

Thermoresponsive 3D scaffolds for non-invasive cell culture

by

Avashnee Shamparkesh Chetty

A thesis submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy

in the

Department of Chemical Engineering Faculty of Engineering, the Built Environment and Information Technology

> University of Pretoria Pretoria

> > November 2012

© University of Pretoria

Thermoresponsive 3D scaffolds for non-invasive cell culture

by

Avashnee Shamparkesh Chetty Maiden Surname: Sewlall

Supervisor: Prof. Walter W. Focke; University of Pretoria, Department of Chemical Engineering, Pretoria, South Africa
Co-supervisor: Prof. Viktoria Vargha; Budapest University of Technology and Economics, Budapest, Hungary
Degree for which the thesis is submitted: Ph.D. (Chemical Technology)

ABSTRACT

Conventionally, adherent cells are cultured *in vitro* using flat 2D cell culture trays. However the 2D cell culture method is tedious, unreliable and does not replicate the complexity of the 3D dynamic environment of native tissue. Nowadays 3D scaffolds can be used to culture cells. However a number of challenges still exist, including the need for destructive enzymes to release confluent cells. Poly(*N*isopropylacrylamide) (PNIPAAm), a temperature responsive polymer, has revolutionised the cell culture fraternity by providing a non-invasive means of harvesting adherent cells, whereby confluent cells can be spontaneously released by simply cooling the cell culture medium and without requiring enzymes. While PNIPAAm monolayer cell culturing is a promising tool for engineering cell sheets, the current technology is largely limited to the use of flat 2D substrates, which lacks structural and organisational cues for cells.

The aim of this project was to develop a 3D PNIPAAm scaffold which could be used efficiently for non-invasive 3D culture of adherent cells. This project was divided into three phases: Phase 1 (preliminary phase) involved development and characterisation of cross-linked PNIPAAm hydrogels; Phase 2 involved development and characterisation of PNIPAAm grafted 3D non-woven scaffolds, while Phase 3 focused on showing proof of concept for non-invasive temperature-induced cell culture from the 3D PNIPAAm grafted scaffolds.

In Phase 1, PNIPAAm was cross-linked with N,N'-methylene-bis-acrylamide (MBA) using solution free-radical polymerisation to form P(PNIPAAm-*co*-MBA) hydrogels. A

broad cross-link density (i.e. 1.1 - 9.1 Mol% MBA) was investigated, and the effect of using mixed solvents as the co-polymerisation medium. The P(PNIPAAm-*co*-MBA) gels proved unsuitable as a robust cell culture matrix, due to poor porosity, slow swelling/deswelling and poor mechanical properties.

Subsequently, in Phase 2, polypropylene (PP), polyethylene terephthalate (PET), and nylon fibers were processed into highly porous non-woven fabric (NWF) scaffolds using a needle-punching technology. The NWF scaffolds were grafted with PNIPAAm using oxyfluorination-assisted graft polymerisation (OAGP). The OAGP method involved a 2 step process whereby the NWF was first fluorinated (direct fluorination or oxyfluorination) to introduce new functional groups on the fibre surface. The functionalised NWF scaffolds were then graft-polymerised with NIPAAm in an aqueous medium using ammonium persulphate as the initiator.

