Fatty acid intercalated layered double hydroxides as additives for Jojoba oil and polymer matrices

by

Lumbidzani Moyo

Submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor in Chemical Technology

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY,
UNIVERSITY OF PRETORIA

Pretoria

November 2012
Declaration

I, Lumbidzani Moyo, the undersigned, declare that the thesis that I hereby submit for the degree PhD in Chemical Technology at the University of Pretoria is my own work, and has not previously been submitted by me for degree purposes or examination at this or any other university.

Pretoria, November 2012

……………………………
Lumbidzani Moyo
Fatty acid intercalated layered double hydroxides as additives for Jojoba oil and polymer matrices

Student: Lumbidzani Moyo
Supervisor: Prof. Walter W. Focke
Co-supervisor: Dr. Frederick J. W. Labuschagne
Department: Chemical Engineering
University: University of Pretoria
Degree: PhD (Chemical Technology)

Synopsis

Fatty acid intercalated layered double hydroxides were used as additives for Jojoba oil and polymer matrices. The first phase of the study was to intercalate carboxylic acids (C\textsubscript{14} to C\textsubscript{22}). These were successfully intercalated into layered double hydroxides (LDHs), with the formula [Mg\textsubscript{0.7}Al\textsubscript{0.3}(OH)\textsubscript{2}](CO\textsubscript{3})\textsubscript{0.15}·0.5H\textsubscript{2}O. The one-pot synthesis consistently yielded a bilayer intercalated product for the range of acids employed. The intercalated anions had an orientation tilt angle of 55–63°, depending on the length of the fatty acid chain. However, there is an indication that the anion exchange process employed in this study is accompanied by probable dissolution and recrystallisation of the LDH. This is supported by the different growth habits and sizes of platelets observed through scanning electron microscopy (SEM). Moreover, the organo-LDH platelets were found to have varying MII/MIII compositions, ranging from 1.65 to 6, indicating that the one-pot synthesis yields an array of mixed metal hydroxides.

Polymer composites, containing 5% and 10 wt.% of stearate intercalated layered double hydroxides (LDH-stearate) and neat layered double hydroxides (LDH-CO\textsubscript{3}), were prepared via melt-compounding to explore the use of LDHs as an additive. The stearate modified starting material was bilayer-intercalated clay. During melt compounding, excess stearates were released and the clay reverted to a monolayer-intercalated form. Comprehensive characterisation and study of the fatty acid-intercalated LDH showed that these organoclays exhibit thermotropic behaviour. This behaviour ultimately leads to the exudation of
excess fatty acid. The exuded stearates were found to have lubricating and plasticising effects on the poly(ethylene-co-vinyl acetate) (EVA) and linear low density polyethylene (LLDPE) matrices. Strong hydrogen bond interactions between the chains of poly(ethylene-co-vinyl alcohol) (EVAL) and the clay platelet surfaces overwhelmed the lubrication effect and caused an increase in the melt viscosity of this matrix. The notched Charpy impact strength of this composite was almost double that of the neat polymer. It appears that this can be attributed to the ability of the highly dispersed and randomly oriented nanosized clay platelets to promote extensive internal microcavitation during impact loading. The creation of a large internal surface area provided the requisite energy dissipation mechanism.

The study also considered fatty acid-intercalated LDH as an argillaceous mineral for potential use as a rheological additive in Jojoba oil. A minimum of 20 wt.% LDH in Jojoba oil formulation was found to be stable, i.e. it did not form separate layers on standing. The viscosity of the neat Jojoba oil demonstrated Newtonian behaviour, whereas the modified LDH/Jojoba oil formulation shear thinned, which is a typical non-Newtonian behaviour. Viscosity as a function of temperature showed complex rheological behaviour for the long chain fatty acids C_{16} to C_{22}. The viscosity increase is assumed to be due to a combination of three events, which include the formation and changes of LDH microstructures within the oil, the loss of excess fatty acids into the oil matrix, and the formation of fatty acid crystal networks. Shear action also induced some delamination of the clay platelets.

