THE DEVELOPMENT OF COMPLEX SYSTEMS: AN INTEGRATED APPROACH TO DESIGN INFLUENCING

ARIE WESSELS

A thesis submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR

In the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

SUPERVISOR: PROFESSOR L. PRETORIUS

2012
ABSTRACT

The aim of this research is to identify and analyze the impact of design changes to a system in a concurrent engineering environment and the development project, and to make proposals how to minimize the impact on the development project performance. A further objective is also to determine the effect of design changes as a result of design influencing. In a concurrent engineering environment system components are being developed in parallel. Any change to one component of the system may impact on other system components under development.

Design as part of the systems engineering process is an iterative and dynamic process. Although the systems engineering process has been very well structured and refined over the years, it still remains to a certain extent an unpredictable process. A consequence of this is that changes to a design of a subsystem or component comprising the system can occur at any stage of the process.

The systems engineering process is a “static” process since there are no time constraints or management of consumption of resources on the different systems engineering processes and steps. As such system engineering cannot function in isolation. To bring a system into being, systems engineering must function within a project management environment to provide the management of schedule and the consumption of resources. The interaction between project management and system engineering processes can have a distinct influence on the systems engineering process and must be taken into account when studying the performance of system development projects. This research investigates the project management/systems engineering interface with specific focus on cost and schedule.

Since project management is the encompassing process wherein a system is being developed, its influence on the system engineering process will also be investigated. This research has the following research objectives:

• Optimization of design influencing by dividing the design teams into two different complementary but opposing mindset groups.

• Evaluate the impact of design changes in terms of cost and schedule overruns in a concurrent engineering development environment.

A comprehensive development project was used as a case-study. A Narrative Inquiry comprising the main system development project players investigated the problems experienced on the project and found that management was the major cause for the project cost and schedule overruns. The principal finding of this research showed, that unplanned, unexpected and forced design changes was the primary
area of conflict between systems engineering and project management, leading to development project cost and schedule overruns. The Narrative Inquiry findings were actually the symptoms of a deeper underlying problem. Root Cause analysis identified the fundamental mechanisms of design change and the influence of management on the process.

This research identifies the fundamental mechanisms that result in design iterations and the influence that management has on this process. An improved “Effect-to-Cause” design influencing model is proposed to reduce the risk of design changes during system integration. A mathematical model has been developed to quantify the impact of a design change on a multi-layer, multi-component system. This model confirms that the system hierarchy design is very important to minimize the impact and consequential development project risk should a design change be required for one of the system components. By means of the mathematical model, a proposed system’s architecture can be modelled. The model quantifies the impact of a system component design change on the rest of the system development project. This model will facilitate the optimization of system architecture to reduce development project cost and schedule risks. The system architecture model will also enable design review boards to make informed decisions when considering options for a system component design change.

This research also found that the Systems Engineering process must function harmoniously within the larger Project Management environment for the optimum performance of a development project. The road forward to achieve this goal is for the systems engineering and design processes to become more structured and the removal of the unpredictability in the processes so far as the number of design iterations is concerned. This will enable the systems engineering processes to be more easily accommodated within the structured project management processes to the benefit of the overall development project performance. A structured “Cause-to-Effect” design influencing methodology has been investigated. Indications are that this may be the road forward for systems engineering process development to even further reduce the risk of a design change during system integration and consequential detrimental impact on the development project performance.
Table of Contents

Table of figures .. 8
Abbreviations ... 9

Chapter 1
INTRODUCTION .. 11
1.1 Development Projects Problem areas .. 12
1.2 Concepts and Definitions .. 14
1.3 Systems Engineering and Project Management Articles 17
1.4 Problem Statement .. 18
1.5 Research Objectives ... 19
1.6 Research Contributions .. 20
1.7 Research Questions .. 20
1.8 Research Roadmap ... 20
1.9 Chapter Summary .. 22

Chapter 2
RESEARCH METHODOLOGY ... 24
2.1 Discussion of Research and Analysis Method 24
2.1.1 Exploratory Research .. 25
2.1.2 Empirical Research .. 25
2.1.3 Constructive Research... 25
2.1.3.1 Design Science Research ... 26
2.1.3.2 Narrative Inquiry Research .. 26
2.2 Selection of Research Methods ... 27
2.3 Root Cause Analysis (RCA) .. 28
2.4 Chapter Summary .. 31