Following oxyfluorination, new functional groups were detected on the surface of the NWF scaffolds, which included C-OH; C=O; CH_2 -CHF, and CHF-CHF. PP and nylon were both easily modified by oxyfluorination, while PET displayed very little changes to its surface groups. Improved wetting and swelling in water was observed for the oxyfluorinated polymers compared to pure NWF scaffolds. PP NWF showed the highest graft yield followed by nylon and then PET. PNIPAAm graft yield on the PP NWF was $\sim 24 \pm 6 \,\mu \text{g/cm}^2$ on grafted pre-oxyfluorinated NWF when APS was used; which was found to be significantly higher compared to when pre-oxyfluorinated NWF was used without initiator (9 \pm 6 µg/cm², p= 1.7x10⁻⁷); or when grafting was on pure PP with APS (2 \pm 0.3 μ g/cm², p = 8.4x10⁻¹²). This corresponded to an average PNIPAAm layer thickness of \sim 220 ± 54 nm; 92 ± 60 nm; and 19 ± 3 nm respectively. Scanning electron microscopy (SEM) revealed a rough surface morphology and confinement of the PNIPAAm graft layer to the surface of the fibers when oxyfluorinated NWF scaffolds were used, however when pure NWF scaffolds were used during grafting, homopolymerisation was observed as a loosely bound layer on the NWF surface. The OAGP method did not affect the crystalline phase of bulk PP as was determined by X-ray diffraction (XRD), however, twin-melting thermal peaks were detected from DSC for the oxyfluorinated PP and PP-g-PNIPAAm NWF which possibly indicated crystal defects. Contact angle studies and microcalorimetric DSC showed that the PP-g-PNIPAAm NWF scaffolds exhibited thermoresponsive behaviour. Using the 2,2-Diphenyl-1-1-picrylhydrazyl (DPPH) radical method and electron-spin resonance (ESR), peroxides, as well as trapped long-lived peroxy

radicals were identified on the surface of the oxyfluorinated PP NWF, which are believed to be instrumental in initiating graft polymerisation from the NWF. A free radical mechanism which is diffusion controlled was proposed for the OAGP method with initiation via peroxy radicals (RO[•]), as well as SO₄[•] and OH[•] radicals, whereby the latter result from decomposition of APS.

In Phase 3 of this study, proof-of-concept is demonstrated for use of the PNIPAAm grafted NWF scaffolds in non-invasive culture of hepatocytes. Studies demonstrated that hepatocyte cells attached onto the 3D PNIPAAm scaffolds and remained viable in culture over long periods. The cells were released spontaneously and non-destructively as 3D multi-cellular constructs by simply cooling the cell culture medium from 37 °C to 20 °C, without requiring destr uctive enzymes. The PP-g-PNIPAAm NWF scaffolds performed the best in 3D cell culture. Additionally the CSIR is developing a thermoresponsive 3D (T3D) cell culturing device, whereby the 3D thermoresponsive NWF scaffolds are used in the bioreactor for cell culture. Temperature-induced cell release was also verified from the 3D thermoresponsive scaffolds in the bioreactor. This technology could lead to significant advances in improving the reliability of the *in vitro* cell culture model.

Key-words: Poly-*N*-Isopropylacrylamide; graft polymerisation; 3D scaffolds; non-wovens; hydrogels; cell culture

OUTPUTS EMANATING FROM STUDY

Papers published

- Avashnee S. Chetty, Viktoria Vargha, Arjun Maity, F. Sean Moolman, Claire Rossouw, Rajesh Anandjiwala, Lydia Boguslavsky, Dalu Mancama, Walter W. Focke, Development of thermoresponsive PP-g-PNIPAAm non-woven 3D scaffold for smart cell culture using oxyfluorination-assisted graft polymerisation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2013; 419: 37– 45.
- Claire L. Rossouw, Avashnee S. Chetty, Francis S. Moolman, Lyn-Marie Birkholtz, Heinrich Hoppe, Dalu T. Mancama, Thermoresponsive non-woven scaffolds for "smart" 3D cell culture, Biotechnology and Bioengineering, 2012; 109(8): 2147-2158.
- Avashnee S. Chetty, János Kovács, Viktória Vargha, Ágnes Mészáros, Jenő Fekete, Attila Domján, A versatile characterisation of poly(*N*-isopropylacrylamideco-N,N'-methylene-bis-acrylamide) hydrogels for composition, mechanical strength, and rheology, EXPRESS Polymer Letters, 2012; 7(1): 95–105
- 4. Viktoria Vargha, Avashnee S. Chetty, Zsolt Sulyok, Judith Mihály, Zsófia Keresztes, Andraś Tóth, Istvań Sajó, Lászlo Korecz, Rajesh Anandjiwala, Lydia Boguslavsky, Functionalisation of polypropylene non-woven nonwoven fabrics (NWF's) by oxyfluorination as a 1st step for graft polymerisation, Journal of Thermal Analytical Calorimetry, 2012; 109:1019-1032.

