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CHAPTER 1 

INTRODUCTION 

1.1 The Problem 

Software that is used in a real-world environment 

inevitably changes or becomes progressively less 

useful in that environment. As evolving software 

changes, its structure tends to become more 

complex [46]. “Because of this, the major part of 

the total software development cost is devoted to 

software maintenance [9, 29, and 47]. Better 

software development methods and tools do not 

solve this problem, because their increased capacity is used to implement more new 

requirements within the same time frame [25], making the software more complex again. To 

cope with this spiral of complexity, there is an urgent need for techniques that reduce software 

complexity by incrementally improving the internal software quality. The research domain that 

addresses this problem is referred to as restructuring [1, 28] or, in the specific case of object-

oriented software development, refactoring [22, 65].” [59] 

Refactoring is the process of improving the internal structure of the software while preserving 

its external behaviour [22, 65 and 70]. By improving the internal structure it is meant that 

refactoring will restructure the software in order to improve its quality by making it easier to 

understand, to extend, to find bugs, and to program faster [2, 60]. Preserving the external 

behaviour means, before and after applying the refactoring, the software will require the same 

preconditions and result in the same postconditions. The refactoring community assumes a set 

of precondition conjuncts for each refactoring that needs to be satisfied as a condition for 

applying that refactoring.  

To give an idea about refactoring before going into the details of the thesis, Figure 1.1(a) 

shows a simple example of a UML class diagram with four classes: HR, Employee as a 

superclass, Salesman and Engineer as subclasses of Employee. The HR class has two 

association relations, one with each of the Salesman and Engineer classes. The Salesman and 

Engineer subclasses have the same method getName which is called by the method report in 

the HR class.  
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Figure 1.1:  pullUpMethod Refactoring: (a) before refactoring, (b) after refactoring 

Note that the duplication of the getName method in the two subclasses as shown in Figure 

1.1(a) causes the following design problems: 

1. More efforts and spaces are needed at the design and code levels. 

2. There is an increased chance of inconsistency between the two copies. This can arise if the 

developer changes one of the two copies and forgets to change the other. 

3. The design is complicated, because the same method appears two times in the design. This 

also causes two association relations to be created between HR class and each one of the 

two subclasses.  

To solve these problems, it is preferred to change the design by deleting the getName method 

from the two subclasses and move it to their superclass, as shown in Figure 1.1(b). As a result, 

one copy of the getName method will appear in the design and also the two association 

relations between the HR class and the two subclasses will be replaced by one association 

relation between the HR class and the Employee class. Doing this restructuring will increase 

the quality of the internal design of the class diagram without changing the external behaviour 

of the system (The system will make the same services as before restructuring). This is 

because the getName method will be inherited to the two subclasses. The associated 

association relation also will be inherited. 

The restructuring done in the previous example is an example of refactoring. In this case, it is a 

pullUpMethod refactoring. The precondition for the pullUpMethod refactoring that should 

be satisfied in order to apply the refactoring to the system, as a condition to preserve the 

behaviour of the system is: 
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1. The getName method should not be declared in the superclass (Employee) or any of its 

ancestors. 

2. The access mode of the getName method in the subclasses is not private. 

3. All the references made by the getName method must be visible from the superclass. 

4. The signature of the method in all the subclasses should be the same.  

A current research trend is to investigate refactorings at levels of abstraction above the code-

level [23, 68, and 81]. This is because many people are visually oriented and prefer to visualize 

the relationships between classes rather than apprehend them textually. Furthermore, being 

able to directly manipulate code at a higher level of granularity (i.e. methods, variables, and 

classes rather than characters) can make refactoring more efficient [2]. Therefore, this thesis 

also focusses on refactorings at the design level. 

Several approaches have been used to formalize such refactorings, as discussed in section 2.4. 

For example, the graph transformations approach [11, 18 and 19] represents software as a 

graph, and refactorings are formalized as graph-production rules [7, 34, 51-56, and 63]. As 

another approach, the logic-based conditional transformation approach [38, 39] represents 

software as logic-terms and refactorings are formalized as conditional transformations with 

pre- and postconditions. 

