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The design of antenna arrays involves, amongst others, the selection of the array
elements and geometry, as well as the element excitations. The feeding network to obtain
the desired excitations can become quite complex, and hence expensive. One possible
alternative would be to make use of microstrip wire-grid antenna arrays. These arrays
are composed of staggered interconnected rectangular loops of dimensions a half-
wavelength by a wavelength (in the presence of the dielectric). It is because the short
sides are considered to be discrete elements fed via microstrip transmission lines, that
these antennas are viewed as arrays. While considerable success has been achieved in the
design of these antennas, published work has been either of an entirely experimental
nature or based on approximate (albeit clever) network models which do not allow for
fine control of the array element excitations or off-centre-frequency computations
generally. It is the purpose of this thesis to perform an almost rigorous numerical analysis
of these arrays in order to accurately predict their element excitations.

Models used to study microstrip antennas range from simplified ones, such as
transmission-line models up to more sophisticated and accurate integral-equation models.
The mixed-potential integral equation formulation is one of these accurate models which
allows for the analysis of arbitrarily shaped microstrip antennas with any combination of

frequency and dielectric thickness. The model treats the antenna as a single entity so that



physical effects such as radiation, surface waves, mutual coupling and losses are
automatically included. According to this formulation, the microstrip antenna is modelled
by an integral equation which is solved using the method of moments. By far the most
demanding part of the integral equation analysis is its actual numerical implementation.
For this reason a complete description of the numerical implementation of the
formulation is given in this thesis. To verify the accuracy of the implementation,
rectangular microstrip patch antennas were analysed and surface current distributions
were shown to compare favourably with published results. The formulation is then
applied to the analysis of microstrip wire-grid antenna arrays which makes it possible to
accurately predict surface current distributions on these arrays. Radiation patterns are
determined directly from computed current distributions in the presence of the dielectric
substrate and groundplane, and are essentially exact except for finite groundplane effects.
To verify theoretically predicted results for wire-grid antenna arrays, several arrays were
fabricated and actual radiation patterns were measured. Good correspondence between
measured and predicted co-polar radiation patterns was found, while the overall cross-
polarization behaviour in cases with large groundplanes could also be predicted.

The fact that numerical experimentation can be performed on wire-grid antenna arrays
to examine element excitations, means that it is now possible to carefully design for some

desired aperture distribution.
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Die ontwerp van antennesamestellings behels, onder andere, die keuse van
stralingselemente, die geometrie van die antennestruktuur, asook die onderskeie
elementaandrywings. In sommige gevalle is die voernetwerk om die verlangde
aandrywings te verkry, egter ingewikkeld en daarom duur. ’n Antennestruktuur met 'n
relatief eenvoudige voernetwerk is die sogenaamde draadrooster-antennesamestelling.
Hierdie samestellings bestaan uit dun geétste interverbinde reghoekige draadlusse
waarvan die sye afmetings van 'n halwe golflengte en ’n golflengte in die teenwoordigheid
van die di€lektrikum het. Omdat die afsonderlike kort sye van elke draadlus beskou word
as diskrete stralers wat gevoer word deur mikrostrooklyne, word die antennes beskou as
samestellings. Alhoewel heelwat sukses in die verlede behaal is in die ontwerp van dié
antennes, is gepubliseerde resultate of eksperimenteel van aard of gebaseer op
benaderde analise-metodes. Dit is die doel van hierdie verhandeling om draadrooster-
antennesamestellings akkuraat en nougeset te analiseer met die doel om
elementaandrywings akkuraat te kan voorspel.

Metodes wat gebruik word om mikrostrookantennes te analiseer strek van eenvoudige
transmissielynmodelle tot meer ingewikkelde en akkurate integraalvergelyking-metodes.
Die gemengde-potensiaal integraalvergelyking-formulering is een van hierdie akkurate

metodes wat dit moontlik maak om arbitrére vorme van mikrostrookantennes te



analiseer, met enige kombinasie van frekwensie en di€lektriese substraatdikte. Die
metode neem ook die effekte van verliese, oppervlakstrome en wedersydse koppeling
tussen verskillende elemente van ’n samestelling in ag. Volgens dié formulering word die
mikrostrookantenne met 'n integraalvergelyking gemodelleer wat dan met die momente-
metode opgelos word. Die mees veeleisende deel van die integraalvergelyking-metode
is die numeriese implementering van die metode self en daarom word baie aandag in
hierdie verhandeling daaraan geskenk. Om die akkuraatheid van die implementering te
bevestig, is oppervlakstroomverspreidings op reghoekige geétste stralingsvlakantennes
bereken, en met reeds-gepubliseerde berekende resultate vergelyk. Goeie ooreenkoms
is verkry. Die akkurate integraalvergelyking-metode is hierna gebruik om draadrooster-
antennesamestellings te analiseer. Die metode maak dit moontlik om die
stroomverpreidings (in effek die elementaandrywings) op dié strukture akkuraat te
bereken. Stralingspatrone word direk van hierdie strome, in die teenwoordigheid van die
diélektrikum en grondvlak, bereken, en is in effek eksak behalwe vir eindige-grondvlak
effekte. Om teoretiese resultate wat met behulp van die analise-metode verkry is, te
verifieer, is draadrooster-antennesamestellings vervaardig en gemete en berekende
stralingspatrone vergelyk. Goeie ooreenkoms tussen die berekende en voorspelde ko-
polére stralingspatrone is gevind, terwyl selfs die kruis-polarisasie gedrag in gevalle met
groot grondvlakke, redelik goed voorspel kan word.

Die feit dat "numeriese eksperimentering” nou op mikrostrook draadrooster-
antennesamestellings uitgevoer kan word om elementaandrywings te bereken, bring mee
dat daar nou doelgerig ontwerp kan word vir verlangde stralingseienskappe van sodanige

antennes.



" Nie met mag en krag sal jy slaag nie,
maar deur my Gees,

sé die Here die Almagtige. "

Sagaria 4:6
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PREFACE

The purpose of this preface is not to replace the introductory chapter, but rather
intended briefly to point out to the reader the structure of the thesis. The principal
contributions contained in the thesis are stated in Section 3.8, Section 4.5 and Chapter 5.
Chapter 1 introduces the topic of the thesis and outlines its aims. Detail on the contents
of any chapter is given in the introductory section of that chapter. Chapter 2 can be
considered background information, with details of the author’s contributions contained

in Chapters 3 and 4.

iv



CHAPTER 1

MICROSTRIP WIRE-GRID ANTENNA ARRAYS

An antenna is a device that (depending on one’s viewpoint) uses currents and voltages
from a transmission line, or the E and H fields from a waveguide, to launch an
electromagnetic wavefront into free space or into the local environment. The antenna
acts as a transducer to match the transmission line or waveguide to the medium
surrounding the antenna. The launching process is known as radiation, and the
transmitting antenna is the launcher. If a wavefront is intercepted by an antenna, some
power is absorbed from the wavefront, and the antenna acts as a receiving antenna. To
obtain certain radiation characteristics (for example, high directivity, narrow beamwidths,
low side lobes or steerable beams), several antennas can be arranged in space and
interconnected by a feeding network. Such a configuration of multiple radiating elements
is referred to as an antenna array. The design of an array involves the selection of the
array elements and geometry, as well as the element excitations. The feeding network
to obtain the desired excitations can become quite complex, and hence expensive. One
possible alternative is to make use of microstrip antenna arrays. Microstrip antennas are
thin and lightweight radiating elements, formed by a substrate which is backed by a
metallic sheet, referred to as the groundplane. Thin metallic conductors are then
deposited on the substrate by printed circuit techniques.

Microstrip patch arrays, however, have restricted bandwidth and can sometimes



Chapter 1

exhibit undesirable polarization characteristics. Microstrip wire-grid' antenna arrays, on
the other hand, combine all the usual benefits of patch-type radiators with adequate
cross-polarization control and good bandwidth. Wire-grid arrays, examples of which are
shown in Figures 1.1 and 1.2, are composed of staggered interconnected rectangular
loops of dimensions a half-wavelength by a wavelength (in the presence of the dielectric).
It is because of its appearance that these arrays are often referred to as brick-wall arrays.
It is argued that the excitation is such that the radiation due to currents on the short
segments (the vertical segments in Figure 1.1) combine constructively, while that due to
currents on the longer segments cancel. The wavelength-long segments are considered
to act as transmission lines. It is because of this that the short sides are regarded as
discrete elements of an array, fed via microstrip transmission lines. Element excitations
may be controlled by varying the widths of the short elements, thereby obtaining a
desired aperture distribution. While considerable success has been achieved in the design
of these antennas, published work has been either of an entirely experimental nature or
based on approximate network models. It is the purpose of this thesis to perform an
almost rigorous numerical analysis of these microstrip wire-grid antenna arrays. The
analysis will be done using a moment method solution of an integral equation
formulation of the problem, due to Mosig and Gardiol [2,3,4]. A detailed exposition of
this method is given in Section 2.3. By far the most demanding part of the integral
equation analysis is its actual numerical implementation. Published information on the
latter, in order to satisfy the space restrictions associated with journal articles, essentially

takes the form of suggestions on how to overcome numerical difficulties. There are

! The wire-grid antenna array principle was derived some years ago by Kraus [1].
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usually insufficient details for a direct implementation of the analysis. Therefore,
Chapter 3 (which along with Chapter 4 contain the principal contributions of this thesis)
presents a very complete description of the numerical implementation developed by the
present author. It has purposefully been illustrated with various graphs, and can be
considered a pictorial "tour" of the work in [2,3,4]. Chapter 4 applies the integral
equation technique to the analysis of microstrip wire-grid arrays, the aim being the
theoretical determination of the excitations, and hence radiation patterns of such arrays.
Finally, some general concluding remarks on the work are given in Chapter 5. Several
appendices, in which derivations which provide increased insight are given, are also

included.

«— Aggg —> ¢

| >

eff

—» N

feedpoint

Figure 1.1 Example of a microstrip wire-grid antenna array. A4 is the wavelength in the presence of the
dielectric.
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one of four feedpoints

o etched conductor line

dielectric

Figure 1.2 An etched four-quadrant wire-grid antenna array.



CHAPTER 2

REVIEW OF EXISTING ANALYSIS TECHNIQUES FOR MICROSTRIP

ANTENNAS

2.1

2.2

INTRODUCTION

In this chapter we will give a review- of existing analysis techniques for
microstrip antennas. Widely used approximate models and some of their
shortcomings are discussed in Section 2.2, leading to a review of the more
accurate integral equation methods. A discussion of the formulation used in this
thesis will then be given in Section 2.3. However, details of numerical algorithms
and other computational aspects are deferred to Chapter 3. The present chapter
describes existing formulations and can be considered the technical background

to the thesis work.

CLASSIFICATION OF EXISTING TECHNIQUES FOR THE ANALYSIS OF
MICROSTRIP ANTENNAS

To date, several models for the analysis of microstrip antennas have been
developed. Some of these models are restricted to geometries such as rectangular
or circular patches, while others are restricted in terms of structure size or
attainable accuracy. These models range from simplified ones, such as
transmission-line network models [S] where the antenna is divided into components

(eg. T-junctions, hybrid junctions) and the effects of their individual network



2.2 Classification of existing techniques

models are combined using conventional scattering matrix theory. This method
can provide reasonable radiation pattern predictions for simplified structures,
however, network models for the individual components can be rather difficult to
compute and therefore this method is not easily extendable to complicated
geometries. Furthermore, a detailed analysis is needed in any case to include
phenomena such as radiation and surface waves into these individual network
models.

Widespread use is also made of the cavity model [6]. Hereby, the model used
in the study of resonators is extended to study radiation, the antenna radiating at
the resonant frequency of the equivalent cavity. This model may be expanded to
include the complete set of cavity modes (multimode cavity theory) and dielectric
losses by placing a lossy equivalent dielectric in the cavity. The effects of surface
waves may also be included, albeit approximately. The cavity model provides a
means of predicting, with reasonable accuracy, impedances and radiation
characteristics of thin separable structures. This model however, cannot be used
to consider the effects of external mutual coupling between different elements of
an array of such antennas and falls short of accurately predicting behaviour in the
case of electrically thick substrates.

In the more accurate and sophisticated approaches, the microstrip antenna is
modelled by an integral equation which is derived using appropriate Green’s
functions and the boundary conditions on the electromagnetic fields. The method
of moments [7] is then used in solving for the unknowns (surface current and/or

associated surface charge densities) in these integral equations. In the moment



2.2 Classification of existing techniques

method application to these integral equations one arrives at expressions for the
determination of the impedance matrix elements. As pointed out by Pozar [8], it
is here that one has the choice of two approaches. The associated Green’s
functions (i.e. those for an electric current element radiating in the presence of
a dielectric slab backed by a groundplane) are usually derived in the Fourier
transform domain. The spectral domain approach uses the Green’s functions in
this transform domain directly. The spatial domain approach uses the Green’s
functions after these have been transformed to the spatial domain. In either case
the moment method solution yields the coefficients of the spatially distributed
current/charge densities. A very clear comparison of the two approaches can be
found in [8,Sect.IV.B]. From the solutions of these integral equations, the radiated
fields can be determined using radiation integrals (in terms of the same Green’s
functions used to formulate the integral equations). There are many different
forms of integral equations; the most common being the electric field integral
equation (EFIE) and magnetic field integral equation (MFIE). The EFIE
enforces the boundary conditions on the tangential electric field, while the MFIE
enforces the boundary conditions on the tangential magnetic field. When both
vector and scalar potentials are used in the formulation of especially the EFIE,

it has become customary to refer to it as the mixed-potential integral equation

(MPIE).



2.3 Detailed exposition of the formulation used in this thesis

A .
»
N

Figure 2.1 Geometry of an arbitrarily shaped microstrip patch.

2.3

DETAILED EXPOSITION OF THE FORMULATION USED IN THIS THESIS

There has been little information published on the relative
advantages/disadvantages of the spectral-domain approach over the spatial-
domain approach, and vice versa. Numerical difficulties associated with one
approach are not entirely avoided through use of the other, but simply manifest
themselves in another form [8]. It is true, however, that the spectral-domain
approach applications have been limited to a few simple shapes. Especially for
more general shapes, it has recently been concluded that [9] "unless a
breakthrough is achieved in the acceleration of the slowly converging double
spectral integrals that arise - the spectral domain approach is not competitive in

terms of efficiency with the state-of-the-art space domain methods". This view is

8



2.3 Detailed exposition of the formulation used in this thesis

perhaps further strengthened by the improvements in the "analytical forms" of the
spatial domain approach [10]. At any rate, the spatial domain formulation of
Mosig and Gardiol [S] has been used in this thesis. The method allows for the
analysis of arbitrarily shaped patches (Figure 2.1) with no intrinsic limitations on
frequency and dielectric thickness. Mutual coupling between different elements
of an array is automatically taken into account, while the effects of surface waves
as well as dielectric and ohmic losses are included. The groundplane and
dielectric slab, however, are assumed to extend to infinity in the transverse
directions, and the formulation expects the substrate to be non-magnetic, isotropic
and homogeneous. The microstrip antenna is modelled by an integral equation,
where the unknown is the electric surface current distribution. The Green’s
functions forming the kernel of this equation are that for an electric current
element radiating in the presence of a dielectric slab backed by a conducting

groundplane, the element being located at the surface of the slab.

2.3.1 The mixed-potential integral equation

The integral equation is formulated in the spatial domain using vector and
scalar potentials, hence the term mixed-potential integral equation (MPIE).
Introducing expressions for the potentials in an equation relating the total
tangential electric field to the electric surface current, yields the following

expression for the MPIE [3]:



2.3 Detailed exposition of the formulation used in this thesis

ix(jmf@A.J,dS’+VfGVqst’+ZJJ,)=fxE‘ @.1)

So So

where the patch extends over the part of the z=0 plane denoted by S,. E® denotes
the excitation electric field, while E}Al and Gy represent the Green’s functions
associated with the vector and scalar potentials, respectively. The unknowns in
this integral equation are the surface current J, and the surface charge q,. They
are, however, not independent and are related through the continuity equation
[11] V.J, +jwq,=0. Z is a surface impedance accounting for the finite conductivity
of the patch. An accurate value for the surface impedance can only be obtained
through measurement since Z, includes effects such as surface roughness and
finite thickness of the metallic patch. In practice however, most patches are thick

compared to the skin depths, and the classical expression

z =1*i g 22)

still offers a good approximation. o is an effective conductivity that includes
roughness effects, and can be several times lower than values found in standard
tables (typically one fourth); 6 represents skin depth and is approximated by

[2/(wpo’)]Y/? where w is the working frequency and u the permeability.

! In this thesis bold overlined characters denote dyadics while vectors will be represented by bold
characters.

10



2.3 Detailed exposition of the formulation used in this thesis

2.3.2 Green’s functions

G A is a three-dimensional dyadic Green’s function with G{'(r/r’) giving the
s-component of the vector potential existing at point r created by a t-directed
Hertz dipole at r’. The Green’s function, Gy, associated with the scalar potential,

must be carefully defined and the uniqueness thereof is only guaranteed if

V.G, (r/r)) = peV G, (r[r)) = -peVIG,(r/r) 2.3)

where V’ acts on the primed co-ordinates [3]. The validity of the integral
equation depends therefore, on whether (2.3) holds. Appendix B derives
expressions for the potentials (A and V) created by a horizontal electric dipole on
the air-dielectric interface of a microstrip structure; from these expressions the

components of the dyadic Green’s function can be written as follows:

G rlr') = f (AR)--—- % gy 2.4)

Gl (rir') = 0 2.5)

Gy(r/r') = '%(e, - 1)cos¢le(AR) D A gy (2.6)
0

TE~XT™M

where o = 4w - 107 is the permeability of free space, J, is the Bessel function

11



2.3 Detailed exposition of the formulation used in this thesis

of n’th order and first kind, D1 = u, + u coth uh and Dy = €, + u tanh uh,
uy = (A*kY)Y2, u = (A%e k3)'2 k, is the free space wavenumber, & the substrate
thickness and R = |r-r’|. Angle ¢ is defined in Figure 2.1. If both source and
observation points are located on the air-dielectric interface (z=0), then of course
r = x® + y§ and thus ¢ = tan{(y - y*)/(x - x*)}. For the case of a lossy
dielectric, €, = €,’(1 - jtan&) where® tan § is the loss tangent. Likewise, since a

microstrip substrate exhibits rotational symmetry about the z-axis, it follows that:

Gl(rIr") = Gi(rr)) 2.7)
GP(rir'y = 0 (28)
GY(rir") = —ﬁ(e - 1)sin f J,(AR) 2’ e ““da 2.9)
A 21It r ¢ 1( D D
0 TE™'TM

Since only horizontal currents are considered, components G3% G* and G%* need
not be evaluated. Mosig and Gardiol [3] have shown that (2.3) holds for a scalar

potential Green’s function defined by

G, (rr'y = —L f JO(;\_R)__DA_Ne"‘Ozd;\_ (2.10)
0

2me, TEYTM

2 & in this expression should not be mistaken with skin depth also denoted by 8.

12



23 Detailed exposition of the formulation used in this thesis

where € is the permittivity of free space and N = u; + u tanh uh. In solving for
the surface current distribution, we are interested in the case where both source
and observer are located on the air-dielectric interface (z=0). The term exp(-uyz)
appearing in the above expressions is then set to unity. For far-field radiation
computation, on the other hand, this will not be the case and this term has to be
retained in the Green’s function expressions. Note that (2.4), (2.6), (2.9) and
(2.10) show that the Green’s functions themselves must be evaluated numerically;
this in addition to the numerical integration needed in the evaluation of the
impedance matrix élements (which contain these Green’s functions) when the
moment method is used.