Chapter 3
SYSTEM DEVELOPMENT BACKGROUND .. 33
3.1 System .. 34
3.1.1 Characteristics and Properties of a System 34
3.1.2 System dynamics .. 36
3.2 Systems Engineering ... 38
3.3 Systems Engineering Process ... 39
3.3.1 Systems Engineering Outputs and Summary 40
3.4 Project Management .. 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction to Structured Design</td>
<td>132</td>
</tr>
<tr>
<td>8.2</td>
<td>Investigation into Structured Design methodologies</td>
<td>134</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Theory of Inventive Problem Solving (TRIZ)</td>
<td>134</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Axiomatic Design</td>
<td>135</td>
</tr>
<tr>
<td>8.3</td>
<td>Case-Study - Problems Experienced and Lessons Learnt</td>
<td>141</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Structured Design Example: a subsystem of the case-study</td>
<td>141</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Revisit of the Narrative Inquiry Analysis findings</td>
<td>144</td>
</tr>
<tr>
<td>8.4</td>
<td>Summary and Conclusions</td>
<td>145</td>
</tr>
<tr>
<td>9</td>
<td>Chapter 9 CONCLUSIONS</td>
<td>148</td>
</tr>
<tr>
<td>9.1</td>
<td>Research Questions Answered</td>
<td>150</td>
</tr>
<tr>
<td>9.2</td>
<td>Academic Contributions</td>
<td>152</td>
</tr>
<tr>
<td>9.3</td>
<td>Recommendations</td>
<td>153</td>
</tr>
<tr>
<td>9.4</td>
<td>Further Research</td>
<td>153</td>
</tr>
<tr>
<td>9.5</td>
<td>Further Systems Engineering Development</td>
<td>155</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>Appendix A</td>
<td>System Dynamics</td>
<td>168</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Problems experienced</td>
<td>171</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Design Iteration Impact Study</td>
<td>177</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Revised Problems experienced using AD</td>
<td>186</td>
</tr>
</tbody>
</table>
Table of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Published Articles</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Research roadmap</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Empirical research cycle</td>
<td>25</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Double loop corrective action process</td>
<td>30</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Closed-loop PRACAS</td>
<td>31</td>
</tr>
<tr>
<td>Figure 6</td>
<td>System emergent and hierarchy properties</td>
<td>36</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Elements of project success</td>
<td>43</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Systems Engineering environment</td>
<td>43</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Matrix Organisational Structure</td>
<td>44</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Success/Failure domain concept</td>
<td>48</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Design influencing model</td>
<td>49</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Interaction between the SD and FD teams</td>
<td>50</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Anti-Tank Weapons System</td>
<td>56</td>
</tr>
<tr>
<td>Figure 14</td>
<td>ZT3A1 Anti-tank Missile System</td>
<td>61</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Ingwe Missile cut-away</td>
<td>62</td>
</tr>
<tr>
<td>Figure 16</td>
<td>IPS development model</td>
<td>67</td>
</tr>
<tr>
<td>Figure 17</td>
<td>System boundaries and client interface</td>
<td>71</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Case-study Systems Engineering process</td>