In general, reasoning takes place at the level of refactorings themselves, and attention is not 

paid to the detailed transformational steps that must be applied to the model to achieve the 

refactoring. Such reasoning is with respect to a set of preconditions that must be satisfied in 

order to apply that refactoring, resulting in a set of postconditions. In this sense, a refactoring 

is treated as an abstraction, or as a black box as illustrated in Figure 1.2. 

 
Figure 1.2: Refactorings as black box 

Of course, to be of practical value, these conceptual ideas have to be implemented in 

refactoring tools. Such a tool would have to access some representation of an underlying 

system that is to be refactored. The refactorings themselves are implemented as hard coded 

parameterise procedures—i.e. as a sequence of code statements. To apply a particular 
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refactoring to the underlying system, the tool requires an interface that allows the user to select 

and invoke procedures which then execute the actual refactoring, thus changing the underlying 

system representation accordingly. 

 

Figure 1.3:  Refactorings as hard coded sequence of statements 

Treating refactoring as a black box can be notionally conceived of as shown in Figure 1.3. 

Whenever a refactoring is applied, the hard coded sequence of statements is executed 

atomically. The inter-relationship between the different code statements both within and 

between refactorings cannot be determined. This has the following implications: 

1. Where redundancy inside or between refactoring may exist, 

there is no possibility to remove it. As shown in the figure on 

the right, there could be a redundancy between statement 3 and 

20 in the code. For example, if statement 3 adds an attribute to 

a specific class in the system and subsequently statement 20 

deletes or changes the name or definition type of that attribute, the redundancy cannot be 

removed. This kind of scenario could arise, for example, when composing two or more 

refactorings into a single one. 

2. Where conflict occurs between two 

refactorings, it is not possible to determine which 

part of the two refactorings caused the conflict.  

The figure on the right side illustrates this by 

showing a conflict between statement 3 in 

refactoring X and statement 20 in refactoring Y. For example, statement 3 might add an 

attribute to a specific class in the system, based on a precondition of refactoring X that the 

class exists but does not have that attribute. On the other hand, statement 20 might delete that 

class from the system, based on the precondition—that the class exists and has no attributes. 
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This would constitute a conflict between the two refactorings if they were to be applied as 

separate threads to the system.  

3. Where there is a sequential dependency 

between two refactorings, there is no possibility to 

know at what specific point on it one of the two 

refactorings is sequentially dependent on the 

other. As shown in the figure on the right side if 

there is a sequential dependency between statement 3 in refactoring X and statement 20 in 

refactoring Y. Where statement 3, for example, adds a class to the system and statement 20 

adds an attribute to that class. In this case refactoring Y is considered to be sequentially 

dependent on refactoring X and having to be applied to the system after refactoring X. Again, 

because the two refactorings are considered as code sequences, there is no possibility to know 

at what specific point in the code one of the two refactorings becomes sequentially dependent 

on the other.  

4. Because refactorings are considered as code sequences, two or 

more refactorings can only be run in parallel if they are shown to be 

sequentially independent of each other. Because there is no meta-

information about the nature of sequential dependency between their 

constituent code statements, it is not possible to determine whether parts of the refactorings 

could be run in parallel.  

5. A new composite refactoring can be assembled by using previously-defined refactorings as 

building blocks. Its constituent elements can only be analysed for redundancy, conflicts, 

sequential dependency and possible parallelization with reference to the pre- and 

postconditions of these elements—i.e. with reference to the properties of the original 

refactorings. Nevertheless, as will be discussed later, such an analysis can suggest an ordering 

of the constituent refactorings which will avoid the so-called rollback problem. 

6. If a tool allows a user to build new refactorings, the semantics of any new refactoring is 

necessarily constrained by the selection of refactorings that have been implemented in the tool. 

Any refactoring whose semantics goes beyond that will have to be hard coded as a task to be 

undertaken by the tool developer, rather than the tool user. 
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1.2 The Proposed Formalism 

The refactoring formalism proposed in this thesis and described briefly in [73-75], is based on 

a predefined set of fine-grain transformations (FGTs) which are the basis for the construction 

of refactorings. These FGTs are derived from the general transformation actions that can be 

performed on elements of a UML class model. Each FGT can be applied to a UML model of a 

system, provided that the system satisfies the FGT's precondition. The FGT's postcondition is 

then realized on the system, which represents, in general, a small incremental change to the 

system. Note that this change need not preserve system behaviour. 