Keywords: Layered double hydroxides, Intercalation, Fatty acid, Nanocomposites, Thickener
Acknowledgements

The author would like to extend her sincere gratitude to:

- The Lord Almighty, my El Shaddai, for His blessings and the grace that He has abundantly bestowed on me.
- Prof. Walter W. Focke for his guidance and support, as well as the contributions and encouragement that he gave me throughout the course of this work.
- My co-supervisor Dr Johan Labuschagne for the discussions as we tried to understand and explain the numerous results obtained.
- Bervelie Davies and Lynn O’Niell for taking time to read and edit my thesis.
- Wiebke Grote (XRD), Chris van der Merwe, Alan Hall (TEM), Andre Botha (SEM) and Onius Sitando (ICP-OES).
- My colleagues at the Institute of Applied Materials, University of Pretoria, Pedro Massinga Jr, Hermínio Muiambo, Nontete Nhlapo, Shephard Tichapondwa, Washington Mhike, Mthokozisi Sibanda, Shatish Ramjee and Hendrik Oosthuizen, for their unending support and companionship.
- Terence and Naardirah who assisted in carrying out some of the experimental work.
- My parents Anderson and Ethel – thank you for your unwavering support, I could have not asked for a better pair. I’m truly blessed. To my brothers Busisa, Zwelithini, Louis and Andy – thank you for the encouragement. I am what I am because of you. Percy – thank you for the insightful discussions.
- Last but not least, I would like to thank my husband Mthulisi Nxumalo, for his patience and understanding during the course of my studies.
Preface

The central theme of the study was to explore the nature and properties of fatty acid modified layered double hydroxides (LDHs) and their potential use as additives in polymer matrices and Jojoba oil. The first phase of the project involved intercalating long chain fatty acids, i.e. from C\textsubscript{14} to C\textsubscript{22}, and fully characterising the modified LDH. The stearic acid (C\textsubscript{18}) intercalant was ultimately chosen due to its abundance and availability, its substantially long chain length and its reproducibility during the intercalation trials for the implementation of the stages that followed. The second and third phases entailed the use of stearate modified LDH (LDH-stearate) in the preparation of polymer composites and as an additive in Jojoba oil. The thesis is so structured that these three different phases of the study are presented in self-contained chapters (i.e. Chapters 2–4). The highlight of the work is the improvement of the mechanical properties of LDH-based polymer nanocomposites. LDHs offer an alternative to natural clay minerals such as smectites, which have been traditionally used in clay nanocomposites.

The thesis comprises five chapters, each with its own list of references, and appendices:

Chapter 1 is an introduction to the study, with a brief overview of the nature and history of layered double hydroxides (LDHs) and of the two main areas under review in this study, i.e. LDH-based polymer composites and the possible use of LDHs as argillaceous material in Jojoba oil.

Chapter 2 examines the nature, structure, formulae and preparation techniques for LDHs. It further introduces the reader to intercalation, modification methods and the orientation of intercalated fatty acids. It also gives comprehensive details of the intercalation procedure used and the characterisation of the fatty acid-intercalated LDHs used in this study.

Chapter 3 defines polymer composites and distinguishes nanocomposites from conventional composites. It looks into the different preparation techniques for LDH-based polymer composites. The chapter also reviews the properties observed in the resultant composites. It presents a full characterisation of the LDH-based polymer composites of three different polymer matrices. The composites obtained were fully characterised with
regard to the type of composite, thermal stability, mechanical properties and viscoelastic behaviour.

Chapter 4 examines the anomalous thickening mechanism of LDH-stearate in Jojoba oil as a function of temperature. A brief overview of the colloidal dispersions of LDHs in different media, i.e. aqueous, non-aqueous and emulsions is given.

Chapter 5 summarises the study and the key findings. As the concluding chapter, it provides recommendations on future research in the field and other possible applications of LDHs.

The References provide a record of the literature consulted in the course of this study, which was also used to elucidate the findings of the study.