Closer inspection® of the Green’s function integrands, reveals the existence of
three distinct integration difficulties which will be discussed shortly. However, by

writing the integrals as

k ko<, -

}F(A)dl = fF(l)dl + fF(}\,)dA + f F(L)dA (2.11)
0 0 X,

ke,

it is possible to address these problems separately. Firstly, in the interval [0, k]
the square root, (A>-k2)!/2, appearing in the denominator of the integrands,
introduces a discontinuity in the derivative at A =k,. This corresponds to a branch

point* on the complex plane k, where k,=4 + jv. Numerical difficulties

3 Section 3.2 gives graphical illustrations.

4 Section 3.2.1 discusses branch points.

13



2.3 Detailed exposition of the formulation used in this thesis

encountered here can be overcome by the substitution A =k,cos t resulting in a
smoother function which can easily be integrated numerically. Secondly, it can be
shown [11] that D=0 and Dy =0 are the characteristic equations of the surface
waves existing on the dielectric substrate. It can, however, also be shown [4] that
Dg has no zeros and Dy has only one (corresponding to the zero-cutoff TM,
surface wave) if f{GHz] < 75/{h[mm)](e,’-1)"/%}. In this thesis it will be assumed
that this inequality holds; this is true in most practical applications of the type to
be considered. Therefore, if the integrand contains Dy in the denominator (as
is the case for Gy, G3* and G%), it can be shown [4] that the singularity is
bounded to the interval [k, , ko(€,*)"?] which justifies the subdivision proposed
in (2.11). For lossy cases, this singularity lies just below the A-axis on the complex
plane k,; in the lossless case this singularity lies on the A-axis itself. Two
techniques are commonly utilized to deal with such singularities. These are the
folding around the pole technique [12] and pole extraction [13], the latter being
particularly suitable for application in this analysis. According to this technique,
a singularity in the Green’s function integrand at A, + jv, can be extracted by

writing the integral as

ke, ke, kyy/e!
[ Fdn = [ [F()-Fumldr + [ Fu(ydr @12

where

14



2.3 Detailed exposition of the formulation used in this thesis

Res
. = 2.13
F_ () 3 ‘(lp +jvp) ( )

Numerical root-finding techniques yield A, + jv, while Res is the residue of F at

this pole. The function F,, can be integrated analytically, i.e.

ko\/e_; / 2 2

ke, - A ) +v
meg().)d). _ Res (o\/—; )tV
ko

2 2
(Ap ko)™ + v, 2.14)

v v

kel - A A -k
+j Restan™! 0—‘/7'-—” +j Res tan™! [p——-‘-)-]
P P

while [F(2) - Fg,,(1)], being a well-behaved function (call it the difference term),
is numerically integrable. An infinite derivative in the difference term integrand
at A=k, may be eliminated by the substitution A =k,cosh t.

The integrands of G* and G}’ do not contain Dy, in the denominator and
therefore do not require application of the pole extraction technique. In these
cases, the substitution A =kycosh t may be performed to obtain smooth integrands
at A=k,

Thus far we have discussed the evaluation of the Green’s functions in the
intervals [0, ko] and [k, , ko(€,*)"/?]. Finally, in the interval [ky(e ’)"?, «] the
oscillatory integrands (for both lossless and lossy dielectric cases) have envelopes
which converge very slowly, or even diverge at infinity. A technique based on the

concept of a weighted average between half-cycle integrals, the method of
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2.3 Detailed exposition of the formulation used in this thesis

averages [14], can be used to numerically evaluate these integrals. This method
will be the subject of Section 3.2.3.

The development of accurate numerical techniques for the evaluation of the
Green’s functions is an essential (and by far the most demanding) part of the

overall process.

2.3.3 Basis and testing functions

By expanding the unknown surface current distribution over a set of basis
functions and testing the integral equation against a set of testing functions, the
MPIE may be solved with the method of moments [7]. Careful consideration
should be given when choosing these basis and testing functions since correct
choices are essential to the accuracy of final results. When no a priori assumptions
about the surface current distribution on the microstrip antenna can be made,
subsectional basis functions (as opposed to entire-domain basis functions) have
been found to offer best results; in particular, rooftop basis functions have been
used successfully [15]. The surface of the arbitrarily shaped microstrip antenna is
divided into elementary cells called charge cells (Figure 2.2); two adjacent charge
cells forming a current cell on which one rooftop basis function (Figure 2.3) is
supported. Although equal cell size is not a condition, computation time increases
for cases of unequal cell size. The components of the surface current are then

expanded over basis functions T, and T, as follows:
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2.3 Detailed exposition of the formulation used in this thesis

M
Jp= 1Y LT(r -1y 2.15)

b 5
1 2.16
J, = - 1-21 LT(r -r,) (2.16)

where
T(r) = 1-|x|/a ; |x|<a , |y|<b2 (2.17)
0 ; elsewhere

and a similar expression holds for Ty(r). L; and L; are the unknown surface
current coefficients with M and N the number of x- and y-directed current cells,
respectively. The surface charge density associated with the expanded surface
current density is obtained through substitution of (2.15) and (2.16) into the

continuity equation, yielding

1 ud o -
P, = Toab { 12-1: LIO(r - ry - U(r - ry)]

(2.18)

j=1

N
+ Y L[O(r - r) - L(r - ry)] }

where II(r) is a two-dimensional unit pulse function defined over a rectangle of
dimensions a and b centred at r = (0,0). Figure 2.3 gives a graphical illustration
of the charge distribution on an x-directed current cell. For testing functions,

unidimensional rectangular pulses, being compatible with rooftop basis functions,
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2.3 Detailed exposition of the formulation used in this thesis

~_ approximated contour

N
y-current cell _ true contour

L&) L ';l
Cy Wk

AR N

YK \

x-current cell 0 b charge cell

Figure 2.2 Decomposition of the patch upper conductor into elementary charge cells.

Basis function Razor testing function

I(r - r:j) - IO(r - ry)

—

Figure 2.3 X-directed rooftop basis function and the razor testing function. The associated charge distribution
over the x-directed current cell is also shown.
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2.3 Detailed exposition of the formulation used in this thesis

have been shown [4] to be most suitable. These testing functions, also called razor
functions, extend along the segments linking the centres of adjacent charge cells
as shown in Figure 2.3. The centre of test segment C,; associated with the j'th x-

directed current cell will be denoted by r; with its ends at r,; and r'.

234 Discrete Green’s functions

The notation and computational task can be simplified by introducing discrete
Green’s functions (not to be confused with the Green’s functions themselves)
which have as sources complete basis functions as opposed to conventional
elementary point sources. I'{(r/r;) is then the x-component of the vector potential
at r created by an x-directed rooftop distribution of surface current at r, whereas
I'y(r/ry) is the scalar potential at the same observation point resulting from a

rectangular distribution of unit surface charge at The discrete Green’s

roj'

functions are now defined by the following dimensionless expressions [3]:

Ty(rir) = | —Z—oGy(r/r’)II(r/ - r,) k> ds’ (2.19)
Sy 0

Tfrirg) = [ ——GErir) T - r, )R ds’ (2.20)
5, Koko

A similar expression holds for I'}". S; represents the surface of the current source
cell centred at r,; while the charge source cell centred at r,; extends over S

When the observation point r for the potential due to a particular source cell falls
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2.3 Detailed exposition of the formulation used in this thesis

within its own source cell boundaries, then the integrands for the discrete Green’s
functions are singular at r due to the Green’s functions (one of the factors in the
integrands) becoming singular. We will call any evaluation of the potential due
to a given source cell at any point in its own source cell a "selfterm"; their
evaluation is discussed in Section 3.3. We will use the term "scalar potential

discrete Green’s function" and "cell scalar potential” interchangeably.

2.3.5 The matrix equation

Through introduction of the basis and testing functions into the MPIE, we are
able to transform the integral equation into a matrix algebraic equation which can
be solved numerically. The use of discrete Green’s functions yields the following

matrix equation [2]

O]
1 Vi (2.21)

x =7 (o)
c™ cvjlL] T4 \v,

c= c?||1,

where the elements of the submatrices are given by (note that the scalar potential
due to any source cell is only required to be evaluated at the centre of its own cell

and that of each of the other cells)
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2.3 Detailed exposition of the formulation used in this thesis

XX l + - - +
Cj = koakob[- Ly (ralrey) - Ty(rylry)
+ Ty (rafri) + Ty (ridry) |
2.22)
-Lf (r/r )kodx+]z 5,
kb ¢ N A
i=1.M,j=1.M
and
Cy = Ea ko 2 | - Tyridn) - Ty Gaimy)
+ Ty (rgdry) + T, Gl ) ] (2.23)

é; is the Kronecker delta, V® the excitation vector and Z, the free space
characteristic impedance. An expression for Cf{ is obtained by interchanging

couples (x,y), (a,b) and (M,N) within the expression for CT; reciprocity,

ijo
furthermore requires that for cells of equal size, Cl} = Cl. We therefore have a
matrix C of dimensions (M+N) x (M+N). Since construction of matrix C is a
time-consuming task suitable approximations are sought to decrease computation
time without sacrificing accuracy. In this regard, numerical tests performed by
Mosig and Gardiol have shown [2] that for distances |r, - r,; | much greater

than the dimensions of a charge cell, the following approximation for the integral

21

| bS R0y
(6930677



2.3 Detailed exposition of the formulation used in this thesis

term in (2.22) may be considered:

[ TE(rir)kyds « kaTg (rfr,) (224)

Cxl

As a matter of fact, this approximation may be used everywhere, even on the
diagonal terms [16]. Secondly, for large source-observer distances, the discrete

Green’s functions may be approximated by the following analytical expressions™:

Ly(rir,) ~ —G y(rlr,;) (kya) (kyb) (2.25)
0

I‘;x(r/rxj) =

olko G (r/r;) (kya) (kob) (2.26)

The evaluation of the discrete Green’s functions involves a large amount of
computation; therefore it has been suggested [2] that an interpolation scheme be
used to evaluate the Green’s functions. Notice that for a given case, the Green’s
functions appearing in the integrands of expressions (2.19) and (2.20) are only
dependent on the distance between source and observer®. It is therefore possible
to tabulate the values for a small number of distances, ranging from zero to the
maximum linear dimension of the etched radiator, and to interpolate between the

tabulated values. Different tabulation schemes may be considered and some

5 Sections 33.1 and 3.3.2 illustrate the validity of these approximations.
6 On the other hand, discrete Green’s functions are also dependent on source-observer orientation.
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2.3 Detailed exposition of the formulation used in this thesis

possibilities are discussed in Section 3.6. Interpolation allows a great reduction in
computation time, while maintaining sufficient accuracy.

Finally, for the excitation vector, a coaxial probe feed will be considered for
which a simple, yet sufficiently accurate model was introduced in [2]. This model
assumes that the current on the coaxial probe is constant and is therefore only
accurate for thin substrates’; more complex feed models valid for thick substrates
are discussed in [17] and [18]. According to this model the excitation current
spreads over a single charge cell (this model requires the coaxial probe to be

located at the centre of a charge cell) as described by the following expression:

J, =% -Lsgn(x)( p - 2lx] ) + ¥ zlzsgn(y)( 1 - 2—|bz—| ) (2.27)

The associated excitation surface charge distribution over the charge cell is given
by a rectangular pulse of value I/jwab where I is the total current carried by the
inner coaxial conductor. Figure 2.4 gives an illustration of the electric surface
current and charge distributions associated with the coaxial probe feed model.
Note that only the x-directed component is featured for the sake of pictorial
clarity; in actual fact, a similar distribution holds for the y-directed component as
seen from (2.27). It has been found [16] that the contribution of the excitation

current (as opposed to the charge) to V© can usually be neglected, otherwise it

7 Up to about A/10 thick. This model is used in this thesis since we are primarily interested in
computing the relative distribution of current on the structure (and hence array aperture distribution) rather

than accurate input impedance computations which require considerably more computational intensive
excitation models.
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2.3 Detailed exposition of the formulation used in this thesis

must be computed from the expression for ry* (r¥’) with J, (J.,) replacing
T, (T,). This model was developed to be compatible with the basis functions, and
thus, the elements of the excitation vector may be obtained from the matrix
elements with the little additional (that is, if the contribution of the excitation
current to V¢ cannot be neglected) computation mentioned above [2]. If we
recognise that the matrix elements according to (2.23) represent the effect of a
charge doublet (Figure 2.3) integrated along a test segment, then since with the
above coaxial probe model the excitation is a single pulse of charge (Figure 2.4),

the elements of the excitation vector may be seen to be approximated by [16]

V(_‘) -« — 9 [T (r+./r) -T (r—./r)]
H Jkyakyb voE ve
(2.28)

BO « 20 [, () - Ty (rn)]
"o jkakp T ve

where feedpoint r is located at the centre of a charge cell. In (2.28) it is assumed
that the contribution of the excitation current to V{® is negligible. The matrix
equation can now be solved for the unknown surface current coefficients I, and
I, appearing in expressions (2.15) and (2.16). Matrix C is ill-conditioned, so that
a careful evaluation of its elements is needed to obtain accurate final results.
Once the surface current distribution is known, other antenna parameters of
interest may be calculated; the radiation pattern for instance, may be obtained

directly from the computed surface current distribution.
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2.4 Summary

a a feedpoint

xj

Figure 2.4 Electric surface current and charge distributions associated with coaxial probe excitation.
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SUMMARY

In this chapter a review of existing analysis techniques for microstrip antennas
was given. The transmission-line model was mentioned, from which it was
concluded that a more accurate analysis technique would be needed to include
effects such as surface waves and radiation. The cavity model, including effects
such as surface waves and dielectric losses, was also discussed. This model,
however, does not include mutual coupling effects and falls short of predicting
behaviour in the case of electrically thick dielectrics. More accurate and
sophisticated integral equation approaches, by which the microstrip antenna is

modelled by an integral equation, were then considered. A thorough treatment
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2.4 Summary

of the spatial domain mixed-potential integral equation formulation of Mosig and
Gardiol [4] was then given. This formulation enables us to do an almost (except
for finite groundplane effects) rigorous analysis of microstrip antennas. It permits
for the analysis of complex-shaped microstrip radiators with any combination of
dielectric thickness and permittivity; dielectric and ohmic losses as well as surface
wave effects are also automatically included. There are in principle no limitations
on frequency and the analysis remains accurate at frequencies other than some
centre-frequency at which a particular design is done. However, to obtain
quantitative results this formulation has to be implemented numerically; such

numerical aspects form the subject of Chapter 3.
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CHAPTER 3

COMPUTATIONAL ASPECTS OF THE SPATIAL DOMAIN
FORMULATION IMPLEMENTED

3.1

INTRODUCTION

It was pointed out in Chapter 1 that the actual numerical implementation of
the integral equation analysis of microstrip radiators requires substantial effort.
Since relatively few details are available elsewhere, the present chapter is devoted
to this aspect.

Numerical techniques needed in the construction of the Green’s functions will
receive close attention in Section 3.2, while discrete Green’s functions defined in
Chapter 2 will be discussed in Section 3.3 regarding selfterm evaluation and the
possible use of approximations. The construction and solution of the moment
method matrix equation will be the subject of Section 3.4, while Section 3.5 is
concerned with routines used in numerical integration. Interpolation, used in the
evaluation of the discrete Green’s functions in order to reduce computation time,
is discussed in Section 3.6. In particular, the tabulation scheme and interpolation
itself will receive attention. Integrals in far-field radiation computation are not
suited to standard numerical integration routines, necessitating the use of the
asymptotic techniques discussed in Section 3.7.

An effort has been made in this chapter to graphically illustrate why numerical
difficulties arise and how these are remedied. All computations performed for

such illustrative purposes in this chapter were done at 1.206 GHz for
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3.2 Construction of the required Green’s functions

€.=(4.34,—0.0868). The effective conductivity (c°) was taken as oc,/4 where

0, =5.76x107 mhos/m.

3.2 CONSTRUCTION OF THE REQUIRED GREEN’S FUNCTIONS
The construction of the Green’s functions require the determination of the
potentials (both A and V, since this is a mixed-potential formulation) created by
a horizontal electric dipole (HED) located on the air-dielectric interface of the
microstrip structure. Appendix B derives expressions for these potentials, as well
as the Green’s functions needed for the solution of the surface current

distribution. These expressions are repeated here for the sake of this discussion.

G=riry = GPrIr!) = _pLO__ J(AR —)‘—d). 3.1
4 (rfr’) L (rir’) 21:{ ol )Dm
AN
G AR) ———dX 3.2)
i 0(  Dye Dy Dyg Dy,

where:

& = A2 -k + A2 - efcoth(hyA? - € ko) (33)

e = €A% - kg + /A% - e f tanh (hy/A% - € kg) (3.4)

N = A2~k +[A% - e s tanh (hy/A? - e &0) 3.5)
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3.2 Construction of the required Green’s functions

Note that we have set z=0 in these Green’s function expressions since we are
(until Section 3.7) interested in surface current computation on this plane.
Figure 3.1' shows the integrand of 2 /u, G5* as a function of A/k, at 1.206 GHz
for €,=(4.34,-0.0868), and the particular circumstances h/1,=0.07 and R/4,=0.5.
A, is the free space wavelength and should not be confused with the variable A
ink, =2 + jv. The scalar potential counterpart, i.e. the integrand of 27 e, Gy as
a function of A/k, is shown in Figure 3.2. As seen from these figures, and
discussed briefly in Section 2.3.2, discontinuities, singularities and oscillations in
the Green’s function integrands pose distinct problems, complicating the use of
numerical integration techniques. Mosig and Gardiol [14] therefore suggested that
the semi-infinite integration interval be subdivided, allowing these problems to be
addressed separately. As mentioned in Section 2.3.2, this subdivision allows the

integral to be written as

» ky ko€, -
[Fydr = [FGydn + [ F(ydr + [ F(oydr @8
0 0

ko ko\/‘-'_:

In the remainder of this section the problematic behaviour of the Green’s
function integrands in each of these sub-intervals will be illustrated, and proposed

solutions will be discussed.

LN figures in this chapter were generated by the author and are original.
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3.2 Construction of the required Green’s functions
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Figure 3.1 The vector potential Green’s function integrand, i.e. the integrand of 2n/p Gy for
€,=(4.34-0.0868), h/1y=0.07 and R/3y=0.5.
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Figure 3.2 The scalar potential Green’s function integrand, i.e. the integrand of 2rey Gy for
€,=(4.34,-0.0868), h/A,=0.07 and R/4y=05 at f = 1.206 GHz.
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3.2 Construction of the required Green’s functions

3.2.1 Interval [0, k]

The term u, = (A% - k3)'/? appearing in the expressions for D, Dy, and N
introduces a branch point at A=k, To define the term "branch point", let us
consider a complex plane k, where k, = A4 + jv. From Appendix B we recall
that integration along the A-axis (as in (3.1) and (3.2), for instance) is a special
case of the complex integral along a path C on the k,-plane. Therefore, u,

transforms to

kg _ k§ 3.7)
on this plane. We will now attempt to illustrate that the square root of a complex
number is a multi-valued function. Consider for the moment a general complex
number k,. Now let us take the square root of k,: k,"*=l k, | /> &, where
¢=(6,/2 + mm)=6/2 and 8=arg(k,); 6, being one possible value of 6. Examine
the behaviour of kpl/ 2 as k, attains values moving around the origin bn a circle
of unit radius. For 8=0 we have k,2 = 1, since | k, [/> = 1. Now if 8
increases along the unit circle, we arrive back at the starting point after one
revolution, where 8,=0, m=1 and k,"2=-1 !. Therefore k,"/? has two possible
values (+1 and -1) for k,=(1,0), illustrating the multi-valuedness of the square
root? of a complex number. The origin whose encirclement produces the multi-
valuedness is defined as the branch point. Hence, k, =0 represents the branch point

for k,'/? whereas application of this theory to (3.7) leads to the conclusion that

2 In similar fashion it may be shown that multi-valuedness occurs for general fractional powers.
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3.2 Construction of the required Green’s functions

k, = *k, represents it’s branch points. Since this root appeared in both Green’s
function expressions (i.e. in both (3.1) and (3.2)), branch points can be seen in
both these integrands. Manifestations thereof are the discontinuities in the
derivatives seen at A=k, Standard numerical integration routines may be
inefficient in the integration of functions with such discontinuous derivatives. To
obtain accurate numerically integrated estimates for the Green’s functions over
the first interval, Mosig and Gardiol [3] have proposed the substitution A =kgcos t.