Nevertheless, it will be shown that refactorings (which, of course, do preserve system 

behaviour) can be constructed by using a collection of these FGTs. As illustrated in Figure 1.4, 

a set of refactorings in the present approach is set of directed acyclic graphs (FGT-DAGs), 

each of which specifies an ordering of FGTs to be used in the refactoring. The order, effect, 

pre- and postcondition of each FGT in each FGT-DAG is known to the tool, and can be 

controlled at the time of refactoring. Of course, the final effects of refactoring X in Figure 1.4 

is the same as the final effects of a hard coded version of refactoring X in Figure 1.3. 

 

Figure 1.4: Refactoring as a set of FGT-DAGs 

 It will be shown that representing refactorings as a collection of FGTs allows for the 

following: 

1. Where redundancy occurs between transformation operations that are carried out by the 

refactorings, the redundancy can be discovered and removed at the FGT-level.  (This will 

be discussed in more detail in chapter 7) 
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2. In the case of conflict between two refactorings, the FGTs that cause the conflict can be 

discovered, and in some cases the conflict can be resolved without withdrawing one of the 

refactorings. (This will be discussed in more detail in chapter 8) 

3. Sequential dependency between two refactorings can be discovered at the FGT-level. (This 

will be discussed in more detail in chapter 9) 

4. Composite refactorings of more than one refactoring can be composed in a way that will 

avoid rollback problems. However, this is done by manipulating the ordering of FGT 

execution, rather than of refactoring execution.   (This will be discussed in more detail in 

chapter 10) 

5. Parallel execution can be exploited at the FGT-DAG level. Thus, all FGT-DAGs in one 

refactoring can be executed concurrently because there is no sequential dependency 

between the FGT-DAGs. For example, the refactoring in Figure 1.4 has two FGT-DAGs 

that can be manipulated concurrently. (This will be discussed in more detail in chapter 11) 

6. An FGT-based tool can be built that will allow a user to build new refactorings whose 

semantics is constrained, not by the selection of existing refactorings that have been 

implemented in the tool, but rather by the semantics of the FGTs that have been predefined 

in the tool. (This will be discussed in more detail in chapter 12). 

The discussion in this thesis is restricted to refactorings that relate to the simplified UML 

meta-model shown in Figure 1.5. In addition, it will be assumed that a limited amount of 

information derived from the source code of the system to be refactored is also available, as 

will be discussed in due course. Although the use of this code-based information goes beyond 

the requirements of existing approaches, it can be acquired fairly easily.  

In deciding of which features of UML to include and which to exclude from the study, 

consideration had to be given to having a subset of the UML vocabulary that would be 

sufficiently large to lend credibility to the approach, yet not be so ambitious that it would 

prevent full coverage within the time available for this study. It was thought that the 

vocabulary represented by the simplified meta-model of  FIgure 1.5 complied with this 

objective. Although, UML notations relating to interfaces, abstract classes, abstract methods, 

aggregations and so on, are not considered, extending the ideas developed in this thesis to 

these UML notations appears to be quite straightforward. However, a detailed investigation of 

this conjecture is a matter for future study. 
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It should be noted there are tools (such as IDEA by IntelliJ and Eclipse by IBM) that directly 

analyse and manipulate an existing code base. However, the types of refactorings that they 

address are generally of a different order to those addressed here (e.g. removal of declared but 

unused variables, or the identification of common code segments that can be turned into a 

method) and are beyond the scope of this thesis. 

Figure 1.5: Simplified UML meta-model 

1.3 Thesis Overview 

In the next chapter, a survey of previous work in refactoring is presented. Thereafter, chapters 

three to six present the proposed approach and discuss the feasibility of the approach for 

formalizing refactorings. Then, chapters seven to twelve discuss the features that are obtained 

by adopting such approach.   