The Appendices contain complementary and supplementary data generated during the study; these are divided according to the corresponding chapters.
TABLE OF CONTENTS

SYNOPSIS .. I
ACKNOWLEDGEMENTS ... III
PREFACE .. IV
LIST OF FIGURES ... IX
LIST OF TABLES .. XVI
LIST OF ACRONYMS, ABBREVIATIONS AND DEFINITIONS......................... XVIII
CHAPTER 1 ... 1
 1 INTRODUCTION ... 2
 1.1 LAYERED DOUBLE HYDROXIDES ... 2
 1.2 LDH-BASED POLYMER COMPOSITES ... 3
 1.3 LDH/JOJOBA OIL SUSPENSIONS ... 6
 1.4 RESEARCH OBJECTIVE .. 6
 1.4.1 Methodology .. 7
 1.5 REFERENCES ... 8
CHAPTER 2 .. 11
 2 LAYERED DOUBLE HYDROXIDES .. 12
 2.1 WHAT IS A LAYERED DOUBLE HYDROXIDE? ... 12
 2.2 LDH PREPARATION ROUTES ... 14
 2.2.1 Co-precipitation ... 14
 2.2.2 Urea hydrolysis ... 15
 2.2.3 Sol-gel .. 16
 2.2.4 Post-preparation techniques .. 17
 2.2.5 Texture and morphology ... 18
 2.3 INTERCALATION .. 19
 2.3.1 Intercalation methods .. 20
 2.3.2 Orientation of intercalated fatty acids ... 22
 2.4 CHARACTERISATION OF LDH AND MODIFIED DERIVATIVES 25
 2.5 EXPERIMENTAL .. 25
 2.5.1 Materials .. 25
2.5.2 Preparation of organo-LDH ... 26
2.5.3 Characterisation .. 27

2.6 RESULTS AND DISCUSSION ... 29
2.6.1 Composition and morphology ... 29
2.6.2 X-ray diffraction analysis .. 33
2.6.3 Fourier transform infrared analysis (FTIR) .. 34
2.6.4 Thermal analysis ... 38

2.7 CONCLUSIONS ... 46

2.8 REFERENCES ... 47

CHAPTER 3 .. 55

3 PROPERTIES OF LDH/POLYMER AND NANOCOMPOSITES............... 56

3.1 POLYMER COMPOSITES .. 56

3.2 POLYMER COMPOSITE STRUCTURES .. 58
3.2.1 Phase separated composites ... 58
3.2.2 Intercalated composites ... 58
3.2.3 Exfoliation/delamination composites .. 59

3.3 LDH-BASED POLYMER COMPOSITE PREPARATION 60
3.3.1 In situ polymerisation .. 60
3.3.2 Solution intercalation ... 62
3.3.3 Melt processing .. 63

3.4 PROPERTIES OF LDH-BASED POLYMER NANOCOMPOSITES 65
3.4.1 Physical properties ... 66
3.4.2 Mechanical properties ... 69

3.5 EXPERIMENTAL ... 75
3.5.1 Materials .. 75
3.5.2 Preparation of LDH-stearate ... 75
3.5.3 Preparation of polymer/LDH-St ... 75
3.5.4 Characterisation .. 76

3.6 RESULTS AND DISCUSSION ... 77
3.6.1 X-ray diffraction ... 82
3.6.2 Transmission electron microscopy (TEM) ... 84
3.6.3 Melt viscosity .. 86
3.6.4 Viscoelastic properties ... 89
List of Figures

Figure 1.1. Global application market share projections for polymer composites (Adapted from Research and Markets, http://www.researchandmarkets.com) ...4

Figure 1.2. Differential scanning calorimetry (DSC) melting endotherm and hot stage microscopy of LDH-stearate (Nhlapo et al., 2008) ...5

Figure 2.1. Layered structure of LDH-CO$_3$...13

Figure 2.2. Common habits of smectite single crystallites (Adapted from Grim & Güven, 1978) ... 18

