.

Electrical, Electronic and Computer Engineering 9

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  FFiilltteerr,,  RR  AA    ((22000055))  



2. Model Review

2.1. Biological modeling

BEFORE delving into the models specific to HIV/AIDS, it is fitting to give some

preliminary background on biological models in general. In the preface of [20],

the authors give a brief overview of the state of biological modeling:

In the past few decades, biology has developed from a mostly observational discipline

of classification and description into a branch of science that involves complex theories

and mathematical models. There is an increasing need for today’s research biologist to

formulate, and to study the behavior of, a wide range of mathematical models. Some

models are stochastic and others deterministic, describing a cross-section of a population

at a fixed time, or the governing dynamic processes. Some models are simply phenomeno-

logical descriptions while others involve detailed mechanisms and sub-mechanisms, even

down to the level of the genetic code.

As well as formulating theories in precise mathematical form, and studying them, there

is an important requirement to put the models to empirical test. This involves making

observations and using the resulting data either to estimate aspects of the mathematical

modes, or to test the theory. Even though many biological models are at present deter-

ministic, biological phenomena differ from their physical counterparts by being subject

to (seemingly) random influences. Thus the process of matching or comparing data

with model predictions usually involves statistical methods. It is therefore important to

understand and to use methods of formulating deterministic and stochastic models and

fitting and testing them against real data [20].

In the field of modeling, and in this case biological modeling, the control engineer can

make decisive contributions [1, 21, 22]. Where biology has its roots as an observational

discipline, engineers have long strived to create new concepts and ideas to implement in

ever more elaborate artifacts. The marriage of these seemingly divergent fields is bound

to be fertile ground for creativity and exciting research.

In the spirit of balancing creativity, research and verification, John Skellam offers this
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excellent advice to modelers in biology [23]:

“Roughly speaking, a model is a peculiar blend of fact and fantasy, of truth,

half-truth and falsehood. In some ways a model may be reliable, in other

ways only helpful and at times and in some respects thoroughly misleading.

The fashionable dogma that hypothetical schemes can be tested in their

totality in some absolute sense, is hardly conducive to creative thinking. It

is indeed, just as great a mistake to take the imperfections of our models too

seriously as it is to ignore them altogether. ...

Mathematical model-making in Population Dynamics looks easy, and so it is

if we do not care about the uses and abuses to which our models may be put.

In theory all that we have to do is to incorporate those things that matter

and to ignore those things that do not matter, if we can, or if we can’t,

treat them in any arbitrary way that suits our mathematical convenience.

By following the reassuring principle that conclusions hold more often than

do the detailed premises, we can always entertain the prospect that results

of wider applicability will emerge.

The snag is that it is not given to anyone to know beforehand which features

matter and which do not, and in a real life context all sorts of things matter

in varying degrees. The best we can do is to begin with schemes that may

not be entirely realistic but which are at least meaningful to others as well

as to ourselves.

It is important to scrutinize the models carefully and to explore numerous

variants in order to allay fears and doubts created by the many artifacts we

invariably introduce and glorify in the name of abstraction.

Finally we must seek empirical verification wherever and whenever possible,

and in particular determine by empirical means the true range of applicability

of the theoretical schemes and speculations that we have been bold enough

to propose.”

It is hoped that this research reflects the great potential that can be unlocked when

his advice is followed.

Electrical, Electronic and Computer Engineering 11

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  FFiilltteerr,,  RR  AA    ((22000055))  



CHAPTER 2 MODEL REVIEW

2.2. HIV/AIDS models

One of the key markers of HIV/AIDS progression is the decline of CD4+ T cells in

patients [5]. Many models have been developed to describe the immune system, its

interaction with HIV, and the decline in CD4+ T cells. Stochastic models can be

used to account for events early in the disease, when the viral level is low and few

cells are infected, or where the variability among individuals is of interest. One class of

stochastic models has looked at the effects of increasing variability among viral strains

in the progression to AIDS.

Deterministic models that examine the changes in mean cell numbers, have been

developed by many authors. These models are more applicable to the later stages of the

disease, where the population sizes are large. The models typically consider the dynamics

of the CD4+ T cell and virus populations as well as the effects of therapy. Other immune

system populations, such as macrophages or CD8+ cells, have been included in some of

these models [24]. Many of these models, and especially those developed before 1995,

have tended to focus on the kinetics of T cell decline. Unfortunately, many different

models can mimic this aspect of HIV infection without providing additional insight into

the disease [4]. For further details on these and other model types and their application,

see [4, 12,25] and the references therein.

The development of rapid, sensitive, and accurate methods for measuring the number

of virus particles in blood provided the impetus for further dynamic modeling [8].

Because of the difficulties of doing experiments in humans, fundamental information

was lacking about the dynamics of HIV infection. As an example, since the disease takes

ten years, on average, to develop, it was assumed that the components of the disease

process were slow as well. This turned out to be incorrect. Modeling, together with the

appropriate experiments has revealed that HIV is a dynamic disease that encompasses

time scales of hours, days, weeks and months [4, 7].

The focus of this chapter is on the dynamic models that have made a substantial

impact on the understanding of HIV infection. These models follow a deterministic

approach, and the three-dimensional version of these models forms the basis for analysis

in the following chapters.
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2.3. The three-dimensional model

A model that entails these faster virus dynamics is based on the interaction between

healthy CD4+ T cells, infected CD4+ T cells and free virus particles in the bloodstream.

The model has three variables representing these three concentrations in the blood-

stream. This model is a good starting point for analysis of viral dynamics, especially

in situations where steady state values are perturbed by means of effective treatment

strategies, as for instance highly active antiretroviral therapy (HAART).

The background to this model is set out in [11]. The model describes the quantities of

uninfected cells, infected cells, and free viruses in a system of three differential equations.

It is assumed that uninfected cells encounter free virus to become infected cells. The

rate of production of new infected cells is proportional to the product of the density of

uninfected cells times the density of free virions. Free virions are produced by infected

cells. All three populations die, and are cleared, at their respective rates, and it is

assumed that the system constantly replaces uninfected cells. With these governing

assumptions, a model of virus dynamics can be defined.

Suppose the system is initially uninfected and uninfected cells are at an equilibrium

value. When a small amount of virus particles or infected cells are added to the system,

invading virions might infect a number of healthy cells, which will produce new virions,

which in turn can infect healthy cells. A chain reaction starts that can result in two

scenarios: either the initial infection dies out, or it leads to an explosion of free virions

and infected cells in the system. The critical value that determines whether or not the

chain reaction is sustained, depends on the basic reproductive ratio of the infection,

denoted by R0. For viral infection, R0 is the average number of infected cells that derive

from any one infected cell in the beginning of the infection. If, on average, every infected

cell produces less than one newly infected cell, i.e. R0 < 1, then the infection will not be

established. If infected cells do produce more than one newly infected cell, i.e. R0 > 1,

the infection will take off.

In the latter case, virions and infected cells will grow exponentially at first, while

uninfected cells stay roughly constant. As time progresses, the uninfected cells will

decline and the exponential growth of virus will slow down. The abundance of virus

will reach a maximum and subsequently decline, while at this same time, the uninfected

cells will pass through a minimum and increase again. The system will display damped

oscillation towards an equilibrium point.

At equilibrium, the virus is controlled by a limited supply of uninfected cells. On
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average, every infected cell would give rise to one newly infected cell. The equilibrium

level of uninfected cells is thus given by the number of uninfected cells prior to infection,

divided by R0. A large value for R0 will thus result in a greatly reduced level of uninfected

cells.

An interesting feature of the model is that a cytopathic virus, which rapidly kills in-

fected cells, will only achieve a small equilibrium abundance of infected cells, irrespective

of the amount of virions produced by any one infected cell. In contrast, a non-cytopathic

virus will lead to an equilibrium abundance of infected cells at a similar level to the origi-

nal level of uninfected cells prior to infection. In both cases, the rate at which virions can

infect target cells has only a minor effect on the equilibrium abundance of infected cells.

This feature of the model may run counter to intuition, since one might be tempted to

conclude that a high rate of infection will always result in a high level of infected cells,

which is not the case.

Even with its relative simplicity the three-dimensional model can be used effectively

to describe the primary stages of HIV infection (or SIV and other viral infections for that

matter). The peak in virus load during the first weeks of infection with a subsequent

decline to relative stability, is inherent in the model dynamics. The model helps to

estimate rate constants of the initial virus expansion and decline. It is also possible

to get an idea of the reproductive ratio, R0 during this stage. Extensive data from

SIV infection show a strong correlation between the virus growth rate during the first

week of infection and the stead-state virus load, which in turn is related to the rate of

progression to disease an death.

2.3.1. Equations for the three-dimensional model

A three-dimensional model of HIV/AIDS consists of three variables: the population sizes

of uninfected cells (T ), infected cells (T ∗), and free virus particles (v). For this model

it is assumed that free virus particles infect uninfected cells at a rate proportional to

the product of their abundances, βvT . The rate constant, β, describes the efficacy of

this process. Infected cells produce free virus particles at a rate proportional to their

abundance, kT ∗. Infected cells die at a rate δT ∗, and free virus particles are removed

from the system at a rate cv. Therefore, the average lifetime of an infected cell is 1/δ

whereas the average lifetime of a free virus particle is 1/c. The total amount of virus

particles produced from one infected cell, the “burst size”, is k/δ. If the production of

CD4+ T cells is considered to be constant, s, for the modeled period and the death rate

is dT for the uninfected cells (average lifetime of an uninfected cell is thus 1/d), the
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    Uninfected Cell    Free virus     Infected Cell

s

d c

k

Virus Dynamics

Figure 2.1.: Schematic illustration of the three-dimensional model of virus dynamics [11].

three-dimensional model of virus dynamics is obtained as in [4, 11]:





Ṫ = s− dT − βTv,

Ṫ ∗ = βTv − δT ∗,

v̇ = kT ∗ − cv.

(2.1)

A schematic of this model can be seen in Fig. 2.1.

For ease of notation in the this document, the following notation is defined for the

three-dimensional model (2.1): χ = [ s d β δ c k ]T is the vector of model parameters,

and χ̂ = [ ŝ d̂ β̂ δ̂ ĉ k̂ ]T the estimate of these parameters. The state vector ~x(t) = [ T (t)

T ∗(t) v(t) ]T , and the initial state vector ~x0 = [ T0 T ∗
0 v0 ]T .

2.3.2. Model dynamics

Before infection the viral load and infected CD4+ T cell load are fixed at zero with

the uninfected CD4+ T cells at the steady state T = s/d. If an infection occurs at

t0 = 0, with a certain amount of virus particles, v0, then the initial conditions are

T0 = s/d, T ∗
0 = 0 and v0.

The infection is only established when a specific condition is met. The crucial quantity

in this case is the basic reproductive ratio of the virus, R0, which is defined as the
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Basic reproductive ratio
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Burst size

Basic

reproductive ratio

Figure 2.2.: Schematic illustration of the burst size and basic reproductive ratio [11].

number of newly infected cells that arise from any one infected cell when almost all cells

are uninfected [11]. The burst size, which is the total number of virions produced from

any one infected cell, and the basic reproductive ratio are illustrated in Fig. 2.2.

The rate at which one infected cell gives rise to new infected cells is given by βkT/c.

Since the uninfected cell level is initially T = s/d and the lifetime of an infected cell is

1/d, the basic reproductive ratio is given by [11]

R0 =
βsk

δdc
. (2.2)

If R0 < 1 then the virus will not spread, since infected cells will on average produce

less than one newly infected cell and the chain reaction is sub-critical. If there are

N infected cells at infection, then roughly ln N/ ln(1/R0) rounds of replication can be

expected before the virus population dies out.

If R0 > 1 then every infected cell produces, on average, more than one newly infected

cell and an explosive multiplication of virus will result with an initial growth of

v(t) = v0e
r0t,

where the growth rate of the virus population, r0, is given by the larger root of the

equation r2
0 +(δ + c)r0 + δc(1−R0) = 0 [11]. Virus growth will not continue indefinitely,
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since the supply of uninfected cells is limited. There will be a peak in viral load and

subsequently damped oscillation towards an equilibrium.

2.3.3. Steady state

The steady state of the model is also called the equilibrium state or, the variables have

reached a set point. The steady state values of uninfected CD4+ T cells, infected CD4+ T

cells and viral load in (2.1) are given by [11]

Ts =
δc

βk
= T0/R0, (2.3)

T ∗
s = (

ksβ

δdc
− 1)

dc

βk
= (R0 − 1)

dc

βk
, (2.4)

vs = (
ksβ

δdc
− 1)

d

β
= (R0 − 1)

d

β
. (2.5)

At steady state, one infected cell will on average give rise to one newly infected cell. The

probability that a cell remains uninfected during its lifetime is 1/R0.

The ratio of uninfected cells before infection and at steady state is T0/Ts = R0. If

R0 À 1, then Ts will be much less than T0, which means that the uninfected cell level is

much smaller at steady state than it was before infection. Also in this case, the steady

state abundance of infected cells and free virus is approximately given by T ∗
s ≈ s/δ and

vs ≈ (sk)/(δc). Note that both quantities do not depend on the infection parameter β.

Intuitively this is because a highly infectious virus (large β) will rapidly infect uninfected

cells, but at steady state there will only be few uninfected cells in the system, whereas a

less infectious virus (smaller β) will take longer to infect uninfected cells, but at steady

state the abundance of uninfected cells is higher. For both viruses the product βTs will

be similar at steady state and result in a constant rate of production of infected cells

and similar steady state abundances of infected cells and free virus.

For a highly cytopathic virus (δ À d), the steady state abundance of infected cells

will be small compared to the abundance of cells prior to infection. Thus larger values

of δ result in lower levels of both infected cells and free virus.

For a non-cytopathic virus (δ ≈ d), the steady state level of infected cells will be close

to the total abundance of susceptible cells prior to infection.
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2.4. Higher-dimensional models

As described in the survey paper [1], there are some refinements made to the model (2.1)

by different authors.

The pool of virus producing CD4+ T cells has been estimated to be very small (3×107

[26]). If there would be no other source of virus and the death rate of infected cells is

taken to be 0.45 (see section 4.3), it is estimated that the CD4+ T cell pool could have

been eradicated in about 25 days (3× 107 exp(−0.45× 25) < 1).

There are additional cellular reservoirs of virus. A quantitative image analysis tech-

nique was used to reveal the viral burden in lymphoid tissues [27], particularly on the

surface of follicular dendritic cells (FDC). Perelson et al observed that, after the rapid

first pase of decay during the initial 1–2 weeks of antiretroviral treatment, plasma virus

levels declined at a considerably slower rate [4]. This second phase of viral decay was

attributed to the turnover of a longer-lived virus reservoir of infected cell population,

which was determined to have a half-life of 1–4 weeks. This means that on average it

would take between two and a half, and three years of perfectly effective treatment to

eradicate the virus. This possibility generated optimism for the eradication of HIV in

1996 [3].

The long-lived cell model takes the following form





Ṫ = s− dT − βTv,

Ṫ ∗ = βTv − δT ∗,

Ṁ = sM − dMM − βMvM,

Ṁ∗ = βMvM − δMM∗,

v̇ = kT ∗ + pMM∗ − cv.

(2.6)

Here M∗ denotes the concentration of productively infected long-lived cells. While

the long-lived cell model fits the patient data, it is not the only reasonable biological

model. The source underlying the second-phase kinetics might be the release of virions

trapped in the lymphoid tissues. It might be linked to infected macrophage cells [28],

or it could also be due to the activation of latently infected cells. The latently infected

cells are cells that harbor HIV DNA as a provirus, but are not producing virus. These

cells, when activated into cell division, reproduce their DNA, and in the process read

the viral DNA. The latently infected cell model will be described below.

Both the latently infected cell model and the long-lived cell model make identical

predictions for the course of second-phase decay, and the primary source of second-
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Table 2.1.: Virus reservoirs and life spans
Cell Size Half-live Eradication

Active CD4 3× 107 1 day 25 days
FDC 3× 108 − 1011 1–4 wks 0.5–2.8 yrs

Macrophage n.a. 1–4 wks n.a.
Memory CD4 105 − 106 6–44 mon 9–72 yrs

phase virus is linked to long-lived cells in [4]. This prediction is based on an improved

expression obtained from (2.6) by assuming perfect inhibition (β = 0 and βM = 0) [4],

v(t) = A exp(−δt)−B exp(−ct) + C exp(−δM t).

Continued monitoring of patients on HAART for extended periods has provided evi-

dence for the existence of a possible reservoir of long-lived CD4+ memory T lymphocytes,

resulting in a third phase of HIV decay being observed during HAART. The kinetics of

this decay are extremely slow, and the half-life of the memory cell reservoir has been

estimated at between 6 and 44 months. As a result the predicted time required for

effective antiretroviral therapy to eradicate HIV from the body could range anywhere

between 9 and 72 years. This suggests that a true virologic cure is unattainable using

the conventional antiretroviral regimens.

These findings are described in [29] and the results summarized in Table 2.1.

2.4.1. Model with latently infected cells

In [1] the following model is considered to be one of the most popular models in current

use:

Ṫ = s + rφ(T )− dT − βv1T, (2.7)

Ṫ1 = q1βv1T − δ1T1 − k1T1, (2.8)

Ṫ2 = q2βv1T + k1T1 − δ2T2, (2.9)

v̇1 = k2T2 − cv1, (2.10)

v̇2 = k3T2 − cv2. (2.11)

In this model, (2.7) describes the population dynamics of the uninfected CD4+ T

cells. It is a one-compartment model, and T is identified with the CD4+ T cell counts
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in blood. s is the rate at which new CD4+ T cells are created from sources within the

body, such as the thymus. CD4+ T cells can also be created by proliferation of existing

T cells. The second term, rφ(T ), denotes the rate of proliferation according to the rate

constant r and function φ. The death rate constant of uninfected cells is denoted by

d. HIV infection is represented by the “mass-action” term of βv1T , with β being the

infection rate constant and v1 the concentration of infectious virions.

A common assumption among authors is that the source term, s is constant, and the

proliferation effect may be lumped into the death rate constant, d [11]. This assumption

reduces the timescale over which the model can be applied. Since proliferation is lumped

with the death rate constant, one must also accept that d might be negative.

The thymus and bone marrow can be infected by HIV, thus it is believed that the

source term is a decreasing function of viral load. For example, s(v) = θs/(θ + v) [30]

or s(v) = θ1s + θ2s/(Bs + v) [31].