Suppose the integrands may be written as F(4), then this substitution implies that

ky 2z
[Fydn = [ Flegos)(~kysinr)ds (38)
Y 1.5x

Figures 3.3 and 3.4 give graphical illustrations of the integrands in Figures 3.1 and
3.2, respectively, after substitution in the interval [0 , k,]. In other words,
Figures 3.3 and 3.4 show F(k,cos t)(—kesin t) as functions of t, with F(1)
representing the integrands of 2w /u,G1* and 27 € Gy, respectively. The integrands
are found to be smooth and easily integrable. In this way then, it is possible to

deal with the effect of the branch point at A = k,,

3.2.2 Interval [k, , ko(e,” )]
Since the integrand of Gy, contains Dy, in the denominator (3.2), a singularity
due to the existence of the dominant TM, surface wave mode, appears in the

interval [k, , ko(e,”)"?], as discussed in Section 2.3.2 and seen from Figure 3.2

32



3.2 Construction of the required Green’s functions

(Note that the amplitude of the integrand at the singularity has been limited in
this figure for the sake of pictorial clarity). This singularity lies slightly below the
real A-axis on the complex plane k, for cases of moderate dielectric loss, while
it lies on the A-axis for the lossless case (tané=0). Strong variations of the
integrand are caused by the pole, even in the lossy case. Following a pole
extraction technique described in [3], the 2w ¢, Gy integrand may be expanded as
follows:  Jo(AR)AN/(DgDpy) = F(A) = [F(A) - Fong(A)] + Fyoo(X)  where
Fng(A) = Res / [A - (4, + Jvp)]; Res is the residue of F(k,) at pole k,, =4, + jv,.
This leaves k, and Res to be determined. The present author has used Miiller’s
method [19] with deflation to determine k,, - a root of the univariate complex
function Dpy(k,); this method is numerically implemented in the IMSL routine
ZANLY [20]. We also mention two methods whereby the residue may be
determined.

Firstly,
Res = Res{F(k,) k) = 2_:” § F(k,) dk, (39)
C

where C is any closed path around the pole at kpp. A condition, however, is that
function F(k ) must be analytic inside C except at k,, [21]; a function F(k,) is
said to be analytic in a domain D if F(k,) is defined and differentiable at all
points of D [21]. The residue in (3.9) is written in the form of a complex line

integral, and it may also be written in parametrised form as,
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3.2 Construction of the required Green’s functions
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Figure 3.3 Integrand of 2r/p,G%* for A € [0k,] after substitution A=kyos t.
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Figure 3.4 Integrand of 2re,Gy in the interval A € [0,k,] after substitution A = kycos t.
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3.2 Construction of the required Green’s functions

y dk (¢)
Res = Res{F(k,) .k} = ﬁfp(kp(t)) AL (3.10)

dt

where k (t) = A(t) + jv(t), t € [a,b]. Since C may be represented by any closed

path around k__, it is convenient to choose a circle. Then we have A(t) = r cos t

PP
and v(t) = r sin t as the parametric equations; t € [0,27) and r is the radius of
the circle. The value of r is not important, provided F is analytic inside the
borders of the circle except at k. Figure 3.5 now shows the normalised distance
k,p/ko — 1 between pole k,, and the branch point at A=k, (discussed in the
previous section) as a function of dielectric thickness (h/A,). It can be seen that
in the case of electrically thin substrates, the pole due to the surface wave is very
close to the branch point. In such cases, radius r must be chosen carefully to avoid
the inclusion of the branch point into the borders of the circle - inclusion thereof
violating the analyticity of F(k,). With the use of (3.10) and careful selection of
1, it is now possible to numerically determine a value for Res. For instance, at
1.206 GHz (k,=25.2753) for h/4,=0.07, R/4,=0.5 and €,=(4.34,-0.0868), we
have (for r=1.0153 m!) Res = (0.47323,-0.01815) where
k., =(27.3059,-0.052039).

A second method which may be used numerically in the determination of the

residue is:

Res = Res{F(k,)) ,k, } = ) 'k (k, -k, ) F(k,) (3.11)

p~ “pp
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3.2 Construction of the required Green’s functions

Once k,, and the residue are known, the pole in the Gy integrand may be

extracted according to the technique described above; i.e.:

"o\/;z ko‘/:: ko\/;z
fF(l)dA' = f [F(A)‘Fsing(l)]dl + f Fm(l)dl (3.12)
ky k ',

F

sing 1S analytically integrable as shown in (2.14), while the difference term, which
is a well-behaved function, may be integrated numerically. Although the
difference term itself is well-behaved, the terms F() and Fing(4) become singular
at k. In the lossless case, to numerically evaluate the respective terms at k,
before subtraction, a small increment is added to the argument A at the
singularity. In this way the difference term is evaluated at k,+ § where § ~ 0. An
infinite derivative in the difference term integrand at A =k, may be eliminated by
the substitution A =kycosh t. The real and imaginary parts of the Gy difference
term integrand, after substitution, are shown in Figure 3.6; the singularity which
has been extracted is visible in Figure 3.2. If the integrand does not contain Dy
in the denominator, the substitution may nevertheless be performed to obtain a
smooth integrand at A=k, This is the case for the Green’s function G{*(r/r’)
(and GX¥(r/r’) for that matter), for which Figure 3.7 gives an illustration, after
substitution, of the integrand shown in Figure 3.1.

At this point, we are able to accurately determine the integrals in (3.1) and

(3.2) for 0 < A < ky(e,’)"/2 This leaves the interval A > ky(e,’)"/? which is the

subject of Section 3.2.3.
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Figure 3.6 2z¢,Gy, difference term integrand after substitution A=kycosh t. F(2) and Fy,,(2) are defined
in Section 3.2.2,
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3.2 Construction of the required Green’s functions
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Figure 3.7 Integrand of 2n/p, G, shown in Figure 3.1, after substitution A=kosh t in the interval
Aefkpkyve].

3.2.3 Method of averages in the interval [ky(e /)2, «]

As seen from Figures 3.1 and 3.2 the Green’s function integrands show
oscillatory behaviour in this interval. Figures 3.8 and 3.9, furthermore, show that
these integrands have envelopes which converge very slowly. Standard integration
routines (such as the trapezium rule and Gauss quadrature) prove to be very
inefficient in the integration of such functions, since a large number of integration
points is required to achieve reasonable accuracy. Mosig and Gardiol [14] have
found a technique known as the method of averages, introduced by Hurwitz and
Zweifel [22], to be suitable for application to Sommerfeld integrals appearing in

microstrip problems. This method is based on the decomposition

w a+(n+1)p/2

[eGERfEYE =Y, [ g(ER)f(E)dE (3.13)

n=0 a+npf2
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3.2 Construction of the required Green’s functions

where g(£R) is an oscillating function with period p and f(£) a smooth, non-
oscillating function which behaves asymptotically as O(£%); the integrand
therefore diverges for @>0. The integration over each half cycle is performed
prior to the series summation. Although Bessel functions of the first kind -
appearing in the Green’s function expressions - are not strictly periodic, the
method of averages may still be applied. However, since the zero’s of Bessel
functions are not known off-hand, the use of numerical techniques would be
required, thereby considerably increasing computation time. Instead, Mosig and
Gardiol [14] suggested the use of the large-argument approximation
J (AR) = [2/(7AR)]Y?cos(AR-7/4-n7/2) to estimate the zero’s of the Bessel

functions. Now we have

E =~ |(m-1)+075+2 (3.14)

L
2|R
where &, approximates the m’th zero of J (AR). Table 3.1 indicates the accuracy
of this approximation in comparing & , (m=1,2,3...) with the actual zero’s of Jy(1)
determined with the IMSL routine ZREAL [20]. A question about the validity of
this approximation for small R values (source and observation points close to
each other) might well arise at this point. In an attempt to answer this question,

definite integrals for which the answers are known, were evaluated by the author
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3.2 Construction of the required Green’s functions

]Jn(AR)dA -
0

1
R

T m’th ZERO OF J,(1) APPROXIMATION: & % ERROR
1 2.4048255576 2.3561944901 2.0222
2 5.5200781103 5.4977871437 0.4038
3 8.6537279129 8.6393797974 0.1658
4 11.791534439 11.780972450 0.08957
5 14.930917708 14.922565104 0.05594
6 18.071063968 18.064157758 0.03822
7 21.211636629 21.205750411 0.02775
8 24.352471531 24.347343065 0.02105
Table 3.1: Zero's of Jo(A) determined with ZREAL [20] and (3.14), respectively.
using (3.14) in the method of averages. We know from [23] that
(3.15)

for n > -1. This identity was confirmed for R values ranging from 2.0x10 to 2.0

and forbothn = 0andn = 1:
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3.2 Construction of the required Green’s functions

®
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Y
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Figure 3.10 Filowchart for the method of averages. Integration is performed according to (3.17) while the
weighted mean expression is given in (3.19).

m:=m-1
k
I,
( weighted mean )

0500 ; R=2
5.00 ; R=0.2

(3.16)
500x10%2 ; R=2x1073

[I.(AR)dA = |
0

| 5.00x10° ; R=2x10"°

Further tests performed on such identities lead to the conclusion that (3.14) will

not introduce a significant error, even for small values of R, when used in the

method of averages.

Figure 3.10 gives the method of averages in the form of a flowchart. The first

step is to perform an integration over a half cycle to determine I},
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3.2 Construction of the required Green’s functions

r

Em
[ (&R f(E)dE form =1

oo (3.17)
:

I+ [ 8ERA(E)AE  for m > 1
Em

-1

where £_ is the m’th successive zero of the oscillating function g, with £, > a.

I2_, is then determined through the use of a weighted mean

1 1 1,1
w I . +wl
I:-l - m-1 lm 1 lm m (3.18)
W1 t W

with both I} and I}, _; having been determined previously through integration and

with the weights given by wX = (£,/8_)@*'™. In general, (3.18) is given by

k-1 k-1 k-1 k-1
Ik = L™ Im t Wyt Im+l (3.19)
m k-1 k-1
wm m+1

Repeated application of (3.19), with m decreasing towards 1 and k increasing
simultaneously, leads to a value for I¥, which will give an approximation of the
actual value, I(R), despite the fact that no additional integrations were performed.
If the error criterion is not met, I (where m = k+ 1) may be determined through
integration, (3.17), and I¥*! through repeated application of (3.19). In this way, an

estimate for I(R) may be obtained.
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3.2 Construction of the required Green’s functions

In the determination of the discrete Green’s function® selfterms, the situation
arises where the distance between source and observer (R) tends to zero. The
effect of this, according to (3.14), is that the zero’s of the oscillating Green’s
function integrand move further out from the origin along the A-axis. In the
method of averages, weights are determined according to the zero’s of the
oscillating function, ie. w* = (§,/E,)@*""™. Now it is apparent that, for
£, >> &, and k a positive integer which may be large, the weight w5 could
become a very large real number, creating possible numerical difficulties (numeric
overflow or round-off errors, for instance). The present author has addressed this

problem by firstly writing (3.19) as

1010810(“’:._1) 1010810(1:-1) + 1010810(“’::11) 1010810(1:111)

Ik = (320)
log (wk-l) log (wk:l)
10 10 m + 10 10V " m+1
To ease mathematical manipulation, let
a = (a+2-k)log,o(&,/Em) +1og,(Ix 1)
b = (a+2_k)loglo(el/5m+1)+10g10(11|1(1:%
¢ = (a+2-k)logy(&,/8,) and
d = (a+2-k)log,o(§;/Em+1)- Then it follows that
a b a b-a b-a
f£ o 10°+10° 10°(1+10°72) 4o (1+10 321)
10° + 104 10°\ 1 +109°¢ 1+104-¢

3 To be defined in Section 3.3.
! logw(wr';'l) = (@ +2-k)log;o(€;/&,) since w,',‘l'1 = (El/gm)(‘"z-k)
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3.2 Construction of the required Green’s functions

Therefore

El £1
(a +2 —k) {Ioglo( ) - logl(l(_ )} k-1 l -1
- I
l°glo(l:._l) 1 + 10 Enul » 10l°g10(lm+1) 0glO( m )

If=10

3.22)

where 10 exp{(a+2-k)[10g,o(§,/Em+1)-10810(E1/Em)]} = B is now a manageable

1 1

real number even though wX~! and/or wt;] may be very large. Consider a
situation where &,=200, £5,=8x10? &5;=8.1x10% k=50 and a=0; then we have:
wi=7.923x10" and wi=1.438x10" whilst 8 = 1.815 !. Therefore, to avoid
numerical difficulties which may be encountered in a straightforward application
of (3.19), we propose (3.22) as a means to determine IX.

Figure 3.11 illustrates the effect of the distance between source and observer
on the Green’s function integrands; the real part of the GX* integrand is shown
for R=0.54, and 0.054,. It can be seen that when the observer (r) approaches the
source point (r’), the zero’s of the integrand move away from the origin. In the
limiting case (R=lr - r’ | - 0) the first zero tends to infinity, producing a non-
oscillating, non-zero function to be integrated over a semi-infinite interval. This
produces the singularity in the Green’s function at the source point. Figure 3.8
shows the real and imaginary parts of the GX* integrand over the interval
[ko(€,*)"?, 20k,] for R/A,=0.5. As seen from this figure, the amplitude of the

oscillation shown by the imaginary part of this integrand is negligible compared

to the amplitude of the real part. A similar illustration is given in Figure 3.9 for
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3.2 Construction of the required Green’s functions

the scalar potential integrand; the imaginary part of this integrand, on the other
hand, shows oscillations almost comparable in amplitude to that shown by the real
part. A comparison between the imaginary parts of the respective Green’s
function integrands can be drawn from Figure 3.12 - note the strong oscillations
shown by the imaginary part of the Gy integrand compared to that shown by its
vector potential counterpart. This observation will be referred to again in
Section 3.3.2 on discrete Green’s functions. The effect of dielectric substrate
thickness on the G}* integrand is shown in Figure 3.13. For a very thin substrate
(h=0.0014,), the integrand diverges over part of the interval; however,
convergence as the argument moves out to infinity can be seen on Figure 3.14,

which illustrates the GX* integrand for h=0.01,>.

5 The same is observed for h=0.0014,,.
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05
0.4
0.3

02

m-\/\/\/\/\/\/\/\%

2“ XX
Integrand of T GA Q)
()}

T T
2 4 6 8 10 12 14 16 18 20
— R/ Ao- 05 Al ko

Figure 3.11 Normalised integrand of G%¥(r/r’) for source-observer distances of R/Ay=0.5 and R/3,=0.05.
(h/4,=0.07 at f = 1206 GHz)

0.0012
0.0011
= 0.001
<  0.0009
O 0.0008
& 0.0007
0.0006
g 00005
iy 0.0004
< 0.0003
o~  0.0002
«®  0.0001 -
& 0
0.6 <0.0001 \/ \/
-0.0002
3 -0.0003
i -0.0004
E -0.0005
-0.0006
-0.0007
-O.m T T T T T T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20
21:¢on Al ko
2z XX
— WGA

Figure 3.12 Imaginary parts of both normalised Green’s function integrands for k,ve,’ <A< 20k, and
R/4,=0.5.
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3.3

3.3 Discrete Green’s functions

DISCRETE GREEN’S FUNCTIONS

At this point we assume that the Green’s functions (3.1) and (3.2) are
available, evaluated using the methods of Section 3.2. Now as observed by Mosig
and Gardiol [3], the notation and computational task can be simplified by
introducing the idea of discrete Green’s functions, which have as sources complete
basis functions instead of elemental sources. For the basis functions selected in
Chapter 2, we let ', denote the vector potential created by a rooftop distribution
of current, while the scalar potential resulting from a rectangular distribution of
charge is represented by I'y,. Numerical aspects concerning these discrete Green’s
functions will be the subject of this section. As mentioned in Section 3.1, all
numerical experiments performed for illustrative purposes were done for
€,=(4.34,-0.0868) at f=1.206 GHz. In addition, in the present section, the

standard values h=0.8 mm and a=b=6.666 mm are utilised in illustrations.

33.1 Scalar potential discrete Green’s function
The scalar potential discrete Green’s function I'y(r/r) is the scalar potential

due to the j’'th source cell and is defined by the dimensionless expression (3]

€
Ly (rir,) = [ ZEGV('/’/)H('/"of)kgds/ (323
s. 0

oj

where S; is the surface occupied by the charge cell centred at r,;, and I(r’-r,)
a two-dimensional unit pulse function defined over S;. Expression (3.23) gives the

scalar potential at r created by a rectangular distribution of charge centred at r;
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3.3 Discrete Green’s functions

on the air-dielectric interface of a microstrip structure.

We consider first the scalar potential discrete Green’s function selfterms.
When the observation point r is located within its own source charge cell (in
which case we are dealing with the "selfterms" as defined in Section 2.3.4), the
Green’s function Gy (and hence the Iy, integrand) becomes singular at r, as
follows from the discussion in Section 3.2.3. In order to illustrate this graphically,
consider the integrand for I'y(r/r,) in (3.23); with r,;=0 and r=0, this integrand
becomes €,/ky Gy(0/r) H(r’-0) k3 which is a function of r# =(x*,y,0). The real
and imaginary parts of this integrand are plotted in Figures 3.15 and 3.16,
respéctively, which shows clearly the singularity at observation point r=0. A pole
extraction technique whereby the singular part of the Green’s function is extracted
before surface integration has been suggested by Mosig and Gardiol [3]. This
singular part, corresponding to the dominant term of the static scalar Green’s

function, is given by [2]

G,, - 1 (3:24)

i 2n(e,+1) e, |r-r'|

Since the Green’s function Gy, becomes singular in both its real and imaginary
parts®, the static function behaves similarly in that €_is complex. Now by writing
the Green’s function under the surface integral in (3.23) as

Gy=(Gy-Gy,) + Gy, the singularity may be extracted yielding a difference term

¢ This does not come as a surprise when considering the oscillations shown by the imaginary part

(Figure 3.12) and keeping in mind the mechanism whereby these Green’s functions become singular at the
source point.
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3.3 Discrete Green’s functions

which is well-behaved and numerically integrable. Although the difference term
is well-behaved, the terms Gy, and Gy, both become singular at the source point.
The numerical evaluation of these terms before subtraction is done as discussed
in Section 3.2.2. Figure 3.17 shows the real parts of the actual and static Green’s
functions as the observer approaches the source, while Figure 3.18 features the
imaginary parts. The difference term integrand is shown in Figures 3.19 and 3.20
from which it is clear that the singularity in the selfterm’ integrand has been
extracted. The singular part (Gy,) can be analytically integrated over the cell

surface as done in [3] to give

1

r.(r.r )=———
Vs( 01/ 01) 2n(€r+1)

2k,alntan(> + ) -2k bintan(=) | (325)
2 4 2

where a=tan(b/a), with a and b the charge cell dimensions. Note that, as

mentioned in Section 2.3.5, the moment method matrix elements given in

expression (2.22) require scalar potential discrete Green’s function values only at

the cell centre (this is not true in general for the vector potential discrete Green’s

function values) - this fact has already been incorporated in (3.25). An expression

for the scalar potential discrete Green’s function selfterm is thus given by

Ty (rolr,) = €oky [ [GUr i) =Gy (ryr)]dS! + Ty (r,07,) (326)
Soj

7 Recall that by "selfterm" we mean those for which the observation point for a potential due to a
specific source cell lies within the source cell itself.
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3.3 Discrete Green'’s functions

Having dealt with the selfterms of the discrete Green’s function associated with
the scalar potential, we next consider the off-diagonal ones. The moment method
matrix (C) is diagonally dominant [2]; therefore less stringent accuracy
requirements apply to the off-diagonal elements and approximations for the scalar
potential discrete Green’s functions may then be considered [3]. In this regard we

have

Ly(rir,) = %Gy(r/roj)(koa)(kob) (327
0

The validity of this approximation is illustrated in Figures 3.21 and 3.22 for the
case f=1.206 GHz, a=b=6.666 mm, h=0.8 mm and €,=(4.34,-0.0868). For these
figures a source cell was centred at the origin on the air-dielectric interface while
an observer was moved along the y-axis - it is important to keep in mind that the
discrete Green’s functions are not only dependent on the source-observer distances,
but also on their relative orientations. It can be seen that the closed-form
expression (3.27) offers a good approximation for the discrete Green’s function
when the observer is located several cells away along the y-axis. Similar
conclusions can be drawn from graphs featuring I'y(pR/0) versus R, the observer
being moved away from the source cell at the origin in any direction p along the
air-dielectric interface, where pR=x® + y§ and R= (x2+y»)V2

As a further illustration, Figures 3.23 through 3.26 show the integrands for the
scalar potential discrete Green’s functions for source cells (over which the
integrand is to be integrated) centred at r;=(0,0) and observation points at

r;=(2a,0) and r,;=(82a,0), respectively.
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Figure 3.17 Real parts of the Green’s (G,) and static Green’s functions (Gy,) as the observer approaches
the source.