The logic-based underlying representation of the UML class diagrams of the system under 

consideration is presented in chapter 3. Chapter 4 proposes an FGT-based methodology to 

construct model transformations in which FGTs are at the core of the refactoring system. 

Several common primitive refactorings that are frequently defined and used in the refactoring 

literature are presented in chapter 5. To illustrate the proposed approach, a motivated example 

is given in chapter 6.  

Presenting features of the approach is started in chapter 7. The chapter introduces the idea of 

removing the redundancy between FGTs allocated in the same FGT-DAG. Chapter 8 shows 
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how to detect and resolve conflicts that may occur between two refactorings. The sequential 

dependency between two refactorings is discussed in chapter 9. Chapter 10 discussed the 

implications of using FGTs to deal with composite refactorings. The opportunities for 

parallelizing refactorings are presented in chapter 11. Chapter 12 presents the possibility for 

end users to build their own refactorings. Finally, chapter 13 summarizes the work, explores 

the contributions and identifies tasks for future work. 

In summary, then, this thesis will show that when FGTs are used to build refactorings, all the 

well-known refactoring operations (such as determining redundancy, conflict and sequential 

dependency; and building composites) can take place at the FGT-level. In theory, this comes 

with certain advantages and disadvantages. Advantages include the fact that the user of an 

FGT-based tool will have enhanced flexibility in specifying new refactorings; redundancies 

and conflicts can be more accurately pin-pointed and removed; and opportunities for parallel 

execution are exposed at a more fine-grained level. It will be seen that these advantages come 

at the cost of having to carry out more computations because analysis has to take place at the 

FGT-level, rather than at what will later be called the “refactoring level".  Although a 

prototype tool has been built to verify these claims, the full practical implications of this work 

are a matter for future study. 
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CHAPTER 2 

REFACTORING ___ STATE OF THE ART 

In this chapter, a survey of work related to 

refactoring is presented. First, the concept of 

software evolution and its relation to refactoring is 

introduced. Then, works related to different types 

of software artifacts that can be refactored is 

presented. Finally, works related to different 

refactoring formalisms is discussed. 

 

 2.1 Software Evolution 

“Software evolution is an essential part of the software development process. Nearly all 

software inevitably undergoes changes during its lifetime. Changes can be large or small, 

simple or complex, important or trivial - all of which influence the effort needed to implement 

the changes“ [51].   Sommerville [79] explains that proposals for change are the driver for 

system evolution. Change identification and evolution continue throughout the system’s 

lifetime.  Lehman & Belady [46] conducted empirical studies into software evolution and 

concluded the following eight laws: 

1. Continuing change: Software that is used in a real-world environment necessarily must 

change or become progressively less useful in that environment.  

2. Increasing complexity: As evolving software changes, its structure tends to become more 

complex. Extra resources must be devoted to preserve and simplify the structure. 

3. Large program evolution: Software evolution is a self-regulating process. System attributes 

such as size, time between releases and the number of reported errors is approximately 

invariant for each system release. 

4. Organizational stability: Over a software lifetime, its rate of development is approximately 

constant and independent of the resources devoted to system development.  
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5. Conservation of familiarity: Over the lifetime of a software, the incremental change in each 

release is approximately constant. 

6. Continuing growth: The functionality offered by systems has to continually increase to 

maintain user satisfaction. 

7. Declining quality: The quality of systems will appear to be declining, unless they are 

adapted to changes in their operational environment. 

8. Feedback system: Evolution processes incorporate multi-agent, multi-loop feedback 

systems and you have to treat them as feedback systems to achieve significant product 

improvement. 

Experience over the last 30 years has shown that making software changes without visibility 

into their effects can lead to poor effort estimates, delays in release schedules, degraded 

software design, unreliable software products, and the premature retirement of the software 

system. The immaturity of current-day software evolution is clearly stated in the foreword of 

the international workshop on principles of software evolution [69]: 

“Software evolution is widely recognised as one of the most important problems in software 

engineering. Despite the significant amount of work that has been done, there are still 

fundamental problems to be solved. This is partly due to the inherent difficulties in software 

evolution, but also due to the lack of basic principles for evolving software systematically.” 