<td>73</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Anti-tank missile system integrated into the ZT3 turret</td>
<td>76</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Systems and Logistics engineering interrelationship</td>
<td>77</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Summary of problems experienced in the case-study</td>
<td>85</td>
</tr>
<tr>
<td>Figure 22</td>
<td>Successive design refinement</td>
<td>108</td>
</tr>
<tr>
<td>Figure 23</td>
<td>Unconstrained “effect-to-cause” design influencing model</td>
<td>111</td>
</tr>
<tr>
<td>Figure 24</td>
<td>Constrained “effect-to-cause” design influencing model</td>
<td>113</td>
</tr>
<tr>
<td>Figure 25</td>
<td>Multi-level system showing possible functional couplings</td>
<td>118</td>
</tr>
<tr>
<td>Figure 26</td>
<td>Value of Systems Engineering; Summary Report 1/04</td>
<td>133</td>
</tr>
<tr>
<td>Figure 27</td>
<td>TRIZ process for creative problem solving</td>
<td>135</td>
</tr>
<tr>
<td>Figure 28</td>
<td>Axiomatic design domains</td>
<td>137</td>
</tr>
<tr>
<td>Figure 29</td>
<td>Distributed organisation of the AD system architecture</td>
<td>139</td>
</tr>
<tr>
<td>Figure 30</td>
<td>Axiomatic Design articles published</td>
<td>140</td>
</tr>
<tr>
<td>Figure 31</td>
<td>Part of the SGOU Tree Diagram</td>
<td>142</td>
</tr>
<tr>
<td>Figure 32</td>
<td>Part of the SGOU Design Matrix</td>
<td>143</td>
</tr>
<tr>
<td>Figure 33</td>
<td>Revised problems experienced using AD methodology</td>
<td>144</td>
</tr>
<tr>
<td>Figure 34</td>
<td>Penetration of TRIZ and AD into Systems Engineering</td>
<td>146</td>
</tr>
<tr>
<td>Figure 35</td>
<td>AD articles in context of SE published</td>
<td>146</td>
</tr>
<tr>
<td>Figure 36</td>
<td>Unconstrained effect-to-cause design influencing model</td>
<td>177</td>
</tr>
<tr>
<td>Figure 37</td>
<td>Constrained effect-to-cause design influencing model</td>
<td>178</td>
</tr>
<tr>
<td>Figure 38</td>
<td>Hypothetical system hierarchy</td>
<td>179</td>
</tr>
<tr>
<td>Figure 39</td>
<td>System structure with maximum functional decoupling</td>
<td>183</td>
</tr>
<tr>
<td>Figure 40</td>
<td>System structure with maximum functional coupling</td>
<td>183</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Axiomatic Design</td>
</tr>
<tr>
<td>ADM</td>
<td>Advanced Development Model</td>
</tr>
<tr>
<td>ADM</td>
<td>Arrow Diagramming Method</td>
</tr>
<tr>
<td>ARRL</td>
<td>American Radio Relay League</td>
</tr>
<tr>
<td>ATGM</td>
<td>Anti-tank guided missile</td>
</tr>
<tr>
<td>BIT</td>
<td>Built-in Test</td>
</tr>
<tr>
<td>BITE</td>
<td>Built-in Test Equipment</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill of Materials</td>
</tr>
<tr>
<td>CDR</td>
<td>Critical Design Review</td>
</tr>
<tr>
<td>CI</td>
<td>Configuration Item</td>
</tr>
<tr>
<td>CFE</td>
<td>Customer Furnished Equipment</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defence (USA)</td>
</tr>
<tr>
<td>DRB</td>
<td>Design Review Board</td>
</tr>
<tr>
<td>DSM</td>
<td>Design Structure Matrix</td>
</tr>
<tr>
<td>DSR</td>
<td>Design Science Research</td>
</tr>
<tr>
<td>ECP</td>
<td>Engineering Change Proposal</td>
</tr>
<tr>
<td>EDM</td>
<td>Engineering Development Model</td>
</tr>
<tr>
<td>ERA</td>
<td>Explosive Reactive Armour</td>
</tr>
<tr>
<td>ESSEE</td>
<td>Early Systems Engineering Effort</td>
</tr>
<tr>
<td>ET&E</td>
<td>Engineering Test and Evaluation</td>
</tr>
<tr>
<td>FBS</td>
<td>Functional Breakdown Structure</td>
</tr>
<tr>
<td>FD</td>
<td>Failure Domain</td>
</tr>
<tr>
<td>FFF</td>