There are suggestions that the proliferation rate is density-dependent, and that pro-

liferation slows with increase in CD4+ T cell count. The most common form for φ is

taken as the following logistic function [4],

φ(T ) = T (1− T

Tmax

), (2.12)

in which Tmax is the CD4+ T cell population density at which proliferation shuts off. In

the presence of HIV, there are three types of CD4+ T cells: uninfected cells T , latently

infected cells T1 and productively infected cells T2. It would thus be reasonable to change

the logistic proliferation term to rT (1 − T+T1+T2

Tmax
). However the proportion of infected

cells is small and this correction is ignored [4].

In (2.8), the population dynamics of latently infected cells is described. δ1 is the death

rate constant of latently infected cells, k1 is the rate constant linked to the conversion

from latent to productively infected cells. Latently infected cells are produced with a

rate constant of q1β with q1 ≤ 1.

(2.9) describes the population dynamics of the productively infected cells. These cells

produce virus particles and are also called actively infected cells. δ2 is the death rate

constant of actively infected cells. Productively infected cells are produced with a rate

constant of q2β with q2 ≤ 1. Since some cells may harbor defective provirus it is assumed

that q1 + q2 ≤ 1.

(2.10) represents the dynamics in the concentration of infectious virions. When one

considers the control effect of protease inhibitors, v1 includes the population of virus
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that is not influenced by the protease inhibitor. The infectious virions are produced by

the actively infected T2 cells with a rate constant k2, and c is the death rate constant of

infectious virions. In this equation, the loss of virus due to infection of a cell is ignored.

Each time a cell is infected, at least one virion must enter and thus one might add the

term βv1T to (2.10), but the effect of this term is not statistically significant [4].

The dynamics of the concentration of non-infectious virion is represented by (2.11).

The population of defective virus particles is denoted by v2. These non-infectious par-

ticles are produced by the actively infected cells, T2, at a rate constant k3, and the

non-infectious particles are assumed to be removed form the system at the same rate

constant c, as the infectious virions. k̄ = k2 + k3 is the rate constant of total virion

production. At times k̄ is denoted as k̄ = Nπ, in which case N is the total number of

virions produced by an actively infected cell during its lifetime. N is hard to measure

accurately [15], and thus k2 and k3 are kept in the model.

Derived models

The model described by (2.7)–(2.11) is the basis for several classes of models. For

instance, if it is assumed that the non-infectious virus is negligible then k3 = 0, and

(2.11) becomes v̇2 = −cv2. This is especially true in the case when no treatment by

protease inhibitors is present. In this case v2 tends to zero, and the system becomes

Ṫ = s + rφ(T )− dT − βvT,

Ṫ1 = q1βvT − δ1T1 − k1T1,

Ṫ2 = q2βvT + k1T1 − δ2T2,

v̇ = k2T2 − cv.

(2.13)

A variation of this fourth order model was proposed in [4] in the following form

Ṫ = s + rφ(T )− dT − βvT,

Ṫ1 = qβvT − δ1T1 − k1T1,

Ṫ2 = βvT + k1T1 − δ2T2,

v̇ = k2T2 − cv.

(2.14)

Here it is assumed that q < 1. This model corresponds to the general case when q2 = 1

and the restriction q1 + q2 ≤ 1 becomes q1 + q2 ≤ 2.

In some of the earlier variations of this model it was assumed that, upon infection,

CD4+ T cells are by default latently infected (T1) cells. Actively infected cells are
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presumed to be generated from latently infected cells with a rate constant k1. Thus in

the general form, the infection term q2βv1T is not present in (2.9), and q1 = 1 in (2.8).

Thus the system is simplified to

Ṫ = s + rφ(T )− dT − βvT,

Ṫ1 = βvT − δ1T1 − k1T1,

Ṫ2 = k1T1 − δ2T2,

v̇ = k2T2 − cv.

(2.15)

The identifiability of these three variations of the fourth order model were investigate

in [12], with interesting and informative results. These will be discussed later.

Connections to the three-dimensional model

If the distinction between actively infected cells and latently infected cells is not neces-

sary, one could denote the total CD4+ T cell population (T1 + T2) as T ∗. If the average

death rate constant of infected cells is assumed to be δ, then one has the following

model [4, 11, 24,32],

Ṫ = s + rφ(T )− dT − βvT,

Ṫ ∗ = βvT − δ1T
∗,

v̇ = k2T
∗ − cv.

(2.16)

If the proliferation term, rφ(T ) is lumped with the parameter d, this model reduces

to the three-dimensional model considered at the beginning of this chapter.

2.4.2. Extended compartmental HIV/AIDS model

The different compartments that harbor HIV, can be combined into a single model.

Thus, for instance the long-lived cell model can be combined with the model incor-

porating latent infection to synthesize a model that captures the dynamics of both

compartments. In [13], the identifiability properties of such an extended compartmental

HIV/AIDS model are discussed. The model is outlined in [4], but, for identifiability
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analysis, the proliferation term was dropped. The resulting model is

Ṫ = sT − dT T − βT Tv,

Ṫ1 = q1βT Tv − kT1 − δ1T1,

Ṫ2 = q2βT Tv + kT1 − δ2T2,

Ṁ = sM − dMM − βMvM,

Ṁ∗ = βMvM − δMM∗,

v̇ = πT T2 + πMM∗ − cv.

(2.17)

The state variables T , T1, T2, M , M∗ and V are the concentrations of the uninfected

CD4+ T cells, the latently infected CD4+ T cells, the actively infected CD4+ T cells,

the uninfected macrophages, the infected macrophages and the free virus particles re-

spectively. sT and sM are the source rate constants for uninfected CD4+ T cells and

macrophages respectively, while dT and dM are their respective death rate constants.

Similarly, βT and βM are the infectivity rate constants and are an indication of the ef-

fectiveness of the infection process of the respective cells by the virus. q1 and q2 are the

probabilities that upon infection, a CD4+ T cell will become either latent or actively

produce virus, while k is the conversion rate constant from latent to active virus pro-

ducer. δ1, δ2 and δM are the death rate constants for the infected CD4+ T cells and

macrophages respectively. πT and πM are the rate constants at which the respective

infected cells produce virus and the virus dies with a rate constant c.

The combination of the models is fairly intuitive, yet complex dynamics can be ex-

pected from this system.

2.5. Model choice for parameter identification

For this research, the main aim is to identify model parameters for individual patients.

With this aim in mind, it is important to decide on structures that will allow parameter

identification within the prevailing circumstances of patients.

Furthermore, for the purpose of estimating model parameters, it is assumed that

plasma viral load, v and CD4+ T cell count, T are measured, in accordance with the

current prevailing medical practice [5].

The choice of basis model is important and will be discussed in more detail here.
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2.5.1. Identifiability

The first identifiability study on HIV models from an engineering perspective was per-

formed in [12].

Before identification of HIV/AIDS model parameters, it is necessary to ask which

variables can be measured. Clinically, many variables can be determined, though some

of them with low accuracy and high cost. The recommendation by the panel on clinical

practices for treatment of HIV infection [5] and the WHO [33] is to measure the viral

load and the CD4+ T cell counts in HIV patients. Since CD4+ T cells are predominantly

healthy cells [26], and for technical reasons, the viral load and healthy CD4+ T cells are

considered to be the measured output [12].

The identifiability study addresses two main questions: How many measurements of

CD4+ T cells and viral load are needed for parameter identification? and when should

these measurements be done? Only when these questions have been answered can one

progress with confidence to the problem of accurately estimating model parameters from

available measurements.

Identifiability of the three-dimensional model

Identifiability (observability) is a system property of whether all parameters (state vari-

ables) can be calculated from the measured output. The precise meaning of observability

and identifiability is defined in [34,35]. When the outputs to the three-dimensional model

are taken as
y1 = T,

y2 = v,
(2.18)

the system (2.1) is both observable and identifiable, as was shown in [12].

An overview of the reasoning in [12] is as follows: Identifiability (more precisely,

algebraic identifiability), means that all parameters of the model can be determined

from the measured output. To find the conditions under which these parameters can be

determined, higher order differential equations are computed as,

ẏ1 = θ1 + θ2y1 + θ3y1y2, (2.19)

ÿ2 = θ4ẏ2 + θ5y2 + θ6y1y2, (2.20)
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where

Θ = (θ1, θ2, θ3, θ4, θ5, θ6)
T

= (s,−d,−β,−δ − c,−δc, kβ)T .

Θ defines a one-to-one map of parameters for β 6= 0 and c > δ [11]. Thus, identification

of Θ is equivalent to the identification of the original parameters of (2.1). Since the sys-

tem described by (2.19)–(2.20) is identifiable from measurements (2.18), all the original

parameters of the three-dimensional model are identifiable from the measurement of the

viral load and the CD4+ T cell counts in the blood of an HIV patient.

Based on (2.19) and (2.20) one can see that it is necessary to generate a minimum of

six equations, three from each equation, in order to solve for the parameters. This is

achieved by differentiating (2.19) and (2.20) twice, resulting in derivatives of y1 and y2 up

to the order of 3 and 4 respectively. To cope with these derivative orders, it is necessary

to have at least five measurements of the viral load, y2, and four measurements of the

CD4+ T cell count, y1, for a complete determination of all the parameters in (2.1)1.

Identifiability of the latently infected cell model

The four-dimensional model of (2.7)–(2.11) exhibits additional identifiability properties.

If the proliferation term is lumped into the parameters s and d, then, in general, ten

parameters are to be identified:s, d, β, q1, q2, δ1, δ2, k1, k2, c.

The identifiability theory of [12] shows that the system is not algebraically identifiable

if the outputs are still taken as (2.18). Besides the identification of s, d and β, five of

the seven remaining parameters can be computed from these measured outputs and the

remaining two parameters only if

q1q2βk2(δ1 + k1 − δ2)(δ2 − c)(δ1 + k1 − c) 6= 0. (2.21)

Some interesting conclusions are drawn from this equation in different situations [12].

q1 = 0

In this case δ1 and k1 cannot be separated from δ1 + k1. This is interpreted as

a blockage of the channel for infected cells to become latent. As a result one

cannot tell from CD4+ T cell and viral load alone how many latently infected

cells die naturally and how many turn into actively infected cells.

1Later on, in chapter 5, this is referred to as the (5+4) sample condition.
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q2 = 0

In this case the system is not algebraically identifiable. Observe that this corre-

sponds to the model in (2.15), which has only eight parameters. Despite having

two less parameters, not all eight parameters can be determined for (2.15).

k2 = 0

This means that infected cells do not produce virus and no information about

the CD4+ T cells can be extracted from the viral load. The model predicts that

the infection would be cleared in this case.

δ1 + k1 = δ2

(2.21) would be violated and the system is not algebraically identifiable. Prac-

tically this means that if active and latent cells disappear at the same rate,

then the dynamics of these two kinds of cells are indistinguishable.

δ2 = c

(2.21) is violated and the system is not algebraically identifiable. This corre-

sponds to the situation where actively infected cells and the virus disappear at

the same rate and it is impossible to distinguish their corresponding dynamics.

δ1 + k1 = c

(2.21) is violated and the system is not algebraically identifiable. This is similar

to the previous case. Since latently infected cells and the virus disappear at the

same rate, it is impossible to distinguish the corresponding dynamics.

It is clear that the latently infected cell model has more stringent restrictions for

successful identification of parameters. Some of the parameters can be determined by

different methods, as in the experiment of [26], where q1 is found to be q1=0.01 and

in [36], where q2 is estimated at q2 = 0.02. When these parameters are known, it is

interesting to see if the other parameters are still algebraically identifiable. An exhaustive

list of cases is discussed in [12].

When patients do a comprehensive test before initiation of HAART then the initial

state of the patient is known. In identifiability theory, the knowledge of initial states

is characterized by geometrical identifiability and in [12] it is shown that the system is

fully geometrically identifiable. This means that for the latently infected cell model, the

parameters can be estimated if we know the initial levels of active and latent CD4+ T

cells in addition to the viral load and CD4+ T cell levels measured after treatment.
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Basic model
T v
4 5
Latently infected cell model
T T1 T2 v
6 1 1 8
Extended Model, option 1
T T1 T2 M M∗ v
11 0 0 11 0 13
Extended Model, option 2
T T1 T2 M M∗ v
5 1 6 1 0 10

Table 2.2.: Models and their minimal measurement strategies

Identifiability of higher order systems

The identifiability of the extended model is addressed in [13]. It will suffice to note that

in order to identify parameters of multi-compartmental models, one needs measurements

from the other compartments as well. Also, as the complexity of models increases, the

accuracy of measurements and the number of samples needed, increases accordingly.

In [13] the conclusion is drawn that it is possible to obtain parameters for the higher

order model from viral load and uninfected CD4+ T cell counts only, but that this would

require too many viral load measurements to be practical.

A summary of the models and their respective minimal measurement strategies is

given in Table 2.2. It is clear that, from a practical perspective, the first aim should be

to identify the parameters of patients for the three-dimensional model.

2.5.2. Proliferation terms in the three-dimensional model

The identifiability analysis gives a clear indication that the three-dimensional model

of (2.1) should be used as the starting point for analysis of individual patient data.

Despite the choice of model for practical reasons, there is still the question whether the

proliferation term should be included in CD4+ T cell generation, or if it can be lumped

with the source term and death rate of cells, s and d. As described earlier, the most

common proliferation term in current use is (2.12).

One obvious drawback when this term is included in the model for parameter iden-

tification, is that two additional parameters, p and Tmax, must be determined together

with the other six parameters of (2.1). This would increase the minimum amount of
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measurements needed to estimate all parameters of the model. If the analysis must be

done with the minimal set of measurements, the basis model should be used. An alter-

native would be to fix p and Tmax to the standard values found in [22, 30] and continue

with the estimation of the other parameters as before.

Since the second option would result in fixed values for p and Tmax for all parameter

estimates, the question arises if there is any gain in estimation of the other parameters

to show for the addition of this term. To answer this question, the influence of the

proliferation term is quantified.

In order to estimate the influence of the proliferation term, the rates of change for the

CD4+ T cells in both versions of the model are equated

s1 − d1T − β1v1T = s2 + pT (1− T

Tmax

)− d2T − β2v1T. (2.22)

If the proliferation is considered to be lumped into d only, then s1 = s2 and β1 = β2,

giving

d1 = d2 − p(1− T

Tmax

). (2.23)

Thus the lumped death rate would vary from a maximum variation at T = 0 to no

variation at T = Tmax. One can easily see that it would be possible for the lumped

parameter d1 to become negative in some situations.

For a standard set of parameters s = 10, d = 0.01, β = 5 × 10−6, δ = 0.5, c = 3,

k = 1000, p = 0.03 and Tmax = 1500, the equilibrium value of T is Te = δc
βk

= 0.5×3
5×10−6×1000

,

and d1 can be computed as d1 ≈ −0.014.

In Chapter 4, section 4.1, the two models are compared by means of simulation.

In [37] the choice of models is discussed:

“In modeling a complex process we can try to incorporate as many of the

facts as possible, which necessarily involves many parameters, estimations of

which are difficult to obtain with extant data. An alternative approach is to

start with as simple a model as possible but which captures the key elements

and for which it is possible to determine estimates for the fewer parameters.

There is a trade-off between comprehensiveness and thus complexity, and the

difficulty of estimating many parameters and a simpler approach in which

parameter values can be reasonably assessed.”

Based on the presented simulations, taken together with this advice, the latter ap-
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proach is chosen for this research. In the following sections, the model (2.1) constitutes

the basis of analysis.
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2.6. Summary of chapter

Chapter 2 gives an overview of dynamic HIV/AIDS models, with specific attention to the

basis model used in this research. Models from literature are analyzed in combination

with the description of some fundamental decisions that were made to establish the

model type and scope for this research.

The chapter starts with an introductory overview of biological modeling principles

and the role of control engineers in this field in section 2.1.

From here section 2.2 introduces dynamic HIV/AIDS models, with particular atten-

tion given to the three-dimensional model, its equations, governing dynamics and steady

state in section 2.3.

Higher dimensional models that are based on and extend the three-dimensional model

are described in section 2.4. The models and their derivates are linked back to the basis

model to allow additional perspective on their relationship.

Finally section 2.5 investigates the model choice for this research. Models are discussed

in the context of identifiability and the section looks into the influence of proliferation

terms on the basis model.
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THE LINK between dynamic HIV/AIDS models and their practical applications

lies with the estimation of model parameters. In the previous chapter, various

models that describe the dynamics of HIV within a patient were considered. When a

model is used as a tool for treatment decisions, its parameters must be determined from

available measurements. Ideally, the procedure that is used should also allow for situa-

tions where it is impossible to extract all parameters and accommodate generalizations

of parameters that can be taken from other estimates and research.

This chapter describes the procedures that are used to extract model parameters and

the specific additions and modifications to standard methods that are necessary to allow

parameter estimation in situations where pure least square (LSQ) methods would fail.

3.1. Pure least square method

First a pure LSQ estimation is presented. In this section it is shown how the six para-

meters of (2.1) can be extracted from clinical measurements using classical LSQ data

fitting.

Recall the three-dimensional model of HIV/AIDS (2.1), of section 2.3.1:





Ṫ = s− dT − βTv,

Ṫ ∗ = βTv − δT ∗,

v̇ = kT ∗ − cv.

For the purpose of estimating model parameters, it is assumed that plasma viral load

and CD4+ T cell count are measured in accordance with the current prevailing medical

practice [5]. That is, the measurement outputs are y1 = T, and y2 = v.

Following the strategy in [12], it can be shown that the system (2.1) is identifiable
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and can be transformed into the system

ẏ1 = θ1 + θ2y1 + θ3y1y2, (3.1)

ÿ2 = θ4ẏ2 + θ5y2 + θ6y1y2, (3.2)

with the following parameter mapping:




s

d

β

δ

c

k




=




θ1

−θ2

−θ3

−θ4−
√

θ4
2+4θ5

2

−θ4+
√

θ4
2+4θ5

2

− θ6

θ3




. (3.3)

Now suppose that y1 and y2 are measured at time instants t = t0, t1, . . . , tN , then

ẏ1(t0) = θ1 + θ2y1(t0) + θ3y1(t0)y2(t0),

. . .

ẏ1(tN) = θ1 + θ2y1(tN) + θ3y1(tN)y2(tN).

Denote

AN =




1 y1(t0) y1(t0)y2(t0)
...

...
...