Figure 2.3. Intercalation ..19

Figure 2.4. Orientation of intercalated fatty acids ..23

Figure 2.5. Effect of chain length on the close packing of intercalated fatty acids (Adapted from Kanicky & Shah, 2002) ..24

Figure 2.6. Effect of pH on the close packing intercalated fatty acid (Adapted from Kanicky & Shah, 2002) ..24

Figure 2.7. (a) SEM; (b), (c) and (d) TEM micrographs of neat LDH-CO$_3$...30

Figure 2.8. SEM micrographs of the LDH samples: (a) LDH-myristate; (b) LDH-palmitate; (c) LDH-stearate; and (d) LDH-behenate ..31

Figure 2.9. EDS data showing different compositions of LDH-palmitate platelets with Mg:Al ratios of (a) 2.09 and (b) 6.95 ..32

Figure 2.10. WAXS diffractograms of the neat and modified LDH ..33

Figure 2.11. Increase in basal spacing with increase in alkyl chain lengths (∗) obtained experimentally in this study and (♦) obtained from theoretical calculations ..34

Figure 2.12. Pristine LDH and its typical FTIR vibrations ..35

Figure 2.13. FTIR spectra of pristine and modified LDHs ...36

Figure 2.14. FTIR zoom of the modified LDH ...37

Figure 2.16. Temperature scan XRD of LDH-fatty acids ..40

Figure 2.17. Effect of temperature on the peak position of the $\nu_{as}(\text{CH}_2)$ band in the FTIR spectra for LDH-stearate, and the corresponding DSC ..41

Figure 2.18. TG and DTG of the LDH-CO$_3$ indicating the different decomposition stages42
Figure 2.19. Thermogravimetric analysis: (a) % mass loss and (b) derivative mass loss of pristine and modified LDHs 43

Figure 2.20. Evolved gas analysis for LDH-stearate 43

Figure 2.21. X-ray diffractograms for magnesium stearate, aluminium stearate and magnesium/aluminium stearate prepared by heating an aqueous suspension of the former two reagents in the presence of Tween 60 45

Figure 3.1. Polymer composite structures 59

Figure 3.2. Schematic pathways of in situ polymerisation within the LDH layers in the preparation of polymer/LDH nanocomposites (Adapted from Costa et al., 2008) 61

Figure 3.3. Characterisation of LDH-based polymer composites 65

Figure 3.4. Mixing rule conditions for layered composites (Adapted from Verbeek & Focke, 2002) 70

Figure 3.5. Craze yielding (Adapted from MIT Open Course Ware, 2009) 71

Figure 3.6. Shear banding (Adapted from MIT Open Course Ware, 2009) 72

Figure 3.7. Polymer-toughening mechanism with rigid particles (Kim et al., 1998) (Figure adapted from Zuiderduin et al., 2003) 72

Figure 3.8. Freeze-fractured surface of neat EVA, EVA/LDH-St and EVA/LDH-CO₃. The latter two samples contained 10 wt.% filler 79

Figure 3.9. Freeze-fractured surface of neat EVAL, EVAL/LDH-St and EVAL/LDH-CO₃. The latter two samples contained 10 wt.% filler 80

Figure 3.10. Freeze-fractured surface of neat LLDPE, LLDPE/LDH-St and LLDPE LDH-CO₃. The latter two samples contained 10 wt.% filler 81

Figure 3.11. XRD diffractograms (WAXS) of the pristine, modified LDH and the 10 wt.% polymer composites indicating the relevant basal spacing 82

Figure 3.12. TEM images of the 10 wt.% polymer/LDH composites of (a) EVA/ LDH-St; (b) EVAL/LDH-St; (c) LLDPE/LDH-St; (d) EVA/LDH-CO₃; (e) EVAL/LDH-CO₃ and (f) LLDPE/ LDH-CO₃ 84

Figure 3.13. Agglomeration observed in the different matrices in SEM micrographs 85