Software evolution is not restricted to the implementation phase only. Even in the earlier 

phases of requirements specification, analysis and design, evolution is a strict necessity. To 

date, most research on evolution has been dedicated to the implementation and maintenance 

phases, and to a lesser degree in the earlier phases of requirements specification and design [12, 

15, 33, 41, 87, and 88]. However, there is a tendency to shift towards earlier phases.  

 

2.2 Refactoring 

Although in the context of software reengineering, refactoring is often used to convert legacy 

code into a more modular or structured form [20], refactoring can also be applied to any type 

of software artifact. For example, it is possible and useful to refactor design models, database 

schemas, software architectures and software requirements. Refactoring of these kinds of 

software artifacts rids the developer from many implementation-specific details, and raises the 
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expressive power of the changes that are made. On the other hand, applying refactorings to 

different types of software artifacts introduces the need to keep them all in sync[59 ].  

In the following subsections, an introduction of refactorings at different types of software 

artifacts is given.    

2.2.1 Codes Level 

2.2.1.1  Non-Object-Oriented Programming Languages  

Programs that are not written in an object-oriented language are more difficult to restructure 

because data flow and control flow are tightly interwoven. Because of this, restructurings are 

typically limited to the level of a function or a block of code [59]. 

In [27], Griswold proposes a technique to restructure programs written in a block-structured 

programming language. The language he worked on is Scheme. His transformations concern 

program restructuring for aiding maintenance. To insure that the transformations are meaning 

preserving, he uses Program Dependence Graphs to reason about the correctness of 

transformation rules. 

Lakhotia and Deprez [42] present a transformation called tuck for restructuring programs by 

decomposing large functions into small functions. The transformation breaks large code 

fragments and tucks them into new functions. The challenge they faced was creating new 

functions that capture computations that are meaningfully related. There are three basic 

transformation to tuck functions. 

4. Related code is gathered by driving a wedge (which is a program slice bounded with single-

entry and a single exit point) into the function. 

5. Then the code that is isolated by the wedge is split.  

6. Finally, the split code is folded into a function. 

These transformations can even create functions from non-contiguous code. 

2.2.1.2 Object-Oriented Programming Languages  

Opdyke, in his PhD thesis [65] was the first to introduce the term refactoring. His proposed 

refactorings were in the context of object-oriented programming languages. He identified 

twenty-three primitive refactorings and gave examples of three composite refactorings. He 
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arrived at his collection of refactorings by observing several systems and recording the types 

of refactorings that OO programmers applied.  

The importance of the achievements of Opdyke is not only the identification of refactorings, 

but also the definition of the precondition that is required to apply a refactoring to a program 

without changing its behaviour. For that, he defined for each primitive refactoring a set of 

precondition conjuncts that would ensure that the refactoring would preserve behaviour.  

Roberts, in his PhD thesis [70], improves the work of Opdyke. He gives a definition of 

refactoring that focuses on their pre- and postcondition conjuncts. The definition of 

postcondition conjuncts allows the elimination of program analysis that is required within a 

chain of refactorings. This comes from the observation that refactorings are typically applied 

in a sequence intended to set up precondition conjuncts for later refactorings. 

In his book [22], Fowler presents a catalogue of refactorings. Each refactoring is given a name 

and short summary that describes it. A motivation describes why the refactoring should be 

done, a step-by-step description of how to carry out the refactoring and an example. 

Back [3] propose a method called stepwise feature introduction for software construction. The 

method is based on incrementally extending the system with a new feature at a time. 

Introducing a new feature may destroy some already existing features, so the method must 

allow for checking that old features are preserved. 

2.2.2 Design Level Models 

A recent research trend is to deal with refactoring at a design level, for example, in the form of 

UML models [64]. Applying refactoring to models rather than to source code can encompass a 

number of benefits [23]. Firstly, software developers can simplify design evolution and 

maintenance, since the need for structural changes can be more easily identified and addressed 

on an abstract view of the system. Secondly, developers are able to address deficiencies 

uncovered by model evaluation, improving specific quality attributes directly on the model. 