1 y1(tN) y1(tN)y2(tN)


 , (3.4)

BN =
[
ẏ1(t0) . . . ẏ1(tN)

]
,

θ1 =
[

θ1 θ2 θ3

]T

,

then the least-square estimation of θ1 is

θ̂1 = (AT
NAN)−1AT

NBN .

The least-square estimations exist if AT
NAN is invertible. Similarly, one can generate a

least-square estimation of θ2 = [ θ4 θ5 θ6 ]T .

One could estimate the differential terms in (3.1) by means of ∆yn/∆t. Thus the
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derivative is estimated by a direct comparison between two adjacent data points. The

estimation for ẏ1, for instance, is then given by

ẏ1 ≈ y1(t0 + d1)− y1(t0)

d1

.

Clearly this method is prone to erratic estimations of the derivative, especially when

a random component is present in the measurement. When data points are significantly

separated in time, this estimation will become even more imprecise.

Because of the erratic behavior of the derivative estimation, this approach is bound

to fail, even with seemingly insignificant measurement noise. Before any progress can

be made in the presence of noise, a method has to be followed that does not rely on an

estimation of the derivative.

In [14] these deficiencies are noted, and the problem is addressed through the use of

adaptive observers. The first step to achieve even higher accuracy is to increase the

accuracy of the derivative estimation. Also, the method should be immune to random

deviations in the measurements as far as possible. With these goals in mind, a search

method is used that is based on a customizable cost function.

The idea to customize the cost function is partly inspired by [38]. A customizable cost

function allows for additional flexibility together with the LSQ fit. Plausible assumptions

can be added in a bid to increase the accuracy of estimations. In addition to this,

limits on the parameters can be enforced to ensure that outlier points do not draw the

parameters into unreasonable ranges.

3.2. Estimation with LSQ-based penalty function

3.2.1. Cost function overview

As with the method considered in [14], this method is in essence least square (LSQ)

based, but with two important differences. Firstly, derivative estimation is only present

in the controlled environment of the numerical ordinary differential equation (ODE)

solver. Secondly, the cost function is not limited to the LSQ distance, but can be

expanded with penalty terms to increase the accuracy of parameter estimation.

The Nelder-Mead Simplex search method is used as the optimization routine1 and the

1Successful estimation is not dependent on the chosen search method but, due to abrupt changes in
the cost landscape, it is desirable to start with a search method that does not rely on a smooth cost
function. At the solution point of the initial search, one can switch to a different algorithm to refine
the solution.
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steps in the cost function are as follows:

i. The function receives a list of data points for the CD4+ T cell and the virus count

with their respective time points. Together with these, χ̂ is also passed to the

function.

ii. When constraints are specified for χ, they are enforced at this point. If constraints

are not met, a simplified cost is returned (by default only positive values are allowed

for the parameters).

iii. The function uses χ̂ and solves the dynamic model of (2.1). This is done within

the framework of a pre-existing numerical ODE solver.

iv. The differences between each data point and its predicted value are squared and

summed.

v. Any additional penalty terms are calculated and added to the total cost, which is

returned to the optimizing function.

At each iteration of the search, the cost function is called by the optimization routine,

until the pre-set tolerance is met. Since the numerical solution of the ODE can be time

consuming, it is desirable to keep its evaluation to a minimum, thus a simplified cost is

returned at step (ii), if any of the constraints are not met. Clearly this method is not

prone to the derivative estimation error, as is the LSQ method considered in [14].

Apart from the problem of derivative estimation, a second drawback in the pure LSQ

method is that the equations that are fitted to the data, contain product terms of

CD4+ T cell and virus counts. This forces the data vectors to be of equal length for

proper estimation. Since the cost function does not require any product terms, this

constraint on the length of CD4+ T cell and virus data vectors can be dropped.

The basic cost for a nominal set of parameters, χ̂, and initial conditions, ~̂x0, is com-

puted by generating T̂ and v̂ with a numerical ODE solver. Together with N measure-

ments of T and K measurements of v, at time t1, . . . , tN , and τ1, . . . , τK respectively, the

basic cost function is defined as,

Jw =
N∑

n=1

(T̂ (tn)− Tn)2

N mean(Tn)
+

K∑

k=1

(v̂(τk)− vk)
2

K mean(vk)
. (3.5)

From [39] it is known that the viral load tests are log based. Also for the experiments

performed in [4], the virus data is fitted to the least square of logarithmic distance.

Thus, following the scheme in [20, p. 444], the basic cost is modified to incorporate
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logarithmic distance for the virus data points:

Jl =
N∑

n=1

(T̂ (tn)− Tn)2

mean(Tn)N
+

K∑

k=1

(log v̂(τk)− log vk)
2

mean(log vk)K
. (3.6)

In both cases data vectors are weighted by their mean value and length. For group

analysis it is useful to use the means of the cohort data to allow better comparison be-

tween patients. Standard procedures apply when adding individual weights to samples.

If detailed information is available about the variances in data points, this information

can be incorporated as in [20, pp. 448–449].

3.2.2. Penalty terms and refinements

When a dataset does not contain enough information for parameter estimation on its

own, it might yet be possible to extract key parameters when prevailing circumstances are

known. In these situations the addition of custom penalty terms to the cost function is

helpful, since the penalty terms allow outside knowledge of the dataset to be incorporated

into the parameter estimation cycle. Refinements in the cost function are incorporated

at steps (ii) and (v) above. Common refinements for this research are:

Enforcing limits.

This is done at step (ii), before the intensive calculations in the cost function, by

checking parameters against a predefined range and correcting any parameters that

do not fall within the specifications2. A second option is to add parameter limits

to the cost value at step (v). This allows for weighted penalties where parameter

limits are not well-defined. The second option is not desirable for hard limits, since

the computationally intensive ODE will be solved even when the parameters fall

outside the prescribed limits.

Prior knowledge of parameters.

When a parameter is known from another source (e.g., experiment, assumption

or literature), this knowledge is incorporated at step (ii). At the same time, the

optimization routine can be instructed not to search for fixed parameters.

Prevailing conditions.

When prevailing conditions (e.g., a patient is in steady state before initiation of

2In contrast to fminsearch in Matlab, some solvers allow constraints to be placed separately from
the main cost function. When available, this option should be used to place hard limits on the
parameters.
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therapy) for a dataset are known, these conditions are added by means of an addi-

tional term in step (v). This term must be scaled to ensure its proper influence.

As an example, consider the experiment described in [4, pp. 16–19] (originally pub-

lished in [8]). In this experiment key assumptions were made to extract two of the six

parameters. Firstly each patient was assumed to be at steady state (set point has been

reached) before initiation of therapy. This is a prevailing condition for that experiment,

since the author had access to viral load data before the experiment, which indicated

that the viral loads were in steady state. Secondly in [11, p.32] it is stated that infected

cells live longer than free virus. This information is reflected in Jr by adding two terms

to the basic cost.

Jr = J + k1 max(
dv̂s

dt
, 0) + k2 max(δ̂ − ĉ, 0), (3.7)

where J is either Jw or Jl, v̂s is the vector of computed viral loads returned by the ODE

solver and truncated after a few days, and the scaling constants k1 and k2 are chosen

such that any violation of the prevailing conditions would result in a marked increase of

the cost function.

The first refinement term is the maximum numerical derivative of v̂s, which corre-

sponds to the knowledge that the patient is in steady state before initiation of therapy.

As alternative for this term, the positive numerical derivatives can be summed, subject

to the proper adjustment of the scaling constant k1. In either case, no positive derivative

should be allowed initially for the viral load. An intuitive way to see this is to note that

therapy results in a decline of virions, thus, an increasing virion count could only be

the result of fluctuations before therapy, which is not possible since the patient was in

steady state at the start of therapy. The second refinement term corresponds to the

statement that the average infected CD4+ T cell lives longer than free virions.

3.2.3. Other refinements and performance enhancements

To increase the performance of the method, there are additional refinements possible.

For instance, one can limit the range of set points before the computationally intensive

ODE solver to decrease the time needed to compute the cost for some of the iterations.

Thus it can be profitable to check that the set point ≤ 0 at step (ii) of the cost function

for experiments where one assumes 100% effective HAART.

At times, it may be advantageous to dictate the search order of parameters. Parame-

ters with low variation between patients (as the results for c and δ in [4] indicate) are

then introduced into the search at a later stage. For instance, c and δ can be fixed at
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initial values during the first stage of the search until a preset tolerance is met. The

search is then continued, this time allowing all parameters to vary.

Alternatives to the standard LSQ cost basis

As noted earlier, the primary computational burden of the parameter search is in solving

the model in a numerical ODE solver. Since the generated model curves for a parameter

set are available at each step of the search it can be useful to define alternative cost

functions that are based on a diverse set of norms. These cost values may then be calcu-

lated with minimal overhead at each iteration to allow the researcher some insight into

the changes that an alternative cost definition would bring about in the cost landscape.

For instance, one can define a cost that takes into account not only the squared

distance between sample level and predicted level at a fixed point in time. Rather, the

expanded function computes the distance to the nearest point in two dimensions (i.e.

CD4+ T cell level and time for T , and viral count and time for v). Obviously such

a norm would call for calibration experiments and calculations to determine the ideal

influence of the time-difference on the cost. In addition to this a tie breaker definition

would be needed for points that lie between peaks in the time domain. To quantify the

influence of time on the cost function, one can define a time-only cost that searches for

the nearest point in time on the generated ODE curve and allow this cost function to

run in parallel with the standard LSQ method.

Another option is the creation of zero-range cost functions for use with global solvers.

Such cost functions define a range below which the difference between a data point and

the computed curve is set to zero. Once the pre-defined tolerance is met for all points,

the total cost is zero. This scheme allows global box bounded solvers to search for

parameter sets only until a zero is found and then continue along the search tree to find

additional parameter sets that meet the zero-range requirements. In this way the global

solver can exit with a list of parameter sets that meet the zero-range requirements, which

in turn can be used as starting points for local solvers.

It is clear that the parameter estimation capabilities of the basis procedure can be

extended with minimal computational overhead. The definition of alternative cost func-

tions and their implementation is an excellent topic for further research.
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3.2.4. Implementation

Except for the initial data entry stage in Microsoft Excel, Matlab is used as basis of

implementation for analysis, together with the Optimization Toolbox. In the user guide

[40], details about the Optimization Toolbox and its functions are described. For control

purposes, searches are also implemented in the Tomlab optimization toolbox. The initial

search method used in this research is the Nelder-Mead based algorithm [41–43] as

implemented in Matlab’s function, fminsearch.

The code for core functions used throughout the research can be found in Appendix C

and the accompanying compact disc.

3.3. Alternative search methods

The Nelder-Mead search is not the only possible method that can be used. It is often

the case that the most convenient method is not the most efficient. From [43], it is

clear that one has to look beyond the Nelder-Mead method if the parameter search

must be be applied to large volumes of data, and results are expected within reasonable

time. Enquiries led to the Tomlab3 optimization package. Since this is a commercial

package with consistently updated routines that are rooted in research, it is possible

to use global box-bounded searches and other methods to check results from the initial

searches without delving into implementation details.

With such commercial packages it is possible to increase the convergence rate and

lower the computational cost for the parameter estimates. Also, global solvers allow

some degree of backup to check for multiple minima in the parameter space.

One of the aims of future research is to set up different search methods in such a

manner that switching between them is automated, and the modifications to the cost

are introduced at appropriate stages. Currently such functionality is controlled by the

user.

3http://tomlab.biz/
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3.4. Summary of chapter

Chapter 3 presents different parameter estimation procedures, with specific attention to

the methods that are implemented for this research.

The chapter starts out by discussing a standard least square estimate from literature

for the parameters of the basis model in section 3.1.

The drawbacks and limitations of the standard method are considered, and in sec-

tion 3.2 an estimation procedure is presented that is based on least square distance but

includes additional customizable penalty terms.

Modifications and variants of this method are discussed in the context of the basis

model and additional refinements of the procedure are presented.

Finally, in section 3.3 the search method used in this research is discussed together

with alternatives.
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4. General Results

GENERAL RESULTS from experiments that were performed throughout the re-

search are gathered in this chapter. The chapter contains simulation results that

depict the influence of proliferation on the three-dimensional model. The results from

validating the estimation routine against generated data are shown and the influence of

additional penalty terms in the cost function can be seen. Together with these results

an investigation is presented to determine the applicability of data-collection tables in

the context of practical data collection at hospitals.

A published experiment [4, 8] is reproduced to validate the estimation procedure and

evaluate the influence of assumptions and outside information on the estimation cycle.

The chapter is concluded with the results of an investigation into the variation of

parameters of the basis model throughout the pathogenesis of HIV/AIDS. The variations

of basis parameters are used to explore dual compartmental dynamics and parameter

estimates are linked back to an established model to explain the disease progression from

HIV to AIDS.

4.1. The influence of proliferation: simulation

comparisons

In section 2.5.2 the influence of a proliferation term (2.12) on the basis model (2.1) was

discussed from a theoretical perspective, with calculations to determine upper bounds

of influence. In this section, the models are compared through simulation, allowing for

a visual comparison. Also the rather more difficult question of the proliferation term’s

influence over varied time scales is investigated through simulation.

Fig. 4.1 shows an example simulation that compares the basic three-dimensional model

of (2.1), with and without the proliferation term (2.12) included in the CD4+ T cell

dynamics.

Now the data from the proliferation based model is used to estimate all parameters

for the basic model, to get an indication of the agreement between models. The result
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Figure 4.1.: The test basis to compare the three-dimensional model with and without
proliferation term for the CD4+ T cells.
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Figure 4.2.: The data from a proliferation based model is used to estimate all parameters
for the basic three-dimensional model. The resulting curves agree very well.
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Figure 4.3.: The data from a proliferation based model is used to estimate d only for the
basic three-dimensional model, keeping all other parameters as in the test
basis. The difference is more pronounced than in Fig. 4.2 and Fig. 4.4.

in Fig. 4.2 shows that there is a minor difference throughout the modeled time frame.

This difference becomes even less as the steady state is approached.

To see if the proliferation could be lumped into the parameter d, an estimation was

performed with all parameters of the basic model fixed at the values of the corresponding

parameters of the test set. Fig. 4.3 shows the result for this estimation. Here one can

see that the data is quite agreeable, but that there is a distinct deviation at the peaks of

the curves. As with the previous estimate, the difference between the curves diminishes

with time.

When the previous estimation is repeated, but both s and d are allowed to vary, a

more agreeable solution is found. In Fig. 4.4 shows the first hundred days of the data.

There is no large difference between the two versions of the model and the difference

diminishes after about sixty days.

A final comparison allows for the effect of the proliferation term if only a small data-

window is available. The results in Fig. 4.5 show how the estimate is near perfect at the

start, but the predictions diverge after thirty days. From Fig. 4.5 one can see that the

estimates for the CD4+ T cell level and viral load set points are robust against changes
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Figure 4.4.: The data from a proliferation based model is used to estimate s and d only
for the basic three-dimensional model, keeping all other parameters as in
the test basis. The difference is more pronounced than in Fig. 4.2 but less
than in Fig. 4.3.
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Figure 4.5.: The data from a proliferation based model is used to estimate all parameters
for the basic three-dimensional model, but here only the first thirty days are
used for the estimate. At first there is no notable difference between the
two curves, but after thirty days a deviation develops that becomes more
pronounced as time progresses, whereas Fig. 4.2 had an initial difference
that stayed consistent throughout the comparison.
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in the proliferation term, but that changes in the estimation of the time to set point can

be expected.

From the simulations of the two versions of the three-dimensional model, it can be

seen that the proliferation term does have a marked influence on the estimation of both

s and d, rather than on d only. Once the proliferation has been absorbed into these two

parameters, modeled differences are small, and can be ignored in the context of clinical

measurements. It is evident that the model parameters for the two versions of the three-

dimensional model cannot be compared before the influence of the proliferation term

has been accounted for. In the following sections, the three-dimensional model without

proliferation term is used as the basis for estimation. From this basis, as an increased

number of measurements become available, it is possible to add additional detail to the

model and estimate the proliferation parameters.

4.2. Method verification

4.2.1. Generated data

First, the described procedure is checked against generated, well-posed data, exceeding

all requirements of [12]. The underlying test-set is generated with the aim to accom-

modate the range of parameters described in literature [4, 11, 15, 22, 25, 44–46]. Some

parameters vary considerably among authors—here the choice is biased toward the val-

ues given in [11] and [4]. For a discussion of parameter and set point variations the

reader is referred to [45,46].

Generated data with a random component

As a starting point, a dataset is generated for χ = [ 10 0.01 5 × 10−6 0.5 3.0 1000 ]T ,

~x0 = [ 1000 1 100 ]T and t = 0, 1, 2, . . . , 99, 100. Without any random component added

to the data, the estimation routine achieves a near-perfect estimation of parameters

(results not shown).

A random component with a log10-normal variance of 0.6 in the virus and a normal

variance of 50 in the CD4+ T cell count, is added to the data to simulate inaccuracies

in measurements. The log-variance in the virus data is based on measurement variances

described in [39].

The first estimate of parameters is made without any assumptions added to the cost

function. The result is shown in Fig. 4.6, which corresponds to χ̂ = [ 10.2 0.011 7.5×10−6
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Figure 4.6.: Estimate of parameters on noisy data, without penalty term assumptions
added to the cost function. Note the difference of infected cell levels between
the original parameter simulation (dashed) and the estimated parameter
simulation (solid). Compare Fig. 4.7.

4.22 0.45 831.23 ]T . Note that δ̂ = 4.22 and ĉ = 0.45 are not correctly estimated. Their

values should be exchanged, since the original data has as basis δ = 0.5 and c = 3. This

difference can be seen in the number of infected cells in Fig. 4.6, but not in the CD4+ T

cell or virus counts. The exchange of δ and c reflects the fact that the CD4+ T cell

and virus counts of (2.1) are symmetric with respect to δ and c [11]. Since the infected

cell count is not available to the estimation routine when determining the parameters,

the cost function has to be augmented with the knowledge that δ < c to correct this

exchange. This addition to the cost function was described in section 3.2.2.

After adding the relevant penalty terms to the cost function, a second estimation

is performed as shown in Fig. 4.7. Even though the CD4+ T cell count and the viral

levels are nearly identical in Fig. 4.6 and Fig. 4.7, there is a distinct difference in the

predicted levels for infected CD4+ T cells. The infected cell levels are not available as

a measurement in practice, but since the data for this test-case is generated from the

model, a comparison is possible. In both Fig. 4.6 and Fig. 4.7 the expected level of

infected CD4+ T cells is given in the dashed line. Only in Fig. 4.7 does the predicted
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Figure 4.7.: Estimate of parameters on noisy data with a penalty term, assuming that
δ < c, added to the cost function. Note the similarity of infected cell levels
for the original parameter simulation (dashed) and the estimated parameter
simulation (solid). Compare Fig. 4.6.

level (solid line) match the expected level.