18

17 4

16

10 Vs

log (G )

15

14

13

10V

log(G) and

u—<

11

8 T T T T T T T
-9 -7 -5 -3 -1

——  Green's function loal o(R/ lo)

—9— Sutic Green's function
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3.3 Discrete Green’s functions

Figure 3.19 Real part of the difference term integrand in the evaluation of the Iy selfterm.

<>
& o T

Figure 3.20 Imaginary part of the difference term integrand corresponding to the real part shown in
Figure 3.19.
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Figure 3.23 Real part of the integrand of T(ry/ry) as a function of r’ over the region over which it is to
be integrated, with ry;=(2a,0) and r,q-=(0,0).

Figure 3.24 Imaginary part of the T, integrand corresponding to Figure 3.23.
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*Q‘S»‘P

Figure 3.25 Real part of the integrand of TyA1/ryy) as a function of r’ over the region over which it is to
be integrated with r;=(8a,0) and ri=(0,0).

Figure 3.26 Imaginary part of the I, integrand corresponding to Figure 3.25.
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3.3 Discrete Green’s functions
3.3.2 Vector potential discrete Green’s functions
The vector potential discrete Green’s functions will be discussed in this section.
Although we will only consider I'}*, numerical techniques discussed here are
directly applicable to I'}". The vector potential discrete Green’s function I'\*(r/r)
is the vector potential at r due to the j'th source current cell and is defined by the

dimensionless expression [3]

Cirirg = [ ﬁGf(r/r’) T, - 1)k dS' (328)

5y 0
S,; is the surface occupied by the current cell centred at ry while an x-directed
rooftop basis function is denoted by T (r) (Figure 2.3). We will first consider the
vector potential discrete Green’s function selfterms. The discrete Green'’s function
integrand, or more specifically its factor GX*, becomes singular when the observer
and a source current cell coincide. Furthermore, in the computation of the
moment method matrix elements, I';* appears under an integral over a test
segment C,; (as seen in (2.22)). The singularity within current cell S,; may thus
appear at any point along C,,. Figure 3.27 gives an illustration of the real part of
the vector potential discrete Green’s function integrand for an observer located
at the centre of a source cell which is placed at the origin. The imaginary part of
this integrand is shown in Figure 3.28 from which we observe that the imaginary
part does not exhibit the same singular behaviour as that of the real part. This
may be attributed to the fact that the imaginary part of GX* stays very much

bounded for R - 0, or that is how it seems from Figure 3.29. This is not totally
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3.3 Discrete Green’s functions

surprising when considering the oscillations shown by the imaginary part of this
integrand (Figure 3.12). For this reason the static Green’s function term, used in

the pole extraction technique (Section 3.3.1) is purely real and given by [2]

GZ - Ho / (329)
4n |r-r'|

Figure 3.30 shows the real parts of the Green’s function (G*) and it’s static part
(GAY) as an observer approaches the source cell. From this figure it is apparent
that a difference term would not become singular at the source point, and that the
singularity can therefore be extracted by making use of (3.29) and expanding the
Green’s function under the integral in (3.28) as described in the previous section.
Integration over the source cell is now performed in two parts: a difference term
which is well-suited to numerical integration (Figure 3.31 shows the real part of
this integrand) and the analytical integration of G2} (singular part). Since this
analytical integration could not be found in the literature, Appendix C derives an
expression for (3.28) over an x-directed current cell centred at (0,0), with GA3
replacing GX* in the integrand. The observer, and hence the singularity is situated
at any point r = (r,,0) along test segment C,;. From this we have expression (3.30)
where a, = tan’'[b/(2(a-1))], @, = tan’[b/(2(a+ry))] and a; = tan~'[b/(2r,)].
This expression was derived for an x-directed current cell centred at (0,0) with
1,20. The case of a y-directed current cell follows directly by interchanging a and
b; in fact, when a = b the expressions for 'z and '} are identical. Since the

numerical values of 'A% and I'}} are independent of the current cell centre-
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3.3 Discrete Green’s functions

coordinates, (0,0) was chosen to simplify the closed-form expressions. For the case
1,<0, the vector potential discrete Green’s function integrand with G} instead of
G% is simply a rotated version of the integrand for r, >0 so that after integration
Lax(-1,/0) = Ti¥(r,/0). Expression (3.26) shows how the pole extraction
technique was used to evaluate the Iy selfterms. Similarly now, it is possible to
compute I',* and '}’ for observers situated on source current cells. Having dealt
with the vector potential discrete Green’s functions selfterms, we next consider

the terms appearing in the off-diagonal elements of the moment method matrix.

T 2
LT o, %), b 2 2|, 4. .a,{ﬁg]
4s(7,./0) " (a rx)lntan(2 4) 2ln m(al) (a+r)ln >t
2

2
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4na 2 4 4na o,
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2
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3.3 Discrete Green’s functions

As in the scalar potential case, an approximation for I'y* may be considered

for large source-observer distances; in this regard

P;x(r/rxj) ~ Ik Gf(r/rxj) (koa) (kob) 3.31)

Ko Ko

The validity of this approximation is illustrated in Figures 3.32 and 3.33 from
which it can be seen that the analytical expression (3.31) offers a good
approximation for I';* when the observer is located several cells from the source.
As in the scalar potential case, these figures were generated by placing a source
cell at the origin on the air-dielectric interface, and moving an observer along the
y-axis. Similar conclusions can be drawn from graphs featuring I'1*(pR/0)
versus R (R = x® + y§ and R = (x*+y?)"/?), in other words, the observer being
moved away from the source in any direction along the air-dielectric interface.
As a further illustration, Figures 3.34 through 3.37 show vector potential
discrete Green’s function integrands for source cells at r,q =(0,0) and observation

points at r=(2a,0) and r=(8a,0), respectively.
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3.3 Discrete Green’s functions
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Figure 3.29 Imaginary part of G%* as an observer approaches the source; the real part is shown in
Figure 3.30.
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10
—*— Static Green'’s function

Figure 3.30 Real pars of the Green’s (G5*) and static Green’s functions (G%Y) associated with the vector
potential.

64



3.3 Discrete Green’s functions

Figure 3.31 Real part of the difference term integrand for the pole shown in Figure 3.27.
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Figure 3.32 Real parts of the actual and approximated vector potential discrete Green’s functions for
€.=(4.34,-0.0868), h=0.8 mm and a=b=6.666mm at f=1206 GHz.
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3.3 Discrete Green’s functions
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Figure 3.33 Imaginary part accompanying the real part shown in Figure 3.32.

Figure 3.34 Real integrand of I'{*(%2a/0) as a function of r’ over the region over which it is to be integrated.
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3.3 Discrete Green’s functions

Figure 3.37 Imaginary part of the integrand with the real part shown in Figure 3.36.
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3.4 Moment method matrix equation

34 MOMENT METHOD MATRIX EQUATION

The moment method matrix (defined in Section 2.3.5) is ill-conditioned® due
to the fact that some rows are almost linear combinations of three other rows [2].
Therefore, careful evaluation of its elements is necessary to obtain results of
sufficient accuracy. On the other hand, the moment method matrix is diagonally
dominant [2], therefore less stringent accuracy requirements apply to the off-
diagonal elements. Certain approximations may then be considered. Firstly, the
discrete Green’s functions (requiring double numerical integration) may be
approximated by closed-form expressions; this was discussed in Section 3.3.

We consider here one additional closed-form approximation for a term
involving the vector potential discrete Green’s function. This is being done here
rather than in Section 3.3 (where the other approximations were discussed) since
arguments in favour of its adoption depend in part on its relative importance in
the overall matrix element expression (2.22) as well as the comparison of its exact

form to its approximate form. The approximation in question is

fpr(’/’xj)kod" = kyaly(r,/r,) (3.32)
Cxi

A similar expression holds for I'}’. Figure 3.38 shows a comparison between the
real parts of the terms on either side of the equal signs in (3.32), while close

correspondence between the imaginary parts can be seen from Figure 3.39. This

8 A system of linear equations is said to be ill-conditioned if small errors in the coefficients or in the
solving process have a large effect on the solution [21].
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3.4 Moment method matrix equation

approximation, strictly speaking, does not apply for short distances between
current cells S,; (r;) and S (r,;). However, in these cases, the contribution of the
vector potential to the value of the matrix element is overshadowed by that of the
scalar potential, so that approximation (3.32) still applies. Consider, for example
the case: f=1.206 GHz, €,=(4.34,-0.0868), h=0.8 mm and a=b=6.666 mm for
which kqar,* for an observer at r=(1.5a,0) and a source cell centred at (0,0) is
equal to (0.3018E - 04,0.1038E - 06), while the contribution of the scalar potential
to the matrix element is (-0.7777E-01,-0.1481E-02); keep in mind that
discrete Green’s functions are dimensionless quantities. It can be seen that the
contribution of the scalar potential overshadows that of the vector potential in the
off-diagonal terms and the use of (3.32) will therefore not introduce a significant
error. In fact, for the same reason, (3.32) may even be considered for the diagonal
matrix elements, as has been confirmed by [16].

As outlined in Section 2.3.5 the moment method matrix is divided into four
submatrices. It has also been pointed out in the afore-mentioned section that for
charge cells of equal size CJ and C} are equal. Under some circumstances
however, it may not be possible (or desirable) to discretize the upper conductor
with cells of equal size; in such cases CJ and C} would not be equal.

The excitation vector is constructed according to (2.28) applying the same
approximation for I'y as in the moment matrix case. Careful consideration should
finally be given to the solution process. In this case, since matrix C is ill-
conditioned, a conjugate gradient method [24] is used for the iterative solution of

the moment method system of linear algebraic equations.
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3.4 Moment method matrix equation
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Figure 3.38 Real parts of the actual integral and approximation (3.32) suggested by Mosig and Gardiol [2]
for f=1206 GHz, €,=(4.34,-0.0868); h=0.8mm and a=b=6.666 mm.
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Figure 3.39 Imaginary parts of the actual integral and an approximation with the corresponding real part
shown in Figure 3.38.
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3.5

3.5 Integration

INTEGRATION

Because numerical integration is such an important part of the analysis, it is

imperative that fast, accurate and reliable routines be used. The present author

has found that the IMSL integration routines [20] comply with these requirements.

3.5.1

3.5.2

Single integration

Single integrals are numerically evaluated through the use of the IMSL
routine QDAG ([20] which is a general-purpose integrator that uses a
globally adaptive scheme in order to reduce the absolute error. It
subdivides the integration interval using a (2k+ 1)-point Gauss-Kronrod
rule to estimate the integral over each sub-interval. The error for each
sub-interval is estimated by comparison with the k-point Gauss quadrature
rule. The sub-interval with the largest estimated error is then bisected and
the same procedure is applied to both halves. The bisection process is
continued until either the error criterion is satisfied, roundoff error is
detected, the sub-intervals become too small, or the maximum number of
sub-intervals allowed is reached. The subroutine QDAG is based on the

subroutine QAG by Piessens et al [25].

Double integration
Double integration is numerically performed by the IMSL integration
routine, TWODQ [20]. This routine approximates the two-dimensional

integral by iterated calls to QDAG. Therefore this algorithm will share
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3.6

3.6 Interpolation

many of the characteristics of the QDAG-routine: the absolute and relative
error must be specified in addition to the Gauss-Kronrod pair which is
denoted by an integer between 1 and 6. The lower-numbered rules are
used for less smooth integrands, while the higher order rules are more

efficient for smooth oscillatory integrands.

INTERPOLATION

For given material parameters and frequency, the Green’s functions depend
only on the absolute distance from source to observer, R=lr — r‘l. This fact
may be exploited through the use of an interpolation table to minimize
computation time. Values of the Green’s functions are tabulated against a discrete
set of distances R, (i = 1..N, where N is typically between 50 and 250°) varying
from the maximum linear dimension of the antenna (R,,,) to a minimum value
(Rin)- Interpolation may then be used to determine the Green’s functions for any

source-observer distances ranging from R_,, to R,,.. R,, may be chosen

min
arbitrarily provided it is several orders of magnitude smaller than the dimensions
of a charge cell. Tests performed by the author on discrete Green’s function

selfterms for a=b=6.666 mm and R_. values of 1.0E-04 m and 1.0E-11 m,

min
respectively, showed relative differences in the selfterm values on the order of
0.1%. Since the Green’s functions become singular at R=| r-r’ |=0, evaluation

points (R,) for the interpolation table need to be concentrated around R, to

ensure accurate evaluation of the selfterms in the moment method matrix.

9 .
Convergence tests may be performed to determine a value for N.
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3.6 Interpolation

Consider for instance the case of a tabulation scheme based on equispaced points;

hereby

. Rmax_Rm.in(i_l) (3.33)

R, = R, (N-1)

For R ;,=1.0E-06 m, R, =1.0E-02 m and N=100, the first two entries in the
interpolation table, as shown in Table 3.2, will be at R;=1.0E-06"° and
R,#1.02E-04; for N=200 we have Ry~5.1E-05. It is clear that for a reasonable
amount of evaluation points, it is not possible to obtain a suitable distribution of
these points close to the source. It is for this reason that this author proposes a
tabulation scheme based on a logarithmic distribution of evaluation points. Hereby,

R; may be calculated according to

log (R .y) — 10810 (Rpyin) J) (3.34)

1 )+ (i-1
0(0810(&,“) (i-1) N-1)

Now, for the case mentioned earlier with N=100, we have, from Table 3.2:

R,;=1.0E-06, R,*#1.09E-06, R,;=1.2E-06, .., Ry=9.11E-03 and R,y =1.0E-02.
Therefore, compared to (3.33), expression (3.34) yields a better distribution of
evaluation points close to the source; however, from Table 3.2 it follows that an
equispaced (i.e. linear) scheme on its part yields a better distribution further away

from the source point. Therefore, to include both these features in a tabulation

1o Throughout this section, R will be given in terms of meters [m].
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3.6 Interpolation
scheme, we may consider a combination of the logarithmic and equispaced
schemes. For instance, we may make use of (3.34) for R;, < R < R, and use

(3.33) for Ry, < R < R,,,, where, for example, R;,., is the maximum linear

inter

dimension of a charge cell: R, ., =(a’+b?)"2 Values of R, for R;,,=1.0E-03 and
N, =N,=50 are shown in Table 3.2. N, and N, are the total amount of evaluation
points used by the logarithmic and equispaced schemes, respectively, so that
N, + N, = N.It can be seen that the combination of logarithmic and equispaced
schemes has a higher concentration of evaluation points close to the source and
a comparable concentration further away from it.

Another possible tabulation scheme whereby a parabolic distribution of

evaluation points is taken, was suggested by Mosig and Gardiol [4]. These

evaluation points may be determined by

(Rmax_Rmm) %)
R. = -1D+R. (3.35)
e (D Ry,

With this suggestion, corresponding entries in the interpolation table for N=100
are shown in Table 3.2.

Now Mosig and Gardiol [3] suggested that the regular part (G-G;) of the
Green’s function in the expansion G = (G-G,) + G where G; is the static
Green’s function, be tabulated against distances R;. Interpolation is then used to
determine (G-G;) at distances not listed in the table. The static part, therefore,
has to be added to the interpolated value for all cases except where selfterm

evaluation is considered. Cublic spline interpolation [27] has been found to be
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3.7 Numerical aspects in the computation of far-field radiation

particularly accurate for our purposes.
By means of proper interpolation, computation time may be reduced

considerably, without significant loss in accuracy.

i LINEAR LOGARITHMIC PARABOLIC | COMBINING
(3.33) (3.34) (3.35) (3.33)&(3.34)
1 1.00E-06 1.00E-06 1.00E-06 1.00E-06
2 1.02E-04 1.09E-06 4.00E-06 1.15E-06
3 2.03E-04 1.20E-06 9.00E-06 1.32E-06
49 4.85E-03 8.69E-05 2.40E-03 8.69E-04
50 4.95E-03 9.54E-05 2.50E-03 1.00E-03
51 5.05E-03 1.04E-04 2.60E-03 1.18E-03
08 9.80E-03 8.30E-03 9.60E-03 9.64E-03
99 9.90E-03 9.11E-03 9.80E-03 9.82E-03
100 1.00E-02 1.00E-02 1.00E-02 1.00E-02
|

Table 3.2 R;’s determined according to the four tabulation schemes discussed in Section 3.6. All distances
are given in terms of meters [m].

3.7 NUMERICAL ASPECTS IN THE COMPUTATION OF FAR-FIELD
RADIATION

Far-field radiation by implication means that the observer is no longer bound

to the air-dielectric interface described by z = 0 (Figure 2.1). Therefore the term

exp(-uyz) appearing in the Green’s function expressions (2.4) through (2.10) can
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3.7 Numerical aspects in the computation of far-field radiation
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3.7 Numerical aspects in the computation of far-field radiation

no longer be set to unity. Consider the following situation: an observer is placed
at (r, ¢, ® = 90°) with the radiating antenna centred at the origin. For fixed
values of r and ¢, the observer is now rotated from 6 = 90° towards 6 = (°. This
implies that z now becomes large for 8 < 90° if r is large (Figure 2.1), and the
following situation arises: since u, is purely imaginary in the interval 0 < 1 < ko,
and z a very large real number, exp(-j(k? - A%)z) causes rapid sign changes in this
interval. Furthermore, since u, is real for A > k, we have exp(—ugz) - 0 and thus
the integration interval in effect reduces to 0 < A4 < k,. An example of a Green’s
function integrand for z = 5.0 m is shown in Figure 3.40(b). This figure illustrates
the rapid sign changes and reduced integration interval just spoken of. From this
we conclude that standard numerical integration routines are not capable of
yielding accurate estimates of the Green’s function integrals with large z values.
We therefore resort to asymptotic techniques to obtain approximate analytic
solutions to these integrals. Mosig and Gardiol [3] have found the method of
steepest descent [28] to be particularly suited to integrals associated with microstrip
structures. This method is based on the concept of deforming the integration path,
within certain limits, without affecting the value of the integral, to such an extent
that the main contribution to the integral can be attributed to small segments on
the new path. The integrand can then be approximated by simpler functions over
the important parts of the path, whilst the contribution over the other segments
can be neglected. If in the deformation of the integration path, singularities are
encountered, we must add (a) the residue when crossing a pole and (b) the

integral when encountering a branch point [29]. The method of steepest descent
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3.7 Numerical aspects in the computation of far-field radiation

applies to integrals of type

I = f F(w) el89Ml gy (3.36)
C

where F and q are analytic complex functions (except maybe for some isolated
singularities), C is an arbitrary integration path in the complex w-plane and 2 a
very large real number. Recall that the Green’s function integrals may be written

in the general form

I= fJn(AR) Alg(r)e M ga (337
0

Now if g(k,) is always an even function of k, the following identity holds [30]:

[7,(0.B A1 g(a)e M dA
0 (3.38)

1 rp@ n+l -y (k)2
5 [HP ke, Rk, g(k ye ™ dk,

C
As seen from (2.4)-(2.10), g may take on various forms. Consider for instance
g(k,) = 1/Dpg(k,), for which 3-D plots of the real and imaginary parts are
shown in Figures 3.41 and 3.42, respectively. These figures serve to give a view of

this particular function over a part of the k,-plane. To draw conclusions on

certain characteristics of the function however, these illustrations will not suffice
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3.7 Numerical aspects in the computation of far-field radiation

il
iy

o

Figure 3.41 Real part of 1/Drg(k,) where k, = 4 + jv.