Thirdly, a designer can explore alternative decision paths in a cheaper way (although small 

prototypes may be necessary). An apparent scenario for model refactorings is the incorporation 

of design patterns into a system's design model [37]. 

France et al. [23] identified two classes of model transformations: vertical and horizontal 

transformations. Vertical transformations change the level of abstraction, whereas horizontal 

transformations maintain the level of abstraction of the target model. A model refactoring is an 
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example of horizontal transformation. In contrast, the Model-Driven Architecture (MDA) 

approach [78], in which abstract models automatically derive implementation-specific models 

and source code, provides examples of a vertical transformation. 

As the idea of refactoring models adds simplicity to software evolution, automatization and 

behaviour preservation are even more complex issues when dealing with models. Editing a 

class diagram may be as simple as adding a new line when introducing an association, but such 

changes must include identifying lines of affected source code, manually updating the source, 

testing the changes, fixing bugs and retesting the application until the original behaviour is 

recovered [83]. Methods and tools for partially or even totally removing human interaction in 

this process are invaluable for the refactoring practice. 

Suny'e et al. [81] have provided a fundamental paradigm for model refactoring to improve the 

design of object-oriented applications. They present refactorings of class diagrams and state 

charts. In order to guarantee behaviour-preserving transformations of state charts, they specify 

the constraints that must be satisfied before and after the transformation using the OCL at the 

meta-model level. 

Porres [68] implemented refactorings as a collection of transformation rules, which receives 

one or more model elements as parameters, and performs a basic transformation based on the 

parameters. 

Boger et al. [6] present a refactoring browser integrated into a UML tool. They concentrate on 

the detection of conflicts that may be introduced after refactorings. They classify conflicts as 

warnings and errors. Warnings indicate that conflicts might cause a side effect. Errors indicate 

that an operation will cause damage to the model or code. They also address refactoring of 

state machines, like merging of states and formation of composite states. 

Bottoni, Parisi and Taentzer [7] present an approach to maintain the consistency of 

specification and code after refactoring. They show that some refactorings require 

modifications in several diagrams at once. To ensure consistency between source code, 

structural and behavioural models, they use graph transformations.  

Astel [2] proposes using an UML tool as an aid in finding smells—a structure in code that 

suggest the possibility of refactoring—and performing some elaborate refactorings. It is a tool 

that bases class diagrams directly on code, allowing code manipulation by the direct 

manipulation of the diagram.  

 
 
 



 

16 

 

Gorp et al. proposed a UML extension to express the pre- and postcondition of source code 

refactorings using OCL [26]. The proposed extension allows an OCL empowered CASE tool 

to verify non-trivial pre- and postcondition, to compose sequences of refactorings, and to use 

the OCL query engine to detect bad code-smells. Such an approach is desirable as a way to 

refactor designs independent of the underlying programming language. 

2.2.3 Database Schemas Level 

The main focus of database schemas is on how data should be structured. Therefore, they are 

ideal candidates for refactoring. In fact, the research area of object-oriented software 

refactoring originates from the research on how to restructure object-oriented database 

schemas. 

Banerjee and Kim [4] applied refactoring in the context of database schema evolution. They 

defined a set of schema transformations, which are used for schema evolution and identified a 

set of invariant properties of an object-oriented schema which must be preserved across 

schema changes. An example of such an invariant is that attributes of a class, whether defined 

or inherited, have distinct names. 

2.2.4 Software Architectural Level 

In [67] Philipps and Rumpe propose a promising approach to deal with refactorings at the 

software architecture level. In their work, refactoring rules are based directly on the graphical 

representation of a system architecture. These rules preserve the behaviour specified by the 

causal relationship between the components.   

Another approach is presented by Tokuda and Batory [83]: architectural changes to two 

software systems are made by performing a sequence of primitive refactorings (81 refactorings 

in a first case study, 800 refactorings in a second case study). 

In [36] Kempen, Chaudron, and Kourie proposed an approach to refactoring at the software 

architectural level. In their approach, they use a CSP-based formalism to describe the 

refactoring and they show that the proposed refactorings indeed preserve behaviour of the 

system. 