The second parameter estimate is unchanged from the first estimation, except that δ̂

and ĉ are exchanged, i.e. χ̂ = [ 10.7 0.015 4.5 × 10−6 0.58 2.05 896.49 ]T . Note that the

order of δ̂ and ĉ is correct. The correct estimation is a direct result of the addition of the

penalty term, k2 max(δ̂ − ĉ, 0), to the cost function which implies that δ < c. It is clear

that the estimation procedure responds correctly when outside knowledge is added. The

next section investigates if the estimation is still reasonable with less data-points.

4.2.2. Validating a dataset with a reduced number of data points

The theoretical limit for the minimum number of data points for an estimation of para-

meters, under conditions of persistent excitation, was derived in [12]. One of the primary

applications of the basis model is during the period immediately following the initiation

of HAART, where the condition of persistent excitation is met [12]. Also experiments to

determine c and δ as in [4, 7, 8] are all performed in the immediate period following the
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Figure 4.8.: Estimate for dataset with reduced number of points. Original parameter
simulation – dashed; Estimated parameter simulation – solid.

initiation of treatment. Yet, it becomes increasingly hard to meet all conditions of identi-

fiability in practical situations. To ensure that sample data complies with identifiability

requirements, a time schedule can be set up that allows flexibility in sampling intervals

without jeopardizing parameter identifiability after the initiation of HAART [22, 44].

Before such a time schedule for measurements can be finalized, its viability for model

identification has to be determined. As an example, to show the applicability of the

proposed procedures, a dataset is created with χ = [ 10 0.01 8 × 10−7 0.5 3.2 4000 ]T ,

~x0 = [ 100 2.8 112500 ]T and the time points taken from the schedule as in Fig. 4.8.

The proposed schedule is intended for use after initiation of HAART, thus the initial

CD4+ T cell level is chosen to be T0 = 100 and v0 is chosen near the set point value

of χ with β = 8 × 10−6 and k = 18200 according to (2.5): After determining the viral

set point, β is lowered to β = 8 × 10−7, and k is lowered to k = 4000 corresponding to

the assumption that HAART in this case is 90% effective in reducing β and about 80%

effective in reducing k. A random component is added to both the CD4+ T cell and

virus counts, as with the previous dataset. The estimate corresponding to Fig. 4.8 gives

χ̂ = [ 11.2 0.012 7.4× 10−7 0.49951 3.89 5156 ]T .
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Table 4.1.: Comparison of results with a published experiment. The half-life for c is
computed as tc 1

2
= ln 2

c
and similarly for δ.

Virus clearance Infected cell loss

Patient ĉ tc 1
2

δ̂ tδ 1
2

number Method (day−1) (days) (day−1) (days)

104 published 3.7 0.2 0.5 1.4
penalty function 2.03 0.34 0.51 1.36

~x0 modified 3.40 0.20 0.50 1.38

105 published 2.1 0.3 0.5 1.3
penalty function 0.66 1.05 0.66 1.05

~x0 modified 2.22 0.31 0.45 1.54

107 published 3.1 0.2 0.5 1.4
penalty function 2.07 0.33 0.50 1.39

~x0 modified 3.07 0.23 0.49 1.41

The assumption that the patient is in steady state was not added to the estimation

procedure, since this assumption is only made to approximate a value for v0. If such

information is available, the accuracy of estimation can be increased.

4.3. Reproducing a published experiment

In this section, the parameter estimation of c and δ for three patients in [4, pp. 16–19]

is repeated using the custom penalty method. The patients under consideration were

treated with protease inhibitors, allowing for additional assumptions to be made about

the system. By fitting a reduced system to sample data it was possible to estimate both

c and δ. Here the estimation is repeated, but instead of reducing the system equations,

the assumptions are added to the cost function as described in section 3.2.2. The method

described in this paper is used to extract the same two parameters as in the experiment.

Note that all the assumptions described in the experiment are included in this estimate.

This is done to verify that the procedure described here correctly handles the addition

of custom penalty terms. After estimation, results are compared.

There is a distinct, and consistent difference in ĉ between the published results and

the estimation by custom penalty function. Since the estimation of c is dependent on

the shoulder region of the virus count [11], a dependence on ~x0 is to be expected. It is

possible to find values for ~x0, for which the estimates, δ̂ and ĉ, are closer to the published
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estimates. These nominal values for ~x0 are found by keeping all parameters at the values

published in [4] and instructing the optimization routine to search for the initial values

~x0 that minimize the cost function. With ~x0 fixed, one can estimate the parameters

again with the same cost function, but without searching for ~x0, to find the values given

in table 4.1.

The small data window for this experiment does not allow clear information to be

found about the initial conditions. From the results it is clear that the estimation of c,

and, to a lesser degree of δ, is dependent on outside information about the initial level

of the virus concentration. When this information is added to the estimation procedure

the results compare very well with those published in [4].

4.4. Parameter variation in the basis model

Parameter variation in dynamical models from HIV infection to the onset of AIDS is

still in open discussion [15,18,45]. The variation in parameter estimates across different

studies is addressed in [45]. In [15], the question is raised if the three-dimensional model

can be considered as a valid model for longer periods of time, since it does not account

for the consistent decline of CD4+ T cells and the final explosion of virus particles as

patients progress from the asymptomatic stage to AIDS.

Since the three-dimensional model cannot describe the complete pathogenesis of the

disease with a single set of parameters, the question follows whether a variation of

parameters over time could account for the variations in CD4+ T cell and viral load

from infection through the final stages of AIDS. When this question is answered, the

variations that are found can be assessed and may form the basis for new discoveries of

underlying interactions.

As an example, variations in the parameters s and d, which are the source and death

rate terms for CD4+ T cells, could point to plausible source functions that depend on

other parameters.

Finding the variation of parameters over disease progression necessarily implies a

phenomenological approach, which deviates from the deterministic nature of the model.

Thus any results with respect to such variations should serve as starting point for further

research, rather than as end result.

This section is divided into two parts. First the variation of parameters in the three-

dimensional model is found over the course of HIV/AIDS. These results are combined

with additional research and model extension to find a plausible explanation for the

emergence of AIDS in asymptomatic patients.
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Figure 4.9.: An interpolated version of the dataset from [10], showing the progression of
HIV from early infection to AIDS. The solid curve represents the CD4+ T
cell levels and the dashed curve the viral load.

4.4.1. Phenomenological approach to parameter variation in the

three-dimensional model

To get an indication of the variation of parameters over the course of the disease, a

dataset from [10] is considered in this section. Fig. 4.9 shows the interpolated dataset

for virus and CD4+ T cell levels over the course of the disease. In the early stages after

infection, the variation in both CD4+ T cell and virus levels is clear. This is followed

by a period of relative stability and finally, at about 3000 days, the levels indicate

progression from steady state to AIDS. This dataset is used in [15] as a benchmark to

compare compliance of different HIV/AIDS models to real data.

One concern in [15] is that the model in (2.1) does not track the data from HIV

infection until the onset of AIDS with a single set of parameters. It has been noted

that patients’ parameters change during the course of the disease [18]. By estimating

parameters from infection to the onset of AIDS this study offers a simulated confirmation

that the parameters of (2.1) must vary to account for the changes in data.

A study of the variation in parameters assists researchers in finding the underlying
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Figure 4.10.: The progressive estimate of parameters over the course of HIV/AIDS. The
estimate for each parameter is represented by a solid line. s is limited to 50.
The dash-dot line shows a normalized CD4+ T cell count and the dotted
line shows the normalized virus level. The normalized levels are shown as
a visual reference of disease progression and are not part of the parameter
estimate.

mechanisms that account for these variations and helps to point out weaknesses in the

model where the structure might be changed to facilitate more accurate modeling.

It should be observed that the original dataset is interpolated before it is used to

estimate parameters. The parameters are estimated for a fixed data window, which is

moved over the data at fixed increments.

Large time difference between measurements, combined with interpolation, result in

erratic estimates if a perfect fit of the curve is searched for at each point. To prevent

this, the estimation procedure exits with a higher tolerance for error. Fig. 4.10 shows

the result for a window size of 60 days, with estimates made 15 days apart. On each

graph, the normalized CD4+ T cell and virus loads are plotted to give a visual reference

of the disease progression.

Instead of averaging the estimation over a few windows, the search tolerance is in-
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creased and each subsequent search is initialized with χ̂ from the previous window.

This allows for continuity of parameters. Intuitively this scheme corresponds to the as-

sumption that parameters vary smoothly over time as the disease progresses. Thus the

estimation procedure factors the results from the previous window into the next estima-

tion, resulting in an estimate, χ̂, that is a modification of the previous window’s χ̂. Each

modification is just enough to ensure that the cost value changes by less than the speci-

fied tolerance. In conclusion one can see that, at each point, the estimated line is fitted

to the interpolated data, and estimation stops as soon as a possible (as opposed to a

locally near optimal) solution is found. An intuitive description of this procedure would

be that the parameter estimate for each window is the “nearest plausible neighbor” to

the estimate of the bordering windows.

In Figure 4.10, the increase in ŝ is halted by the assumption that s ≤ 50. Most

estimations tend toward unreasonable asymptomatic values with the onset of AIDS at

about 3000 days. The estimations δ̂, ĉ and k̂ stay fairly constant until the onset of AIDS,

whereas the estimations for ŝ d̂ and β̂ show a steady increase, even before the onset of

AIDS.

4.4.2. Exploring dual compartment dynamics as alternative to

parameter variation

In the previous subsection, a phenomenological analysis of parameter variation is pre-

sented. As indicated before, the variations that are presented should ideally be used as

a starting point for further research. The previous results, together with the experience

gained through estimating parameters for different patients, allows for the synthesis of

a novel interpretation of deterministic models for the onset of AIDS.

Basis of analysis

In Fig. 4.10 the parameters seem fairly constant throughout the disease progression,

with a definite change at the onset of AIDS. This change of parameters together with the

unexplained explosion of the viral level indicates a second compartment that influences

the viral levels.

A model that incorporates two compartments is given in (2.17). One of the major

drawbacks of this model, though, is that the estimation of parameters is complex and

subject to specific measurements from each compartment [13]. Added to this is the

distinct lack of data for complete, untreated disease progression, with the data from
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[10] being the only source used for comparison in [15]. Thus the deterministic and

phenomenological approaches are combined in an effort to explain the progression to

AIDS. Moreover, when the problem is explored from this angle, the questions that are

raised are more specific, narrowing the field to allow more pointed research.

Recall the extended six-dimensional model (2.17). One of the prominent character-

istics of (2.17) is that it is two-compartmental, with each compartment approximately

conforming to the lower-dimensional models (2.15) and (2.1) respectively, with a shared

pool of virus particles.

CD4+ T cell compartment (2.15)





Ṫ = sT − dT T − βT Tv,

Ṫ1 = q1βT Tv − kT1 − δ1T1,

Ṫ2 = q2βT Tv + kT1 − δ2T2,

Macrophage compartment (2.1)

{
Ṁ = sM − dMM − βMvM,

Ṁ∗ = βMvM − δMM∗,

Shared viral pool (2.15) & (2.1)
{

v̇ = πT T2 + πMM∗ − cv.

(4.1)

The key observation at this stage is the fact that the two compartments in the extended

six-dimensional model share a single pool of virus particles. When (2.17) is viewed in

the light of (4.1), together with the identification methods implemented in this research,

it is reasonable to recast the model into a framework of two three-dimensional models

with interaction parameters,

CD4+ T cell compartment





Ṫ = sT − dT T − βT T (vT + qvM
vM),

Ṫ ∗ = βT T (vT + qvM
vM)− δT T ∗,

v̇T = kT T ∗ − cT vT ,

Secondary compartment





Ṁ = sM − dMM − βMM(vM + qvT
vT ),

Ṁ∗ = βM(vM + qvT
vT )M − δMM∗,

˙vM = kMM∗ − cMvM .

(4.2)

In (4.2), the dynamics of the CD4+ T cell compartment have been simplified by removing

the latently infected cells from the model. Also, the viral load is not shared directly,

rather the option is left open to regulate the influence of the viral burdens between
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compartments. For instance, this extension allows for the secondary compartment to be

located in the bone-marrow and thus have an influence of less than one on the CD4+ T

cell compartment. Constraints qvT
≤ 1 and qvM

≤ 1 are placed on the coupling constants,

where qvT
is the influence of vT on the virus pool vM and qvM

is the influence of vM on

the virus pool vT . In order to find the total viral load in the CD4+ T cell compartment

(ie. blood), as measured in viral load tests, one can calculate v = vT + qvM
vM , where vT

is the virus produced by CD4+ T cells and qvM
vM is the fraction qvM

of virus particles

originating from the virus pool vM . Thus, when the viral pool is shared as in (2.17), the

coupling parameters are both equal to one.

Even though the recast system (4.2) has more parameters, they conform to the form

of (2.1). In this case

χr =
[

sT dT βT δT cT kT sM dM βM δM cM kM qvT
qvM

]T

=
[

χT
T χM

T qvT
qvM

]T

,

where χr is the parameter set of the complete recast system (4.2). The parameter sets χT

and χM are the parameters of (2.1) for the respective compartments. The parameters

qvT
and qvM

are the coupling constants between compartments. By recasting (2.17)

as in (4.2), the foundation is laid to exploit the identification procedures of the three-

dimensional model within a higher-dimensional framework. The concept is illustrated

in Fig. 4.11.

Two stage analysis

As in the previous section, practical analysis is based on the data from [10] as depicted

in Fig. 4.9. The shared pool of virus particles in (2.17) and the lack of explanation

for CD4+ T cell decline by the three-dimensional model, together with the review in

[15]—where this shortcoming of (2.14), and per implication (2.1), is emphasized—all

contribute to the analysis that follows.

In chapter 2, recent research is described that indicates the existence of long lived

infected cells with a half-life of weeks, and in some cases even months. Thus it is

hypothesized that the final onslaught of virus that can be seen in Fig. 4.9 could be the

result of the interaction of these long-lived cells with the virus. Fig. 4.11 illustrates the

interaction of the compartments. Also, since the long lived cells share the plasma viral

load with CD4+ T cells, the viral set-point of the CD4+ T cells compartment can be
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Figure 4.11.: An illustration of the concept of breaking down a higher-dimensional model
into compartments to allow identification of parameters for each compart-
ment.

used as a constant in the first stage of analysis. The relatively fast dynamics observed in

the early stages of Fig. 4.9 combined with the results from the vaccine readiness study

described in chapter 5, indicate that a set-point is likely to be reached within 500 days.

Thus the decision is made to analyze the secondary compartment, with the influence of

the CD4+ T cell compartment fixed at its set-point value.

From [47], updated estimations for c and δ are used as starting point for the clearance

rate constant of the virus and, in the second stage of analysis, for deathrate constant of

infected CD4+ T cells.

For the first stage of analysis, the basis model of (2.1) is adjusted to reflect the

addition of a fixed viral load from the CD4+ T cell compartment. With this adjustment

implemented, the objective function is set to find a set of parameters that mimics the final

explosion of viral load, and during the rest of the disease stays comparably insignificant.

Since there is no data available for the cells of this compartment, only the viral levels

are considered. Thus, in effect, a phenomenological approach is incorporated in this

analysis together with links to the mechanistic description allowed by outside knowledge

from other research. Fig. 4.12 shows the result of the first stage parameter search. Here

the set point influence of the CD4+ T cell compartment is set to 1000 and χ̂M = [ 1,

0.001, 5 × 10−10, 0.001, 13, 80000 ]T and ~x0 = [ 560, 0.001, 100 ]. The curve of the data

is steeper than the modeled curve. In this case middle ground is chosen between closely

mimicking the lower values at the end of the dataset, and reaching the final value of the
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Figure 4.12.: This plot shows the population size of virus, due to long lived cells, with a
constant virus set-point from the CD4+ T cell compartment.

viral load.

Fig. 4.12 might seem to indicate that virus levels produced by long-lived cells follow

an unbound exponential curve. It is clear though, that (2.1) settles to a set-point value

even in the presence of virus particles from a secondary pool of virus. It is assumed for

this analysis that the patient dies due to secondary causes accompanying AIDS before

such a set-point is reached. This assumption might also explain why some patients never

progress to AIDS. If the dynamics of the long-lived cells in such patients settle at a lower

set point, it might be possible that the asymptomatic stage continues, without medical

intervention.

After modeling the explosion of virus with constant set-point at 1000 virus particles

(qvT
≈ 0.15), the curve is saved for stage two of the analysis.

In the second stage, the generated curve from stage one is used as a reference point

for the influence of the long-lived cell compartment on the CD4+ T cell compartment.

At each time-point this curve is consulted to find the viral level from the long-lived cell

compartment.

As a starting point for the parameter search, the parameter set from chapter 5 is used.

In Fig. 4.14 one can see that even an initial guess from the vaccine readiness cohort in
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Figure 4.13.: An extended timescale of Fig. 4.12 and variation of set-point exposure lev-
els shows the influence of set-point exposure from the CD4+ T cell compart-
ment on the progression of viral load for the long lived cell compartment

chapter 5 results in a good approximation of disease progression and the decline of

CD4+ T cells. From this starting point the value of c and δ are adjusted to the updated

values described in [47] and the parameter search is initiated. In this case, the model is

fitted to the first seven data-points, since the CD4+ T cell compartment is responsible

for the initial variation. The estimation procedure finds χ̂T = [ 5, 0.003, 2.7 × 10−7,

0.62, 20, 70000 ]T and ~x0 = [ 990, 0.001, 80 ]. The plot of this parameter set against the

original data is given in Fig. 4.15.

Combining results into a single model

A question that arises from the two stage analysis is, if the parameters that were es-

timated for each stage of the analysis perform similarly when the compartments are

combined into one model, as in (4.2).

With the parameter set χ̂r = [ χ̂T
T χ̂M

T 0.08 1 ]T , the recast model (4.2) is simulated

and the result can be seen in Fig. 4.16. It is clear, when this figure is compared to Fig.

4.15, that the assumptions hold and only a small difference in modeled results is present.
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Figure 4.14.: The model curve for the initial parameter set that is used as starting point
for the second stage of analysis.