Conferences

Oral presentations:

- Avashnee S. Chetty, Claire Rossouw, Luvo Ntsangani, Sean Moolman, Kobus van Wyk, Dalu Mancama, Rajesh Anandjiwala, Lydia Boguslavsky, Viktoria Vargha, Smart 3D cell culture using a thermoresponsive PP non-woven scaffold", 11th ICFPAM conference- International Conference on Frontiers of Polymers and Advanced Materials: Symposium 8: Biomaterials Africa 2011, Pretoria, South Africa, May 2011, Paper 8A133C, pg 279.
- Avashnee S. Chetty, Claire Rossouw, Luvo Ntsangani, Sean Moolman, Kobus van Wyk, Dalu Mancama, Rajesh Anandjiwala, Lydia Boguslavsky, Kersch Naidoo, Viktoria Vargha, Non-invasive 3D Cell Culture: Solving the demand for large quantities of functional human cells. 3rd CSIR Biennial Conference 2010. Science Real and Relevant. CSIR International Convention Centre, Pretoria, South Africa, 30 August – 01 September 2010, pg 21.

Poster presentations:

- Thembisile Mahlangu, Avashnee S. Chetty, Arjun Maity, Claire Rossouw, Development of thermoresponsive non-woven 3D scaffolds for smart cell culture.
 4th CSIR Biennial Conference 2012 – Real Problems - Relevant Solutions – Programme, CSIR, Pretoria South Africa, 8-9 October 2012.
- Viktória Vargha, Avashnee S. Chetty, Zsolt Sulyok, Judith Mihály, Zsófia Keresztes, András Tóth, István Sajó, László Korecz, Rajesh Anandjiwala, Lydia Boguslavsky, Surface modification of polypropylene non-woven scaffolds by oxyfluorination. AMSALS 2012 International Symposium on Advanced Macromolecular Systems Across the Length Scales, Siófok, Hungary, June 3-6, P-11, pg.109.
- János Kovács, Avashnee S. Chetty, Viktória Vargha, Ágnes Mészáros, Jenő Fekete, Attila Domján, András Szilágyi, Zsolt Sulyok: Characterisation of poly(*N*isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) hydrogels for composition, mechanical strength and rheology. AMSALS 2012 International symposium on advanced macromolecular systems across the length scales, Siófok, Hungary, June 3-6, P-51, pg. 149.
- Ann Singh, Aletta Karsten, Itumeleng Mputle, Avashnee S. Chetty, Kersch Naidoo K, Determination of the optical properties of PNIPAAm gels used in biological applications: Progress in Biomedical Optics and Imaging - Proceedings of SPIE 7373, 2009, ISBN: 9780819476494, DOI:10.1117/12.831882
- Avashnee S. Chetty, Viktoria Vargha, Fast responding PNIPAAm hydrogel (P173), TERMIS 2008 conference Sorrento, Tissue Engineering, ISSN 1937-3341, 14(4), May 2008, pg. 8.