<td>Form, Fit and Function</td>
</tr>
<tr>
<td>FMECA</td>
<td>Failure Mode, Effects and Criticality Analysis</td>
</tr>
<tr>
<td>FRB</td>
<td>Failure Review Board</td>
</tr>
<tr>
<td>FTA</td>
<td>Fault Tree Analysis</td>
</tr>
<tr>
<td>GERT</td>
<td>Graphical Evaluation and Review Technique</td>
</tr>
<tr>
<td>Hdbk</td>
<td>Handbook</td>
</tr>
<tr>
<td>HEAT</td>
<td>High Explosive Anti-Tank</td>
</tr>
<tr>
<td>IEEE</td>
<td>International Electronics and Electrical Engineering</td>
</tr>
<tr>
<td>ILSP</td>
<td>Integrated Logistics Support Plan</td>
</tr>
<tr>
<td>INCOSE</td>
<td>International Council on Systems Engineering</td>
</tr>
<tr>
<td>IPC</td>
<td>Illustrated Parts Catalogue</td>
</tr>
<tr>
<td>IPS</td>
<td>Integrated Product Support</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Project team</td>
</tr>
<tr>
<td>ISP</td>
<td>Integrated Support Plan</td>
</tr>
<tr>
<td>ITAR</td>
<td>International Traffic in Arms Regulations</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>LORA</td>
<td>Level of Repair Analysis</td>
</tr>
<tr>
<td>LSA</td>
<td>Logistic Support Analysis</td>
</tr>
<tr>
<td>LSAP</td>
<td>Logistics Support Analysis Plan</td>
</tr>
<tr>
<td>LSAR</td>
<td>Logistic Support Analysis Record</td>
</tr>
<tr>
<td>MCLOS</td>
<td>Manual Command to Line of Sight</td>
</tr>
<tr>
<td>MIL</td>
<td>Military</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information System</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MRV</td>
<td>Maintenance Recovery Vehicle</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration (USA)</td>
</tr>
<tr>
<td>NAVSO</td>
<td>Navy Standard Order (USA)</td>
</tr>
<tr>
<td>OT&E</td>
<td>Operational Test and Evaluation</td>
</tr>
<tr>
<td>PBS</td>
<td>Product Breakdown Structure</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCMB</td>
<td>Project Configuration Management Board</td>
</tr>
<tr>
<td>PDM</td>
<td>Precedence Diagramming Method</td>
</tr>
<tr>
<td>PDR</td>
<td>Preliminary Design Review</td>
</tr>
<tr>
<td>PM</td>
<td>Project Management</td>
</tr>
<tr>
<td>PMBOK</td>
<td>Project Management Body of Knowledge</td>
</tr>
<tr>
<td>PMI</td>
<td>Project Management Institute</td>
</tr>
<tr>
<td>PPM</td>
<td>Pre-Production Development Model</td>
</tr>
<tr>
<td>PRACAS</td>
<td>Problem Reporting and Corrective Action system</td>
</tr>
<tr>
<td>PSP</td>
<td>Product Support Plan</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>RBD</td>
<td>Reliability Block Diagram</td>
</tr>
<tr>
<td>RBDO</td>
<td>Reliability Based Design Optimization</td>
</tr>
<tr>
<td>RCA</td>
<td>Root Cause Analysis</td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability Centered Maintenance</td>
</tr>
<tr>
<td>SACLOS</td>
<td>Semi-Automatic Command to Line of Sight</td>
</tr>
<tr>
<td>SANDF</td>
<td>South African National Defence Force (SANDF)</td>
</tr>
<tr>
<td>SD</td>
<td>Success Domain</td>
</tr>
<tr>
<td>SDD</td>
<td>Software Design Document</td>
</tr>
<tr>
<td>SE</td>
<td>Systems Engineering</td>
</tr>
<tr>
<td>SEMP</td>
<td>Systems Engineering Management Plan</td>
</tr>
<tr>
<td>SRD</td>
<td>Software Requirements Document</td>
</tr>
<tr>
<td>Std</td>
<td>Standard</td>
</tr>
<tr>
<td>TAAF</td>
<td>Test Analyse and Fix</td>
</tr>
<tr>
<td>TEMP</td>
<td>Test Engineering Management Plan</td>
</tr>
<tr>
<td>TRAMP</td>
<td>Testability, Reliability, Affordability, Maintainability and Produceability</td>
</tr>
<tr>
<td>URS</td>
<td>User Requirements Statement</td>
</tr>
<tr>
<td>XDM</td>
<td>Experimental Development Model</td>
</tr>
</tbody>
</table>