4.4.3. Link to existing models

Recall the extended compartmental HIV/AIDS model (2.17) in chapter 2:

Ṫ = sT − dT T − βT Tv,

Ṫ1 = q1βT Tv − kT1 − δ1T1,

Ṫ2 = q2βT Tv + kT1 − δ2T2,

Ṁ = sM − dMM − βMvM,

Ṁ∗ = βMvM − δMM∗,

v̇ = πT T2 + πMM∗ − cv.

It is important to keep new findings in perspective with earlier research results to allow

comparison and clarification of parameters. Modifying a model to suit new ideas can be

helpful in initial phases, but is not always desirable, since these modifications remove the

direct link to previous research. In order to allow some perspective on the matter, the

results from the two stage analysis are linked back to the six-dimensional model (2.17).

Since this model has a shared pool of virus by default and the addition of latent cells is

present, it presents some obstacles to be overcome before one can run simulations.
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Figure 4.15.: The second stage of analysis, showing how the steady decline of CD4+ T
cells is tracked by the model. The virus level shows the levels due to the
two compartments (dashed lines) and the total virus in the blood (solid
line).
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Figure 4.16.: The recast model (4.2) simulated with parameters from the two stage anal-
ysis. The virus level shows the levels due to the two compartments (dashed
lines) and the total virus in the blood (solid line).
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Figure 4.17.: The extended compartmental model of (2.17), fitted to the data of Fig. 4.9

In Fig. 4.17 a plot is shown with a modified parameter set. The parameters are based

on χ̂r, with some manual modifications. These modifications are based on personal

experience and published parameters [30].

The results are obtained with ~x0 = [ 990 0 .01 10 0 10 ] and χ̂ = [ sT dT βT δ2 k πT |
sM dM βM δM c πM | δ1 q1 q2 ] = [ 5 0.003 2.5 × 10−7 0.62 0.6 70000 | 0.1 0 5 × 10−10

0.0005 16 120000 | 0.1 0.8 0.2 ].
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4.5. Summary of chapter

Chapter 4 presents the general results of this research and is the first of three chapters

discussing research results.

The first section contains simulation results that depict the influence of the prolifera-

tion term (2.12) on the three-dimensional model. These simulations support the choice

of basis model without a proliferation term and give insight into the influence that this

term has on model dynamics.

This is followed by the results in section 4.2 where the estimation routine is validated

against generated data that shows the influence of additional penalty terms in the cost

function. Also, the applicability of data-collection tables with a reduced number of

data-points is investigated in the context of practical data collection at hospitals.

Next, in section 4.3, a published experiment [4,8] is reproduced to validate the estima-

tion procedure in the context of accepted results from literature. In this experiment the

influence of assumptions and the inclusion of outside information in the cost function

are exemplified.

Section 4.4 concludes the chapter with an investigation into the variation of parameters

of the basis model throughout the pathogenesis of HIV/AIDS. First a phenomenological

approach is followed to find possible variations in parameters. These results are then

interpreted to explore dual compartmental dynamics as an alternative to blind parameter

variation. This exploration exemplifies the adaption of the estimation procedure to

investigate complex systems from the foundation of the basis model. Finally, the results

of the dual compartmental dynamics are linked back to an established model to allow

additional perspective on the estimated parameters.
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5. Results from a Vaccine Readiness

Study in Southern Africa

PARAMETER estimation for patients who took part in the HIVNET 28 vaccine

readiness study is described in this chapter. As noted in [6], HIV viral load may

be a critical endpoint in vaccine trials by which to judge efficacy. It is important to

define viral dynamics in unvaccinated infected individuals, especially in non-B subtype

infections where little information is available. The main aim in this chapter is to

determine the viral set point for these patients. The time from seroconversion to reach

this set point is also of interest for the trial and analysis of the data allows for initial

estimates of parameters for non-B subtype infections.

5.1. Description of analysis

5.1.1. Study population

Fifty-one individuals with recent HIV–1 infection were recruited within eighteen months

of acquiring HIV–1 infection from four countries in southern Africa (Zimbabwe, Malawi,

Zambia and South Africa). Participants were followed at two, four, seven and nine

months after enrolment. At each visit, blood samples were obtained for plasma RNA

levels, lymphocyte subset analysis and DNA isolation. Participants were not on an-

tiretroviral treatment.

Of the fifty-one participants recruited, ten were from Zimbabwe, six from Malawi,

sixteen from Zambia and nineteen from South Africa. The majority of participants

(42/51) were female. The median age was twenty-eight and the median interval from

seroconversion to first viral load measurement was 8.9 months (interquartile range of

5.5-14.1). Comparison of log10 RNA copies/ml in participants at enrolment showed

no significant differences between countries and, based on this, were grouped as one

cohort [6]. The assay used to measure free plasma virus was the branched DNA assay
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and the readout was in RNA copies/ml. This is free virus and is not cell associated. It

is a measure of budded virus from the cells found in the lymphoid tissue and the blood

circulation. The branched DNA assay is a signal amplification assay and is a direct

measure of RNA copies. It is assumed that the measured viral loads directly correlate

with v in the basis model.

Only thirty-four patients met the identification requirements in [12], of the seventeen

remaining patients ten had enough data points to allow analysis within the context of

the cohort and the data of the remaining seven patients was not suitable for dynamic

parameter estimation. The sample data for four patients from the cohort is shown in

Table 5.1. Since the patients were recruited in the early stage of infection, variation in

the viral load and CD4+ T cell levels are expected. The variation that is evident in

Table 5.1 is needed to allow parameter estimation from the data. This follows from the

necessary condition of persistent excitation as described in [12].

5.1.2. Outline of procedure

The minimum requirement for estimation of parameters is five viral load and four

CD4+ T cell measurements as described in [12]. Thirty-four of the fifty-one participants

had enough samples (5 + 4) to meet the minimum requirements. For these patients, the

estimation routine was initiated with the set of parameters taken from literature as in

section 4.2.1.

After the first iteration of parameter estimates, the model curves were plotted and

examined for each patient. For patients where the initial fit was not deemed adequate,

the parameters were adjusted manually until no progress was made by manual search.

The parameters found in this manner were then averaged out for all patients and used

as the new starting point for the final computer based parameter search.

Once the parameters for each patient had been estimated, the set point was calculated

using (2.5). The fluctuations in the modeled viral load were analyzed in each patient to

find the elapsed time from seroconversion where the set point of (2.5) is reached. The

time from seroconversion to the point where the fluctuations fall within 0.5 of the loge

values of the set point is taken as an estimate for the time to reach set point.

5.1.3. Patients with insufficient data points

Of the seventeen remaining patients, seven did not have enough data to be useful for this

study. The other ten patients had insufficient data points for a complete evaluation of
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Table 5.1.: Data points for four patients of the HIVNET 28 study.

Patient ID days since viral load cd4 cells
seroconversion copies/ml copies/µl

P536000015
(5+4 samples) 391 46 699

426 24 463 187
503 62 364 136
573 25 079 193
636 29 821 143

P536000080
(5+4 samples) 170 3 239

247 5 810 451
317 6 002 437
366 20 439 455
457 9 638 524

P541000228
(5+4 samples) 422 27 941

506 50 295 409
597 34 909 312
723 33 575 308
786 18 748 250

P541000242
(4+3 samples) 411 67 813

474 11 569
586 39 887 186
685 178
775 19 359 272
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parameters on their own, but allowed first order estimates in the context of the cohort.

For these patients, the assumption was made that c does not differ significantly from

the other patients in the cohort [4]. For a discussion of identifiability in situations where

key parameters are fixed, see [12]. To solve the set point estimate for patients with less

measurements (say, 4+3 as for P541000242), the clearance rate constant of the virus, c,

was fixed at the average value of the participants with five viral load and four CD4+ T

cell (5+4) measurements. After one initial estimation run, these estimated parameters

were used as the initial point to do a second iteration where c was allowed to vary.

Thus, by adding these ten patients to the initial group of thirty-four, parameters were

estimated for forty-four of the fifty-one participants.

5.1.4. Parameter ranges and assumptions

Even though the minimum requirements for parameter estimation were met, estimation

is still subject to some assumptions. The patients in the HIVNET 28 study were recruited

according to strict standards [6], and thus a structured set of assumptions can be laid

out:

1. Patients are in the early stages of infection, based on the enrolment data. The

midpoint between the last HIV-negative sample and first positive sample is taken

as an estimate to the time of seroconversion.

2. The initial CD4+ T cell concentration does not exceed 1200 copies per microliter,

based on the data from healthy patients with similar background.

3. Initial values for the viral load coincide with the first viral load measurement.

4. Patients do reach a steady state in viral load.

5. Fluctuations due to factors outside the model are of a lesser degree in viral load

than in CD4+ T cell count.

6. The order of c and d is not dictated in this instance of the cost function, but

corrected after estimation.

7. The model parameters for patients in this cohort allow a common initial parameter

set to be found from where the search procedure is drawn to a global minimum in

the cost function of individual patients.

8. The parameters published for subtype-B infection are close enough to such a com-

mon point to be used in the first iteration of the parameter search.

9. The bias introduced by human intervention in deciding on the initial point is

negligible.

10. The branched DNA assay is a fair indicator of free virus v in blood.
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Table 5.2.: Parameter estimates for three patients meeting identifiability requirements

χ̂ P536000015 P536000080 P541000228 units
s 3.25 7.88 8.45 T mm−3 day−1

d 1.06× 10−05 0.00811 0.00822 day−1

β 5.38× 10−07 7.96× 10−07 7.58× 10−07 v−1(103mm3) day−1

δ 0.16 0.38 0.67 day−1

c 0.58 0.69 0.85 day−1

k 1016.9 688.5 2548.2 v (103T ∗)−1 day−1

vs 36847 10439 26551 ml−1

days to set point 449 335.5 573.5 days

5.2. HIVNET 28 study results

The model predictions of three patients with 5+4 data-points in Table 5.2 are shown

in Fig. 5.1. In Fig. 5.2 a detailed view is given for P541000242 (4+3 data points). The

markers indicate data points and the corresponding model prediction is shown by the

solid line. The estimation of the set point is indicated by a dashed line, and the time

to set point is taken at the point where the modeled viral load falls between the dotted

lines.

Table 5.2 shows the parameter estimates for the three sample patients that meet the

minimum requirements for estimation. From the final estimation, we have the following

median estimate of parameters: χ̂ = [ 7.48 0.00085 1.4× 10−6 0.80 1.56 2834 ]T .

Thus in this estimate ŝ indicates that 7.48 CD4+ T cells are produced per mm3 per

day, d̂ indicates that CD4+ T cells live on average for 3.8 years. The reader is reminded

that the first two parameters have to account for the influence of the absent proliferation

term as discussed in section 2.5 and 4.1, thus in the light of baseline CD4+ T cell levels

these values indicate that proliferation of CD4+ T cells can be expected in the cohort,

which in turn results in a large estimate for the average lifetime of CD4+ T cells. The

variation of d̂ is also discussed in the next section on confidence intervals. β̂ indicates

that the infectivity of the virus is 1.4×10−6 (v−1103mm3day−1) and the average lifetime

of infected cells (1/δ̂) is 1.25 days. On average virus particles remain in the system for

0.64 days (1/ĉ) before they are cleared, and k̂ indicates that infected cells produce on

average 2.834 virus particles per cell per day.

The normal probability plot of log10 set point estimations for all patients is shown

in Fig. 5.3. It is visually clear that the estimates follow a log-normal distribution. The

Bera-Jarque parametric hypothesis test of composite normality confirms this [48], with
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Figure 5.1.: Sample data with model for three patients. P536000015 solid, marked *;
P536000080 dotted, marked o; P525000171 dash-dot, marked ×.

a significance level of 0.298.

On the combined plot for model predictions showing the trajectory of viral loads (Fig.

5.4), the calculated median time to set point was 16.57 months (497 days) and the log10

based median of the calculated set point distribution was 4.08 (12143 RNA copies/ml).

In three participants the parameter estimates indicated continuous variation of viral

load, indicating that no set point was reached within the modeled time-frame.

5.2.1. Confidence intervals

The main aim of the analysis of data from the vaccine readiness trial is to determine

a benchmark set point for patients from southern Africa [6]. It turns out that the set

point estimation is robust against variations in the parameter estimates for this dataset.

The distribution of set points is log-normal with median value of 104.084. The mean log10

value is 3.99, and the standard deviation is 0.56, with a 95% confidence interval [20] of

[ 3.82 , 4.16 ] for the mean, and [ 0.46 , 0.71 ] for the standard deviation.

For the estimation of days to set point, the definition has a direct influence on the

result. Since the simulated curve from the ODE solver is used to determine the point
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Figure 5.2.: An example, showing the model (solid line) and the original data from
P541000242 (markers). The time to set point is also shown.
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Figure 5.4.: A combined plot of all model estimations, each taken from estimated time
of seroconversion.

at which a patient reaches set point, the estimation is bound to be higher as when the

samples are used for this estimation. As an illustration of this, one can look at Fig. 5.2.

The definition used for this study gives 497 days to reach set point. If the definition is

taken as the last data point outside the prescribed range it is 474 days. Both definitions

are influenced by the estimate of the time from seroconversion. For the definition in

this paper, the mean days to set point is 508 days, with a standard deviation of 187.

The 95% confidence interval is [ 449 , 567 ] for the mean and [ 153 , 239 ] for the standard

deviation.

For the parameter estimates it is harder to analyze the results. The confidence inter-

vals for each parameter, assuming a normal distribution, can be easily determined for

a group of patients [20], but such closed form equations are not defined for individual

patients. Worse still, for non-linear models the parameter estimates are not in general

unbiased [20].

The Bera-Jarque test for composite normality (α = 0.05, ps = 0.3) indicates that, of all

the parameter estimates for the group, only d might be considered to come from a normal

distribution. Whereas the same test (α = 0.05, [ ps pd pβ pδ ] = [ 0.86 0.09 0.30 0.18 ])

indicates that s, d, β, and δ might be taken as log-normal. Based on this information,
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Figure 5.5.: A comparison of model results for two parameter sets for P536000080. The
solid line is from the original parameter estimate for the HIVNET 28 study
and the dotted line is from the parameter estimate of the box-bounded
global search.

it is reasonable to follow the scheme in [20, p. 444], where a logarithmic transformation

is applied to parameters in order to stabilize the random variation, without linearizing

the model. In this way one can find the mean values for log10(χ̂) to be [ 0.8656 −4.1501

−5.8128 −0.13132 0.22551 3.3329 ], which corresponds to a mean value of [ 7.34 7.08 ×
10−5 1.54× 10−6 0.739 1.681 2153 ] for χ̂. The 95% confidence interval for the mean is

[
6.28 1.41× 10−5 1.22× 10−6 0.629 1.435 1606

8.58 0.000355 1.94× 10−6 0.868 1.969 2885

]

and the log10 based standard deviation for the parameters is [ 0.22301 2.3026 0.33426

0.22966 0.22619 0.41846 ].

Box-bounded global solver

As a means to increase the level of confidence in the results, a box-bounded global

search is performed using the Tomlab1 constrained global solver. The solver is bounded

1http://tomlab.biz/
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by the maximum and minimum estimate for each parameter within the cohort, adjusted

approximately by ten percent. Thus the lower limit for χ̂ is [ 1.7 2.7 × 10−10 3 × 10−7

0.1 0.3 80 ] and the upper bound is [ 26 0.036 1.2× 10−5 6 10 8500 ].

For the patients with 5+4 data points, 100 000 function evaluations are performed

by the global optimization method. The CD4+ T cell and viral load trajectories for

the box-bounded global parameter estimate are compared to the trajectory of patient

P536000080 in Fig. 5.1. On average, the original cost value starting from a fixed initial

point is 35% lower than the global search result.

If the third assumption in section 5.1.4 (that the initial viral load for the model and

the first viral load data-point coincide), is dropped and the initial value for the viral

load is allowed to vary for the box-bounded global solver, then it finds parameter sets

with a lower cost for seven of the thirty four patients.

A comparison of the means and variances of the box-bounded global search results to

those of the previous section indicate that the estimate for set point is robust against

changes in the parameter estimation routine. Visual confirmation of this can be seen

in Fig. 5.5, where the set point estimate stays comparatively constant, even though the

time to set point is not the same for the two search methods.

A secondary estimation run as performed here can give no formal confidence intervals

on individual parameters, all it does is confirm that the original method has indeed

found parameter sets that result, on average, in a lower cost. It is thus still necessary

to find additional means of analysis.

Sensitivity analysis

A second approach is to find confidence intervals is to perform a sensitivity analysis for

each parameter at the initial parameter set and at the final parameter set.

The analysis at the initial set gives an indication as to the available minima in the

cost landscape to which the optimization routine might be attracted at the start of the

search. If there is more than one possibility, the confidence in the solution is lowered,

and one might try distinct estimations from different starting points that are closer to

these minima.

The sensitivity analysis at the solution point gives an indication of the goodness of

fit and the possible variations at the parameter solution set. Now one can define a

benchmark cost value and read the parameter ranges from the sensitivity analysis.

This method is time-consuming and requires human interaction in the decision process.
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Once limits are standardized for a cohort, the process can be automated.

In Fig. 5.6 the sensitivity analysis for patient P536000015 is shown at the initial point

for the estimation routine and at the final parameter estimation for the HIVNET 28

study. The range of the parameters for this analysis is the same as for the global box

bounded search in the previous section. Since the cost landscape at the initial point

shows that no parameters fork out, it is considered to be a good starting point. The

cost landscape at the final point is shown with a 0.1 “cost-confidence” level drawn in.

With this level one would read off the values of the parameters and their ranges in context

of the analysis boundaries. Thus, for instance, the line marked with ‘+’ represents δ

with a minimum at 60% (δ ≈ 1.6). The cost curve crosses the 0.1 level at 54% and 64%.

This can be converted back to δ ≈ 1.3 and δ ≈ 1.9. In this way one can determine ranges

of applicability for each parameter. Note also the insensitivity of the cost to changes in

d. This indicates that at a 0.1 level practically any value of d from 0% to 90% could

be replaced into the final estimate without notable change in cost. This translates to

a large confidence interval for d. In the context of (2.1) this result makes sense, since,

below a certain death rate, the influence of this parameter is swamped by the loss of

CD4+ T cells to infection. This observation is in line with the statistical confidence

interval analysis in sections 5.2.1, where the standard deviation for d is nearly ten times

more than the standard deviation of the other parameters.