ACKNOWLEDGEMENTS

I would like to extend my gratitude to the following people and organisation(s) for their contribution to this study:

- Prof Walter Focke for giving me the freedom to explore
- Prof Viktoria Vargha for her support, enthusiasm and guidance throughout this study
- My colleague Dr Arjun Maity for the many fruitful discussions, and assistance with the mechanisms
- Claire Rossouw for her excellent work with the cell culture studies!
- Thembisile Mahlangu, Segametsi Songwane, Lerato Mokaleng, Luvo Ntsangani, Itumeleng Mputle, Stephanie Naidoo, and the vacation students for all their hard work on the experiments
- Dr Rajesh Anandjiwala and Lydia Boguslavsky for manufacture of the nonwoven fabric scaffolds
- Pelchem Pty. Ltd. for the fluorination treatment of the scaffolds
- Dr Sean Moolman for his support and encouragement through-out my studies
- Dr Mamoeletsi Mosia for giving me the time and space to complete my thesis
- CSIR and the NRF for funding this study
- My husband Ezekiel Chetty for his patience, and understanding during the trying times of my write-up
- My parents for their love, guidance throughout my life, and for being my rolemodels, and making all of this possible!
- Finally I dedicate this work to my adorable daughter Nikisha Chetty

"I love you so much Niki, - you are truly a gift!"

TABLE OF CONTENTS

ABS	TRAC		ii
ουτι	PUTS	S EMANATING FROM STUDY	v
ACK	NOW	LEDGEMENTS	vii
LIST	OF F	FIGURES	xii
LIST	OF S	SCHEMES	xv
LIST	OF T	TABLES	xvi
DEFI	NITIC	ONS AND ABBREVIATIONS	xvii
Chap	oter 1	: Introduction	1
1.1	В	Background	2
1.2	P	Problem statement	
1.3	R	Recent advances in cell culture	6
1.4	R	Research objectives	10
1.5	R	Research questions	11
1.6	D	Delineations and limitations	11
1.7	В	Brief chapter overview	11
1.8	R	References	12
Chap	oter 2	2 : Literature Review	15
2.1	In	ntroduction	16
2.2	S	Smart polymers	16
	2.2.1	Poly(<i>N</i> -isopropylacrylamide)	17
2.3	6 P	NIPAAm hydrogels	20
2.4	G	Graft polymerisation methods	23
	2.4.1	Radiation-induced graft polymerisation	25
:	2.4.2	Graft polymerisation with chemical initiator	30
:	2.4.3	Surface functionalisation by fluorination	33
2.5	A	Advances in cell culture	35
:	2.5.1	3D scaffolds	

2.5	5.2	PNIPAAm substrates for cell culture	41
2.5	5.3	Cell culturing in bioreactors	50
2.6	Con	clusions	55
2.7	Ref	erences	56
Chapte	r 3 : I	nstrumentation and Characterisation	68
3.1	Intro	oduction	69
3.2	Che	mical characterisation	69
3.2	2.1	UV-VIS	70
3.2	2.2	ATR-FTIR	72
3.2	2.3	XPS	74
3.2	2.4	XRD	75
3.2	2.5	ESR	77
3.3	SEN	И	78
3.4	Con	tact Angle	79
3.5	DSC	D	81
3.6	Rhe	ometer	83
3.7	Ref	erences	85
Chapte	r 4 : I	Development of P(NIPAAm- <i>co</i> -MBA) Hydrogels	87
4.1	Intro	oduction	88
4.2	Exp	erimental	90
4.2	2.1	Materials	90
4.2	2.2	Synthesis of P(NIPAAm-co-MBA) hydrogels	90
4.2	2.3	Characterisation of P(NIPAAm-co-MBA) hydrogels	92
4.3	Res	ults & discussion	94
4.3	8.1	Mechanism for free radical polymerisation	94
4.3	8.2	Assessment of gel formulations	97
4.3	8.3	Determination of LCST by DSC	99
4.3	8.4	Morphology	101
4.3	8.5	Swelling and de-swelling properties	104