Figure 3.14. Schematic of the ‘house-of-cards’ structure: (a) LLDPE/LDH-CO₃ showing an agglomerate with face-to-edge interactions and (b) with edge-to-edge interactions 86

Figure 3.15. Effect of LDH incorporation on the viscosity of the polymers LLDPE, EVA and EVAL at 190 °C 88
Figure 3.16. DMA data for the storage modulus and tan δ of LLDPE and its 10 wt.% derivative composites ... 89

Figure 3.17. DMA data for the storage modulus and tan δ of EVA and its 10 wt.% derivative composites ... 90

Figure 3.18. DMA data for the storage modulus and tan δ of EVAL and its 10 wt.% derivative composites ... 91

Figure 3.19. Optical light microscope side-views of Charpy impact test specimen of EVAL: (a) neat, (b) LDH-stearate composite and (c) LDH-CO$_3$ 10 wt.% composite ... 94

Figure 3.20. Top view of the EVAL/LDH-St tensile impact test specimen showing: (a) debonding and (b) fibrillation .. 95

Figure 3.21. TG data for EVAL and derivative composites ... 97

Figure 3.22. DSC cooling traces of each of the 10 wt.% polymer composite systems 98

Figure 3.23. POM images of neat LLDPE and derivative composites (scale bar is 40 µm) 99

Figure 4.1. The parallel plate depiction of steady state viscous shear flow (Focke, 2012) 114

Figure 4.2. Viscosity curve of (a) Newtonian and (b) non-Newtonian fluids 115

Figure 4.3. Soft microstructure, characterising the system as a “soft-glass” or “gel” (Stokes & Frith, 2008) .. 117

Figure 4.4. SEM micrographs of the LDH-stearates E and S used in the Jojoba oil formulation 124

Figure 4.5. (a) Schematic illustration of silicon dangling bond (Kasap 2001) and (b) euhedral and subhedral crystals arrows indicating dangling bonds ... 125

Figure 4.6. XRD diffractograms of: (a) LDH-St (E) and (b) LDH-St (S) 126

Figure 4.7. FTIR spectrum of the LDH-St .. 128

Figure 4.8. Viscosity curves as a function of temperature of: (a) 30 wt.% LDH-St (E) and (b) 30 wt.% LDH-St (S) (The heating run is shown in red and the cooling run in blue) 129

Figure 4.9. Arbitrarily scaled X-ray diffractograms for stearic acid, LDH-CO$_3$, LDH-stearate (S) and a 30 wt.% dispersion of LDH-stearate (S) in Jojoba oil prepared at a temperature of 80 °C130

Figure 4.10. Viscosity-temperature curves of Jojoba oil/stearic acid suspensions heated at 5 °C/min from 10 to 90°C and cooled at the same rate back to 10 °C (The heating runs are shown in red and the cooling run in blue) .. 131
Figure 4.11. DSC traces for neat Jojoba oil and stearic acid as well as a 60:40 blend of the oil with the acid; samples were heated at 5 °C/min from -40 to 200 °C and cooled at the same rate back to -40 °C...131

Figure 4.12. Hot-stage optical microscopy of Jojoba oil suspension containing 20 wt.% stearic acid (magnification bar: 40µm) ..132

Figure 4.13. General illustration of a Jojoba oil-stearic acid phase diagram ...133

Figure 4.14. The effect of shear rate and LDH-St content on the viscosity of Jojoba oil suspensions (the temperature was kept constant at 30 °C)...134

Figure 4.15. Comparison of the Jojoba oil thickening efficiency of 30 wt.% Mg-stearate, Al-stearate and LDH-St (the temperature was 30 °C) ...134

Figure 4.16. Effect of the presence of small amounts of alcohols (5 wt.%) to 25 wt.% LDH-St suspension in Jojoba oil on the suspension viscosity ..135

Figure 4.17. The effect of temperature on the viscosity of Jojoba oil and a 30 wt.% LDH-St suspensions subjected to a heating-cooling cycle (The shear rate was 30 s⁻¹; the temperature was scanned at 5 °C/min from 10 to 90 °C and back. The heating run is shown in red and the cooling run in blue) ...136