As with the box-bounded global search, the sensitivity analysis is an ad-hoc method

to give an indication of the confidence that one can have in the original parameter

estimates (in this case those of the HIVNET 28 study). The sensitivity analysis has

the added advantage that it allows for the determination of parameter ranges within a

cost-confidence level.

For both methods there is ample scope for further research and some of the proposed

starting points in [20] may be well suited to this application.
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Figure 5.6.: Sensitivity analysis at initial parameter set and final parameter set
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5.3. Summary of chapter

Chapter 5 presents the results from the HIVNET 28 vaccine readiness study in southern

Africa. First the context of the study is described. Since the HIVNET 28 study has a

slightly different emphasis than the primary aim of this research, the procedure is tai-

lored to accommodate the given situation, exemplifying the flexibility of the estimation

procedure.

The adaption of the procedure for the application to a cohort of patients is presented

in section 5.1. This includes a strategy to include patients in the study that would not

meet the identifiability requirements under normal circumstances. Also, the necessary

assumptions for parameter estimation in the HIVNET 28 context are laid out.

The main aim of this chapter is to determine the set point for patients of the HIV-

NET 28 study and to find the time from seroconversion, for this set point to be reached.

In section 5.1.4, the results show that after approximately 17 months from seroconver-

sion, oscillations in viremia have flattened to a median set point of 4.08 log10, appearing

no different from reported studies in subtype B HIV-1 infected male cohorts [6, 49–51].

Together with these main outcomes, initial estimates for parameters are also presented.

Finally the confidence intervals for parameter estimations of the HIVNET 28 study

and a sensitivity analysis for a patient of the cohort are presented.
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6.1. Program overview

BY CREATING a computer program, the insights and knowledge gained from

research are bundled into a practical tool for people involved with HIV/AIDS.

The program has three different access levels that allow users with differing backgrounds

to access it. Also there are modules available to conform to varying platform needs. The

stand-alone program can be installed on any windows based computer. The web-based

applet is intended to allow users to access the program through the internet.

Data entry is performed within the framework of Microsoft Excel. Table 6.1 shows

the Excel sheet with the minimal data entered. As an absolute minimum, the user must

enter a patient id, by which the results can be identified, together with sample data and

the days at which they were taken. If the date of the first sample is supplied, the other

dates are calculated, otherwise they are shown as “Not supplied” in the date column.

The three access levels to the program are general, advanced and full access. In general

user mode, the program allows the access to basis information and procedures. Thus

the user can enter information only in standard forms, answer standard questions and

receive the standard report with the identified parameters and available information. At

the advanced level, users can modify additional search boundaries and access additional

information about parameters. Parameters can be fixed at expected levels for a search,

and searches with minimal data can be performed by limiting key parameters. In full

access mode, the user can modify the cost function directly and customize the search pro-

cedure to fit personal needs. The full access mode is intended for users who are familiar

with parameter estimation and want to research alternative estimation procedures.

A secondary spin-off from the main program is an educational module that allows

students to consider the parameter estimation procedures and become familiar with the

modeling of HIV/AIDS. This module is part of the education CD of the University of

Pretoria and can also be implemented on web-pages. It has none of the main programs

parameter estimation procedures built in, but rather it allows the user to experiment
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Table 6.1.: The layout of the Microsoft Excel sheet where the basis information is
entered.

Patient Information Sheet

Help
Patient ID: fau96 A string that uniquely identifies this patient
Last Name: Not Supplied Optional Last Name

First Name(s): Not Supplied Optional First Name(s)
First Positive: Not Supplied First Date Where Patient Tested Positive
Last Negative: Not Supplied Last Date Where Patient Tested Negative
Infection Date: Not Supplied The assumed date of infection.

CD4 Samples
First CD4 Sample Date Not Supplied Date first CD4 Sample is taken

Date Days Level (Cells per milliliter)
Not Supplied 10 1000
Not Supplied 25 890
Not Supplied 48 500
Not Supplied 66 600
Not Supplied 91 650
Not Supplied 365 600

...
...

...

Viral Samples
First viral Sample Date Not Supplied Date first viral Sample is taken

Date Day Level (RNA copies per micro-liter)
Not Supplied 10 200
Not Supplied 25 10000
Not Supplied 48 1000000
Not Supplied 66 3000
Not Supplied 91 3000
Not Supplied 365 5000

...
...

...
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with different parameters by adjusting them manually and visually assessing the effect of

these changes in the model. There are pre-evaluated parameter sets available to students

for them to compare the manual search for parameters with the computer based search.

6.2. From theory to practice

By using the theoretical background as a springboard, a program is created that al-

lows users from diverse backgrounds to increase the effectivity of HIV/AIDS treatment

strategies. With the insights obtained from parameter estimation, users can monitor

individual patients without the need to understand underlying mathematical details of

the model.

Some of the key points for the user are listed below:

• The user interface allows both patients and general practitioners to enter their

sample data and receive treatment guidelines. Data can be entered in the familiar

environment of Microsoft Excel.

• Information falling outside the data-set can be entered and is incorporated into the

estimation procedure to increase the accuracy of estimation.

• The program determines a set of initial conditions from the data and external

information for the identification routine without the intervention of an HIV/AIDS

modeling expert.

• Inconsistencies in results and data are detected and the user is informed about the

discrepancies.

• In situations where a user needs detailed information, or where personal limits must

be added that are not currently interpreted by the program, a higher level user can

modify the cost function directly and access the raw output from the identification

routine.

Some of the underlying functions are listed below:

• The program follows a control-system approach to model identification using a

modifiable cost function as described in section 3.2.

This is the key function of the program and in situations where enough data points

are available it is adequate for parameter estimation.

• The cost function is LSQ based and combines the LSQ cost with the bounds and

prevailing conditions from the user supplied information.

Here the user information from outside the data set comes into play. As an example:

When a patient supplies the program with an estimated time since infection that
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indicates that the steady state in viral load has been reached, the patient is advised

to take medication in conjunction with the load tests, since the basis parameters

cannot be determined from the steady state [12]. From the point where medication

is taken, the cost function is modified as in section 3.2.2. Thus, the advice to

take medication in this case is based on the necessary conditions for parameter

estimation.

• The fine-tuning of the cost function is hidden from the user and user input about

prevailing circumstances is translated into mathematical terms.

Direct user intervention in the cost function is not necessary for the previous point.

Pre-programmed knowledge is incorporated automatically, with feedback to the

user. If any assumption needs to be overridden, the user can select to do so without

directly editing the cost function.

• A parameter search is done by standard means and the resulting parameters are

interpreted for the user.

Once the basis of data and external information is in place, the parameter search

commences along standard avenues. It is in the interpretation of results that there

is still a great deal of knowledge necessary. Since the parameters are not yet in

standard use among practitioners, there is no experience base from which to make

recommendations. Currently, the recommendations are made according to general

research results as given, for instance, in [22]. The program allows theoretical

scenarios to be viewed with different treatment strategies. As more individual

experience is gained by practitioners and patients, this information can be used to

generate more pointed recommendations.

• In situations where there is not enough data from a single patient, the program can

use information from its database to give possible scenarios that allow the user to

make initial treatment decisions.

Here the user can benefit from general parameter estimates of other studies like [4].

Since there is no detailed data available for the individual, some parameters can be

fixed at expected values to generate a general scenario that contains those initial

data points and considers the external information. If, for instance, the patient

has been infected for more than fifteen months, it is likely that viral load is in

steady state [16], and from a single sample some of the ratios of parameters can be

estimated. Even if the finer details are not available, the user still gets an indication

of possible scenarios.

As an example, the estimation for a patient is shown in Fig. 6.1, with the correspond-
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Figure 6.1.: Visual printout of estimated parameters for an example patient
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PExample:

Basis Report  

----------------------- 

Enough data points were available to determine parameters: 

 s=.11.409         

 d=.0.008   

 beta=.1.2x10^-6 

 delta=.1.35        

 c=.1.31      

 k=.2889.2   

 Set-point=.12223 

Estimated time to reach set-point =.14 months 

 Constraints on parameters were set to default. 

  c<delta 

  s<50 

  d>0.008 

 No additional modifications made cost function 

   

Fit seems adequate: no outliers were detected in data-set. 

The spacing between data points is very large, it is 

important to perform a visual check on the data to ensure  

that a good fit has been found. It is recommended that 

samples are taken closer together. For more details see 

the guidelines for sample spacing. 

CD4 cell count seems stable at an acceptable level.

The viral set-point falls in the lower range: according to 

the panel on clinical practices on HIV/AIDS it might be 

desirable to postpone a rigorous treatment regime. 

For visual scenarios of different treatment strengths, 

please consult the treatment advisor application.

Figure 6.2.: Basis report printout of estimated parameters for an example patient
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Figure 6.3.: Treatment advisor visual printout for different efficiencies of protease in-
hibitors
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ing report for this patient shown in Fig. 6.2. The report is text based and contains

the main information and advice. The user can also see a graphical representation of

the parameters in a treatment context and compare different scenarios of treatment as

shown in Fig. 6.3. The scenarios represented in this figure are based purely on theoretical

values of drug efficacy. Since patients can be monitored after the initiation of therapy,

these theoretical values can be augmented by the information gained during treatment.

Thus, the trajectory of viral load after initiation of therapy may be used to determine

the efficacy of a regime even before viral load is suppressed below the benchmark values

described in [5].

The described program is in the early stages of development where only the key

functions are implemented. In order to keep the program relevant, the advice generator

must be kept up to date in accordance with current guidelines and experience gained

from program use. One of the future development goals is to incorporate parameter

estimation for higher-dimensional models for patients with enough data points.

It should be stressed that a computer program cannot replace the expert care of a

medical practitioner. Program users should always be aware that this program is a tool

to help in decision-making and planning of treatment, but that the final decisions lie

with the medical practitioner in dialogue with the patient.

6.2.1. Code and algorithms

The program code and description of algorithms can be found in appendices A and C.

6.3. Key feature summary

The developed application uses the theoretical basis of cost function based parameter

estimation to allow the medical practitioner to estimate the three-dimensional model pa-

rameters for HIV/AIDS patients. The program gives greater insight into the progression

of the disease, and helps the practitioner decide on the correct dosage for the patient.

Even though these functions are implemented, the advice of the program currently

draws on a small experience base. As the individually tailored parameter estimates

become a part of each patient’s treatment strategy, the experience of practitioners in

the field and insights from research can be incorporated to increase the quality of advice

given by the program.

In order to cater for personal experience in treatment strategies, the program can be
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used at different levels of complexity. The basis module of the program demands little

background knowledge from the user, but for practitioners with experience in mathe-

matical modeling, there is ample opportunity to fine-tune the procedures to conform to

the special needs that may arise from their medical situations.

Future development

As of this writing, the modules described in this chapter are in a beta development stage.

There is ample opportunity for expansion to all modules, but the initial focus should be

to test the basis module for general users with real data. The users guide for the basis

model can be found in appendix B.

For the advanced module, integration with existing patient data-base systems should

be explored, since much insight could be gained by retrospective analysis of data.

The core functionality of the program is based on parameter estimation procedures.

Since optimization procedures and numerical methods are active fields of research, the

estimation modules should ideally be linked to specialist package that is continually

updated. When the program functions are separated in this way, it is possible to keep

up with the advances in optimization, while allowing users to have a consistent and

stable interface.

For some patients, data will be available before initiation of treatment and afterwards.

If treatment is initiated after an original set of data has been examined, the current

program can analyze the data in this context to produce an updated treatment parameter

estimate. A useful possibility would be to expand the program so that these differences

in estimated parameters can be automatically analyzed in order to quantify the influence

of treatment and give an indication of its effectiveness. If this analysis is standardized—

as opposed to the general interpretation given at the moment—it would allow for batch

analysis of treatment studies to give an indication of effectiveness of different treatment

strategies.

One important issue that is not only applicable to the estimation package, is the

public awareness about current technology that is available to HIV/AIDS patients. It is

important that the public, HIV patients, and especially practitioners, are aware of the

importance of early viral and CD4+ T cell sampling
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6.4. Summary of chapter

This chapter introduces a computer program as a practical application of this research.

A broad overview of the link between theory and practice is given, and the key features

of the program are summarized. Some example figures, detailing key aspects of the

program are presented, with a discussion of additions and possible expansions to the

program.

The users guide for the basis module of the Dynamic HIV Estimator can be found in

appendix B.
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7. Conclusion

7.1. General results

THE DESIGN and implementation of a dynamic parameter estimation routine

allows a diverse base of information from outside the basic dataset to be incor-

porated in the parameter estimation cycle for the three-dimensional HIV/AIDS model.

The results presented in this research show that the developed method can identify pa-

rameters in situations where an orthodox LSQ method would fail. Together with the

advantage of higher quality estimates in situations where the data is well-posed, the

estimation routine can use information from outside the dataset to provide reasonable

estimates for data that cannot be used with a pure LSQ method. The presented method

is a step forward in the effort to supply patients with individualized parameter estima-

tion. The estimates made in literature were for at most two parameters per dataset,

whereas the procedures described herein can estimate all six parameters. It should be

noted that the conditions for successful estimation, as described in [12], still apply if

to situations where no external information is available to support the basic LSQ cost

function.

A standard table that is proposed for data acquisition in hospitals and clinics is

analyzed. The results show that the table would contain enough information to extract

a good estimation for the parameters of the three-dimensional HIV/AIDS model.

Many experiments in literature have data windows that are too small to make definite

conclusions about the parameters from the published data alone. To compare results,

external knowledge from articles, or the description of the experiment, can be included

in the cost function of the estimation routine. Comparison with a published experi-

ment shows that it becomes increasingly hard to coordinate assumptions and implicit

information when analyzing real data.
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7.2. Parameter variation

Parameter variations during the course of HIV/AIDS are still not well understood. One

reason for this poor understanding is the lack of high quality data that can be analyzed.

From the results presented in section 4.4.1, one can see that parameters may vary con-

siderably over the course of HIV/AIDS. The data points for the analysis of parameter

variation are too sparsely sampled to draw quantitative conclusions, rather the results

show that parameters vary over time and that, qualitatively, parameters may vary as pre-

sented. For example, since there is a steady decline in CD4+ T cell levels in the dataset

and the results show a corresponding increase in s, this observation lends support to

the use of a density based proliferation term that is commonly used in conjunction with

s [4, 46].

A more densely populated dataset needs to be analyzed before any further conclusions

can be made about the variation of parameters in the basis model.

In section 4.4.2, the initial analysis of parameter variation is augmented with a novel

two-stage approach of model identification for the six-dimensional model (2.17). It is

shown how, by de-coupling the compartments a good initial estimate of parameters can

be made. In this context, the higher-dimensional models allow an explanation for the

onset of AIDS from HIV without any variation in the model parameters.

7.3. Vaccine readiness study

The developed estimation procedure was used successfully to analyze the data from the

HIVNET 28 vaccine readiness trial. Despite the sparse data available per patient, the

datasets complied with the minimum identifiability requirements, to allow the extraction

of the average set point and time from seroconversion until this set point is reached.

Both results are important to form a benchmark for the study of vaccination, since

one outcome of the vaccine trial is to achieve a lower set point viral load. The time it

takes for patients to reach a steady state gives a good indication of the period for which

patients should be monitored to ensure that some samples are taken when the patient

has reached a set point.

The results show that after approximately 17 months from seroconversion, oscillations

in viremia flattened to a log10 based median set point of 4.08, appearing no different

from reported studies in subtype B HIV-1 infected male cohorts [6, 49–51]. Together

with these main outcomes, initial estimates for parameters are also presented.

Electrical, Electronic and Computer Engineering 89

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  FFiilltteerr,,  RR  AA    ((22000055))  



CHAPTER 7 CONCLUSION

From the analysis of confidence intervals for set point, days to set point and the

individual parameters it is seen that the set point is robustly estimated, thus achieving

the main goal of the analysis. The estimate of time until set point is dependent on its

definition, and is also more sensitive to changes in parameter estimation.

For a group of patients it is possible to generate statistical confidence intervals for

the parameter estimates, but as a result of sparse data, isolated parameter estimates for

individual patients of the HIVNET 28 study would result in large confidence intervals

on parameter estimates. An ad hoc approach of confidence analysis must be followed for

patients in isolation. Possibilities of confidence analysis are presented but the approach

needs to be addressed in further research.

Since patients for the study were selected subject to well-defined constraints [6], this

allowed for specific conditioning of the estimation routine and a clear layout of assump-

tions for the group. When estimates for the cohort are combined, the data allows a

meaningful first estimate of parameters of the three-dimensional HIV/AIDS model for

patients from southern Africa.

7.4. Computer program

The developed application uses the theoretical basis of cost function based parameter

estimation to allow the medical practitioner to estimate the three-dimensional model pa-

rameters for HIV/AIDS patients. The program gives greater insight into the progression

of the disease, and helps the practitioner decide on the correct dosage for the patient.

Even though these functions are implemented, the advice of the program is currently

based on a small experience base. As the individually tailored parameter estimates

become a part of each patient’s treatment strategy, the experience of practitioners in

the field and insights from research can be incorporated to increase the quality of advice

given by the program.

In order to cater for personal experience in treatment strategies, the program can be

used at different levels of complexity. The program demands little background knowledge

from the user, but for practitioners with experience in mathematical modeling, there is

ample opportunity to fine-tune the procedures to conform to the special needs that may

arise from their medical situations.

One important issue that is not only applicable to the computer estimation package, is

the public awareness about current technology that is available to HIV/AIDS patients.

It is important that the public, HIV patients, and especially practitioners, are aware of
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the importance of early viral and CD4+ T cell sampling

7.5. Further research

Imagination is more important than knowledge — Albert Einstein

. . . and a good question is worth a thousand answers.

• The core functionality of the program is based on parameter estimation procedures.

Since optimization procedures and numerical methods are active fields of research,

the estimation modules should ideally be linked to a specialist package that is

continually updated. When the program functions are separated in this way, it is

possible to keep up with the advances in optimization, while allowing users to have

a consistent and stable interface.

• In discussions with Markus M. Edvall and Kenneth Holstrom in connection with

Tomlab it became evident that there are indeed “better” approaches to parameter

estimation than the Nelder-Mead method. Also, in [43] the author states that the

Nelder-Mead is a good robust starting point! Thus there is definitely room for

expansion in this area of the estimation rutine.