4.3	8.6 Viscoelastic properties	111
4.3	8.7 Water contact angle	117
4.4	Conclusions and recommendations	120
4.5	References	121
Chapter	r 5 : Development of PNIPAAm Grafted 3D NWF Scaffolds	124
5.1	Introduction	125
5.1	.1 Choice of scaffold	126
5.1	.2 Graft polymerisation method-OAGP	128
5.2	Experimental	130
5.2	2.1 Materials	130
5.2	2.2 Manufacture of NWF scaffolds	130
5.2	2.3 Graft polymerisation of PNIPAAm onto the NWF	130
5.2	2.4 Characterisation of pure and functionalised NWF	132
5.3	Results and discussion	136
5.3	8.1 Physical properties of pure NWF scaffolds	137
5.3	3.2 Analysis of NWF by ATR-FTIR	139
5.3	3.3 XPS analysis	160
5.3	3.4 SEM analysis	166
5.3	8.5 Water contact angle and swelling of NWF scaffolds in water	175
5.3	B.6 Determination of peroxides on NWF	179
5.3	8.7 Proposed mechanism for OAGP	185
5.3	3.8 XRD	188
5.3	B.9 DSC	190
5.4	Conclusions	194
5.5	References	195
Chapter	r 6 : Temperature-induced Cell Culture	200
6.1	Introduction	201
6.1	.1 CSIR's cell culturing device T3D	202
6.2	Experimental	

	6.2.	1	Materials	205
	6.2.	2	Cell –scaffold interaction	205
	6.2.	3	Temperature-induced cell release from PNIPAAm grafted N scaffolds in static culture	IWF 206
	6.2.	4	Cell release from PP-g-PNIPAAm NWF in T3D bioreactor	206
6.3	3	Res	ults and discussion	208
	6.3.	1	Cell morphology and proliferation	208
	6.3.	2	Temperature-induced cell culturing from PNIPAAm grafted NWF	209
	6.3.	3	Temperature-induced cell release from PP-g-PNIPAAm NWF in T3D device	the 213
6.	4	Con	clusions	215
6.	5	Refe	erences	216
Cha	pter	7:0	Conclusions and Prospects	218
7.	1	Con	clusions of study	219
7.	2	Sigr	nificance of study	220
7.3	3	Rec	commendations	222

LIST OF FIGURES

Figure no.	Figure description Figure description	Page no.
Figure 1.1	Schematic showing conventional cell culture process	3
Figure 1.2	Conventional two dimensional TCPS	4
Figure 1.3	Enzymatic cell release vs. temperature-induced cell release	8
Figure 2.1	Chemical structure of PNIPAAm	17
Figure 2.2	LCST and UCST behaviour of thermoresponsive polymers	17
Figure 2.3	Photo showing phase transition of PNIPAAm solution	19
Figure 2.4	Effect of temperature on PNIPAAm hydrogel	19
Figure 2.5	Phase transition of PNIPAAm attached to a surface	20
Figure 2.6	Skin formation on PNIPAAm hydrogels after de-swelling	22
Figure 2.7	Schematic showing graft polymer on a polymer backbone	23
Figure 2.8	Schematic for "grafting from" and "grafting to" concepts	25
Figure 2.9	Schematic showing the oxyfluorination process	35
Figure 2.10	Research publications in the field of 3D cell culture	37
Figure 2.11	Images showing cells growing as spheroids in AlgiMatrix ${}^{\rm TM}$	39
Figure 2.12	Images showing Cytodex 1, 3D Insert^{\mbox{\tiny TM}} and Sponceram $\mbox{\ensuremath{\mathbb{R}}}$ disc	sk 40
Figure 2.13	Mechanism of cell release on PNIPAAm –TCPS trays	43
Figure 2.14	Influence of graft thickness on chain mobility during cell relea	se 45
Figure 2.15	Tissue reconstruction using cell sheets	46
Figure 2.16	Cell detachment from PNIPAAm porous membranes	48
Figure 2.17	Image of FiberCell hollow fibre system	52
Figure 2.18	The BioLevitator TM - a compact bench-top device	55
Figure 3.1	Electromagnetic spectrum	70
Figure 3.2	Schematic diagram of a typical absorption spectrometer	71
Figure 3.3	Image showing an ATR-FTIR instrument	73
Figure 3.4	Schematic showing working principle of ATR-FTIR	74
Figure 3.5	X-ray- atom interactions during XPS analysis	74
Figure 3.6	Principle of Bragg's law for X-ray diffraction	76
Figure 3.7	Schematic showing principle of ESR	77
Figure 3.8	Schematic representation of a SEM	78
Figure 3.9	Image showing a contact angle goniometer	80
Figure 3.10	Contact angle measurement on a solid surface	80
Figure 3.11	Relationship between surface energy and contact angle	81