Figure 3.42 Imaginary part of 1/Drg(k,) where k, = 4 + jv
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3.7 Numerical aspects in the computation of far-field radiation

and for this reason, Figures 3.43 and 3.44 are included. These figures give the real
and imaginary parts of the function in two cut-planes: A = 0and v = 0 where
k, = A + jv. From this, and keeping Figures 3.41 and 3.42 in mind, it may be
concluded that 1/Dg(k,) is an even function of k,. In similar fashion, the other
forms of function g (that is 1/(DgDpy) and N/(DDry)) were confirmed to be
even. It is for this reason that identity (3.38) is applicable in this case to integrals

written in the general form of (3.37). Therefore we may now consider

I - f H® (kR) f(kp)e"‘°""”‘dkp (3.39)
C

The method of steepest descent now requires that (3.39) be written in the general
form of (3.36). In this regard, it is convenient to transform the complex k,-plane
into a new complex plane, w, by the relation: k, = kgsin w [3]. Introducing
spherical coordinates (R=rsin 6 and z=rcos 8) and applying this transformation

(whereby u,=jk,cos w), we have:

I = f H ,(,2)(k0rsine sinw) f(k,sinw) e K k°'°°sw°°sekocoswdw (3.40)
o

where C is the transformed integration path. Assuming that f(k,) has a pole at
A, on the k -plane, then with the transformed path C’, the pole is now located
at w,=m/2+ jcosh‘l(lp/ko) [3] whilst the branch points at k, = *k, disappear
due to the transformation [3]. Provided kyrsinfsinw >> 1 we can make use of
the following first order asymptotic approximation for H{? [29]:
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3.7 Numerical aspects in the computation of far-field radiation

~F korsinﬁsinw—-'it--1
H? (k,rsin@sinw) = 2 eJ[ 2 4] (3.41)
nkorsmesmw

Since we are interested in an expression valid in the far-field, we have kor > > 13
the integration path can furthermore be deformed far from the origin (w=0) in
order that sin w does not vanish, while it can be shown [3] that this asymptotic
approximation will yield correct results even for the broadside direction 8=0.
Therefore, making use of (3.41) and noting that eim/D = ¢"/4=(j)'/2 and

coswcosB +sinBsinw = cos(w-0), yields for (3.40):

1= [j" 2)  fk sinw) e TOSO D ksinwdw (34D
o 1 Qsin6 sinw

where 0 = kgr. (3.39) has now been written in the general form of (3.36) where

2/ f(kysinw) k, cosw

Fw) =j"
J J 1t Q sinB sinw (3.43)

g(w) = -jcos(w-0)

and 2 = k,r. The path C" may now be transformed to a steepest descent path Cgp
provided the contribution of the pole is added when it is crossed in the

transformation. From the particularities of the steepest-descent path 1 it follows

11 . c. . . . .. . . .
It is not within the scope of this text to derive these particularities; more details are given in 3]
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3.7 Numerical aspects in the computation of far-field radiation

that Cgp, crosses the pole at w, only when 6 > 6, = sin"(ky/ A,) [3]. The integral

may then be written as

[=]+uc-6)f (3.44)
CP

c* Csp

where U is the Heaviside unit step function'? and C, a path surrounding the
pole at w,. A first-order analytical approximation for the integral along path Cgp
can now be obtained from general closed form solutions to (3.36) [28] while the
integral around the pole is evaluated using the residue theorem [21]. An
approximated solution to (3.39) may finally be written as

~ikor

I = 2j"*! cotan® f(k, sind) ¢

(3.45)

2 .2
- U(8-8,)2njResH (A, R) e V™

where Res is the residue of function f(k,) at 4. It has been pointed out by Mosig
and Gardiol [3] that this asymptotic approximation is only valid if the pole is
located far enough from the saddle point, i.e. (kesin® - A.)r >> 1, otherwise a
modified saddle-point method must be used whereby the contributions of the pole
and saddle-point are not separated. Further warnings in this regard have been

given by Hsu et. al. [26]. Assuming that this inequality holds, Appendix D makes

12 () = 0 for ® < 0 while U(8) = 1 for 8 > 0.
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3.7 Numerical aspects in the computation of far-field radiation

use of the method of steepest descent to derive far-field radiation expressions for
etched radiators given the surface current distribution as a set of discrete
coefficients I; (i=1..M) and L; (j=1...N). Mosig and Gardiol [3], applying (3.45),
have also derived far-field radiation expressions for a HED on microstrip from
which the radiated fields of an arbitrarily shaped etched radiator may also be
obtained. The radiator is replaced by an array of Hertz dipoles for which the

radiated electric fields are given by [3]

M . N '
E, = G¥(r/0) Y aL &% + GP(r/0) Y bI ™ (3.46)
i=1 j=1
0 a : al :
E, = GE"(r/O)_z;aln. AL Gg"(r/O)Z;nyje""”/ (3.47)
i= Jj=

where g, =x,sinBcos¢ +y,sinBsing (k=1,); x, and y, are the centre coordinates of

the k’th current cell. We also have!®

ng(r/O) - _j(%)cosd)]%(e)m (3.48)
0

ng(r/O) _ j(%)sm¢f¢(e)m (3.49)
0

1 Eg and E,, for a HED are given in [3]. From this, GE* and GE* follow directly, while G& and G§Y
follow from rotational symmetry about the z-axis.
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3.7 Numerical aspects in the computation of far-field radiation

Z -ik
Ggy(r/O) = _j (/\_0) sind)fO(O) M (3.50)
0
Z -ik
Ggy(r/O) = - j(l_o) cosd f«b(e)M (3.51)
0
with
TcosH
0) = 3.52
1®) [T-Jje, cosO cotan(kyhT)] (352
) = cosf 1.53
,f‘b( ) [cose —chotan(kOhT)] (3:53)
and

T = \/(e,-sin0) (3.54)

Zy,, Ay and k, are the free-space characteristic impedance, wavelength and
wavenumber, respectively. Although these expressions appear to be different from
those derived in Appendix D (not surprising since two different approaches were
used), both sets of expressions yield exact same results. The co- and cross-

polarized E-fields may then be determined from these expressions as follows [31]:

E,(8,0) = Eo(8,4)sin + E,(8,) cosd (3:55)

Ecrom(e9¢) = Ee(e,d)) cos —E¢(6,¢) sin¢ (3.56)
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3.8 Concluding remarks

CONCLUDING REMARKS

The formal theoretical integral equation formulation of the microstrip antenna
problem as presented in Section 2.3 is but a relatively small first step in the
analysis problem. It is the numerical implementation of the analysis (and the
associated computer code development) that is the most cumbersome and time-
consuming part, and which requires substantial effort. Due to restrictions on their
length, journal articles contain a very limited amount of detail to aid in the latter
task. This chapter has provided such complete details required for direct
implementation of the formulation of [2,3,4], has illustrated graphically where and
why certain numerical difficulties arise, and how these may be handled. Such a
"pictorial guide" (for which all graphs were computed by the author), and the finer
points how to actually implement the numerical schemes, do not appear to be
available in the same detail elsewhere. The contents of the present chapter can
be summarized as follows: We saw that the required Green’s functions, forming
the kernel of the integral equation, posed distinct numerical difficulties. These
were overcome by appropriate mathematical techniques, the applications of which
were discussed and illustrated in complete detail. In the solution of the integral
equation, it was mentioned that the introduction of discrete Green’s functions
eased the computational task. A singularity problem in the selfterm evaluations
arose however, requiring the use of a pole extraction technique; the application
of this technique was illustrated. Since the construction of the moment method
matrix involves a large amount of computation, certain ways were described

whereby computation time could be reduced. This was achieved through
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interpolation and the use of approximate expressions for the discrete Green’s
functions. Illustrations were used to validate the use of these approximations.
Finally, far-field computational techniques were discussed and appropriate
expressions derived. Numerical techniques for the mixed-potential integral
equation method of microstrip analysis have therefore been developed and
implemented. This implementation is in the form of a computer code written in

FORTRAN.
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CHAPTER 4

THE ANALYSIS OF WIRE-GRID ANTENNA ARRAYS

4.1

4.2

INTRODUCTION

In Chapter 3 we discussed the numerical methods needed for the
implementation of the mixed-potential integral-equation formulation. This
implementation is now at our disposal for the analysis of arbitrarily shaped
microstrip antennas. Firstly, we will analyse rectangular microstrip patches and
give a comparison with known surface current distributions in order to verify the
present implementation. The method will then be applied to etched wire-grid
antenna arrays which have not yet been analysed rigorously. Theoretical results
will be given and discussed. A comparison with measured results will then be

given to verify the theoretical results.

VERIFICATION OF THE PRESENT ANALYSIS THROUGH COMPARISON
WITH KNOWN RESULTS

Rectangular microstrip patch antennas have been analysed rigorously and the
surface current distributions on these structures, at specific frequencies, are
known [2]. Consider a rectangular microstrip patch antenna with dimensions
60 x 40 mm on a dielectric substrate of thickness 0.8 mm and relative permittivity
€, = (4.34,-0.0868). An effective conductivity of 0~ = o,/4 was assumed.

Rooftop subdomain basis functions will be used in the moment method expansion
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4.2 Verification of the present analysis

and for this reason the patch is decomposed into 9 x 6 square cells referred to as
charge cells in Chapter 2 (Figures 2.2 and 2.3). In this case, these charge cells all
have equal size. A coaxial feed is used for the patch antenna and the coaxial
probe is located at the centre of the (2,2) charge cell, its position being indicated
by the bold dot in Figures 4.1 through 4.5. In [2], the surface current distributions
on this patch are shown at four resonances, as well as an off-resonance frequency.
According to numerical results given in [2], the first four resonance frequencies
are at 1.206 GHz (TM,,), 1.783 GHz (TM,,), 2.177 GHz (TM,,) and 2.405 GHz
(TM,). Since microstrip patch computations were simply done in order to be able
to validate the computer code through comparison with the patch data given in
[2], the frequency was simply varied until the current distributions obtained
agreed with those in [2]. Such agreements were found at 1.210 GHz, 1.793 GHz,
2.1876 GHz and 2.398 GHz; all within 0.56% of the values given in [2]. This
discrepancy is often much less than what arises due to uncertainties in the
fabrication process and material parameters [3]. The code can thus be considered
validated. The real and imaginary parts of the surface current distributions on this
patch at these frequencies are shown in Figures 4.1 through 4.5. Feedpoints are
indicated and the numerical values given, correspond to the peak values of
current represented by the longest arrows. When compared, close correspondence

with published results [2] can be seen.
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Figure 4.1 Real and imaginary parts of the surface currents on a coaxial-fed microstrip patch at 0.603 GHz
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Figure 4.2 Real and imaginary parts of the surface currents on a coaxial-fed microstrip patch at 1.210 GHz
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Figure 4.3 Real and imaginary parts of the surface currents on a coaxial-fed microstrip patch at 1.793 GHz

93



4.2 Verification of the present analysis

!
WO N
NN N
S N N

|
J
.

Q__
4

&

I'd

i

Q_ﬁ

(b) Imaginary component. Maximum value = 2.611 A

Figure 4.4 Real and imaginary parts of the surface currents on a coaxial-fed microstrip patch at 2.1876 GHz
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Figure 4.5 Real and imaginary parts of the surface currents on a coaxial-fed microstrip patch at 2.398 GHz
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43 Theoretical results for etched wire-grid arrays

THEORETICAL RESULTS FOR ETCHED WIRE-GRID ARRAYS

The implemented integral equation formulation is, of course, not restricted to
the analysis of patch antennas and is applicable to larger and more complex
microstrip structures such as etched wire-grid arrays. The purpose of this section
is to examine the behaviour of these brick-wall arrays in order to come to a better
understanding of their operation. We will examine current distributions on these
structures (the relationship between the actual current distributions on the wire-
grid structures and the coefficients which are solved for in the moment method
matrix equation, is given in Appendix E) and show the effects on the far-field
radiation patterns. Radiation patterns are determined directly from computed
current distributions and are essentially exact, except for finite groundplane
effects.

For the purposes of the analysis, the brick-wall arrays will be assumed placed
on the xy-plane with x-directed horizontal segments (long segments) and y-
directed vertical segments (short segments). Since the vertical segments radiate
the dominant vertically polarized electric field, the zy-plane represents the E-
plane (¢ = 90° in Figure 4.6). The H-plane then coincides with the zx-plane
(¢ = 0°). Radiation patterns will be determined in these principal planes’, as a
function of the angle on either side of the z-axis in the appropriate plane.

Theoretical results for specific antenna geometries will now be discussed.

1 We are not restricted to these planes, however.
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43 Theoretical results for etched wire-grid arrays

Figure 4.6 The coordinate system which will be used in the analysis. The zx-plane (zy-plane) represents the
H-plane (E-plane).

W s A //%W/W///M/////////A/WWW//////W///////W//////W/W/%/
ol / % [~ m /
0 . . o ./

Figure 4.7 Geometry of a 5-element linear brick-wall array.
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4.3 Theoretical results for etched wire-grid arrays

431 A S-ele;nent uniformly excited linear array

Consider the linear array shown in Figure 4.7 with ¢ = 2s = A,y and equal
vertical eiement widths w, = A,/20 (n=1,2,..5). A, is the wavelength at some
centre-frequency f, in the presence of the dielectric substrate and groundplane.
The difficulty in determining A is of course that it is not only a function of €,
‘but also of the dielectric substrate thickness, frequency and specific line widths.
- Let us assume, for the moment, that we do not have access to a rigorous
numerical method such as this one. We would then have to consider an
approximation for A (2), design and fabricate the antenna, measure the
performance and redesign until optimum performance is obtained. This trial-and-
error method may become time-consuming and expensive. To illustrate this,
suppose we were to design and fabricate a 5-element linear brick-wall array with
an approximate value for ¢ obtained by assuming A ® Aq/Ve,’ (which assumes
the radiators are completely immersed in the dielectric). Use of the numerical
method to examine the current distributions along horizontal segments AE and
A’E’, as well as along the vertical segments of this structure for a dielectric
substrate of thickness 0.8 mm and e_=(4.34,—0.0005), at a frequency of 10 GHz,
reveals a distribution on the structure as shown in Figure 4.8. Note that this
approximation for A does not give the desired 360° phase shift along the
horizontal segments. The discontinuities in the current distributions occur at
points where the vertical segments are attached to the horizontal ones. For this

same case, the currents along the vertical segments are also shown in Figure 4.8.

98



43 Theoretical results for etched wire-grid arrays

Relative current amplitude

Relative current amplitude

1.0

0.5

0.5

-1.0

1.0

0.5

-0.5

'
-
o

0 *o f = 10 GHz
= N o
) o
f=10 GHz €r= ( 4.34,-0.0005) h = 0.8 mm
AN Position on horizontal element E/E
) - — A-E

JURNNEN USROS DU WS RS UV S,

T T T T T T T Y

p—

. 10
Segment number on vertical element

A -A B'-B
a + . o

E-E D-D

c-C

Figure 4.8 Current distributions on the 5-element equal-segment-width linear array, with the approximation
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Figure 4.9 Normalised H-plane radiation pattems for the S-element array which was designed using the
approximation for ¢
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4.3 Theoretical results for etched wire-grid arrays

Note that due to sti'uctural symmetry, the currents on A’ A would be the same as
that on E‘E; similarly for B‘’B and D’D. Despite the fact that the vertical
elements have equal widths, their current amplitudes differ. This is due to the
incorrect selection of ¢. For these currents, the normalised H-plane radiation
patterns are shown in Figure 4.9. It can be seen that this approximation for ¢
does not give a desired radiation pattern and another approximation has to be
considered. If we had in fact fabricated the antenna, it would probably not have
fulfilled our requirements. However, using an implementation of the rigorous
integral-equation formulation, we can examine the performance of this antenna
before fabrication. We therefore alter ¢ (A.) and use the computer code to
examine current distributions until they are as shown in Figure 4.10. This amounts
to a value for A ; of 1.19 A,/Ve,’. (In this same way, values for A related to
specific geometries will henceforth be determined.) We can now define a quantity,
€. SO that A = Ao/Ve . where A, is the free space wavelength. €. is an
effective relative dielectric constant accounting for the fact that the radiators are
on the air-dielectric interface of the microstrip structure. €. = 1.552 for the
present case, for which €./ = 2.2. The horizontal currents now provide the
correct "phasing" to the vertical elements and the latter have essentially equal
amplitudes due to their equal widths. From Figure 4.10 we can also see that the
currents along horizontal segments AE and A’E’ are equal in amplitude but 180
degrees out of phase. For this reason, radiation due to these currents interfere
destructively in the far-field over a sector broadside to the array, the effectiveness

thereof determining the cross-polarization levels over the main beam. The
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4.3 Theoretical results for etched wire-grid arrays

associated normalised H-plane radiation patterns for the S5-element brick-wall are
shown in Figure 4.11, with a beamwidth between first nulls (BWFN) of some 40°
and a side lobe level of -13 dB, which is to be expected from a uniformly excited
linear array. The cross-polarization level is below -55 dB for much of the main
beam and below -40 dB throughout.

From Figure 4.10 we notice that (with the feedpoint at C’) when the
horizontal currents provide the correct phasing to the vertical elements, there is
a current minimum at the feedpoint. This implies a relatively high input
impedance. We therefore next examine the effect on the radiation patterns of
moving the feedpoint to an existing current maximum. The radiation patterns for
this structure with a feedpoint moved A./4 along a horizontal segment, are
shown in Figure 4.12. These radiation patterns, with rather high levels of cross-
polarization, are highly undesirable. It was found that by moving the feedpoint the
current distributions on the structure are disturbed to such an extent that the
structure can no longer be considered resonant. A manifestation thereof can be
seen in the radiation patterns shown in Figure 4.12.

One of the reasons for wanting to utilise these brick-wall arrays, is to obtain
relatively broadband behaviour. In this regard, we examine the behaviour of this
specific 5-element linear array over the frequency band 9 (f;) to 11 GHz (f,). H-
plane radiation patterns at different frequencies in this band were determined and
are shown in Figures 4.13 and 4.14. According to [34], an antenna is defined as
broadband if the impedance and radiation patterns do not change significantly

over about an octave (f,/f; = 2) or more; clearly from a radiation pattern
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Figure 4.10 Current distributions on the S-element linear brick-wall array which was designed using the
numerical analysis method.
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Figure 4.11 Normalised radiation patterns for the optimized S-element linear brick-wall array.
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Figure 4.12 Radiation pattems for the S-element linear brick-wall array, with the feedpoint moved to a
position where a feedpoint at C’ yielded a current maximum.
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Figure 4.13 Normalised H-plane radiation pattems for the 5-element linear array at 9, 9.5 and 10 GHz. This
array was designed for a centre-frequency of 10 GHz.