• With some of the sparse datasets in the HIVNET 28 study it is possible to find

parameter estimates where the cost level is so low that it seems too good to be

true. Personal experience indicates that such situations arise from data where the

viral load might already be in steady state. Further research is needed to find an

estimator that indicates whether data is persistently exciting (which is a necessary

condition for successful estimation [12]).

• Since the data is sparse in the previous point, an estimate for persistent excitation

might be just as hard to find as an estimate of the parameters (or even impossible

with all the variances in the measurement). A good idea might be to add a check for

persistent excitation after the numerical ODE solver. This would then constitute

an “identifiability cost”. One could then use the argument that, if the identifiability

cost indicates that the estimate model is not persistently exciting, then, either the

sampled counterpart is not persistently exciting (which indicates that the estimation

is useless without further information), or the search method got stuck at a local

minimum where the estimate is not persistently exciting (which indicates that the

search procedure should be restarted with a new initial point).

• Since the latest estimates of the viral clearance rate, c, are in the range of 23(!) [47],

one must consider the possibility that the parameter estimates for the basis model
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(as found from initial points taken from earlier research), are in fact describing the

latent and active cell interactions and miss the fast dynamics of c. To find out if

this is the case, one could estimate parameters of four-dimensional model for the

same data, but with c fixed at 23.

• The previous point goes together with the question of pharmaceutical delay: If the

viral clearance rate is indeed as high as described in [47], how are the viral dynamics

separated from the pharmaceutical delay?

• Since the current definition of treatment effectivity results in sharp changes of viral

set point over a small range of treatment efficacy, attempts are made to refine the

model to be robust against parameter variation and allow low steady states [45,46].

The question should be considered wether the increased complexity of simple models

is warranted, or if it is not better to re-define the definition of treatment effectivity

separately from the model. Most of the assumptions that describe treatment efficacy

lend themselves to model simplification, rather than the description of the true

influence of treatment on the system (see [4,45,47]). It is conceivable that a change

in treatment definition would allow earlier research to stay relevant, while at the

same time accommodating new insights into treatment strategies.

• The previous point is also important to end-users of dynamic HIV/AIDS models.

The current standard of single blood samples for the basis of treatment decisions [5]

will stay more effective than the decisions based on models, as long as there is no

standard model to use, from where the medical community can build an experience

database. It is important that a standard model is used that balances complexity

with identifiability and the predictions that can be made from such a model. As

long as there are continuous changes in the model this will prevent users from

becoming familiar with parameter ranges. Even if some of the parameters (as for

instance death rate of healthy cells in the basis model without proliferation) have

to accommodate multiple interactions, there are bound to be correlations between

the disease and parameter estimates that can be exploited with consistent use of

the model.
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A. Search Methods

A.1. The Nelder-Mead search method

The primary source of the Nelder-Mead search method is found in [42] but most imple-

mentations are based on any of the Numerical Recipes books, of which [43] is a C-based

example.

This appendix gives some background information with a description of the method

that was found to be a helpful introduction to the method, adapted from a web page.

Since internet sources are not guaranteed to stay valid, permission was obtained from

the author to reproduce some of the material here.

The Nelder-Mead search method that forms the basis for the parameters search, is a

simplex search method where f(x) has to be minimized for the parameter set x. The

main part of the algorithm, as translated from the Matlab source for fminsearch, is as

follows:

repeat

x̄ ⇐ ∑n
k=1 vk/n

xρ ⇐ (1 + ρ)x̄− ρv

x ⇐ xρ; fxr ⇐ f(x)

if fxr < min(fv) then

{calculate the expansion point}
xe ⇐ (1 + ρχ)x̄− ρχvmax

x ⇐ xe; fxe ⇐ f(x)

if fxe < fxr then

{expand}
vmax ⇐ xe

fvmax ⇐ fxe

else {fxe > fxr}
{reflect}
vmax ⇐ xr

fvmax ⇐ fxr
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end if

else { fxr ≥ min(fv) }
if fxr < fvn then

{reflect}
vmax ⇐ xr

fvmax ⇐ fxr

else {Perform contraction}
if fxr < fvmax then

{Outside contraction}
xc ⇐ (1 + ψρ)x̄− ψρvmax

x ⇐ xc; fxc ⇐ f(x)

if fxc < fvmax then

{contract outside}
vmax ⇐ xc

fvmax ⇐ fxc

else {shrink}
for k = 2 to n do

vk ← vmin + σ ∗ (vk − vmin)

x ⇐ vk; fvk ⇐ f(x)

end for

end if

else

{Perform an inside contraction}
xcc ⇐ (1− ψ)x̄ + ψ ∗ vmax

x ⇐ xcc; fxcc ⇐ f(x)

if fxcc < fvmax then

{contract inside}
vmax ⇐ xcc

fvmax ⇐ fxcc

else {shrink}
for k = 2 to n do

vk ← vmin + σ ∗ (vk − vmin)

x ⇐ vk; fvk ⇐ f(x)

end for

end if
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end if

end if

end if

until max(|vk − vmin|) <= tolx && max(|fvmin − fvk|) <= tolf k=1:n

The Nelder-Mead method is a popular search method, used in situations where discon-

tinuities may be expected in the cost landscape. An internet search reveals many relevant

pages, with descriptions that are rather more understandable than the algorithm pre-

sented on its own. The following description of the method is adopted from lecture notes

for a course in Ecological models and data by Ben Bolker, available on the internet1.

The section is entitled Discontinuities etc.: Nelder-Mead (“simplex”, “amoeba”)

The first problem that derivative-based methods (such as quasi-Newton) have

are that they can be messed up when the cost function has sharp changes in

it. When the quasi-Newton method gets to a flat part of the graph, it gets

faked into thinking it’s found the answer (since the derivative is zero); when

there’s a vertical discontinuity in the graph, it gets faked into extrapolating

wrong. There are elaborate methods that avoid the use of derivatives (e.g.

Powell’s method in Numerical Recipes), but a simple brute-force option is

the simplex method invented by Nelder and Mead (called the “amoeba”

in Numerical Recipes). Rather than starting with a single point guess at

what the parameters are, this method picks a number of points which form

a simplex-the simplest shape possible in an n-dimensional space. In two

dimensions, this is three points (each of which represents a pair of parameter

values) forming a triangle; in three dimensions, it’s 4 points (each of which

is a triplet of parameter values) forming a pyramid or tetrahedron; in higher

dimensions, it’s n+1 points (we call this shape a “hyper-tetrahedron” or a

simplex). We then evaluate the likelihood/sum-of-squares at each point and

move the worst point according to the following set of rules:

• start by going in what seems to the best direction by reflecting the high

(worst) point in the simplex through the face opposite it;

• if the cost at the new point is better than the best (lowest) other point

in the simplex, double the length of the jump in that direction;

1http://www.zoo.ufl.edu/bolker/emd-2000/lect12.html
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Reflection

Reflection and 

expansion

Contraction

Shrink

a)

b)

c)

d)

Figure A.1.: The possible rules applied to a trapezoid: a: reflection, b: reflection and
expansion, c: Contraction, and d: multiple contraction or shrinkage. Source:
[43].

• if this jump was bad—the height at the new point is worse than the

second-worst point in the simplex—then try a point that’s only half as

far out as the initial try;

• if this second try, closer to the original, is also bad, then we contract

the simplex around the current best (lowest) point.

The amoeba works in a wide variety of situations, although it’s not foolproof

(nothing is) and it’s not very efficient.

In Fig. A.1 graphical illustration (taken from Numerical Recipes [43, p.409])

of the rules applied to a trapezoid:

The example in Fig. A.2 shows what the simplex does with an exponential

model surface in two dimensons.
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Figure A.2.: An example run from the web lecture notes1.

We give the amoeba (r = 4, d = 4) as starting coordinates and it displaces

these coordinates slightly to get its starting simplex (black). Thereafter, it

takes steps alternating between simple reflection (dark triangles) and doubled

reflection (light triangles), until it finds that it has gone too far and “turns

the corner” to start decreasing r. Occasionally, a simple reflection is too far-

usually when the amoeba is trying to turn a corner-and the triangle is white.

In any case, the amoeba does eventually get to the right place, although it

takes 48 cycles to get there.
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B. Miscellaneous

B.1. The Dynamic HIV Estimator users guide

This guide is intended to be a concise walk-through for the general user to allow for

effective parameter estimation of the three-dimensional model of HIV/AIDS using the

Dynamic HIV Estimator .

B.1.1. Introduction

Thank you for evaluating the basis module of the Dynamic HIV Estimator for people

living with HIV. This program helps the user to find out more about the current status

of the HI-virus in an individual patient.

This program is based on current research that models the behavior of the HI-virus

within individual patients. Instead of finding only a level for the CD4+ T cells and viral

particles, this program allows you to determine a range of values that can help with

planning and decision making when choosing a treatment strategy.

This users guide will take you through the necessary steps to evaluate the basis module

of the Dynamic HIV Estimator . Before we begin with the guided tour, there are some

important facts that you need to know about programs that are based on mathematical

models.

Important

This program produces a wealth of interesting information, some of which can be applied

directly to each patients situation. It is important to note that all predictions are based

on the limited ability of the computer model to describe the current, active dynamics of

the virus within a patient. The program uses this limited ability to predict future trends

of the disease in the patient, using the same model. Even though the results are based

on thorough research, there are still many areas where even the experts disagree on the

interpretation of these results. Always keep this in mind when using programs that help

104

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  FFiilltteerr,,  RR  AA    ((22000055))  



APPENDIX B.1 THE DYNAMIC HIV ESTIMATOR USERS GUIDE

to describe systems and predict future scenarios: even as the weather can be predicted

with ever more certainty, there are still some days when rains come unexpectedly.

This program needs to be evaluated by users like yourself to increase its usability and

the quality of results. As more feedback is gathered from individual users, the program

can be improved to allow better and more precise analysis of HIV in individuals.

The next section describes the information that you will need in order to use this

program. Please read it carefully before you start using the program. Any estimate can

only be as good as the data that is supplied.

B.1.2. What you will need before you start

Before you start using the program, there is some basic data that needs to be gathered.

This data will be entered in an Excel sheet in Microsoft Excel before the Dynamic HIV

Estimator is used. Remember that the computer program cannot correct mistakes that

the user makes when entering data, thus it is important that the data is entered correctly.

What you will need

Absolutely Essential Limit Recommended

CD4+ T cell samples with dates 4 samples more than 8 samples
viral load samples with dates 5 samples more than 8 samples
Choose an ID by which you
can identify your results.

Recommended

Estimated date of infection within 10 days exact date
Symptom duration within 5 days within 2 days
Age in years
Gender

Treatment Information:

It is essential to list all treatment information if applicable.
Date of commencement and termination of treatment is important.

Table B.1.: The information that needs to be gathered before the Dynamic HIV Esti-
mator can be used.

The first, and most important information needed to estimate parameters, is the

CD4+ T cell and viral load data. As an absolute minimum, with no additional informa-
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Figure B.1.: The new file dialog where the “Patient Information Sheet” is chosen.

tion, one needs at least four CD4+ T cell counts, and five viral load levels. Even though

this is the minimum, it is far better to have more data points available when estimation

commences.

Also note that the samples should be taken as close as possible to the infection date

to ensure that the data is from the early stages of infection. Or, if the disease is at a

later stage, the samples should be taken directly after potent antiretroviral treatment

commences. Currently there are no fixed guidelines to the spacing between samples,

but eight weekly samples at the initial stages after infection should allow for a good

estimate. Samples after the initiation of therapy should be closer together at first (6

samples spaced two days apart, and then weekly samples).

Once this important information is available, the other information might still help

to increase the accuracy of estimation, thus if there is any information available about

the infection date, the duration of the symptoms, patient age, and gender these might

all help to increase the accuracy of estimation.

B.1.3. Entering the data

Once you have all the information available, proceed to open a new excel file (click on

File→New) and choose the “Patient Information Sheet” template as basis (see Fig. B.1).

This opens a new worksheet with the view shown as in Fig. B.2

Proceed to enter all available information in the appropriate places. The data for

this example is adapted from real patient data, and Fig. B.3 shows the Excel sheet with

the information added. Once all the data is entered, save the file under an appropriate

filename. A good idea is to use ”PIS(patient id).xls”, where (patient id) is replaced by
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Figure B.2.: The empty Patient Information Sheet after creating the new file.
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Figure B.3.: The Patient Information Sheet, after the data is filled in.
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Figure B.4.: The Dynamic HIV Estimator when it is run, before a patient file is chosen.

the actual id entered in the file. This allows for easy identification of the file at a later

stage.

B.1.4. Performing the estimations

Now that the data is in place it is time to open the Dynamic HIV Estimator . Once

the program is running, it looks like Fig. B.4. Simply click on the open file button and

choose the file that was saved in the previous step.

When the file is opened, the patient id appears in the program window as in Fig. B.4.

Click on the estimate button. This step can take some time, depending on the data, so

you might want to make a cup of coffee, do the laundry, or anything that takes some

time to do...

Once the estimation is completed, a visual display of the estimated model is given

as in Fig. B.6. Check this this display to ensure that the solid line is close to the data

points as in Fig. B.6.

It is a good idea to save the results at this point.

Now you can decide to run quality control on the estimate. This is an extremely

lengthy procedure, and that is why it is not included in the estimate. All it does is to

check if the same model is estimated, using different methods, each of which is possibly

a bit slow. In any case, this step is optional, but if you need some additional confidence
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Figure B.5.: The Dynamic HIV Estimator once a Patient Information Sheet is opened.
Note that the patient ID appears in the window.

Figure B.6.: The visual display of the estimation. This window must be checked to
ensure that the solid line is close to the data points.
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Figure B.7.: It is as simple as setting a choice for the day when the treatment should
commence. Here 500 is chosen

in the results, let it run over-night some time.

Again, if you chose to do the quality check, it is a good idea to save the information

once the quality control is complete. In any case, whether quality control was done or

not, you can proceed to the next section.

B.1.5. Treatment Planning

For the basis-module, there is one simple option that can be changed for the treatment

planner: When to initiate therapy. This is entered in terms of days. For each value

entered, the planner calculates the result of three different therapies started at the

preferred day.

Thus it is a simple matter of deciding on the time to start with therapy, and the

computer does the rest. In Fig. B.7 one can see a choice of 500 days. Click on the

continue button, and the result appears as in Fig. B.8

B.1.6. The report

Once you have completed the estimation cycle, you can click on the Generate Report

button. This generates a text file with the same name as the patient id, and a “.txt”

extension. This file contains all the relevant information about the estimation that you

have performed. A copy of the report is also saved in the Excel Sheet if you choose the

save option.

In Fig. B.9 you can see the report for our example patient.

B.1.7. Where to go from here

If you need further information, or would like to perform an in-depth analysis of your

data, you can always upgrade to the advanced module of the Dynamic HIV Estimator .
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Figure B.8.: The result when choosing to start treatment at 500 days for the example
patient.
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PExample:

Basis Report  

----------------------- 

Enough data points were available to determine parameters: 

 s=.11.409         

 d=.0.008   

 beta=.1.2x10^-6 

 delta=.1.35        

 c=.1.31      

 k=.2889.2   

 Set-point=.12223 

Estimated time to reach set-point =.14 months 

 Constraints on parameters were set to default. 

  c<delta 

  s<50 

  d>0.008 

 No additional modifications made cost function 

   

Fit seems adequate: no outliers were detected in data-set. 

The spacing between data points is very large, it is 

important to perform a visual check on the data to ensure  

that a good fit has been found. It is recommended that 

samples are taken closer together. For more details see 

the guidelines for sample spacing. 

CD4 cell count seems stable at an acceptable level.

The viral set-point falls in the lower range: according to 

the panel on clinical practices on HIV/AIDS it might be 

desirable to postpone a rigorous treatment regime. 

For visual scenarios of different treatment strengths, 

please consult the treatment advisor application.

Figure B.9.: Basis report printout of estimated parameters for an example patient
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The advanced module allows for additional options in both the estimation procedure,

and the treatment planning. Instead of working with a pre-defined set of options this

module allows for adjustments to be made to each treatment scenario on a separate

basis.

Please feel free to mail any comments, questions and ideas to:

Ruben Filter at ruben.filter@tuks.co.za or s98013051@student.up.ac.za.
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B.2. Ruminations on the creative process, parameter
searches and poetry

The idea behind this section is to add some details about the creative process and how

it helps with research1. At the same time it allows the interested reader a glimpse into

my (Ruben Filter’s) thought patterns. It provides a section that has not gone through

the lengthy revision process and does not blame everything that was done on the third

person2.

Your love is like a global minimum

When people in our community hear (and since we are a pretty small community people

are bound to hear) that I write poems, they tend to ask how an engineer comes to do

such things (most of them know from somewhere that I studied engineering). This is

similar to friends at varsity who want to know what engineering has to do with AIDS.

Which in turn is similar to the questions that continue to pop up in my mind.

Now, since I am wondering about such things myself, I have included here some sample

poem searches (after years of parameter searches, how can I ever write a poem again?).

The simplex method

Start with potentially good-looking gibberish (the initial point—everybody has to start

somewhere3). Better gibberish does not guarantee a better poem, just as an initial point

with low cost, but near a local minimum, is not necessarily preferable to a high point

on some well shaped slope:

A man woke up one morning thinking he was green.

This line does not go down well as a poem, but it sure sounds like gibberish to me,

so I start the search for a poem from here, and find:

1Also an excuse to put some poems in my dissertation;-)
The first paragraph of this section is an example of a thought that I wrote down and came back to,
as described later on in the text

2Whoever that may be:-). . .
3see for instance all those lengthy poems by the masters (eg. The love-song of Alfred J. Purfrock –

T.S. Eliot) with strange languages and quotes from other long dead poets at the start. . .
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A man woke up one morning, believing he was green
and since this is an ailment of no small concern
he called in sick at work and took a stroll in the park,
taking pains to avoid the paths and keep to the grass
where nobody would see him in his peculiar state.

RU b iX

Box-bounded global cluster search

Choose a theme (the bounding box, but let the limits be fuzzy for the brainstorm), do

a brainstorm (generate a search tree) and pick a few ideas that seem to have the most

potential (using some form of poetized cost function will do). For good measure, since

this is poetry, include the one piece of gibberish that seems to have the least potential,

just for fun. Once you have the starting points proceed as before with the potentially

good-looking gibberish.

Constrained minimization

Allow me to use as example the W.S. favorite, a sonnet:

Place severe restrictions on form,
so one can fairly easily see
that this is intended to be poetry,
but what, with everyone rattling at the norm,
it seems that even the forlorn
old pieces written on the go
can be a starting point to flow
into this shape as a sojourn.