2.2.5 Software Requirements Level 

Restructuring can also be applied at the requirements specifications level. For example, In 

[72], Russo et al. proposed an approach to refactor the requirement specifications of the 

 
 
 



 

17 

 

system. Their proposal is to restructure natural language requirement specifications by 

decomposing them into a structure of viewpoints. Each viewpoint encapsulates partial 

requirements of some system components, and interactions between these viewpoints are made 

explicit. This restructuring approach increases requirement understandings, and facilitates 

detecting inconsistencies and managing requirement evolutions. 

 

2.3 Formalisms 

A wide variety of formalisms have been proposed and used to deal with refactoring.  

2.3.1 Graph Transformations 

Graph transformation [10, 11, 18, 19, and 63] is one way to deal with restructuring. The 

software is represented as a graph, and restructuring corresponds to transformation rules. Mens 

[51] presents the formalization of refactoring using graph rewriting, a transformation that takes 

an initial graph as input and transforms it into a result graph. This transformation occurs 

according to some predefined rules that are described in a graph-production which is specified 

by means of left-hand and right-hand sides. The first one specifies which parts of the initial 

graph should be transformed, while the last one specifies the result after transformation.  

Mens et al. use the graph rewriting formalism to prove that refactorings preserve certain kinds 

of relationships (updates, accesses and invocations) that can be inferred statically from the 

source code [54]. Bottoni et al. describe refactorings as coordinated graph transformation 

schemes in order to maintain consistency between a program and its design when any of them 

evolves by means of a refactoring [7]. Heckel [31] uses graph transformations to formally 

prove the claim (and corresponding algorithm) of Roberts [70] that any set of refactoring 

postcondition conjuncts can be translated into an equivalent set of precondition conjuncts. Van 

Eetvelde and Janssens [17] propose a hierarchical graph transformation approach to be able to 

view and manipulate the software and its refactorings at different levels of detail. 

2.3.2 Pre- and Postcondition 

A refactoring’s definition can be given in terms of an invariant in the form of a pre- and 

postcondition that should hold before and after the refactoring has been applied. This can form 

the basis of a lightweight and automatically verifiable means to ensure that the behaviour of 

the software is preserved by the refactoring. 
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The use of pre- and postcondition has been suggested repeatedly in research literature as a way 

to address the problem of behaviour preservation when restructuring or refactoring software 

artifacts. In the context of object-oriented database schemas (which are similar to UML class 

diagrams), Banerjee and Kim identified a set of invariants that preserve the behaviour of these 

schemas [4]. Opdyke adopted this approach to object-oriented programs, and additionally 

provided precondition conjuncts or enabling conditions for each refactoring [65]. He argued 

that this precondition preserves the invariants. Roberts used first order predicate calculus to 

specify these precondition conjuncts in a formal way [70]. 

The notion of precondition or applicability condition is also available in the formal 

restructuring approach of Ward and Bennett, using the formal language WSL [86]. 

2.3.3 Program Slicing 

Program slicing [5, 43, and 82] deals with specific kinds of restructurings: function or 

procedure extraction. These techniques based on system dependence graphs, can be used to 

guarantee that a refactoring preserves some selected behaviour of interest. Lakhotia and 

Deprez [42] present a transformation called tuck for restructuring programs by decomposing 

large functions into small functions. The approach breaks large code fragments and tucks them 

into new functions.  

A similar approach is taken in [40], where an algorithm is proposed to move a selected set of 

nodes in a control flow graph, so that they become extractable while preserving program 

semantics. They identified conditions based on control and data dependence that are 

considered to be sufficient to guarantee semantic equivalence. 

2.3.4 Formal Concept Analysis 

In [24] a technique called formal concept analysis (FCA) is used to deal with restructuring.  

FCA involves clustering so-called objects (not necessarily software objects) according to their 

attributes. The result is a set of nodes (called concepts) that are hierarchically arranged in a 

lattice. Snelting in [77] uses FCA to restructure object-oriented class hierarchies. The result is 

guaranteed to be behaviourally equivalent with the original hierarchy. Tonella in [84] uses the 

same technique to restructure software modules. Deursen in [14] uses FCA to identify objects 

by semi-automatically restructuring legacy data structures. 
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