106



4.3 Theoretical results for etched wire-grid arrays

e = (4.34,-0.0005)

10 GHz

fo

h = 0.8 mm

-y

FEEDPOINT

NORMALISED H-PLANE RADIATION PATTERN

e
B A AT T

S ———

-10

-20

3

I
o
«

g 2 S

50 300 -10 10 30 50 70

-70

ANGLE (DEGREES)

10 GHz

10.5 GHz

11 GHz

Figure 4.14 Normalised H-plane radiation patterns for the S-element linear array ot 10, 10.5 and 11 GH:.
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4.3 Theoretical results for etched wire-grid arrays

viewpoint alone this specific structure cannot be considered broadband according
to the above definition. However, with typical bandwidths of 6 to 12% [35], these
arrays could well be considered relatively broadband [35] ones, especially when

compared to the other structures in the menu of microstrip antennas.

4.3.2 A 7-element uniformly excited linear array
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Coaxial feedpoint

Figure 4.15 Geometry of a 7-element linear brick-wail array. All vertical elements have equal widths.

The BWFN for the S5-element linear array was found to be 40°. From array
theory [34] we know that this beamwidth may be reduced by increasing the
number of (vertical) elements. Consider now, for the same material parameters
as in the previous example, the 7-element linear array shown in Figure 4.15. As

was the case for the 5-element array, all segments have equal widths of A_;/20.
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4.3 Theoretical results for etched wire-grid arrays

Using numerical experimentation a resonant structure was designed for which the
current distributions are shown in Figure 4.16. In this case, A = 1.195 Ao/Ve,’
(in other words, the effective relative dielectric constant for this case is 1.541).
Once again, the horizontal currents provide the correct phasing to the vertical
elements, and the latter have essentially equal amplitudes, due to their equal
widths. Normalised radiation patterns for this structure in both principal planes
are shown in Figures 4.17 and 4.18. In the H-plane we now have a BWFN of
some 30° and an increased number of side lobes. The side lobe level is still at

-13 dB with predicted cross-polarized radiation below the -47 dB level (-60 dB
over the main beam). In the E-plane, radiation is strongly affected by the

groundplane and is similar to that for a rectangular microstrip patch antenna [2].

Up to this point we have only been able to attain side lobe levels of -13 dB.
This is the lowest that can be achieved from uniformly excited linear arrays. From
array theory [34], however, we know that the side lobe level of a linear antenna
array may be reduced by introducing amplitude tapering in the element
excitations. In some arrays, however, this requires a complex, and hence
expensive, feeding network. On the other hand, the element excitations of these
etched brick-wall arrays may be varied by simply varying the widths of the vertical
elements: the wider the element, the higher the relative current amplitude

therein. This is investigated next.
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Figure 4.16 Current distributions on the horizontal and vertical elements of the 7-element linear array
discussed in Section 4.3.2.
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Figure 4.17 Normalised H-plane radiation patterns for the 7-element linear brick-wall array with material
parameters as indicated.
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Figure 4.18 Normalised E-plane radiation pattems for the 7-element linear brick-wall array discussed in

Section 4.3.2.
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4.3.3 A 5-element linear tapered brick-wall array
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Figure 4.19 Geometry of a 5-element linear tapered array with segment widths indicated.

Consider the structure represented in Figure 4.19. This is the geometry of a
tapered brick-wall array for which w,/w = ws/w = 1, w,/w = w,/w = 3 and
wi/w = 5, with w once again equal to 4,,/20. For this structure the wider vertical
elements are expected to have larger current amplitudes. Using numerical
experimentation, it was found that ¢ = A, = 1.12 Ao/Ve,’ yields the expected
current distributions (note that this is different from that required for the 5-
elementuniform-segment-width array of Section 4.3.1). These current distributions
are shown in Figure 4.20. For these currents, on the structure represented in
Figure 4.19, the H-plane radiation patterns are shown in Figure 4.21. The side

lobe level is now at —23 dB: a full 10 dB improvement on the uniformly excited

113



4.3 Theoretical results for etched wire-grid arrays

case. This illustrates the ease with which the side lobe levels of these etched
brick-wall arrays may be reduced.

To examine the effects of feedpoint placing on the radiation patterns of these
tapered brick-wall arrays, a similar 5-element linear array was analysed. An
existing array, which had not been designed with the help of the integral equation
method, was used for this experiment. Although this antenna was initially
designed for a centre-frequency of 10 GHz, measurements showed that the
antenna had a minimum in | S;;| at 10.37 GHz. For this reason, we also analyse
this antenna at 10.37 GHz. Firstly, for the feedpoint at C’ (Figure 4.19), the H-
plane radiation patterns are shown in Figure 4.22 (these patterns remind of the
radiation patterns which were obtained for the array discussed in Section 4.3.1
using an incorrect value for A, (Figure 4.9)). Now, by moving the feedpoint of
this same array a distance of A.4/4 from C’ towards B’, the radiation patterns
are modified to that shown in Figure 4.23. Thus, we have moved from a situation
of a local maximum at 6 = 0° to that of a minimum. This seems to suggest that
by carefully selecting the feed position, some degree of radiation pattern synthesis

might be possible.

114



4.3 Theoretical results for etched wire-grid arrays

A
¢ = A = 1.12 -9 f =10 GHz
eff «/el'_ 0

f = 10 GHz € =(2.2,-0.001) h = 0.787 mm
I

0.36
0.27 7
0.18

0.09

-0.09 ::t

-0.18 1

Relative current amplitude
o

-0.27 7

-0.36 : -
AlA .. . E/FE
Position on horizontal element /

A" - E e - A-E

1.0
0.90

0.72

0.54

0.36

0.18

Relative current amplitude

'0.18 T T Y T T T T T

Segment number on vertical element 10

A'-A B -
[m] +

B
E-E D'-D ° ©-¢C

Figure 4.20 Current distributions on the S-element tapered brick-wall array discussed in Section 4.3.3 for
'lcff = 1.12 Ao/ver'
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Figure 4.21 Normalised H-plane cross- and co-polar radiation pattems for the S-element linear brick-wall
array with a 1:3:5:3:1 vertical-element-width taper.
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Figure 4.22 Radiation pattems for the tapered array with an "incorrect” value for & Material and antenna
parameters are also indicated. The feedpoint for this case is at C’.
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Figure 4.23 Radiation pattems for the linear tapered array (¢ = 1.30 Ao/ve,) with the feedpoint moved
to the position indicated on the insert.
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4.3.4 A 4-level brick-wall array
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Figure 4.24 Geometry of a brick-wall array which has been extended in the transverse directions. All segment
widths are equal at 2 ;/20. We will refer to this as a "#level brick-wall array".

Up to this point, only linear brick-wall arrays have been considered. To
examine the effects of extending the brick-wall array in the transverse directions,
consider the array shown in Figure 4.24. We will refer to this structure as a 4-level
brick-wall. This is simply due to the fact that the physical appearance is that of a
brick-wall with 4 levels; it does not refer to multiple dielectric layers in the
substrate. The structure represented in Figure 4.24 was analysed at 10 GHz for
€, = (4.34,-0.0005) and h = 0.8 mm. The current distributions on this antenna
array are shown in Figures 4.25 and 4.26. The radiation patterns in both principal

planes, with these currents, are shown in Figures 4.27 and 4.28. From the H-plane
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Figure 4.25 Current distributions on several elements of the 4-level brick-wall array represented in Figure 4.24.

The current distributions on the remainder of the array elements are shown in Figure 4.26.
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Figure 4.26 Current distributions on several vertical elements of the 4-level brick-wall array shown in
Figure 4.24

co-polar radiation pattern, it is interesting to note that without having introduced
tapering in the vertical element widths, the side lobe level of this array has
dropped to -23 dB. This lowering of the sidelobes is due to the fact that the
"collapsed distribution" of the array, in the H-plane, is tapered due to the array
lattice not being completely filled (such a completely filled case is discussed in
Section 4.3.5). The BWFN has also increased from 40° to almost 60° which is the
expected beam broadening which accompanies any lowering of sidelobe levels.
However, this array exhibits a rather high level of cross-polarization. This is due
to the fact that the current distribution on the structure is such that radiation due

to the currents on the horizontal segments cancel less effectively in the far-field.
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Figure 4.27 Nommalised H-plane radiation pattems for the current distributions shown in Figures 4.25 and
4.26 on the 4-level etched brick-wall array represented in Figure 4.24
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Figure 4.28 E-plane radiation pattems for the 4-level etched brick-wall array shown in Figure 4.24.
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4.3 Theoretical results for etched wire-grid arrays

The far-field cross-polar radiation patterns of brick-wall arrays are dependent on
the geometry of the structure itself (the layout of horizontal segments) and on the
value of 2. However, after consideration of the current distribution on this
particular array (Figures 4.25 and 4.26), one comes to the conclusion that the
main reason for the high cross-polarization shown by this array, lies in the
geometry of the brick-wall itself. This should be clear from Section 4.3.5 which

discusses a planar array with lower cross-polarization.

4.3.5 A 3-level brick-wall array
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Figure 4.29 Geometry of a 3-level brick-wall array with equal segment widths and coaxial feedpoint indicated.
The 4-level brick-wall array discussed in Section 4.3.4, exhibits undesirable
cross-polarization characteristics. In an attempt to find a planar array which

improves on those characteristics, the structure shown in Figure 4.29 was analysed.
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4.3 Theoretical results for etched wire-grid arrays

The current distribution on this structure, for a given set of material parameters,
is shown in Figures 4.30 and 4.31. From these figures, it can be seen that the
horizontal currents correctly feed the vertical elements and the latter have
essentially equal current amplitudes because of their equal widths. The E- and H- .
plane far-field radiation patterns for these currents, on the structure represented
in Figure 4.29, are shown in Figures 4.32 and 4.33. From the H-plane radiation
patterns of this array, we notice that the cross-polarization characteristics have
improved from that shown by the 4-level array (Figure 4.27). We also note that
the side lobe level has increased from -23 dB to -13 dB, since the collapsed
distribution in the H-plane is now effectively uniform (because the array lattice
is completely filled). The increase in the sidelobe levels is accompanied by a
decrease in the BWFN (compared to the previous case) to some 30°. The BWFN
in the E-plane has become approximately 100°, and a sidelobe at -19 dB has
formed. The behaviour is different from that observed for the linear arrays simply
because for the present planar array case the array aperture transverse dimension
is larger. This observation leads naturally to consideration of the even larger

planar array in Section 4.3.6.
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Figure 4.30 Current distributions on several elements of the 3-level brick-wall array shown in Figure 4.29. The
current distnibutions on the remainder of the elements are shown in Figure 4.31.
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Figure 4.31 Current distributions on several elements of the 3-level brick-wall array shown in Figure 4.29.
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Figure 4.32 Normalised H-plane radiation patterns for the 3-level brick-wall array shown in Figure 4.29.
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Figure 4.33 Normalised E-plane radiation pattems for the 3-level brick-wall array.
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4.3.6 A S-level brick-wall array
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Figure 4.34 Geometry of a S-level brick-wall array with equal segment widths.

The 5-level brick-wall array shown in Figure 4.34, was also analysed using the
integral-equation method. The radiation patterns in both principal planes are
shown in Figures 4.35 and 4.36. This geometry yields particularly good cross-
polarization characteristics in both principal planes. In the E-plane, the BWFN
has decreased from that shown by the 3-level array (discussed in Section 4.3.5) to

approximately 80°.

130



4.3 Theoretical resuits for etched wire-grid arrays

e = (2.2,-0.001)
r

f=f =10 GHz
0]

7( h = 0.787 mm
/ g = A = 1.15 A‘o
7 eff _
FEEDPOINT Vv e’

r

NORMALISED H-PLANE RADIATION PATTERN

-80
-100 T T T T T T T T T T T T T T T T
9 70 50 -30 -10 10 30 50 70 90
ANGLE (DEGREES)
—— CO-POLAR

........................ CROSS-POLAR

Figure 4.35 H-plane radiation pattems for the 5-level brick-wall array shown in Figure 4.34.
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Figure 4.36 E-plane radiation pattems for the S-level brick-wall array shown in Figure 4.34.
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4.4

4.4 Measured results for etched wire-grid arrays

MEASURED RESULTS FOR ETCHED WIRE-GRID ARRAYS

In order to verify theoretically predicted results, a number of etched brick-wall
arrays were designed and fabricated. A printed circuit technique package was
used to generate the artwork and for etching purposes, the substrate /groundplane
material used was either Taconic [37] or RT/duroid [38]. Radiation patterns were
measured on the compact range at the University of Pretoria, while theoretical
predictions were obtained from code execution on a Persetel 890/3 mainframe
computer. Comparisons between measured and predicted results will be given in
this section for four different arrays.

As mentioned in Section 2.3, the mixed-potential integral equation formulation
assumes the dielectric substrate and groundplane? to extend to infinity in the
transverse directions. This, of course, is not attainable in practice. For a
rectangular groundplane, there are several orientations by which the conductors
can be deposited on the dielectric substrate. In this regard, we make use of the
two orientations shown in Figures 4.37 and 4.38. Unless stated otherwise, all
arrays will be oriented as shown in Figure 4.37. A simple experiment has been
performed to examine the effect of the finite groundplane on the radiation

pattern of an etched brick-wall array; its results are next discussed.

2 Unless stated otherwise, the dielectric substrate and metallic groundplane have the same transverse

dimensions
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Figure 4.37 4n orientation by which the conductors of the etched antenna may be deposited on the dielectric
sheet. This figure also seems to define what is meant by the term peripheral zone.
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Figure 4.38 A4 second orientation by which conductors may be deposited on the dielectric substrate.
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4.4 Measured results for etched wire-grid arrays

4.4.1 A 5-element linear tapered etched brick-wall array with £ » A ¢

The geometry of this array is shown in Figure 4.19 and theoretical results are
discussed in Section 4.3.3. An existing array which had been etched on RT/duroid
dielectric substrate backed by a metallic groundplane with transverse dimensions
(according to Figure 4.37) of X = 747 A, and Y = 3.18 A was used for this
experiment. Since this S-element array itself has transverse dimensions of
ax = 4.7 A, and ay = 0.64 A, (in other words, ax = 4.05 £ and ay = 0.55 ¢
since £ * A for this specific array’), the structure has a peripheral zone with
widths wl = 1.27 A and w2 = 1.385 4. This is certainly an electrically small
groundplane. The H-plane co-polar radiation pattern of this structure was
measured at 10 GHz and a comparison between measured and predicted results
is shown in Figure 4.39. The comparison is surprisingly good when considering the
limited dimensions of the groundplane and dielectric substrate. In order to more
accurately predict the radiation patterns of this array, one would need to
considerably increase the transverse dimensions of the dielectric substrate and
groundplane. Although it would be difficult to enlarge both the dielectric substrate
and metallic groundplane of this "already-fabricated array", it is possible to
enlarge the groundplane portion only. This was accomplished by simply using
domestic tin foil to carefully cover a large non-conducting sheet, and securing the
microstrip antenna on the conducting tin foil. The important matter is that there
be electrical contact between the metallic groundplane of the original microstrip

structure and the tin foil. The groundplane now has dimensions of X = 24.21 A4

% Also bx = 4.0 Ag and by = 0.5 A .
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4.4 Measured results for etched wire-grid arrays

and Y = 19.13 A, One must of course, keep in mind that this is not the ideal
setup since the dielectric substrate still has not been enlarged. Nevertheless, the
H-plane co-polar radiation pattern of this antenna was measured and a
comparison with predicted results is given in Figure 4.40. It is interesting to note
that even for the array secured on this "home-made" groundplane, the
correspondence is much closer than that shown in Figure 4.39. This seems to
suggest that finite groundplane effects are primarily responsible for the deviation
between measured patterns for structures with electrically small groundplanes and
their computed patterns (which assume infinitely large groundplanes).

In general, the cross-polarized radiation pattern of a microstrip antenna is very
difficult to predict accurately and is sensitive in practice to the size of the
groundplane. Nevertheless, the H-plane cross-polarized radiation pattern of this
array on the large groundplane was measured and a comparison with predicted
results is shown in Figure 4.41. The overall angular behaviour of the cross-
polarization is correctly predicted, but not the details.

For this 5-element linear tapered etched brick-wall array, 5 megabytes of

memory was needed with approximately 22 hours of CPU execution time.
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Figure 4.39 Measured and predicted H-plane co-polar radiation pattems for the S-element linear brick-wall
array (¢ = 1.3 Ay/ve,’) on the small groundplane (Section 4.4.1).

137



4.4 Measured results for etched wire-grid arrays

e = (2.2,-0.001)
I
f=f =10 GHz
W 0
| h = 0.787 mm
2 ¢ = 130 A,
FEEDPOINT Ve

NORMALISED H-PLANE CO-POLAR RADIATION
0

dB -0 -

THETA (DEGREES)

predicted 00000 measured

Figure 4.40 Measured and predicted H-plane co-polar radiation pattems for the S-element linear brick-wall
array (2 = 1.3 Ay/ve.’) on an enlarged metallic groundplane.
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Figure 4.41 Measured and predicted cross-polar radiation patterns in the H-plane for the tapered array on
the large groundplane.
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4.4.2 A 5-element linear tapered etched brick-wall array with ¢ = A

This array which is described theoretically in Section 4.3.3 was etched
according to Figure 4.37 on a groundplane with dimensions of X = 13.47 A, and
Y = 9.85 Ay, so that wl = 4.65 A,; and w2 = 4.71 A, Taconic [37] substrate
with €./ = 2.2 and h = 0.787 mm was used for this array. The H-plane co-polar
radiation pattern is shown in Figure 4.42. Close correspondence between
measured and predicted results is observed for this array, especially at smaller
angles: finite groundplane effects become greater at larger angles. The
encouraging fact about these results is that the first side lobe level at -23 dB is
closely predicted. Figure 4.43 shows the measured and predicted E-plane co-polar
radiation patterns. Since the E-plane pattern is broad, and there is "hard"
diffraction from the groundplane edge in this plane, one expects the groundplane
to have a strong effect on this pattern (as for the case of rectangular microstrip
patches [2]). This expectation is borne out in Figure 4.43.

The H-plane cross-polar radiation pattern of this tapered array was measured
and a comparison with computed results is given in Figure 4.44. Due to finite
groundplane effects, however, the correspondence between theoretical and
practical results is not entirely satisfactory.

Measured and predicted radiation patterns for this array at a frequency of
11 GHz are shown in Figure 4.45. Even though this is not the centre-frequency
good correspondence between measured and predicted results is observed. This
illustrates the fact that the numerical method is accurate at frequencies other than
the centre-frequency. This is important, considering that one is interested in

examining broadband behaviour of these brick-wall arrays.
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Figure 4.42 Measured and predicted H-plane co-polar radiation patterns of the 5-element linear tapered brick-
wall array with ¢ = leﬁr
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Figure 4.43 Comparison between measured and predicted E-plane co-polar radiation pattems for the 5-
element linear tapered array.
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Figure 4.44 Measured and predicted H-plane cross-polar radiation pattemns for the S-element linear tapered
brick-wall array.
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Figure 4.45 Measured and predicted H-plane co-polar radiation patterns for the 5-element linear tapered array
at 11 GHz. The centre-frequency for this array is 10 GHz.
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44.3 A 3-level brick-wall array

The geometry of this array is shown in Figure 4.29 and theoretical results are
given in Section 43.5. In that section we saw that for the given material
parameters and resonant behaviour at 10 GHz, that structure requires
¢ = A.s = 1.145 A/Ve,”. However, in order to increase the variety of arrays for
which computations were performed, an array was etched with ¢ = 1.072 4,/Ve ’
- this will be off-resonance at 10 GHz. This brick-wall array was etched on
RT/duroid [38] substrate (h = 0.787 mm and €, = (22,-0.001)) with the
orientation shown in Figure 4.38. In other words, the array is deposited on the
diagonal of a rectangular groundplane of dimensions X = Y = 15 A This
implies that the widths of the peripheral zone are wl = 6.725 4., and
W2 = 5.475 A Measurements are now carried out in the two principal planes:
the H-plane (¢ = 0°) and the E-plane (¢ = 90°). Measured and predicted H-
plane co-polar radiation patterns for this 3-level brick-wall array are shown in
Figure 4.46. Close correspondence can be seen, even at large angles, and this
despite the fact that ¢ # A and the structure therefore not resonant. This

supports the usefulness and generality of the numerical method.