Figure 4.18. Viscosity-temperature heating run subdivided into three stages ..137

Figure 4.19. Viscosity-temperature cooling run subdivided into four stages ..139

Figure 4.20. Comparison of the Jojoba oil thickening efficiency of Mg-St, Al-St and LDH-St, all at a loading of 30 wt.%. (The shear rate was 5 s⁻¹; temperature was scanned at 5 °C/min from 10 to 90 °C and back. The heating runs are shown in red and the cooling runs in blue coloured symbols) ..140

Figure 4.21. X-ray diffractograms of stearic acid, LDH-St and the LDH-St/Jojoba oil formulation141

Figure 4.22. FTIR spectra of 30 wt.% LDH-St/Jojoba oil formulation obtained as temperature is increased ..142

Figure B-1. Fatty/carboxylic acids used in the study ..152

Figure B-2. XRD diffractograms for LDH-myristate ...154

Figure B-3. XRD diffractograms for LDH-palmitate ..155

Figure B-4. XRD diffractograms for LDH-behenate ..156

Figure B-5. XRD diffractogram of co-intercalated organo-LDH ..157

Figure B-6. SEM micrographs of co-intercalated LDHs ...159
Figure B-7. LDH-CO₃ SEM micrograph, X-ray and composition of platelets 160
Figure B-8. LDH-myristate SEM micrograph, X-ray and composition of platelets 161
Figure B-9. LDH-palmitate SEM micrograph, X-ray and composition of platelets 162
Figure B-10. LDH-St SEM micrograph, X-ray and composition of platelets 162
Figure B-11. LDH-behenate SEM micrograph, X-ray and composition of platelets 163
Figure B-12. LDH-palmitate and myristate TG profile ... 165
Figure B-13. LDH-behenate TG profile ... 166
Figure C-1. FTIR of the neat and composite derivatives ... 176
Figure C-2. TEM micrographs of the 5 wt.% LDH-carbonate polymer composites 177
Figure C-3. TEM micrographs of the 5 wt.% LDH-stearate polymer composites 178
Figure C-4. Dynamic mechanical properties of 5% filler formulations 179
Figure C-5. Tensile strength and tensile impact test summary of neat EVAL and derivative composites ... 180
Figure C-6. Tensile strength and tensile impact test summary of neat EVA and derivative composites ... 181
Figure C-7. Tensile strength and tensile impact test summary of neat LLDPE and derivative composites ... 182
Figure C-8. Tensile test results ... 183
Figure C-9. SEM micrographs of fractured surfaces from the Charpy impact test and corresponding data (composites of 10 wt.% LDH) ... 184
Figure C-10. DSC scans of EVA and derivative composites 185
Figure C-11. DSC scans of EVAL and derivative composites 185
Figure C-12. DSC scans of LLDPE and derivative composites 186
Figure C-13. DSC scans of EVAL and derivative composites 186
Figure C-14. DSC scans of EVA and derivative composites 187
Figure C-15. DSC scans of LLDPE and derivative composites 187
Figure C-16. TG data of EVA and derivative composites .. 188
Figure C-17. TG data of EVAL and derivative composites ... 188
Figure C-18. Evolved gas analysis of neat EVAL by TG-FTIR 189
Figure C-19. Evolved gas analysis of EVAL/5% LDH-St by TG-FTIR 190
Figure C-20. Evolved gas analysis of EVAL/10% LDH-St by TG-FTIR 191
Figure C-21. Evolved gas analysis of EVAL/5% LDH-CO$_3$ by TG-FTIR 192
Figure C-22. Evolved gas analysis of EVAL/10% LDH-CO$_3$ by TG-FTIR 193
Figure C-23. Evolved gas analysis of neat EVA by TG-FTIR ... 194
Figure C-24. Evolved gas analysis of EVA/5% LDH-St by TG-FTIR .. 195
Figure C-25. Evolved gas analysis of EVA/10% LDH-St by TG-FTIR 196
Figure C-26. Evolved gas analysis of EVA/5% LDH-CO$_3$ by TG-FTIR 197
Figure C-27. Evolved gas analysis of EVA/10% LDH-CO$_3$ by TG-FTIR 198
Figure D-1. Viscosity-temperature curve of different stearic acid compositions in Jojoba oil 200
Figure D-2. 20 wt.% of stearic acid in Jojoba oil heated and cooled to 24 °C (measurement bar is 40 µm) ... 200
Figure D-3. DSC curves of different stearic acid compositions in Jojoba oil 201
Figure D-4. Viscosity-temperature curve of different palmitic acid compositions in Jojoba oil 202
Figure D-5. 20 wt.% palmitic acid in Jojoba oil heated and cooled to 25 °C (measurement bar is 40 µm) ... 202
Figure D-6. FTIR spectra of neat Jojoba oil, 30 wt.% LDH-stearate/Jojoba oil formulation and stearate ... 203
Figure D-7. The effect of shear rate and temperature on the viscosity of Jojoba oil suspensions (the LDH-stearate content was 30 wt.% and the shear rate was kept constant at 5 s$^{-1}$) 204
Figure D-8. Viscosity as a function of temperature of the neat Jojoba oil 205
Figure D-9. Summary of rhombohedral-shaped LDH-palmitate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.7 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation .. 205
Figure D-10. Summary of subhedral-shaped LDH-palmitate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.46 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation .. 206
Figure D-11. Summary of subhedral-shaped LDH-behenate: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 6.08 nm; C – TGA data indicating
organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Figure D-12. Summary of subhedral-shaped LDH-Pal-St: A – SEM image of morphology of particles; B – XRD diffractograms with a d-spacing of 4.56 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation

Figure D-13. Summary of subhedral-shaped LDH-(Jojoba/stearate): A – SEM image of morphology of particles; B – XRD diffractograms with d-spacings of 5.06 and 4.46 nm; C – TGA data indicating organic content; D – viscosity curve as a function of temperature of the derivative 30 wt.% formulation
List of Tables

Table 2.1. Summary of layered double hydroxides, year of discovery, polytypes and chemical formulas (Adapted from Zaneva & Stanimirova, 2004) ... 14

Table 2.2. Orientation and d-spacing of fatty acid-intercalated LDHs .. 22

Table 2.3. Summary of fatty acids used in the intercalation process .. 26

Table 2.4. Compositional data and formulae for the LDH-CO$_3$ precursor and intercalated products 29

Table 2.5. Summary of thermogravimetric data and estimates for the degree of intercalation 44

Table 2.6. Summary of XRD and TGA results for the LDH-CO$_3$, LDH-stearates and magnesium stearate and aluminium stearate samples ... 45

Table 3.1. Layered nanostructured materials for potential use in polymer composites (Adapted from Utracki et al., 2007) .. 57

Table 3.2. Summary of in situ polymerisation in LDH-based nanocomposites 62

Table 3.3. Summary of solution intercalation in LDH-based nanocomposites 63

Table 3.4. Summary of melt-processing examples in LDH based nanocomposites 64

Table 3.5. Summary of the mechanical properties of LDH/polymer composites 92

Table 3.6. Thermal stability data at T$_{0.1}$, T$_{0.5}$, % residue and change in temperature (ΔT), results pertaining to 10 wt.% composites .. 96

Table 3.7. DSC data indicating the onset temperature and melting endotherm of the 10 wt.% polymer composites .. 100

Table 4.1. Different types of non-Newtonian fluids (Adapted from Shenoy, 1999) 116

Table 4.3. Illustration of the different stages associated with the heating run in the viscosity-temperature curve .. 138

Table B-1. Summary of intercalation experiments .. 153

Table B-2. Observed 2θ reflections of XRD of neat myristic acid and LDH-myristate 155