Figure no.	Figure description	Page no.
Figure 3.12	Illustration of principal of rheology using parallel-plate model	84
Figure 4.1	Optical image of standard R 90 P(NIPAAm-co-MBA) hydroge	el 97
Figure 4.2	PNIPAAm gels prepared using mixed solvent systems	98
Figure 4.3	Typical DSC thermogram of P(NIPAAm-co-MBA) hydrogels	99
Figure 4.4	Image showing phase transition of P(NIPAAm-co-MBA) hydro	ogel 101
Figure 4.5	ESEM images of P(NIPAAm-co-MBA) hydrogels at 25 $^{ m C}$	102
Figure 4.6	ESEM images of P(NIPAAm-co-MBA) hydrogels at 37 $^{ m C}$	103
Figure 4.7	Swelling kinetics for hydrogels prepared in mixed solvents	106
Figure 4.8	Swelling kinetics at 20 ${}^{\rm C}$ for hydrogels prepared in water	108
Figure 4.9	Water retention for hydrogels synthesised in mixed solvents	109
Figure 4.10	De-swelling kinetics at 37 °C for P(NIP AAm-co-MBA) hydrog	els 110
Figure 4.11	Storage and loss modulus for P(NIPAAm-co-MBA) hydrogels	112
Figure 4.12	Viscoelastic properties of hydrogels with varying cross-linker	113
Figure 4.13	Viscoelastic properties of hydrogels as a function of temperat	ture 114
Figure 4.14	Viscoelastic properties of hydrogels with varying cross-linker	116
Figure 4.15	Viscoelastic properties of hydrogels from frequency sweep	118
Figure 5.1	Morphology and thermoresponsive behaviour of NWF	127
Figure 5.2	Photo showing experimental set-up for graft polymerisation	132
Figure 5.3	PP, PET, and nylon NWF developed by needle-punching	137
Figure 5.4	Chemical structures of PP, PET, nylon, and PNIPAAm	139
Figure 5.5	ATR-FTIR spectra of pure and functionalised PP NWF	140
Figure 5.6	ATR-FTIR spectra of hydrolysis of oxyfluorinated PP	143
Figure 5.7	ATR-FTIR spectra of pure and functionalised nylon NWF	144
Figure 5.8	ATR-FTIR spectra of pure and functionalised PET NWF	146
Figure 5.9	ATR-FTIR spectrum for pure PNIPAAm	149
Figure 5.10	ATR-FTIR spectra of PP-g-PNIPAAm (pre-functionalised)	150
Figure 5.11	Schematic showing intramolecular H bonding in PNIPAAm	151
Figure 5.12	ATR-FTIR spectra for grafting on pure and oxyfluorinated PP	152
Figure 5.13	ATR-FTIR spectra of grafted PET NWF (pre-oxyfluorinated)	153
Figure 5.14	ATR-FTIR spectra of grafted PET (no pre-oxyfluorination)	153
Figure 5.15	ATR-FTIR spectra of grafted nylon NWF (pre-oxyfluorinated	154
Figure 5.16	ATR-FTIR spectra of grafted nylon (no pre-functionalisation)	155
Figure 5.17	ATR-FTIR spectra of grafted PP NWF (without initiator)	156
Figure 5.18	Calibration graph to determine graft yield	157
Figure 5.19	Graft yield based on ATR-FTIR	160