145



4.4 Measured results for etched wire-grid arrays

€= (2.2,-0.001)

!
[ | f=f =10 GHz
] | [ | | h=0787 mm
r
FEEDPOINT ¢t =1072 2,

Ve

NORMALISED H-PLANE CO-POLAR RADIATION
0

10 -

THETA (DEGREES)

predicted = 000 measured

Figure 4.46 Measured and predicted H-plane co-polar radiation patterns for a 3-level brick-wall array with
¢= 1072 Ay/ve’ at 10 GHz.
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4.4.4 A S-level brick-wall array

Figure 4.47 Geometry of a S-level brick-wall array with equal element widths.

Finally, consider the array represented in Figure 4.47. As in the previous case,
RT/duroid [38] substrate was used in the fabrication process. The groundplane
for this array has dimensions (according to Figure 4.37) of X = 13.92 A, and
Y = 1036 A, so that wl = 3.905 A, and w2 = 5.435 4.4 Measured and
predicted results for the co-polar H-plane radiation pattern are shown in
Figure 4.48. Although close correspondence can be seen over the main beam, the
side lobes are not well predicted. However, the unexpected ripple in the measured
side lobe shapes suggest that this lack of agreement is due to groundplane effects.
The normalised cross-polar radiation pattern in the H-plane is shown in

Figure 4.49, where the normalisation is with respect to the maximum value of the
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Figure 4.48 Measured and predicted H-plane co-polar radiation pattems for the array shown in Figure 4.47.
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Figure 4.49 Measured and predicted cross-polar radiation patterns for the 5-level array shown in Figure 4.47.
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4.5 Concluding remarks
measured co-polarization pattern shown in Figure 4.48. The level of the measured

cross-polarization is some 20 dB above the value predicted.

CONCLUDING REMARKS

The general integral equation formulation of Section 2.3, implemented as
described in Chapter 3, was used in this chapter to examine the operation of
etched brick-wall antenna arrays. In order to validate the implementation
developed by the author, computed current distributions for a rectangular
microstrip patch were satisfactorily compared to previously published results. In
the design of wire-grid antenna arrays, dimensions are selected in terms of A
The difficulty in determining values for A is that it is not only a function €, but
also of the dielectric substrate thickness, frequency and specific line widths. It was
also shown how the numerical method can be used to determine values for Megr
related to specific geometries. Current distributions on several specific geometries
were examined, and the radiation patterns determined directly from these
computed current distributions (these are essentially exact, given a current
distribution, except for finite groundplane effects).

Several brick-wall arrays were fabricated and close correspondence between
measured and predicted co-polar radiation patterns was found. This essentially
validates the use of the present analysis for the design of brick-wall arrays. Cross-
polar radiation patterns are very difficult to predict accurately, and are dependent
on the actual size of the groundplane, an aspect not included in the numerical

model. Through a simple experiment, we showed that by increasing the transverse
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4.5 Concluding remarks

dimensions of the metallic groundplane, closer correspondence between measured
and predicted radiation patterns could be observed. We also investigated,
theoretically, the effects on radiation patterns, of moving coaxial feedpoints.
These effects seemed to be very much case dependent. This numerical method
is equally valid at off-centre frequencies (important in determining the pattern
bandwidth of the antenna), and this was illustrated by the close correspondence
between measured and computed radiation patterns at 11 GHz for a S-element
linear tapered array which had been designed for a centre-frequency of 10 GHz.

The fact that numerical experimentation can be performed on etched wire-grid
antenna arrays to examine current distributions, means that it is now possible to
carefully design for some desired aperture distribution and hence radiation

pattern.
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CHAPTER 5

GENERAL CONCLUSIONS

The versatility of array antennas has been known for many years but their widespread
use was prevented by their relatively high cost compared to alternative antenna types.
More recently the realisation of arrays in microstrip has altered such considerations - not
only are microstrip antennas relatively in-expensive, but they can be directly integrated
with printed feed networks and active circuits. While many microstrip antenna
geometries have been proposed and investigated experimentally, only a few of these (and
the microstrip wire-grid array is not one of these) have enjoyed a rigorous theoretical
analysis. One reason for this is probably the very substantial and time-consuming effort
involved between the integral equation analysis formulation and its actual numerical
implementation in practice - the numerical analysis of layered structures is fraught with
difficulties, the finer details of whose solution is seldom readily available. The principal
contributions of this thesis therefore are:

(a)  Chapter 3, which gives an illustrative guide to the numerical "pitfalls" encountered
in the application of the spatial domain integral equation analysis of microstrip
antennas (which guide shows such aspects in a form more easily understandable
than has heretofore been the case), and which provides information down to the
finest detail on the numerical implementation of the analysis. Such detail was

previously not readily available.
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(b)

Chapter 5

Chapter 4, which applies a rigorous full-wave integral equation analysis to
microstrip wire-grid arrays in order to achieve desired aperture distributions. This
does not appear to have been done previously, and the design of such arrays

through numerical experimentation is now possible.
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APPENDIX A

DEFINITION OF THE SPATIAL FOURIER TRANSFORM;
THE SPECTRAL DOMAIN

The Fourier transformation and its inverse are defined as follows [3]:

+00 +00

Fll k) = == [ [ £Cx.y) exp(ik,x~jk,y)dxdy

(A.1)

+00 400

1 z . .
f(x,9) = 5= [ [ FUk k,) exp(Gk,x +jk,y) dk, dk,

where x and y are spacial domain variables; k, and k, representing their spectral domain

counterparts.

The spectral domain method is a very powerful tool in electromagnetic radiation,
propagation, and scattering problems. This method allows for considerable simplification
of moment method calculations involving planar surfaces, because it effectively removes
the singularity in the spatial Green’s function [46]. Spatial domain integral expressions
or integral equations, furthermore, convert to algebraic and differential equations in the
spectral domain, hence the spatial convolution of the surface current and the Green’s

function, reduces to simple multiplication in the spectral domain.

Al



Appendix A

The application of the spectral domain method in electromagnetics was developed
and refined by Mittra [41] and numerous coworkers, beginning in the 1970’s. Only
recently some examples of the application of this method to microstrip structures have
appeared in the technical literature. The first paper dealing with the full wave approach
to microstrip problems was presented in 1981 by Itoh [32]. Several authors have since
proposed spectral domain methods as viable alternatives to their spatial domain

counterparts [41,42,43,44,45,46,47 48].



APPENDIX B

DERIVATION OF THE GREEN’S FUNCTIONS FOR A GROUNDED
DIELECTRIC SLAB

In the construction of the Green’s functions for a grounded dielectric slab, it is
necessary to determine the potentials created by a horizontal electric dipole (HED) on
the air-dielectric interface of the structure. Although a similar derivation of these
potentials is given in [3], several details of the derivation reveal concepts important to
the implementation of the method, and for this reason it is included in this appendix.

Consider an x-directed HED placed at the origin on the air-dielectric interface
(Figure 2.1). A solution to the homogeneous Helmholtz equation for the vector potential
will yield an expression for the potential due to the HED, in an infinite homogeneous
medium. Consider the homogeneous Helmholtz equation for the vector potential in the

spectral domain [3]:

(dz +u.2]A'=o (B.1)

where u® = k? + k7 - k? = k,2 - k? and k; is the wavenumber of medium i. Since (B.1)
is written in its spectral domain form, a general solution thereof is easily recognized to

be of form
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PN
]

,=ae e be™ 5 s=(x,y,2) (B.2)

where a and b are unknowns (they may be functions of the spectral variables k, and k)
which are to be determined through application of the boundary conditions. Now, in the
case of an x-directed dipole embedded in an infinite homogeneous medium, the vector

potential is given by [3]

A‘ H 0 exp( ~u 0 4 ) (B.3)
4n u

n
>

where ug® = k,? - k¢? and k, the wavenumber in free space. In the case of an x-directed
dipole on a microstrip structure, on the other hand, two components of the vector
potential are needed to satisfy the boundary conditions [30]. These boundary conditions

being [33]

r onz=0 (B4)

- = _IJ'OJI
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V,=0 |

20 0 (B.5)
oA

—2Z =90

oz J

Hence, let A = XA + zA,. Choosing now for A, and A, general expressions of the form

of (B.2) and applying the boundary conditions, leads to the following expressions [3]:

exp(-uy2)
D
A, - _281 (B.6)
b sinhu (z +h)
(D, sinhuh)
A
exp(-u,z)
Dy Doy
z = ;—g(er B l)ka (B.7)
T coshu(z+h)
D Dy, coshuh)
where Drg = u, + u coth uh, Dpy = e€u, + u tanh uh, u® = k? - €k,

€. = €,/(1-jtan &) and h the substrate thickness. The upper and lower expressions
inside symbols () correspond, respectively, to observers in the upper semi-infinite
medium (free space: z >0) and in the substrate (-h < z < 0). z = 0 represents an
observer on the air-dielectric interface for which both expressions inside these symbols
simplify to yield similar expressions. The Lorentz gauge [29] may now be used to obtain

an expression for the scalar potential of a HED located on the air-dielectric interface of
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a microstrip structure in the spectral domain [3]. Thus

Nexp(-uyz)
, DD
s ik "™ (B.3)
Py
TJ9% | Nsinhu(z +h)
\DmDmsinhth

with N = u; + u tanh uh. The continuity equation applied to an electric dipole implies
the existence of two point charges ¢ = +I/jw at both ends of the dipole [3]. Assuming
Idx = 1, the moment of this pair of charges is qdx = 1/jw. In the spectral domain, the
scalar potential of an electrostatic dipole (V) of moment 1/jw is related to the scalar

potential of a single unit point charge (Vq) by the well-known expression [3]

k__

jo *

S,
R

V= - (B.9)

Therefore, from (B.8) and (B.9) it follows that

Nexp(-u,z) )

D. D
oo _1 ™ (B.10)
1 2

T €o Nsinhu(z + k)
Dansinhuh}

Appropriate expressions for the vector potential (A) due to a HED, and the scalar

potential (Vq) due to a single unit point charge, have now been determined in the
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spectral domain ((B.6),(B.7) and (B.10)). The formulation used in this thesis, however,
is in the spatial domain, which implies that an inverse transformation has to be applied.
Since D1y and Dpy depend on k, and k, only through the radial spectral variable

k2 =k?+ k,’, the inverse Fourier transform can be written as a Hankel transform [3]:

FUF k] = [ Jo(k, RYK,F(k, ) dE, (B.11)
0
and
F ik F(k)] = -cos¢ [ J,(k,R) K. f(k,)dk, (B.12)
0

where R and ¢ are polar co-ordinates and J, the Bessel function of n’th order and first

kind. The spatial domain expressions for the potentials are therefore given by

/y _ Po h k .1
A (r/r') = o {Jo(kpR)—,%nexp(—uoz)dkp (B.13)

L 2
o k
A (rlr') = - S cosd (e, -1) ]O'Jl(kpR)_D_PD__exp(_uoz)dkp (B.14)

W1 7 k, N _ B.15
virlr') = Tne, {Jo(kpR)mexp( uyz) dk, (B.15)
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withr =xx +yy+zz R =1 r-r’land ¢ = tan[(y-y’)/(xx’)]. The integrals
above are line integrals on the complex k -plane where k, = A + jv. Mosig and Gardiol
[3] have found that integration along the contour described by the real positive A-axis,
provides the most efficient means of evaluating these integrals. In this regard, we set

k, = A in the expressions above. Therefore

A (rlr") = % fJo(AR)Diexp(-uoz)d;_ (B.16)
0 TE

Az(l'/r/) = —%cosd)(e,—l) le().R)_D_%_exp(_uoz)d)_ (B.17)
0 TEY ™M

1
nE,

AN
Dyg Dy

Vrie) = {Jo().R) exp ( -u,z) dA (B.18)

At this point, we have derived expressions from which the required Green’s functions for
z 2 0 follow directly: Gy=V_, GX*=A, and G§*=A,. The other terms of the dyadic
Green’s function are either zero (G = G{* = 0), not important for the purposes of this
analysis (GX* G¥% GZ*) or may be obtained from symmetry (G}’, G%’). In the
determination of the surface current distribution (as opposed to far-field radiation), we are
interested in the potentials on the air-dielectric interface (z = z’ = 0). Expressions (B.16)-

(B.18) therefore reduce to

1 The Green’s function Gy, is viewed as the scalar potential created by an isolated point charge on the

air-dielectric interface. Since these charges do not exist in the real world, Gy, is rather considered to be a
useful mathematical device.
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A (r/r)=—fJ(lR)——d}. (B.19)
TE

Mo T A2 (B.20)
A y = - 2 -1 J,(AR)————dA
(r]r') = - =2 cosd (e, ){ ( )DEDm
_*N 4 (B.21)
DTE DTM

In conclusion, expressions for the vector potential (A) due to a HED, and the scalar
potential (V,) due to a single unit point charge, have now been determined in the spatial
domain ((B.16) through (B.18)). These expressions are valid for z > 0; however, for
surface current computation the special case z = 0 is to be considered. Far-field
radiation calculations on the other hand, require knowledge of the potentials for z > 0.
It was also shown that the Green’s function expressions for a grounded dielectric slab

follow directly from the expressions for these potentials.
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APPENDIX C

ANALYTICAL INTEGRATION OF THE SINGULAR PART IN VECTOR
POTENTIAL DISCRETE GREEN’S FUNCTION SELFTERM
EVALUATIONS

In the evaluation of the discrete Green’s function selfterms the situation arises where
the observer and a source cell coincide. This leads to singularities in the discrete Green’s
function integrands due to the presence of the Green’s functions therein. It was then
suggested by Mosig and Gardiol [3] that the singular parts of the Green’s functions be
extracted as follows: G = G, + (G - G,), where G represents the Green’s functions and

G; the static values given by [3]

Ho
Gn(r/r/) = (C.l)
As an |r-r|
for the vector potential, and
/ 1
G, (r/r’) = (C2)

2re (e, +1) |[r-7 |

for the scalar potential; ¢, is the complex relative permittivity which takes into account
dielectric losses. The discrete Green’s function integrands with the difference terms
(G-G,) are well-behaved functions and can be integrated numerically, while the
integrands with the static parts, although being singular for r = r-, are analytically
integrable. It is the purpose of this appendix to perform such an analytical surface

integration.
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The discrete Green’s functions are defined as follows:

Tftrirg) = [ —L GEriry T - r )R ds’ (€3)
5, Koko

Ty (rir,) = f %Gy(r/r’)]](r’ - r,)k ds’ (C4)
S

Since only an expression for I'y(r/r)! is given in [3], it is the purpose of this appendix
to derive analytically an expression for I'X(r/ r,;), where r lies within the boundaries of
the x-directed current cell centred at r,;- In the construction of the Cjj submatrix, T}*

appears in the term

f T, (rfr, ;) dx (C.5)

Cxi

For i = j, the single integral in (C.5) implies that the observer r may be situated at any
point along the test segment C,; placed within the source current cell at r,;. Surface
integration for I'* over the current cell, now leads to the point r’ = r being included
within S, which on its turn leads to a singularity in the Green’s function (and therefore
the T'A" integrand) at that point. From (C.3), with the basis functions selected in

Section 2.3.3, it follows that

! The subscript s indicates that the Green’s function, appearing in the discrete Green’s function
integrand, has been replaced by it’s static part.
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1 xx / lx/_xle 2 / C.6
Citrirg = [ —= Gl |1 - ——=|kyds (C.6)

5, Moo

Since r,; has no effect on the final expression (a correct choice does however simplify
mathematical manipulation), we may conveniently suppose that the source current cell

is centred at r,; = (0,0). Therefore

r5(r/o) = [ jk G=(rir") [1 -"‘j—'] k2 ds’ (C.T)

5, Poo a

S, is now the surface occupied by the x-directed current cell centred at (0,0). Application

of the pole extraction technique described above, leads to the following expression:

K2ds' (C3)

7010 = [ (6 + (67 rir') - 6 trir') ][1"—?

5, Moo

Let us introduce I';; by retaining the singular part of this expression. Now

k /
I (r/0) = f 2 GXrIr" [1 NEE ds’ (C.9)
5, Mo a
Subsequent substitution of (C.1) into (C.9) leads to
k k /
Ter/0) = = g5 - Do [ ESBPY (C.10)
4"ts,, |r-r'| dra Sp |r-r'|
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Since S, is centred at the origin, the x-directed test segment therein extends along the
x-axis and therefore we know that the singularity is bound to this axis (Figure C.1). Also,
because the integrands of (C.10) are symmetric around this axis, integration may be
performed over the first two quadrants (y > 0) and the result doubled to account for the

contribution of the third and fourth quadrants (y < 0). Therefore, it follows that

k k /
L0 = 52 [ e - e [ et e
‘J'Es, |r—r/| 2na 5 Ir—r/l
0 0

where S’ is now the area occupied by the first and second quadrants of the current cell
centred at (0,0). Let us suppose that r = r,x where 0 <r, < a/2; we also have
r’ =x’&§+y’§y. Thus | r - r*l = [(rx’)? + y’?]"2 Analytical integration may be
simplified by application of the substitution x” = x’- r, and y” = y’. This implies that
dx” = dx’,dy” = dy’ and dS” = dx”dy” = dS’, while the integration limits are altered
accordingly. S,” is now the area on the x”y”-plane described by -b/2 < y” < b/2 and

-(a+r,) < x” < (a-r,). We now have

//+
I\Z(frx/o)=_kq_f;dsll_ ko f |x rxl dS” (C.u)

2% 2ra 2 2
5 /x//2+y//2 5 /x” +y”

The introduction of cylindrical coordinates further simplifies integration, hence let

r//=[x//2+y//2]1/2 and dS” = r”df”d¢”. Then
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k k
TG 0) = 5> [dr'ae” - == [ |rlcos¢ +r, |dr'dp”  (C13)
ﬂsg' uasg

where the integration limits have also changed with S, ” representing S,” in cylindrical
coordinates. From Figure C.1 it can be seen that if the integration interval (S,.") is
carefully divided into sub-intervals, simple expressions may be obtained for the

integration limits in terms of cylindrical coordinates. Consider therefore the following

subdivisions:

SUB-INTERVAL 1: o, = tan’'[b/(2(a-1,))); 0<¢” < aj
0 < r” < (a-r,) sec(e”)

SUB-INTERVAL 2: @, = tan'[b/(2r)]); ;< @" S T- ay;
0 < 1” £ b/2 cosec(e”)

SUB-INTERVAL 3: a, = tan'[b/(2(a+r))]; 7 - a3 < ¢” < T -ay;
0 < r” < b/2 cosec(e”)

SUB-INTERVAL 4: T-a,<¢”<m; 0<r”<-(a+r,) secp”

Let us consider the two terms in (C.13) separately. For the first term, integration may
be performed over three sub-intervals since the derivative of the argument is not
discontinuous in the transition from x” 2 -r, to x” < -r,. This is the case for the
integrand in the second term of (C.13) and therefore integration is performed over all

four sub-intervals. Consider, firstly
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k k u, (a-r)secd” ®-2y bf2cosecd” r  ~(a+r)secd’
1= _2% !‘” dr'dg" = ﬁ ‘((‘ ‘((‘ dr''dg’ + f f dr''de” + f ‘((‘ dr''dg"

o, 0 n-a,

s x-a = .15)
k, o' = b o " - (C
= —|(a-r ) Intan(=—+—) | + =Intan(-— -(a+r,)Intan(=—+—) |
2n((a r,) (2 +4)l > ( 5 ) al (a+r,) 2 "L

1

L) - _:‘_3_“) -

272 ﬂ C.16
ﬁ(a—r)lnu:{“’+2]+21n 2 2)|_(ger)in 4 (C.16)
T

>
'~<=>

b/2

~(a + 1,) sec ¢” b/2 csc ¢” (a-r) sec ¢”
t”

p 44 14 A
a, / 3 1
. . ¢ s E
< » X
'3/2 CXO Iy Su

S

0
x-current cell

Figure C.1: X-directed current cell with test segment C,, The observer (singularity) is situated on the x-axis
at r.. Sub-intervals with integration limits on ¢* and r* are indicated.
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We note from (C.16) that tan(37/4) = -1 appears in the argument of the natural

logarithm !. However, for 0 < r, < a/2 we have a,/2 < /4, and therefore

X

/2 < 3n/4—a,/2 < w. This implies that the denominator will always be negative,

bringing about a positive argument for the logarithm. This argument may be rewritten

as

3 3
tan(—m) -tan(® - —x) -1
a
4 - 4 - tan(22 + Xy (C.17)
3 o, 3 o, 2 4
tan(=n - —=) -tan(® - =% +—)
4 2 4 2

leading to a simplified expression for I;:

' 2 )
ky @ n| b 2 2 % .|| (c18
L | @ ntan e+ 3in Hlavrplatan 227 | (1D

This has been the evaluation of the first term in (C.13). Consider now the second term
in that expression. This integrand consists of | r”cos¢” + r, | which transforms to
| x” + r, | in rectangular coordinates. This implies that

/"
x"+r. for x"2-r

Mar | = (C.19)

Vi V4
-(x"+r) for x"<-r,

Thus, once ¢” > w-a;, integration over r” must be performed in two parts: from 0 to
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x=x’=0 and secondly from there on to the edges of the current cell (Figure C.1).