Table B-3. Observed 2θ reflections of XRD of neat palmitic acid and LDH-palmitate 156

Table B-4. Observed 2θ reflections of XRD of neat behenic acid and LDH-behenate 157

Table B-5. Compositional data and formulae of co-intercalated organo-LDHs 158

Table B-6. Summary of thermogravimetric data and estimates for the degree of intercalation 164
Table B-7. Summary of thermogravimetric data, estimates for the degree of intercalation and d-spacing .. 166

Table C-1. Injection moulding comments on EVA and derivative composites 168

Table C-2: Injection moulding comments on EVAL and derivative composites 169

Table C-3. Injection moulding comments on LLDPE and derivative composites 170

Table D-1. Stearic acid in Jojoba oil formulation (J stands for Jojoba oil and S for stearic acid and their respective compositions) .. 199

Table D-2. Palmitic acid in Jojoba oil formulation (J stands for Jojoba oil and P for palmitic acid and their respective compositions) .. 199

Table D-3. Visual observation of different 30 wt% of intercalated LDHs 204
List of Acronyms, Abbreviations and Definitions

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC</td>
<td>Anionic exchange capacity – Amount of exchangeable anions available with the crystal structure of an adsorbent material, expressed in meq/100 g</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>DMA</td>
<td>Dynamic mechanical analysis/analyser</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>EVA</td>
<td>Ethylene vinyl acetate</td>
</tr>
<tr>
<td>EVAL</td>
<td>Ethylene vinyl alcohol</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared</td>
</tr>
<tr>
<td>HT</td>
<td>Hydrotalcite</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma optical emission</td>
</tr>
<tr>
<td>LDH</td>
<td>Layered double hydroxides</td>
</tr>
<tr>
<td>LDH-Be</td>
<td>LDH-behenate</td>
</tr>
<tr>
<td>LDH-My</td>
<td>LDH-myristate</td>
</tr>
<tr>
<td>LDH-Pa</td>
<td>LDH-palmitate</td>
</tr>
<tr>
<td>LDH-St</td>
<td>LDH-stearate</td>
</tr>
<tr>
<td>LDO</td>
<td>Layered double oxide</td>
</tr>
<tr>
<td>LLDPE</td>
<td>Linear low-density polyethylene</td>
</tr>
<tr>
<td>MFI</td>
<td>Melt flow index</td>
</tr>
<tr>
<td>PE</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>PLLA</td>
<td>Poly(L-lactide)</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethyl methacrylate</td>
</tr>
<tr>
<td>POM</td>
<td>Polarised optical microscopy</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>PS</td>
<td>Polystyrene</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TG(A)</td>
<td>Thermogravimetry (Thermogravimetric analysis)</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
Definitions

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhedral</td>
<td>Refers to poorly formed crystal with no distinct faces</td>
</tr>
<tr>
<td>Delamination</td>
<td>A process in which layers of a multi-layered structure separate</td>
</tr>
<tr>
<td>Exfoliation</td>
<td>A process in which layers of a multi-layered structure are separated into single sheets</td>
</tr>
<tr>
<td>Fatty acid</td>
<td>Carboxylic acid, is an organic compound with a –COOH functional group</td>
</tr>
<tr>
<td>Intercalation</td>
<td>A process in which atoms, ions or molecules are inserted between the layers of a two-dimensional crystal lattice host</td>
</tr>
<tr>
<td>Organo-LDH</td>
<td>Surfactant/fatty acid modified layered double hydroxides</td>
</tr>
<tr>
<td>Peptisation</td>
<td>To disperse a suspension to form a colloid</td>
</tr>
<tr>
<td>Subhedral</td>
<td>Moderately formed crystals</td>
</tr>
<tr>
<td>Thermotropic</td>
<td>Changes in structure as temperature changes</td>
</tr>
<tr>
<td>Euhedral</td>
<td>Fully-faced crystals, well-formed with sharp, easily recognisable crystal faces.</td>
</tr>
</tbody>
</table>