Figure no.	Figure description Pa	ge no.
Figure 5.20	Wide XPS spectra for pure and functionalised PP NWF	161
Figure 5.21	Narrow C1s spectra for pure and functionalised PP NWF	162
Figure 5.22	Narrow C1s for PP-g-PNIPAAm	165
Figure 5.23	SEM images showing PP, nylon and PET NWF scaffolds	167
Figure 5.24	SEM images of PP NWF after oxyfluorination	168
Figure 5.25	SEM images of PP-g-PNIPAAm (pre-oxyfluorinated)	169
Figure 5.26	SEM images of PP-g-PNIPAAm (no functionalisation)	170
Figure 5.27	SEM images of nylon-g-PNIPAAm (pre-oxyfluorinated)	171
Figure 5.28	SEM images of nylon-g-PNIPAAm (no functionalisation)	172
Figure 5.29	SEM images of PET-g-PNIPAAm (pre-oxyfluorinated)	173
Figure 5.30	SEM images of PET-g-PNIPAAm (no functionalisation)	174
Figure 5.31	SEM images of PP-g-PNIPAAm (pre-oxyfluorinated, no initiator	175
Figure 5.32	Photo showing water drop on NWF surfaces	176
Figure 5.33	Static water contact angle of PP NWF scaffolds	176
Figure 5.34	Percent swelling for pure and oxyfluorinated PP and PET	179
Figure 5.35	Visual observation of wettability of pure and oxyfluorinated PP	179
Figure 5.36	Scheme showing electron delocalisation in DPPH	180
Figure 5.37	Colour observation after reaction of oxyfluorinated PP - DPPH	181
Figure 5.38	UV-VIS spectra of DPPH solution after treatment with PP NWF	181
Figure 5.39	Calibration graph relating absorbance and DPPH concentration	182
Figure 5.40	Comparison of peroxides on pure PP and oxyfluorinated PP	183
Figure 5.41	ESR spectra of PP oxyfluorinated NWF	184
Figure 5.42	Change in radical concentration with time at 70 °C	185
Figure 5.43	XRD diffractograms for pure, oxyfluorinated, and grafted PP	189
Figure 5.44	DSC thermograms (1 st cooling) for pure and treated PP	191
Figure 5.45	DSC thermograms (2nd heating) for pure and treated PP	191
Figure 5.46	DSC thermogram of PP-g-PNIPAAm showing a LCST	194
Figure 6.1	Schematic of CSIR's T3D cell culture device	204
Figure 6.2	Preliminary prototype of the CSIR's T3D device	207
Figure 6.3	Fluorescence micrographs of cells on PP-g-PNIPAAm scaffolds	208
Figure 6.4	Thermal release of cells from grafted PP, PET and nylon	210
Figure 6.5	Thermal release of cells from PP-g-PNIPAAm NWF	212
Figure 6.6	Fluorescence of cells on scaffold after thermal release	213
Figure 6.7	Final prototype T3D device	215

LIST OF SCHEMES

Scheme no.	Scheme description Page	e no.
Scheme 2.1	Mechanism for free-radical polymerisation	24
Scheme 2.2	Mechanism for high-energy graft polymerisation	26
Scheme 2.3	Process for plasma-induced graft polymerisation	28
Scheme 2.4	Graft polymerisation of PNIPAAm using atmospheric plasma	28
Scheme 2.5	Mechanism of photografting	29
Scheme 2.6	Typical mechanism for free radical induced graft polymerisation	30
Scheme 2.7	Graft polymerisation using persulphate and Ce ion	32
Scheme 2.8	Proposed mechanism for functionalisation with persulphate/Ce	32
Scheme 2.9	Proposed mechanism for direct fluorination of polymers	34
Scheme 4.1	Synthesis of PNIPAAm hydrogels by free radical polymerisation	91
Scheme 4.2	Mechanism for synthesis of P(NIPAAm-co-MBA)	95
Scheme 4.3	Initiation of NIPAAm and MBA monomers using APS/TEMED	96
Scheme 5.1	OAGP of PNIPAAm onto NWF scaffolds	186
Scheme 5.2	Reaction mechanism for fluorination of NWF scaffolds	186
Scheme 5.3	Mechanism for synthesis of PNIPAAm grafted NWF scaffolds	188