Therefore we define L, as

k, ko a, (a-r Jsecd”
L-- T fl"”COSfb”*'r |dr"de" = - f f (r'cosd +r,)dr"de"
na
&
k ®-&3 pj2cosecd”’ ko x  -Tsecd”
_2_0 f (r'cosd! +r ) dr"d" - f f (r'cosd” +r.) dr”dd)”
na
) 0 , a,. «,
™ =% bf2cosect” x (@ )secd”
(r'cosd” +r ) dr"de" + ko f f (r"cos¢” +r )drddp”
21!(1 n-ay -',Sectt” x-a, "M”

(C.20)

Through the use of integration tables [23] the individual terms in (C.20) may be

simplified as follows:

a, (@-r secd”

f f (r’ os¢//+r Ydr'dd" = (rx(a—rx)+%(a—rx)2)1ﬂtan(% +_Z_) (C21)

R-&3 bf2cosecd’! b cotan(%) 2
f f (r’cos¢” +r ) dr"dd" = s In - —[cosec(m-ay) ~cosec(a,)]
«
v tan()

(C22)
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] "’x3°°¢” l’2 o
f f (r”cos¢”+rx)dr”d¢” - Tx lntan(73+%) (C.23)

n-ay; O

-y bf2cosecd” b2
[ ] ot sr)drap = 2 fcoseo(n-a,) -cosec(x-ay)]
x-a, _rmll

(C.29)

n —(a+r)sec¢”
[ [ (cose+r)ar'de” = - ";mm(-"zl -7 (C25)
®-ay -p secd’!

Now I, may be written as

a k,b?
L = -—“Intan(-2+ %)+ 2
4 2 4 16ma

[coscc(a3) - cosec(az)]

k)
tan(—é—)

2
tan(_)

+£) + k0b2

2 Tena [cosec(a3) —cosec(al)]

ke 2 ®,
~——(a-r)Intan(—
411:a( ») ( 2

L -r)ntn(t+ %)

ot
) ] k,r.b . cotan(T)
2na

4nta o,
tan(—
2
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Finally, rX¥&r,/0) = I, + I,, where I, is given by (C.18) and I, by (C.26). Therefore

T
, ky “ x| b 2 2 @ =
= — - ln L
s (X1, /0) . (a-r)n > +—4 +—21n +(a+r) > +4

kya @ k,b?
-—Intan(— + — cosec(a,) -cosec(«,)
4 TR Tema 2]
tan( %
2 —
b
_korx t (az +1) + kOrx ln 2
4xa 2 4 4wa

®,
tan(T)

__’f'; o “1+1t . k0b2 i
41m(a r.) lntan(7 Z) 16na[cosec(%) cosec(al)]

o

k b cotan(—)
-2 (g7 )imtan (2L + Ty 570 1 2
Ta 2 4 4wa o,
g

(C27)

This expression was derived for the case of an x-directed current cell with 0 < r, < a/2.

The case of a y-directed current cell follows similarly, and the derivation is therefore not

repeated. In fact, when a = b the expressions for I'X and I'}} are identical. The case

-a/2 <1, < 0 is a mirror-image of 0 < r, < a/2 and therefore I'xX(-&r,/0) = TAx(&r,/0).
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APPENDIX D

DETERMINATION OF THE RADIATED ELECTRIC FIELDS OF A
MICROSTRIP ANTENNA GIVEN THE SURFACE CURRENT
DISTRIBUTION

In this appendix we will derive expressions for the radiated electric fields of a
microstrip antenna once the surface current distribution is known. Although final
expressions for the radiated fields of a HED on microstrip are given in [3], no derivation
is included and since the author is of the opinion that insight can be gained from such
an exercise, it is performed in this appendix.

A general expression® for the electric field in terms of vector and scalar potentials

is [49]
E=-joA-VV (D.n)

where the vector potential is defined by

A(r) = f G, (r/r'). I (r"ydS’ (D2)

So

G, is the Green’s function associated with A(r) while J; is the surface current
distribution. Since this is a mixed-potential formulation, the scalar potential due to the

surface current distribution (related to the charge distribution through the continuity

1 .« e . . . .
This is a general expression not unique to microstrip.
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equation) has to be determined. Applying the Lorentz gauge [49] to A(r) and making use
of the equality V.(_}A(r/r') = peVGy(r/r’) [3] leads to an expression for the scalar

potential in terms of J; [3]:

V(r) = -—— [ VG, (rIr)). (') dS’ (D.3)
jo s,

Gy is the Green’s function associated with the scalar potential V. Substituting the

expressions for the potentials into (D.1) results in

1

E(r) = jo [G,(r[r) .J,(r")dS' +
S, Jw

[VVGyrir)y.J(r)dS (D4
So

This expression may also be written as
E(r) = [Gy(rir') . J (r")dS’ (D.5)
so

where

\Y VGV("I"/) (D.6)

ral N = —ien O ny +
Gg(r/r’) = o G, (r[r") o

is a dyadic Green’s function associated with the electric field. In (D.5) we now have an
expression for the electric field in terms of the surface current distribution and the

Green'’s function (_}E. This Green’s function will now be expanded. The three-dimensional
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dyadic Green’s function G, may be written as

£ y Z
£1GT O G
— (D.7)
G,=y| 0 G,Zy GA)Z
|67 6P GF
We also have
£ y 4
R 2 2
3 Zg, P L,
o2 ox dy Ox 0z
82 82 82 (D.8)
=y | —G —G G
VVGV Yy ayax | 4 ayz | 4 ayaz | 4
2 2 2
|6, Zae g,
| g oz dy oz
Therefore (_}E may be written as
b4 y Z
1 & =" 1 3 1 a2 .
——G,-juG — G — Gy, -joG
£] Jo ox v~ JO%4 jo oxdy ¥ jo axdz 7 4
2 2 2 (D.9)
i —Z, L9 6,-j06? —=2_G,-juG}
Jw oydx Jj@ dy Jjw dyodz
Z| 1 & m 1 3P s 1 & z
— G, -joG —— G, -juG ——G,-joG
jozaxr VI Gamay v e v IO
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In the moment method analysis, the surface current distribution J, is given in terms of
a set of discrete coefficients I; (i=1...M) and L; =1..N) each related to a charge cell
of dimensions a and b. With this in mind, Mosig and Gardiol [3] have shown that in the
far-field we can approximate the radiated electric field of the etched radiator by
replacing it with an array of Hertz dipoles, for which the radiated electﬁc field is given

by

M . N )
i=1 j=1
M . N .

Eq, = ng(rlo)zaln elkogi - Gg)'(rlo) z nyjeJkon (D.ll)
i=1 j=1

where g, = x,sinBcos¢ + y,sinBsing (k=ij) and k, = w(uy€y)"% x, and y, are the
coordinates of the k’th Hertz dipole. Since (EE, according to (D.9), is defined purely in
terms of rectangular coordinates, a coordinate transformation has to be performed to
determine G§*, G, G2 and G¥. To illustrate such a transformation, consider for a

moment a general dyadic

DWW + D(’))”‘ + DO% (D.12)

i~
"

with
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D® = D% + D¥y + D&%
DY - D%% 4 D»y + D9% (D.13)
D® = D=% + D”§ + DZZ
Now with a rectangular-to-spherical coordinate transformation, D® becomes

D® = D™F + Dﬂxé + D¢x¢"‘> (D.14)

where

D™ = D*sinB cosp + D>*sinb sing + D *cosb
D* = D™cosBcosp + D cosOsind - DZsind (D.15)
D¥ = -D*sinp + D> cosd

In similar fashion, a coordinate transformation for (_}E(r/O) yields
GY(r/0) =G (r/0) cos® cosp + G2 (r/0) cosd sind -G (r/0)sin®  (D-16)
GE(r/0) = -GZ(r/0)sind + G (r/0)cosd (D.17)
Gy (r/0) = G2 (r[O)cosBcosd + GP (r/0)cosBsing - G2 (r/0)sin®  (D-18)
G¥(r[0) = -G (r[O)sing + G2 (r/0)cosd (D.19)

Let us now, for example, expand G2*(r/0). From (D.9) it follows that
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ng=(71—i2GV—ijf)cosecos¢+(—‘—l— a; Gy]COSBSimP
Jjo x Jo Oyox (D20)
_(_l_aza; GV—ijf]Sine
jw dz0x

Since we are interested in the radiated fields, our observation point is no longer on the
interface z = z’ = 0 and the expressions for G, and Gy given in Appendix B of this
thesis must be used. For the sake of this discussion, the relevant expressions are

summarized below.

=y - Po A gy, (D21)
Gl (rlr!y = 2 {JO(AR) Bo°
GZ(rlr) = '_“Ocos¢(e -1)}1 (AR) 5 e dA (D.22)
4 2n T D Doy
Gl (rir"y = G (rlr") (D.23)
G2 (rlr) = -:Egsind)(e -1)}1 (AR) 5 e “tdA (D.24)
4 2% T DDy
N A mr gy (D25)
G (rlr') e, {JO(AR) B¢ d

The partial derivatives in (D.9) (some of which appear in (D.20)) may be obtained
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through straightforward, albeit lengthy, algebra. These partial derivatives are given below.

x-x'

& 1 | J(AR)
E;;G,,(r/r’) = - f{ 1 - A

2
2
JZ(AR)) AN gy, (D26)
2ne, 4\ R

Dy Dpy

2 P / / 3
C_Gyrir'y = —— [L2OV) gy AN wegy (@27
Oy ox 2me, 4 2 D, Dy,
2 P / 2
& G,y = L [EXD) jar) AN ey (D28)
Jz0x 2ne,y R DD,
—az—G (rfr)) = a—ZG (rir)) (D.29)
oxdy © dyox ”
“| J(AR i 2 ]
2 Grirh = - [ (A0 A2 ]JZ(AR) AN wrgy  (D30)
dy? 2me, R R DD,
o / 1 h ()")’/) AZN -uyz D31
G = J(AR) —=—2— d\ (D31)
523y OV = o { R HOB pp— e

Therefore we have for Gp¥(r/0), from (D.20):
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Ga(r/0)=-

Jjw2ne, R

™

0

[J a f JO(AR)D—e 2 g | cosOcosd

TE

1
R
jw21t€0fR2 (> )

<+

e ““d ) |cosOsing

™

o

1

2
: [Zr0mn2X
jo2ne, - R DD,

sin®

uje “da

e "“d)|sin®

B I A
_[_Ecoscb(er- 1) { HOR

™

By expanding G¢¥, G** and G* in similar fashion and defining

~UgZ
I, fJ (AR)B; d

(=4

AZN

Dy Dy

I J,(AR) e “dx

[
Ot 8

D8

1 LR x, AN g
X AN gy,
f( M) Jz(AR))D e
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iy 3
L = [LOR) S e ™ dA (D.35)
0 'Y ™M
r A we D.36
L = [J,(AR) e " d) (D.36)
0 DDy,
P 2
1, = fJI(AR)B}‘_Nuoe-"osz (D.37)
0 12 ™M
we can write for (D.10) and (D.11):
-j® 1 I I )
Ep=(|L2Pop 0 % (X2 |easbcosd +|—2— XY |cosBsing -
2n jo2ne,R jw2me, R jw2rne, R?
j @ I M ;
] p'o(e:,—l)cosd>13+.—“——-—Ji sin® ) Ealxl.e’k"g‘ +
2n jw2ne, R i=1
-j 1 I 1
( ]mpolo- — 1 +—2 (_}’_) cosOsing + _211 cosBcosp +
27 Jjo2neR jw2mne, R jw2rne, R?

jmpo(e -1)sing 1. +—I‘——l sin® ) i bl e
2n 7 ' jo2ne, R i

(D.38)
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E, = (

j I
pr.olo+ 1 _ 12 (ﬁ)Z Sj_n(‘b .
2n jw2ne,R jow2me, R

I M .
2 Xy ik,
—— = |cos 2 al .e +
[ij‘n:eo R2] ®) e

(D.39)

_jwp'ol _ Il . 12 (1)2

(2= b jw2neR jo2me, R

cosd

[_12_ﬂ

N .
sin bl . e™%
jw2mne, R? ) ,; Y

Closer inspection® of the integrands in (D.33) through (D.37) leads one to the
conclusion that straightforward integration will not suffice for these integrals and
therefore we make use of the method of steepest descent [28]. Then we have for the

integrals in (D.33) through (D.37):

ly = jcotan8 fo(kysinB) <, fx) = —= (D.40)
r Dpe(x)
"'kol‘ 2,2
I, = -j cotan® f, (kysind) £— - U(8 -0,)2mjRes, HO(A, p) e V™%
' (D.41)
3N(x)
(x) = —=
) = D)

2 Section 3.7 gives further detail.
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_jko’ 2,2
I, = - cotan® £, (k,sin@)S— - U(6-8,)27jRes, H(A p) e V™
2 (D.42)
f)=—2=
" DDy
-jko’ 2_ 2
I, = - cotand f, (k,sind) £— - U(6-6,)27jRes, HD (1,p)e *V> ™"
r
(D.43)
x%u, (x)N(x)
fi(x) = 9
Dn:'(x)Dm(x)

where Res; is the residue of function f; (i=2,3,4) at A,. Since I; only appears in terms
with "R" in the denominator (D.38 and D.39), and because these terms tend to zero in
the far-field, it is not necessary to evaluate I,. By replacing "x" and "y" in (D.38) and
(D.39) with R cos ¢ and R sin ¢, respectively, the final expressions for the electric fields

are now given by

E, =( [-AOIO + A,cos*¢ L cosBcosd + [4,cospsing 1, |cosBsind -

M .
[Ao(e, ~1)cosdl, + A,cospl,]sin® ) Y al, A
i1

(D.44)
([-Aoly * Asin®d1, [cosBsing +[4, cosdpsingl, |cosBosd -

N s
[Ao(€, - 1)sind Ly + A,sing 1, |sind ) 3 bI, e
Jj=1

D11



where

and

M .
E, = ( [Aolo —Azcoszcblz]sincb +[4,cosdsind I, |cosd ) Y ar,f el

i=]

N .
( [—AOI0 +A2sin2cb12]coscb - [A,cosdsind 1, |sind ) ¥ bl '8

j=1

| W
A0=J Ko
2x

A, = 1
Jw2ne,

D12

Appendix D
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APPENDIX E

THE RELATIONSHIP BETWEEN THE COEFFICIENTS I, AND I,
AND ELECTRICAL CURRENT FLOWING ON THE ELEMENTS OF
WIRE-GRID ARRAYS

The solution to the moment matrix equation yields the coefficients I; and L ;. The aim
of this appendix is to examine the relationship between these coefficients and the
electrical current flowing on the elements of wire-grid arrays.

In the integral equation formulation discussed in Chapter 2, the unknown surface

current distribution on the upper conductor of an etched radiator is expanded over

rooftop basis functions as follows (Section 2.3.3):

M

Jg = .l IxiTx(r - rn_) (i) (E.l)
b ixl m
1 & A (E.2)
J,, = = .21: LT(r-r,) (;) .
where
Ty - | P Ele s lxl<a iyl < bi2 (E3)
. 0 ; elsewhere

and a similar expression holds for T,(r). These expressions give the relationship between

coefficients I; and L;, and the surface current density existing on the radiator. From these
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Appendix E
expressions it also follows that coefficients I; and L; have dimensions of current (A). To
relate these coefficients to the total current flowing on an element of an etched wire-grid
array, consider an x-directed segment of width w; Figure E.1 shows part of this segment
after decomposition of the upper conductor into charge cells of dimensions a and b.
Rooftop basis functions of which the coefficients I, (i=1..m) are known through the
solution of the moment method matrix equation, are also shown on the figure. To
calculate the total x-directed current I (x) flowing along the segment past a given
position along the segment, the contributions of the S x-directed strips comprising the

element of width w, (w, = S x b) have to be added. Thus

S
I,(x) =) IL(x) (A) (E.4)
i=1

so that the calculation of I.,(x) requires knowledge of the individual contributions I;(x).
Consider for example the calculation of I,(x;) in Figure E.1. At x, two rooftop
distributions of current density exist and both have to be included in the calculation of

1,(x;). The x-directed current density at x, is given by

I I -
Jo(x) = %I{ -fal} + %2{ +xlaa} (.”%) (E.5)

The total current flowing across an element of width dy at x, (Figure E.1) is then

J(x,) dy. Therefore the total current flowing along a strip of width b past x, is
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b
14(x1) = f"sx (xl) dy = le{l—%} + Ix2{1+ } (A) (E.6)
0

a

In the same way, values for Ii(x) may be determined for any x and i=1to S. With this
and (E.4) it is now possible to calculate the total x-directed current flowing along the
segment of width w_ past any position along the segment. This is given in terms of the
coefficients I;. Similar expressions hold for y-directed segments.

Consider the following special case: from (E.6) and x,=0 (x,=a) it follows that the
total current flowing across the common boundary of the two charge cells is given by I
(I,). From this it follows that the total current flowing across all the charge cell

boundaries at x=x, in Figure E.1 will be

L) =Y L (4 €
i=4

(E.7) gives an expression in terms of coefficients I; for the total current flowing along
a segment past a given position which coincides with charge cell boundaries in the
decomposition of the segment. If the position along the segment at which total current
has to be calculated does not coincide with charge cell boundaries, expressions (E.4) and

(E.6) have to be used.
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AY X=X,
> % - = ?
¢l b 1)

I 3
x2 . X

ib Y |

Loy == e Lm

Figure E.1: Decomposition of an x-directed segment on an etched radiator to caiculate the total current
flowing along the segment. Rooftop basis functions are used in the moment method solution.
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