It is then so, that on the go
the piece is not complete at all
and there is much to be required
before it’s good for poets in the know.
Yet, for each poet since the fall,
a sonnet’s limits never seemed too tall to be attempted.

This piece was written on the go, keeping with some of the sonnet’s limitations4—and

it shows. Now lets assume, in our parallel universe, that this is how far the Nelder-Mead

method came before it exited with: Maximum Number of iterations exceeded, then

we should not give up hope but rather fire up some local search, let’s say Quasi-Newton

(or Quasi-Shakespear ;-) as the flavor of the day.

4Of which the 14 line limit is probably best known.
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Back to the little example: even if I change my poem search modes and try to fix up

the beat to resemble iambic pentameter5, within my current tolerance settings I end up

with:

We place severe restrictions on the form,
so anyone who looks can easily see
that such a piece must be true poetry.
Now, with everybody rattling at the norm,
it seems that even this, the most forlorn
old piece, as written in a hurry—on the go—,
can be restricted, as a starting point, and flow
from there through shapes as temporary sojourn.

And so it is, as it is with poems on the go,
this small piece is not complete at all:
there’s more, much more of it to be required
before it’s good for poets in the know.
And yet, for every poet since the fall,
limits never seemed too tall to be attempted.

Which is clearly a far cry from any classic and safe of ever becoming one. The problem

is that for this subject matter I could set up boundaries as much I like, and—even if

I could meet all the requirements for a proper Shakespearean sonnet (SS)—with this

subject matter, it would never be good beyond its short-lived purpose as example in an

appendix of a masters dissertation.

Parameter searches display a similar tendency in situations where one might expect

quite extraordinary or even contradictory results: if there are limits imposed on the

search, these limits ensure that the results look like valid parameter search results (just

as my little example might look like an SS), even when the possibility is present that it

is refined gibberish6.

When one attempts to search for a parameter set manually (as I did at many points

throughout my research), the experience is very similar to writing a poem in form. There

are some prescribed limits on the parameters (from literature), but more importantly,

the data-points are the fixed markers7. Now, if the data is corrupted or obscure in any

5Five beats per line. To keep this up for fourteen lines within the rhyme scheme seems very restricted. . .
6On the other hand, let us not forget that it is in this precise form that W.S. created some memorable

pieces (including all the forgettable ones stemming from his global searches ;-).
7This is similar to the line endings in the sonnet that were used as pivot point in the first example,

since the sonnet dictates that they should rhyme in a particular way. Then there is half-rhyme and
such, which would incur a higher cost, but may be the only way out since English is not a rhyming
language like Italian (which could be thought of as the Italians having less noise to contend with in
their mother tongue sonnets).
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way, we sit with the same problem as in our example above: No matter how close we

come to the proposed ideal (lets say for instance the poems cost is defined as the number

of SS requirements that are not met), the poem could even meet all the requirements,

but without good subject matter we are nowhere. Sad as it may seem, the same holds

true with HIV sample data.

To sleep or not to sleep: Research and the sleeping pattern of the
researcher

I write this after a good nights rest, and before that, a restless/sleepless week of report-

ing...

What is the influence of sleep on the research cycle1?

I have to meet a deadline for the main part of the dissertation, so I will leave it at

that, continuing this excursion with a creative experience I had today.

A chair standing in the door

Take for instance a chair, standing in an open door. One could walk past and forget

about it or, in the name of order, move it back to its rightful place amongst the others

at the head of the table.

Or, one can wonder about chairs that walk around the house at night and stop by day

or the very moment they suspect that humans are on the way. It could make for a great

children’s book with elaborate stories of how the chairs enjoy being sat upon, and how

they attend weddings in their masses just so that happy people can sit on them. . . The

possibilities are endless and delightful: What if the chair standing in the opened door

just got scared; realized that it is just a chair that had been standing in that room for

all its unnatural life

(at which point one could bring in the memories of its natural life in the forest with

the birds sitting on its branches [from there the joy of letting living beings sit on it].

Or one could create a propaganda children’s book for Greenpeace where the flashback

is about the day the loggers came. . . )

And when the chair finally decided to leave, it got as far as the open door before it

realized that it was just a dead old chair and could never make it on its own through

life, the world and all its forests. So it just stood there and waited for a human to pick

it up and put it back on its rightful place, at the head of the table.

1Another one of those notes to self that would need to be expanded in a more formal style. . .
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On the other hand there is always the cat that cannot open doors, my brother—who

can—and the chair that is a simple (albeit temporary) solution to keep a door open for

the cat to pass through on a windy day in June8.

* * *

There is nothing strange about a chair, neither are we astounded by people who walk

through walls—everyone knows how to use a door. But, when a chair stands in the

doorway it triggers something in the mind of a tired researcher that cannot be explained

by the chair, or the door, on its own.

Thusly with research: When seemingly simple matters are combined in unexpected

ways (by chance or by design) there is always potential for growth and exploration.

It is the duty (and joy) of a researcher to steer this vast potential along the lines of

his/her study, living the balance between getting lost in the infinite possibilities and

getting stuck at a local minimum (that forms such a comfortable hammock at times, it

is tempting to enjoy life in the comfort zone).

When creativity strikes

We all know the feeling: no-one can (reasonably) strike without a (possibly low paying)

job, and creativity has a tendency to surprise its employers.

For me, personally, it was (is!, how else could this section make it into my masters

dissertation?) very hard to keep focused on reporting about my work, when every section

is a potential doorway to discovery. At each stage of the reporting process I had to look

at diagrams, notes and ideas in my notebook and wade through comments in my code,

all of them filled with possibilities. In this way, the research turned out to be a dynamic

process that has a mind of its own, and seems never-ending.

To keep myself from leaving the reporting task behind to explore new ideas, one

attempt that worked fairly well was: I keep my notebook open beside the computer

with some sections marked for the purpose of diverting (seemingly) creative ideas so

that they do not distract me from my main task. In this manner I wrote down the

thoughts that were nagging at the back of my head, and since they were on paper, I

could continue without the worry that I might forget the brilliant thoughts. One spin-

off is that, by writing down these thoughts, more often than not, one realizes that they

weren’t that brilliant after all, but rather part of some (subconscious?) master plan to

8I have since heard from my mother that my brother had put the chair in the doorway as a temporary
measure to save me from treading in the cat’s *, which had dried up by the time I passed that
way:-D.
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keep me from finishing my dissertation.

Also, when creativity strikes (interpretation one: you are creative): it is a good idea

to work on those parts of the document that need to be created from scratch, and not

on those boring jobs of re-hashing old research into your context. Then, when creativity

strikes (interpretation two: you are not creative, no matter how hard you try): work

on the revision of old work and do the rudimentary tasks that need time, but not

creativity. The strange part is (in my case at least) that, as I go through the boring

stuff, my creativity gets agitated, because I seem to get along without using it much;

then, at the most unexpected times, it strikes again (interpretation one).

I have found that, as random and mystical as some might make out creativity to

be, there is a definite link to external circumstances and general quality of life. When

my father passed away fifteen months ago, it was as if something in me had tripped a

circuit-breaker responsible for my creativity. In the last few months I had the wonderful

opportunity to conduct my studies from home (which, at this writing, is on my brother’s

farm where I grew up). I had the luxury of prepared meals and my family allowed me

to focus exclusively on my research. In this environment, where I did not need to worry

about everyday tasks, it soon became evident that my creativity returned with such

force that I cannot keep up in terms of reporting.

There is a certain standard that is expected in a dissertation, and, since this standard

is based on valuable experience of others, it is not given to anyone to disregard the

limitations and guidance that the standard provides. Nonetheless, there are some results

and ideas that I had to put on paper that do not fit into the research, but could be helpful

to anyone wondering about the type of person I am and some of my modes of operation.

For these people, who like to get to know the author outside the prescribed norm, I

included this excursion. I hope you enjoyed the random thoughts and ideas as much as

I enjoyed sharing them.

RU b iX
June 2004
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C. Code description

This appendix contains a short description of the main Matlab files that were used

throughout this research. Functions are listed alphabetically together with their help

text.

C.1. General Files

cost3d.m

function cost=cost3d(x,cd4,virus,costType)

COST3D returns a cost value for the three-dimensional model based on parameters

and data points. CD4+ T cell and virus data are column vectors containing the day of

each sample and the sample value. costType corresponds to the cost type in COST-

CORE. COST3D assumes that all parameters are already checked. If no initial condi-

tions are supplied, it takes the first data-points as guideline for cd4 0 and virus 0 and

infected cells 0 is set to log10 of the first virus sample. parameters: s=x(1); d=x(2);

beta=x(3); delta=x(4); c=x(5); k=x(6); if specified: T =x(7); T* 0=x(8); v 0 =x(9);

costcore.m

function cost=costcore(cd4,cd4estimate,virus,virusestimate,option,varargin)

COSTCORE is an internal function used by functions like COST3D. It returns a cost

value based on data points and an estimate thereof. option specifies the cost type and

additional penalty terms can be passed through varargin.

decodetreat.m

function eff=decodetreat(treatment,t)

DECODETREAT returns the effectivity ratios for each parameter of the basic model,

given a treatment strategy in treatment and time t.
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fit3dmodel.m

function cost = fit3dmodel(x,xo,xsp,tcd4,cd4,tvirus,virus)

FIT3DMODEL returns the cost based on the model search paramaters, x, initial point,

xo, and the data points in tcd4, cd4, tvirus, virus. xsp is used to select the parameters

that are allowed to vary during the search, thus xo contains the initial conditions and

the values in x are inserted into xo as described by xsp.

For example if x = [0.3 4], xo = [10 0.01 6e-5 1 2 500 1000 0 1] and xsp=[4 5], then

the cost is computed for the parameter set [10 0.01 6e-5 0.3 4 500 1000 0 1]

This function is used by the wrapper function optimrfestimate.

generate3dsamples.m

function [Ys,Y]=generate3dsamples(x,Ts,variation,nSamples);

GENERATE3DSAMPLES generates nSamples with parameter set x and the three-

dimensional model at time points Ts. Variation is a vector with normal variation for

cd4 as the first part of variation and log10-normal variation the second part of variation

Returnes the Sampled data in Ys (cd4=Y(:,:,1),viral=Y(:,:,2)) and the original model

output in Y.

generate reducedtable.m

generate reducedtable.m is a script to generate sample data for the sample set with a

reduced number of sample points.

getmodel.m

function [model,x 0] = getmodel(modeltype)

GETMODEL returns the model specified by modeltype. GETMODEL(’3d’) returns

a handle to the basic 3d model for use with the ODE solver. Model types with If no

input argument is supplied, the basic 3d model is returned ’3dfixpro’ returns the 3d

model with a fixed proliferation term ’cdpro’ returns the 3d model with a CD4+ T cell

dependant proliferation term ’perelson4d’ returns the 4d model of perelson

If two output arguments are specified, the default parameter set is returned together

with the model function.

Higher dimensional models, and models for the two-stage analysis are also available.

See the code for details.
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HIV28 c.m

HIV28 c contains the (non-linear) set-point constraint for the Tomlab solver for the the

HIVNET 28 data.

HIV28 dc.m

HIV28 dc contains the jacobian of the (non-linear) set-point constraint for the Tomlab

solver for the the HIVNET 28 data.

HIV28 f.m

function [r] = HIV28 f(x,data,data2)

HIV28 f is the cost function for the Tomlab run on the HIV28 data set.

x is the parameter set. DATA1 and DATA2 are the data points. If called with one

parameter, x is the parameter set and the data values are used from those stored in

persistent variables.

Initialize the presistent variables with HIV28 f(d1data,d2data).

HIV28 f fixed.m

function [r] = HIV28 f fixed(x,data,data2)

HIV28 f fixed is the same as HIV28 f except that a fixed proliferation term is used in

the three-dimensional model. See HIV28 f for usage details.

interactiveestimation1.m

INTERACTIVEESTIMATION1 is the GUI for the user. It is created with the Matlab

GUIDE.

interactiveestimation1 is the M-file for interactiveestimation1.fig interactiveestima-

tion1, by itself, creates a new interactiveestimation1 or raises the existing singleton.

H = interactiveestimation1 returns the handle to a new interactiveestimation1 or the

handle to the existing singleton*.

interactiveestimation1(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in interactiveestimation1.M with the given input argu-

ments.

interactiveestimation1(’Property’,’Value’,...) creates a new interactiveestimation1 or

raises the existing singleton*. Starting from the left, property value pairs are applied to
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the GUI before interactiveestimation1 OpeningFunction gets called. An unrecognized

property name or invalid value makes property application stop. All inputs are passed

to interactiveestimation1 OpeningFcn via varargin.

optimrfestimate.m

function [x, xo]=optimrfestimate(tcd4,cd4,tvirus,virus,xo,xsp,MaxFunEval,tol);

OPTIMRFESTIMATE is the wrapper function from where parameter searches are

started. The data for the parameter estimation is contained in tcd4, cd4, tvirus and

virus. xo contains the initial point for the parameter search and xsp contains the selected

parameters for which the search should be performed. MaxFunEval sets the maximum

number of funciton evaluations and tol sets the tolerance of the search.

Only the data and initial conditions are compulsory parameters.

See also FIT3DMODEL for further details of selective parameters.

paramestimatelsq.m

function paramest=paramestimate(T,Y)

PARAMESTIMATE performs standard LSQ parameter estimation.

T is the time points column vector and Y a matrix with column 1 = cd4 cells and

column 2 = virus data.

patientget.m

PATIENTGET Get PATIENT OPTIONS parameters.

VAL = PATIENTGET(OPTIONS,’NAME’) extracts the value of the named property

from integrator options structure OPTIONS, returning an empty matrix if the property

value is not specified in OPTIONS. It is sufficient to type only the leading characters

that uniquely identify the property. Case is ignored for property names. [] is a valid

OPTIONS argument.

VAL = PATIENTGET(OPTIONS,’NAME’,DEFAULT) extracts the named property

as above, but returns VAL = DEFAULT if the named property is not specified in OP-

TIONS. For example

val = patientget(opts,’LineStyle’,’r’);

returns val = ’r’ if the LineStyle property is not specified in opts.

See also PATIENTSET.
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patientset.m

PATIENTSET Create/alter PATIENT OPTIONS structure.

OPTIONS = PATIENTSET(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates an

integrator options structure OPTIONS in which the named properties have the specified

values. Any unspecified properties have default values. It is sufficient to type only the

leading characters that uniquely identify the property. Case is ignored for property

names.

OPTIONS = PATIENTSET(OLDOPTS,’NAME1’,VALUE1,...) alters an existing op-

tions structure OLDOPTS.

OPTIONS = PATIENTSET(OLDOPTS,NEWOPTS) combines an existing options

structure OLDOPTS with a new options structure NEWOPTS. Any new properties

overwrite corresponding old properties.

PATIENTSET with no input arguments displays all property names and their possible

values.

See also PATIENTGET

plot3d.m

PLOT3D plots the three-dimensional HIV model with patient data.

PLOT3D(X) plots the 3d model only, X is the parameter set with initial conditions

in X([7 8 9]) and default time limits = [0 100]

PLOT3D(X,OPTIONS) uses the settings as created with PATIENTSET initial condi-

tions specified in options take precedence over those specified in X. If ’RawData’ is spec-

ified in OPTIONS the time limits are set to [min(RawData(1,:)) max(RawData(1,:))].

See also PATIENTSET, PATIENTGET

plotparam.m

plotparam.m is a script file to plot the six parameters of the three-dimensional model

on a single figure with the interpolated data in the background.

plotsens.m

PLOTSENS(P,iPnr) plots the sensitivyity analysis for structure P where P has P.f var,

a matrix of the cost and P.p var the parameter values. P is generated with the funciton

SENSITIVITY ANALYSIS
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P.x is the stationary point from where the analysis is performed. If x is supplied as a

third parameter, this point is printed in the table instead of P.x.

See also SENSITIVITY ANALYSIS.

plotsens6.m

PLOTSENS6(P,iPnr) is the same as PLOTSENS(P,iPnr) but does not plot the infor-

mation for the initial values of the CD4+ T cell, infected CD4+ T cell and virus level.

savepatient.m

function sucess=savepatient(f,p)

SAVEPATIENT saves the basic patient data in p to the filename specified in f in a

csv based format.

sensitivity analysis.m

SENSITIVITY ANALYSIS analyzes the parameter sensitivity for the three-dimensional

model.

P=SENSITIVITY ANALYSIS(X,DATA CD4,DATA VIRAL,X L,X U,X SPACE,NS)

Returns a structure P that contains the sensitivity analysis for the parameter set as spec-

ified in X, the data in DATA CD4 and DATA VIRAL. The analysis range is determined

by X L, X U and the space type is specified by a boolean vector in X LOGSPACE ([1

1 1 1 1 1 1 1 1] means all logspace and [0 0 0 0 0 0 0 0 0] means all linear). nS sets the

number of samples taken over the analysis space for each variable.

See also PLOTSENS.

sim3dbasis.m

SIM3DBASIS simulates the three-dimensional model with the option of adding a basis

level from a secondary compartment for printing estimation results and the results for

the two stage analysis.

The function plots the CD4+ T cell and viral levels and if requested, returns a time

vector T and the corresponding state matrix Y.

function [T,Y]=sim3dbasis(x,xo,timelimits,patientdata,lineformat,basislevel)

sim4d.m

SIM4D plots the simulation for the 4d model.
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[T,Y]=sim4d(x,OPTIONS) where OPTIONS are created with PATIENTSET

For implementation, the proliferation term is left out of the first equation and the

parameter sequence is kept to correspond to the 3d model as far as possible.

x=[s d beta delta 2 c k 2 delta 1 q k 1] and x(10:13)=x0=[ T T 1 T 2 v ]

see also PATIENTSET, PATIENTGET

tomscript estall.m

tomscript estall is a script to re-estimate all parameters for the HIVNET 28 cohort using

Tomlab toolbox functions.

vsetpt.m

VSETPT returns the viral set point for the three-dimensional model.

VSETPT(x) returns the set point only

[setpt,daystosetpt]=vsetpt(x,T,Y) where T and Y are simulation results from SIM3D

returns the set point for the viral load and the number of days for this set point to be

reached.
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C.2. Additional files and figures

All files listed in this appendix can be found on the accompanying CD. Additional files

and figures are also available. In particular, the figures depicting all estimates for the

HIVNET 28 study are available under the HIVNET 28 directory.
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