LIST OF TABLES

Table no.	Table description Pa	age no.
Table 2.1	LCST of various PNIPAAm copolymers	22
Table 2.2	Commercial 3D scaffolds used for cell culture	38
Table 2.3	Commercially available automated cell culture systems	54
Table 4.1	Feed composition of P(NIPAAm-co-MBA)	92
Table 4.2	Solvent: water mixtures used during PNIPAAm polymerisation	ח 92
Table 4.3	Composition and appearance of hydrogels 1-9	98
Table 4.4	LCST of P(NIPAAm-co-MBA) hydrogels determined by DSC	100
Table 4.5	Swelling ratios of PNIPAAm hydrogels	105
Table 4.6	Linear viscoelastic range of P(NIPAAm-co-MBA) hydrogels	113
Table 4.7	LCST of P(NIPAAm-co-MBA) hydrogels from rheometry	115
Table 4.8	Static contact angle of P(NIPAAm-co-MBA) hydrogels	119
Table 5.1	Processing parameters and properties of NWF scaffolds	138
Table 5.2	Assignment of FTIR peaks for pure PP NWF scaffolds	142
Table 5.3	Assignment of FTIR peaks for pure PET, and nylon 6.6 NWF	145
Table 5.4	New functionality on the oxyfluorinated NWF scaffolds	148
Table 5.5	FTIR peak assignment for pure PNIPAAm homopolymer	149
Table 5.6	Absorption wavenumbers for PNIPAAm vs. PP-g-PNIPAAm	151
Table 5.7	Relative surface areas of currently available 3D scaffolds	159
Table 5.8	PNIPAAm yield and thickness on PP-g-PNIPAAm NWF	163
Table 5.9	Atomic composition of pure and functionalised PP from XPS	164
Table 5.10	Atomic ratios for F/C/O present on pure and functionalised PF	P 166
Table 5.11	Moles peroxides on oxyfluorinated PP using DPPH	182
Table 5.12	Crystallisation and melting data for pure and oxyfluorinated P	P 192

DEFINITIONS AND ABBREVIATIONS

2D	Two dimensional
3D	Three dimensional
APS	Ammonium persulphate
ATR-FTIR	Attenuated total reflectance Fourier transform infrared
CSIR	Council for Scientific and Industrial Research
DPPH	2,2-Diphenyl-1-1-picrylhydrazyl
DMEM	Dulbecco's Modified Eagle Medium
DSC	Differential scanning calorimetry
ECM	Extracellular matrix
ESR	Electron spin resonance
FCS	Foetal calf serum
FDA	Fluorescein diacetate
LCST	Lower critical solution temperature
LVE	Linear viscoelastic
MBA	N,N'-methylenebisacrylamide
NIPAAm	N-isopropylacrylamide
NWF	Non-woven fabric
OAGP	Oxyfluorination-assisted graft polymerisation
PBS	Phosphate buffered saline
PE	Polyethylene
PET	Polyethyleneterephthalate
PNIPAAm	Poly(<i>N</i> -isopropylacrylamide)
PP	Polypropylene
TCPS	Tissue-culture polystyrene
TEMED	N,N,N'-N'-tetramethylenediamine
R	Cross-link density (nMol NIPAAm/nMol MBA)
SEM	Scanning electron microscopy
THF	Tetrahydrofuran
UV-VIS	Ultraviolet-visible
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy