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The design of antenna arrays involves, amongst others, the selection of the array

elements and geometry, as well as the element excitations. The feeding network to obtain

the desired excitations can become quite complex, and hence expensive. One possible

alternative would be to make use of micros trip wire-grid antenna arrays. These arrays

are composed of staggered interconnected rectangular loops of dimensions a half-

wavelength by a wavelength (in the presence of the dielectric). It is because the short

sides are considered to be discrete elements fed via micros trip transmission lines, that

these antennas are viewed as arrays. While considerable success has been achieved in the

design of these antennas, published work has been either of an entirely experimental

nature or based on approximate (albeit clever) network models which do not allow for

fine control of the array element excitations or off-centre-frequency computations

generally. It is the purpose of this thesis to perform an almost rigorous numerical analysis

of these arrays in order to accurately predict their element excitations.

Models used to study microstrip antennas range from simplified ones, such as

transmission-line models up to more sophisticated and accurate integral-equation models.

The mixed-potential integral equation formulation is one of these accurate models which

allows for the analysis of arbitrarily shaped microstrip antennas with any combination of

frequency and dielectric thickness. The model treats the antenna as a single entity so that

 
 
 



physical effects such as radiation, surface waves, mutual coupling and losses are

automatically included. According to this formulation, the microstrip antenna is modelled

by an integral equation which is solved using the method of moments. By far the most

demanding part of the integral equation analysis is its actual numerical implementation.

For this reason a complete description of the numerical implementation of the

formulation is given in this thesis. To verify the accuracy of the implementation,

rectangular micros trip patch antennas were analysed and surface current distributions

were shown to compare favourably with published results. The formulation is then

applied to the analysis of micros trip wire-grid antenna arrays which makes it possible to

accurately predict surface current distributions on these arrays. Radiation patterns are

determined directly from computed current distributions in the presence of the dielectric

substrate and groundplane, and are essentially exact except for finite groundplane effects.

To verify theoretically predicted results for wire-grid antenna arrays, several arrays were

fabricated and actual radiation patterns were measured. Good correspondence between

measured and predicted co-polar radiation patterns was found, while the overall cross-

polarization behaviour in cases with large groundplanes could also be predicted.

The fact that numerical experimentation can be performed on wire-grid antenna arrays

to examine element excitations, means that it is now possible to carefully design for some

desired aperture distribution.
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Die ontwerp van antennesamestellings behels, onder andere, die keuse van

stralingselemente, die geometrie van die antennestruktuur, asook die onderskeie

elementaandrywings. In sommige gevalle is die voemetwerk om die verlangde

aandrywings te verkry, egter ingewikkeld en daarom duur. 'n Antennestruktuur met 'n

relatief eenvoudige voemetwerk is die sogenaamde draadrooster-antennesamestelling.

Hierdie samestellings bestaan uit dun geetste interverbinde reghoekige draadlusse

waarvan die sye afmetings van 'n halwe golflengte en 'n golflengte in die teenwoordigheid

van die dielektrikum het. Omdat die afsonderlike kort sye van elke draadlus beskou word

as diskrete stralers wat gevoer word deur mikrostrooklyne, word die antennes beskou as

samestellings. Alhoewel heelwat sukses in die verlede behaal is in die ontwerp van die

antennes, is gepubliseerde result ate of eksperimenteel van aard of gebaseer op

benaderde analise-metodes. Dit is die doel van hierdie verhandeling om draadrooster-

antennesamestellings akkuraat en nougeset te analiseer met die doel om

elementaandrywings akkuraat te kan voorspel.

Metodes wat gebruik word om mikrostrookantennes te analiseer strek van eenvoudige

transmissielynmodelle tot meer ingewikkelde en akkurate integraalvergelyking-metodes.

Die gemengde-potensiaal integraalvergelyking-formulering is een van hierdie akkurate

metodes wat dit moontlik maak om arbitrere vorme van mikrostrookantennes te

 
 
 



analiseer, met enige kombinasie van frekwensie en dielektriese substraatdikte. Die

metode neem ook die effekte van verliese, oppervlakstrome en wedersydse koppeling

tussen verskillende elemente van 'n samestelling in agoVolgens die formulering word die

mikrostrookantenne met 'n integraalvergelyking gemodelleer wat dan met die momente-

metode opgelos word. Die mees veeleisende deel van die integraalvergelyking-metode

is die numeriese implementering van die metode self en daarom word baie aandag in

hierdie verhandeling daaraan geskenk. Om die akkuraatheid van die implementering te

bevestig, is oppervlakstroomverspreidings op reghoekige geetste stralingsvlakantennes

bereken, en met reeds-gepubliseerde berekende resultate vergelyk. Goeie ooreenkoms

is verkry. Die akkurate integraalvergelyking-metode is hiema gebruik om draadrooster-

antennesamestellings te analiseer. Die metode maak dit moontlik om die

stroomverpreidings (in effek die elementaandrywings) op die strukture akkuraat te

bereken. Stralingspatrone word direk van hierdie strome, in die teenwoordigheid van die

dielektrikum en grondvlak, bereken, en is in effek eksak behalwe vir eindige-grondvlak

effekte. Om teoretiese resultate wat met behulp van die analise-metode verkry is, te

verifieer, is draadrooster-antennesamestellings vervaardig en gemete en berekende

stralingspatrone vergelyk. Goeie ooreenkoms tussen die berekende en voorspelde ko-

polere stralingspatrone is gevind, terwyl selfs die kruis-polarisasie gedrag in gevalle met

groot grondvlakke, redelik goed voorspel kan word.

Die feit dat "numeriese eksperimentering" nou op mikrostrook draadrooster-

antennesamestellings uitgevoer kan word om elementaandrywings te bereken, bring mee

dat daar nou doelgerig ontwerp kan word vir verlangde stralingseienskappe van sodanige

antennes.
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The purpose of this preface is not to replace the introductory chapter, but rather

intended briefly to point out to the reader the structure of the thesis. The principal

contributions contained in the thesis are stated in Section 3.8, Section 4.5 and Chapter 5.

Chapter 1 introduces the topic of the thesis and outlines its aims. Detail on the contents

of any chapter is given in the introductory section of that chapter. Chapter 2 can be

considered background information, with details of the author's contributions contained

in Chapters 3 and 4.

 
 
 



An antenna is a device that (depending on one's viewpoint) uses currents and voltages

from a transmission line, or the E and H fields from a waveguide, to launch an

electromagnetic wavefront into free space or into the local environment. The antenna

acts as a transducer to match the transmission line or waveguide to the medium

surrounding the antenna. The launching process is known as radiation, and the

transmitting antenna is the launcher. If a wavefront is intercepted by an antenna, some

power is absorbed from the wavefront, and the antenna acts as a receiving antenna. To

obtain certain radiation characteristics (for example, high directivity, narrow beamwidths,

low side lobes or steerable beams), several antennas can be arranged in space and

interconnected by a feeding network. Such a configuration of multiple radiating elements

is referred to as an antenna array. The design of an array involves the selection of the

array elements and geometry, as well as the element excitations. The feeding network

to obtain the desired excitations can become quite complex, and hence expensive. One

possible alternative is to make use of microstrip antenna arrays. Microstrip antennas are

thin and lightweight radiating elements, formed by a substrate which is backed by a

metallic sheet, referred to as the groundplane. Thin metallic conductors are then

deposited on the substrate by printed circuit techniques.

Microstrip patch arrays, however, have restricted bandwidth and can sometimes

 
 
 



Chapter 1

exhibit undesirable polarization characteristics. Microstrip wire-gridl antenna arrays, on

the other hand, combine all the usual benefits of patch-type radiators with adequate

cross-polarization control and good bandwidth. Wire-grid arrays, examples of which are

shown in Figures 1.1 and 1.2, are composed of staggered interconnected rectangular

loops of dimensions a half-wavelength by a wavelength (in the presence of the dielectric).

It is because of its appearance that these arrays are often referred to as brick-wall arrays.

It is argued that the excitation is such that the radiation due to currents on the short

segments (the vertical segments in Figure 1.1) combine constructively, while that due to

currents on the longer segments cancel. The wavelength-long segments are considered

to act as transmission lines. It is because of this that the short sides are regarded as

discrete elements of an array, fed via microstrip transmission lines. Element excitations

may be controlled by varying the widths of the short elements, thereby obtaining a

desired aperture distribution. While considerable success has been achieved in the design

of these antennas, published work has been either of an entirely experimental nature or

based on approximate network models. It is the purpose of this thesis to perform an

almost rigorous numerical analysis of these micros trip wire-grid antenna arrays. The

analysis will be done using a moment method solution of an integral equation

formulation of the problem, due to Mosig and Gardiol [2,3,4]. A detailed exposition of

this method is given in Section 2.3. By far the most demanding part of the integral

equation analysis is its actual numerical implementation. Published information on the

latter, in order to satisfy the space restrictions associated with journal articles, essentially

takes the form of suggestions on how to overcome numerical difficulties. There are

1 The wire-grid antenna array principle was derived some years ago by Kraus [1].
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Figure 1.1 Example of a microstrip wire-grid antenna array. A.eJ! is the wavelength in the presence of the
dielectric.

 
 
 



 
 
 



REVIEW OF EXISTING ANALYSIS TECHNIQUES FOR MICROSTRIP

ANTENNAS

In this chapter we will give a review of existing analysis techniques for

microstrip antennas. Widely used approximate models and some of their

shortcomings are discussed in Section 2.2, leading to a review of the more

accurate integral equation methods. A discussion of the formulation used in this

thesis will then be given in Section 2.3. However, details of numerical algorithms

and other computational aspects are deferred to Chapter 3. The present chapter

describes existing formulations and can be considered the technical background

to the thesis work.

2.2 CLASSIFICATION OF EXISTING TECHNIQUES FOR THE ANALYSIS OF

MICROSTRIP ANTENNAS

To date, several models for the analysis of microstrip antennas have been

developed. Some of these models are restricted to geometries such as rectangular

or circular patches, while others are restricted in terms of structure size or

attainable accuracy. These models range from simplified ones, such as

transmission-line network models [5]where the antenna is divided into components

(eg. T-junctions, hybrid junctions) and the effects of their individual network

 
 
 



2.2 Classification of existing techniques

models are combined using conventional scattering matrix theory. This method

can provide reasonable radiation pattern predictions for simplified structures,

however, network models for the individual components can be rather difficult to

compute and therefore this method is not easily extendable to complicated

geometries. Furthermore, a detailed analysis is needed in any case to include

phenomena such as radiation and surface waves into these individual network

models.

Widespread use is also made of the cavity model [6]. Hereby, the model used

in the study of resonators is extended to study radiation, the antenna radiating at

the resonant frequency of the equivalent cavity. This model may be expanded to

include the complete set of cavity modes (multimode cavity theory) and dielectric

losses by placing a lossy equivalent dielectric in the cavity. The effects of surface

waves may also be included, albeit approximately. The cavity model provides a

means of predicting, with reasonable accuracy, impedances and radiation

characteristics of thin separable structures. This model however, cannot be used

to consider the effects of external mutual coupling between different elements of

an array of such antennas and falls short of accurately predicting behaviour in the

case of electrically thick substrates.

In the more accurate and sophisticated approaches, the micros trip antenna is

modelled by an integral equation which is derived using appropriate Green's

functions and the boundary conditions on the electromagnetic fields. The method

of moments [7] is then used in solving for the unknowns (surface current and/or

associated surface charge densities) in these integral equations. In the moment

 
 
 



2.2 Classification of existing techniques

method application to these integral equations one arrives at expressions for the

determination of the impedance matrix elements. As pointed out by Pozar [8], it

is here that one has the choice of two approaches. The associated Green's

functions (Le. those for an electric current element radiating in the presence of

a dielectric slab backed by a groundplane) are usually derived in the Fourier

transform domain. The spectral domain approach uses the Green's functions in

this transform domain directly. The spatial domain approach uses the Green's

functions after these have been transformed to the spatial domain. In either case

the moment method solution yields the coefficients of the spatially distributed

current/ charge densities. A very clear comparison of the two approaches can be

found in [8,SectJV.B]. From the solutions of these integral equations, the radiated

fields can be determined using radiation integrals (in terms of the same Green's

functions used to formulate the integral equations). There are many different

forms of integral equations; the most common being the electric field integral

equation (EFIE) and magnetic field integral equation (MFIE). The EFIE

enforces the boundary conditions on the tangential electric field, while the MFIE

enforces the boundary conditions on the tangential magnetic field. When both

vector and scalar potentials are used in the formulation of especially the EFIE,

it has become customary to refer to it as the mixed-potential integral equation

(MPIE).

 
 
 



2.3 DETAILED EXPOSITION OF THE FORMULATION USED IN THIS THESIS

There has been little information published on the relative

advantages/disadvantages of the spectral-domain approach over the spatial-

domain approach, and vice versa. Numerical difficulties associated with one

approach are not entirely avoided through use of the other, but simply manifest

themselves in another form [8]. It is true, however, that the spectral-domain

approach applications have been limited to a few simple shapes. Especially for

more general shapes, it has recently been concluded that [9] "unless a

breakthrough is achieved in the acceleration of the slowly converging double

spectral integrals that arise - the spectral domain approach is not competitive in

terms of efficiency with the state-of-the-art space domain methods". This view is

 
 
 



2.3 Detailed exposition of the formulation used in this thesis

perhaps further strengthened by the improvements in the "analytical forms" of the

spatial domain approach [10]. At any rate, the spatial domain formulation of

Mosig and Gardiol [5] has been used in this thesis. The method allows for the

analysis of arbitrarily shaped patches (Figure 2.1) with no intrinsic limitations on

frequency and dielectric thickness. Mutual coupling between different elements

of an array is automatically taken into account, while the effects of surface waves

as well as dielectric and ohmic losses are included. The groundplane and

dielectric slab, however, are assumed to extend to infinity in the transverse

directions, and the formulation expects the substrate to be non-magnetic, isotropic

and homogeneous. The microstrip antenna is modelled by an integral equation,

where the unknown is the electric surface current distribution. The Green's

functions forming the kernel of this equation are that for an electric current

element radiating in the presence of a dielectric slab backed by a conducting

groundplane, the element being located at the surface of the slab.

2.3.1 The mixed-potential integral equation

The integral equation is formulated in the spatial domain using vector and

scalar potentials, hence the term mixed-potential integral equation (MPIE).

Introducing expressions for the potentials in an equation relating the total

tangential electric field to the electric surface current, yields the following

expression for the MPIE [3]:

 
 
 



i x (jCi) f GA' J,dS' + Vf Gy qsdS' + Zs J, ) = i x E- (2.1)
So So

where the patch extends over the part of the z=0 plane denoted by So' EC denotes

the excitation electric field, while GAl and Gv represent the Green's functions

still offers a good approximation. (J. is an effective conductivity that includes

tables (typically one fourth); 6 represents skin depth and is approximated by

[2/( Ci)J.1.(J ·)]1/2 where Ca) is the working frequency and J.1. the permeability.

1 In this thesis bold overlined characters denote dyadics while vectors will be represented by bold
characters.
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G:(r/r') = l10 f Jo(i..R)~e -Uozdi..
21t 0 DTE

Gr;(r/r')

where J,Lo = 411" • 10-7 is the permeability of free space, In is the Bessel function

 
 
 



Uo = (A2_~)1/2, U = (A2_€~)1/2, ko is the free space wavenumber, h the substrate

r = ~ + yY and thus ¢ = tan-t{(y - y')/(x - x')}. For the case of a lossy

dielectric, €r = €/ (1 - jtancS) where2 tan cSis the loss tangent. Likewise, since a

GYJ(r/r/) = G:(r/r/)

G::(r/r/) = 0

Gf(r/r/)

Since only horizontal currents are considered, components G~z,Gr and G~zneed

••
Gy(r/r/) = -1-f Jo(AR) A N e -"o%dA

21t€o 0 DTEDTM

2 a in this expression should not be mistaken with skin depth also denoted by a.

 
 
 



Closer inspection3 of the Green's function integrands, reveals the existence of

10 koPr
= J F(A)dA + J F(A)dA + f F(A)dA

o 10 loP,
J F(A)dA
o

it is possible to address these problems separately. Firstly, in the interval [0, kol

the square root, (A2 - ~) 1/2, appearing in the denominator of the integrands,

introduces a discontinuity in the derivative at A= ko. This corresponds to a branch

point4 on the complex plane kp where kp =A + ju. Numerical difficulties

3 Section 3.2 gives graphical illustrations.

4 Section 32.1 discusses branch points.

 
 
 



DTE has no zeros and Drn has only one (corresponding to the zero-cutoff TMo

surface wave) if f[GHz] :S 75/{h[mm]( €/ _1)1/2}. In this thesis it will be assumed

is the case for Gv, G;'x, and G;'Y), it can be shown [4] that the singularity is

bounded to the interval [ko , ko(€r' )1/2] which justifies the subdivision proposed

plane kp; in the lossless case this singularity lies on the A-axis itself. Two

a singularity in the Green's function integrand at Ap + jvp can be extracted by

writing the integral as

loR loR loRJ F(J..) dJ.. = J [F(J..) - Fsing(J..)] dJ.. + J F mag(J..)dJ..
10 10 10

 
 
 



Numerical root-finding techniques yield lp + jvp while Res is the residue of Fat

this pole. The function Fsingcan be integrated analytically, Le.

while [F(l) - Fsing(l)], being a well-behaved function (call it the difference term),

intervals [0 , ko] and [ko , ko( € r' )1/2]. Finally, in the interval [ko( € r' )1/2 , 00] the

 
 
 



2.3 Detailed exposition of the formulation used in this thesis

averages [14], can be used to numerically evaluate these integrals. This method

will be the subject of Section 3.2.3.

The development of accurate numerical techniques for the evaluation of the

Green's functions is an essential (and by far the most demanding) part of the

overall process.

2.3.3 Basis and testing functions

By expanding the unknown surface current distribution over a set of basis

functions and testing the integral equation against a set of testing functions, the

MPIE may be solved with the method of moments [7]. Careful consideration

should be given when choosing these basis and testing functions since correct

choices are essential to the accuracy of final results. When no a priori assumptions

about the surface current distribution on the microstrip antenna can be made,

subsectional basis functions (as opposed to entire-domain basis functions) have

been found to offer best results; in particular, rooftop basis functions have been

used successfully (15]. The surface of the arbitrarily shaped microstrip antenna is

divided into elementary cells called charge cells (Figure 2.2); two adjacent charge

cells forming a current cell on which one rooftop basis function (Figure 2.3) is

supported. Although equal cell size is not a condition, computation time increases

for cases of unequal cell size. The components of the surface current are then

expanded over basis functions Tx and Ty as follows:

 
 
 



{
I - lxi/a

TJ;{r) = o
Ix I < a , Iy I < b/2

; elsewhere

and a similar expression holds for Ty(r). Ixj and Iy; are the unknown surface

1 { M

Ps = jCiJab E Ixj[II{r - r;) - II{r - r~)]
i-I

(2.18)
N }+ E IYi [II(r - r,;) - II(r - r,j)]

j=l
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I

Figure 2.3 X-directed rooftop basis function and the razor testing function. The associated charge distribution
over the x-directed cUn'ent cell is also shown.

 
 
 



as shown in Figure 2.3. The centre of test segment Cxj associated with the j'th x-

directed current cell will be denoted by r~ with its ends at r~- and rxj+.

elementary point sources. r;. X(r / rj) is then the x-component of the vector potential

at r created by an x-directed rooftop distribution of surface current at rj, whereas

rv(r/roj) is the scalar potential at the same observation point resulting from a

rectangular distribution of unit surface charge at roj. The discrete Green's

A similar expression holds for rJ/. Sxj represents the surface of the current source

cell centred at rxj while the charge source cell centred at roj extends over Soj.

 
 
 



 
 
 



c5ij is the Kronecker delta, v<e) the excitation vector and Zo the free space

characteristic impedance. An expression for err is obtained by interchanging

couples (x,y), (a,b) and (M,N) within the expression for Cfj; reciprocity,

furthermore requires that for cells of equal size, Cn = Crr. We therefore have a

Mosig and Gardiol have shown [2] that for distances I rxi - rxj I much greater

than the dimensions of a charge cell, the following approximation for the integral

10ct 3094-
('=:,Q3cJbt-

 
 
 



f r:(r/ rZj) "0 dx - "0 ar:(rzi rZj)

Cz/

diagonal terms [16]. Secondly, for large source-observer distances, the discrete

Green's functions may be approximated by the following analytical expressions5:

functions appearing in the integrands of expressions (2.19) and (2.20) are only

dependent on the distance between source and observer6• It is therefore possible

maximum linear dimension of the etched radiator, and to interpolate between the

5 Sections 3.3.1 and 3.3.2 illustrate the validity of these approximations.

6 On the other hand, discrete Green's functions are also dependent on source-observer orientation.

 
 
 



accurate for thin substrates 7; more complex feed models valid for thick substrates

J. = i ..!-Sgn(X)( 1 - ~ ) + j ..!-sgn(y)( 1 - ~ )
4b a 4a b

current (as opposed to the charge) to v<e) can usually be neglected, otherwise it

7 Up to about A/IO thick. This model is used in this thesis since we are primarily interested in
computing the relative distribution of current on the structure (and hence array aperture distribution) rather
than accurate input impedance computations which require considerably more computational intensive
excitation models.

 
 
 



must be computed from the expression for r~x (rAY) with Jex (Jey) replacing

Tx (Ty). This model was developed to be compatible with the basis functions, and

thus, the elements of the excitation vector may be obtained from the matrix

current to v<e) cannot be neglected) computation mentioned above [2]. If we

that the contribution of the excitation current to v<e) is negligible. The matrix

~ appearing in expressions (2.15) and (2.16). Matrix C is ill-conditioned, so that
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2.4 Summary

of the spatial domain mixed-potential integral equation formulation of Mosig and

Gardiol [4] was then given. This formulation enables us to do an almost (except

for finite groundplane effects) rigorous analysis of microstrip antennas. It permits

for the analysis of complex-shaped microstrip radiators with any combination of

dielectric thickness and permittivity; dielectric and ohmic losses as well as surface

wave effects are also automatically included. There are in principle no limitations

on frequency and the analysis remains accurate at frequencies other than some

centre-frequency at which a particular design is done. However, to obtain

quantitative results this formulation has to be implemented numerically; such

numerical aspects form the subject of Chapter 3.

 
 
 



COMPUTATIONAL ASPECTS OF THE SPATIAL DOMAIN

FORMULATION IMPLEMENTED

3.1 INTRODUCTION

It was pointed out in Chapter 1 that the actual numerical implementation of

the integral equation analysis of micros trip radiators requires substantial effort.

Since relatively few details are available elsewhere, the present chapter is devoted

to this aspect.

Numerical techniques needed in the construction of the Green's functions will

receive close attention in Section 3.2, while discrete Green's functions defined in

Chapter 2 will be discussed in Section 3.3 regarding selfterm evaluation and the

possible use of approximations. The construction and solution of the moment

method matrix equation will be the subject of Section 3.4, while Section 3.5 is

concerned with routines used in numerical integration. Interpolation, used in the

evaluation of the discrete Green's functions in order to reduce computation time,

is discussed in Section 3.6. In particular, the tabulation scheme and interpolation

itself will receive attention. Integrals in far-field radiation computation are not

suited to standard numerical integration routines, necessitating the use of the

asymptotic techniques discussed in Section 3.7.

An effort has been made in this chapter to graphically illustrate why numerical

difficulties arise and how these are remedied. All computations performed for

such illustrative purposes in this chapter were done at 1.206 GHz for

 
 
 



€ r= (4.34, - 0.0868). The effective conductivity (a*) was taken as acui4 where

acu=5.76xl07 mhos/rn.

..
G:(r/r') = Gf(r/r') = ~o f JoCAR)..J:.-d'A

2'Jt 0 DTE

..
Gy(r/r') = -1-f Jo('AR) 'A N d'A

2'Jt€o 0 DTEDTM

 
 
 



Figure 3.11 shows the integrand of 21f/J1.o G~x as a function of i../ko at 1.206 GHz

in kp = i.. + ju. The scalar potential counterpart, i.e. the integrand of 21f€o Gy as

to

= f F(A)dA +
o

koPr

f F(A) dA + f F(A) dA
ko koPr

f F(A)dA
o

In the remainder of this section the problematic behaviour of the Green's

function integrands in each of these sub-intervals will be illustrated, and proposed

1 All figures in this chapter were generated by the author and are original.
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Figure 3.1 The vector potential Green's function integrand, i.e. the integrand of 2tr/lJoG:t for
e,.= (4.34,-0.0868), h/A.o=0.07 and R/A.o=0.5.
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Figure 3.2 The scalar potential Green's function integrand, i.e. the integrand of 2tr€oGv for
e,.=(4.34,-0.0868), h/A.o=0.07 and R/A.o=0.5 atf = 1.206 GHz.

 
 
 



3.2.1 Interval [0 , 1\0]

The term Uo = (A2 - ~)1/2 appearing in the expressions for DlE, DTM and N

introduces a branch point at A= ko. To define the term "branch point", let us

consider a complex plane kp where kp = A + jv. From Appendix B we recall

that integration along the A-axis (as in (3.1) and (3.2), for instance) is a special

case of the complex integral along a path C on the kp -plane. Therefore, Uo

transforms to

on this plane. We will now attempt to illustrate that the square root of a complex

number is a multi-valued function. Consider for the moment a general complex

number kp' Now let us take the square root of kp: k//2=1 kp I 1/2 ei4J, where

(/)=(6t12 + m7T)=6/2 and 6=arg(kp); 61 being one possible value of 6. Examine

the behaviour of kp 1/2 as kp attains values moving around the origin on a circle

of unit radius. For 6 = 0 we have kp 1/2 = 1, since I kp 11/2 = 1. Now if 6

increases along the unit circle, we arrive back at the starting point after one

revolution, where 61 = 0, m = 1 and kp 1/2 = -1 !. Therefore k//2 has two possible

values (+ 1 and -1) for kp =(1,0), illustrating the multi-valuedness of the square

root2 of a complex number. The origin whose encirclement produces the multi-

valuedness is defined as the branch point. Hence, kp = 0 represents the branch point

for k//2 whereas application of this theory to (3.7) leads to the conclusion that

2 In similar fashion it may be shown that multi-valuedness occurs for general fractional powers.

 
 
 



kp = ± ko represents it's branch points. Since this root appeared in both Green's

derivatives seen at I.. = ko. Standard numerical integration routines may be

10

JF(A)dA =
o

2nJ F(kocost) ( -kosint)dt
1.5n

Since the integrand of Gv contains DTM in the denominator (3.2), a singularity

due to the existence of the dominant TMo surface wave mode, appears in the

interval (ko , ko(€r' )1/2], as discussed in Section 2.3.2 and seen from Figure 3.2

 
 
 



real i..-axis on the complex plane kp for cases of moderate dielectric loss, while

follows: Jo(i..R)i..N/(DrnDlM) = F(i..) = [F(i..) - Fsing(i..)]+ Fsing(i..) where

This leaves kpp and Res to be determined. The present author has used Muller's

method [19] with deflation to determine kpp - a root of the univariate complex

function DlM(kp); this method is numerically implemented in the IMSL routine

where C is any closed path around the pole at kpp• A condition, however, is that

function F(kp) must be analytic inside C except at kpp [21]; a function F(kp) is

said to be analytic in a domain D if F(kp) is defined and differentiable at all

points of D [21]. The residue in (3.9) is written in the form of a complex line
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b dk (t)
Res = Res {F(k

p
) ,k

pp
} = _1_. fF(k

p
(t» p dt (3.10)

21tJ dta

where kp(t) = A(t) + jv(t), t f [a,b]. Since C may be represented by any closed

path around kpp, it is convenient to choose a circle. Then we have A(t) = r cos t

and v(t) = r sin t as the parametric equations; t f [0,21/'"}and r is the radius of

borders of the circle except at kpp' Figure 3.5 now shows the normalised distance

Ikpp/ko - 11between pole kpp and the branch point at A=ko (discussed in the

previous section) as a function of dielectric thickness (hiAo).It can be seen that

violating the analyticity of F(kp). With the use of (3.10) and careful selection of

1.206 GHz (ko=25.2753) for h/Ao=0.07, R/Ao=0.5 and fr=(4.34,-0.0868), we

have (for r=1.0153 m-1) Res = (0.47323,-0.01815) where

kpp= (27.3059, -0.052039).

 
 
 



Once kpp and the residue are known, the pole in the Gv integrand may be

extracted according to the technique described above; Le.:

loP, leap' loP,
J F(l)dl = J [F(l) -Fsing(l)]dl + f Fsing(l)dl
10 10 10

Fsing is analytically integrable as shown in (2.14), while the difference term, which

is a well-behaved function, may be integrated numerically. Although the

difference term itself is well-behaved, the terms F(A) and Fsing(A) become singular

at kpp• In the lossless case, to numerically evaluate the respective terms at kpp

before subtraction, a small increment is added to the argument A at the

singularity. In this way the difference term is evaluated at kpp + 0 where 0 -+ o. An

infinite derivative in the difference term integrand at A =ko may be eliminated by

At this point, we are able to accurately determine the integrals in (3.1) and

(3.2) for 0 S A S ko(€r' )1/2. This leaves the interval A > ko(€r' )1/2 which is the
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Figure 3.5 Nonnalised distance between the pole (due to DTM) and the branch point (due to uoJ as a
function of dielectric thickness, i.e. Ikp/ko - 1I (hi 10),

0.6
0.5
0.4
0.3
0.2
0.11 -o~1

.J'> -0.2
•••• -0.3
'=" ..Q.4;: .•. -0.'

I -0.6
'0 -0.7
"" ..().8

-0.9
-1

-1.1
-1.2
-1.3
-1.4

o 0.2
real put
imagiDary pan

Figure 3.6 27reoGv difference tenn integrand after substitution 1 =koeosh t. F( 1) and FsingC1) are defined
in Section 3.2.2.
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3.2.3 Method of averages in the interval [ko(€r,)lj2 ,00]

..f g(~R)f(~)d~ = L
a n-O

a+(1I+1}p/2f g(~R)f(~)d~
a+llp/2

 
 
 



Gardiol [14] suggested the use of the large-argument approximation

In(i..R) ~ [2/(7ri..R)]1/2cos(i..R-1l"/4-mr/2) to estimate the zero's of the Bessel

~ •.•[<m-l) +0.75 + n l~m 2 R
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m m'th ZERO OF JoO.) APPROXIMATION: ~m % ERROR

1 2.4048255576 2.3561944901 2.0222

2 5.5200781103 5.4977871437 0.4038

3 8.6537279129 8.6393797974 0.1658

4 11.791534439 11.780972450 0.08957

5 14.930917708 14.922565104 0.05594

6 18.071063968 18.064157758 0.03822

7 21.211636629 21.205750411 0.02775

8 24.352471531 24.347343065 0.02105

Table ,j.1: Zero's of J A determined with ZREAL 20 and 3.14 res ectivel .

for n > -1. This identity was confirmed for R values ranging from 2.0x10-6 to 2.0
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k
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Figure 3.10 Flowchart for the method of averages. Integration is peifonned according to (3.17) while the
weighted mean expression is given in (3.19).

0.500 . R=2,
co 5.00 ; R = 0.2f J,,(AR)dA = (3.16)

5.00 X 102 'R=2xl0-3
0 ,

5.00 X 105 ; R = 2 X 10-6

step is to perform an integration over a half cycle to determine I~.

 
 
 



for m = 1

~m

I~_l + J g(~R)f(~)d~ for m > 1
~m-l

I~ -1 is then determined through the use of a weighted mean

1 1 1 1
wm-1lm-1 + Wm 1m

1 1
Wm-1 + Wm

with both I~ and I~ -1 having been determined previously through integration and

with the weights given by w~ = (~tI~m)(cr+1-k).In general, (3.18) is given by

k-l Ik-1 k-l/k-lwm m + wm+1 m+l

k-l k-lwm + wm+1

simultaneously, leads to a value for I~, which will give an approximation of the

If the error criterion is not met, I~ (where m = k+ 1) may be determined through

integration, (3.17), and I~+1through repeated application of (3.19). In this way, an

 
 
 



oscillating function, Le. w~ = (~tI~m)(CZ+l-k).Now it is apparent that, for

~m > > ~1 and k a positive integer which may be large, the weight w~ could

1 1-1 1-1 1-1 1-1
100g10(WIII ) 1010g1O(1111 ) + 1010g10(WIII+I) 1010810(111I+1)

1-1 1-1
1010g1O(W", ) + 1010g1O(w",+I)

a = (a+2-k)loglo(~tI~m)+loglO(I~-1);4

b = (a+2-k)loglO(~tI~m+l)+loglO(I~:D

c = (a+2-k)loglO(~tI~m) and

d = (a+2-k)loglO(~tI~m+l). Then it follows that

1~ = _l_oa_+_lO_b= _lO_a l_l_+_l_O_b-_aJ = loa-cl_l_+_l_O_b-_a J
lOC + lOd lOc 1 + lOd-c 1 + lOd-c

 
 
 



{ ( ~I) (~I)}(<< +2 -k) loglo -- -loglo - 1-1 1-1
1+ 10 ~"'+I~.. 10loglo(l",+I) -loglo(l.. )

(<< +2 -k) {IOgIO(~) -lOglo(.5.!.)}
1+ 10 ~•.+I~"

real number even though w~-I and/or w~~~ may be very large. Consider a

situation where ~1=200, ~50=8x1<r, ~51=8.1x1<r, k=50 and ex =0; then we have:

w~g=7.923x1076 and w~~=1.438xlO77 whilst f3 = 1.815 !. Therefore, to avoid

of (3.19), we propose (3.22) as a means to determine I~.

[ko(c/ )1/2, 20kol for R/Ao=0.5. As seen from this figure, the amplitude of the

 
 
 



3.2 Construction of the required Green's functions

the scalar potential integrand; the imaginary part of this integrand, on the other

hand, shows oscillations almost comparable in amplitude to that shown by the real

part. A comparison between the imaginary parts of the respective Green's

function integrands can be drawn from Figure 3.12 - note the strong oscillations

shown by the imaginary part of the Gv integrand compared to that shown by its

vector potential counterpart. This observation will be referred to again in

Section 3.3.2 on discrete Green's functions. The effect of dielectric substrate

thickness on the G;'x integrand is shown in Figure 3.13. For a very thin substrate

(h=O.001Ao), the integrand diverges over part of the interval; however,

convergence as the argument moves out to infinity can be seen on Figure 3.14,

which illustrates the G;'x integrand for h=O.01Ao
5•

5 The same is observed for h=O.OOUo.
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The scalar potential discrete Green's function rv(r/roj) is the scalar potential

due to the j'th source cell and is defined by the dimensionless expression [3]

where SOj is the surface occupied by the charge cell centred at roj' and II(r/-roj)

a two-dimensional unit pulse function defined over Soj. Expression (3.23) gives the

scalar potential at r created by a rectangular distribution of charge centred at roj

 
 
 



consider the integrand for ry(r/roj) in (3.23); with roj=O and r=O, this integrand

becomes €o/ko Gy(O/r') II(r'-O) ~which is a function ofr' =(x' ,y' ,0). The real

1
21t(€,+ 1) €o I r-r'l

Since the Green's function Gy becomes singular in both its real and imaginary

parts6, the static function behaves similarly in that €r is complex. Now by writing

6 This does not come as a surprise when considering the oscillations shown by the imaginary part
(Figure 3.12) and keeping in mind the mechanism whereby these Green's functions become singular at the
source point.

 
 
 



from which it is clear that the singularity in the selfterm7 integrand has been

where ex =tan-1(b/a), with a and b the charge cell dimensions. Note that, as

ry{ToiToj) = €okof [Gy{To/T1) -GYs{ToiTI)] dSI + rvs{To/Toj) (3.26)
SO}

7 Recall that by "selfterm" we mean those for which the observation point for a potential due to a
specific source cell lies within the source cell itself.

 
 
 



air-dielectric interface, where pR=xi + ~ and R= (r+r)1/2.

integrand is to be integrated) centred at r~=(O,O) and observation points at

rxi=(2a,O) and rxi=(8a,O), respectively.
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directly applicable to rAY' The vector potential discrete Green's function r;"'X(r/rxj)

Sxj is the surface occupied by the current cell centred at rxj while an x-directed

segment Cxi (as seen in (2.22». The singularity within current cell Sxj may thus

appear at any point along Cxi' Figure 3.27 gives an illustration of the real part of
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versus R (pR = xi + 'fl and R = (x2+f)1/2), in other words, the observer being

discrete Green's function integrands for source cells at rxj = (0,0) and observation
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The moment method matrix (defined in Section 2.3.5) is ill-conditioned8 due

f r;; (r/ rx) ko dx '" ko a r;; (rx/ rXj)

ex;

8 A system of linear equations is said to be iII-eonditioned if small errors in the coefficients or in the
solving process have a large effect on the solution [21].

 
 
 



3.4 Moment method matrix equation

approximation, strictly speaking, does not apply for short distances between

current cells Sxi(rxi) and Sxj(rxj)' However, in these cases, the contribution of the

vector potential to the value of the matrix element is overshadowed by that of the

scalar potential, so that approximation (3.32) still applies. Consider, for example

the case: f=1.206 GHz, €r=(4.34,-0.0868), h=0.8 mm and a=b=6.666 mm for

which koar~x for an observer at r=(1.5a,0) and a source cell centred at (0,0) is

equal to (0.3018E - 04,0.1038E - 06), while the contribution of the scalar potential

to the matrix element is (-0.7777E-01,-0.1481E-02); keep in mind that

discrete Green's functions are dimensionless quantities. It can be seen that the

contribution of the scalar potential overshadows that of the vector potential in the

off-diagonal terms and the use of (3.32) will therefore not introduce a significant

error. In fact, for the same reason, (3.32) may even be considered for the diagonal

matrix elements, as has been confirmed by [16].

As outlined in Section 2.3.5 the moment method matrix is divided into four

submatrices. It has also been pointed out in the afore-mentioned section that for

charge cells of equal size Crr and Cn are equal. Under some circumstances

however, it may not be possible (or desirable) to discretize the upper conductor

with cells of equal size; in such cases Crr and Cn would not be equal.

The excitation vector is constructed according to (2.28) applying the same

approximation for r v as in the moment matrix case. Careful consideration should

finally be given to the solution process. In this case, since matrix C is ill-

conditioned, a conjugate gradient method [24] is used for the iterative solution of

the moment method system of linear algebraic equations.

 
 
 



Figure 3.38 Real parts of the actual integral and approximation (3.32) suggested by Mosig and Gardiol [2J
for f=1.206 GHz, e,.=(4.34,-0.0868); h=O.8mm and a=b=6.666 mm.
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shown in Figure 3.38.

 
 
 



3.5 INTEGRATION

Because numerical integration is such an important part of the analysis, it is

imperative that fast, accurate and reliable routines be used. The present author

has found that the IMSL integration routines [20] comply with these requirements.

3.5.1 Single integration

Single integrals are numerically evaluated through the use of the IMSL

routine QDAG [20] which is a general-purpose integrator that uses a

globally adaptive scheme in order to reduce the absolute error. It

subdivides the integration interval using a (2k+ I)-point Gauss-Kronrod

rule to estimate the integral over each sub-interval. The error for each

sub-interval is estimated by comparison with the k-point Gauss quadrature

rule. The sub-interval with the largest estimated error is then bisected and

the same procedure is applied to both halves. The bisection process is

continued until either the error criterion is satisfied, roundoff error is

detected, the sub-intervals become too small, or the maximum number of

sub-intervals allowed is reached. The subroutine QDAG is based on the

subroutine QAG by Piessens et al [25].

3.5.2 Double integration

Double integration is numerically performed by the IMSL integration

routine, TWODQ [20]. This routine approximates the two-dimensional

integral by iterated calls to QDAG. Therefore this algorithm will share

 
 
 



3.6 Interpolation

many of the characteristics of the QDAG-routine: the absolute and relative

error must be specified in addition to the Gauss- Kronrod pair which is

denoted by an integer between 1 and 6. The lower-numbered rules are

used for less smooth integrands, while the higher order rules are more

efficient for smooth oscillatory integrands.

For given material parameters and frequency, the Green's functions depend

only on the absolute distance from source to observer, R = I r - r' I. This fact

may be exploited through the use of an interpolation table to minimize

computation time. Values of the Green's functions are tabulated against a discrete

set of distances Rj (i = LN, where N is typically between 50 and 2509) varying

from the maximum linear dimension of the antenna (Rmax) to a minimum value

(Rmin). Interpolation may then be used to determine the Green's functions for any

source-observer distances ranging from Rmax to Rmin• Rmin may be chosen

arbitrarily provided it is several orders of magnitude smaller than the dimensions

of a charge cell. Tests performed by the author on discrete Green's function

selftenns for a =b =6.666 mm and Rmin values of LOE - 04 m and LOE - 11 m,

respectively, showed relative differences in the selfterm values on the order of

0.1%. Since the Green's functions become singular at R=I r-r' 1=0,evaluation

points (RJ for the interpolation table need to be concentrated around Rmin to

ensure accurate evaluation of the selfterrns in the moment method matrix.

9 Convergence tests may be performed to determine a value for N.

 
 
 



For Rmin = 1.0£-06 m, Rmax = 1.0£-02 m and N = 100, the first two entries in the

interpolation table, as shown in Table 3.2, will be at R1 = 1.0£-0610 and

R. = 10 (IOglO(~) + (i -1) [loglO(~~~~O~lO(~)])
I

10 Throughout this section, R will be given in terms of meters [m].

 
 
 



dimension of a charge cell: Rjnter= (a2+ b2)1/2. Values of Rj for Rjnter= 1.0E-03 and

N1 =N2=50 are shown in Table 3.2. N1 and N2 are the total amount of evaluation

 
 
 



By means of proper interpolation, computation time may be reduced

1 LINEAR LOGARITHMIC PARABOLIC COMBINING

(3.33) (3.34) (3.35) (3.33)&(3.34)

1 1.00E-06 1.00E-06 1.00E-06 1.00E-06

2 1.02E-04 1.09E-06 4.00E-06 1.15E-06

3 2.03E-04 1.20E-06 9.00E-06 1.32E-06

----- -------------------- --------------------- ------------------ ------------------
49 4.85E-03 8.69E-05 2.40E-03 8.69E-04

50 4.95E-03 9.54E-05 2.50E-03 1.00E-03

51 5.05E-03 1.04E-04 2.60E-03 1.18E-03

----- -------------------- --------------------- ~------------------ ------------------
98 9.80E-03 8.30E-03 9.60E-03 9.64E-03

99 9.90E-03 9.llE-03 9.80E-03 9.82E-03

100 1.00E-02 1.00E-02 1.00E-02 1.00E-02

Table .2 R's determined accordin to the four tabulation schemes discussed in Section 3.6. All distances1 g
are given in terms of meters [m].
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3.7 Numerical aspects in the computation of far-field radiation

no longer be set to unity. Consider the following situation: an observer is placed

at (r, ep, e = 90°) with the radiating antenna centred at the origin. For fixed

values of rand ep, the observer is now rotated from e = 90° towards e = 0°. This

implies that z now becomes large for e < 90° if r is large (Figure 2.1), and the

following situation arises: since Uois purely imaginary in the interval 0 ~ A < ko,

and z a very large real number, exp(-j(~ - A2)Z) causes rapid sign changes in this

interval. Furthermore, since Uois real for A ~ kowe have exp( - uoZ) -+ 0 and thus

the integration interval in effect reduces to 0 ~ A < ko. An example of a Green's

function integrand for z = 5.0 m is shown in Figure 3.40(b). This figure illustrates

the rapid sign changes and reduced integration interval just spoken of. From this

we conclude that standard numerical integration routines are not capable of

yielding accurate estimates of the Green's function integrals with large z values.

We therefore resort to asymptotic techniques to obtain approximate analytic

solutions to these integrals. Mosig and Gardiol [3] have found the method of

steepest descent [28] to be particularly suited to integrals associated with microstrip

structures. This method is based on the concept of deforming the integration path,

within certain limits, without affecting the value of the integral, to such an extent

that the main contribution to the integral can be attributed to small segments on

the new path. The integrand can then be approximated by simpler functions over

the important parts of the path, whilst the contribution over the other segments

can be neglected. If in the deformation of the integration path, singularities are

encountered, we must add (a) the residue when crossing a pole and (b) the

integral when encountering a branch point [29]. The method of steepest descent

 
 
 



I = J F(w) e[Oq(w)) dw
c

I = J J/'AR) 'An+1 g('A) e -"o(}.)2: d'A
o

Now if g(k,) is always an even function of kp the following identity holds [30]:

JI
n

('AR) 'An+1 g( 'A)e -"0(>')2: d 'A

o

g(kp) = l/DTE(kp), for which 3-D plots of the real and imaginary parts are

this particular function over a part of the kp -plane. To draw conclusions on

 
 
 



Figure 3.41 Real part of l/DTE(kp) where kp = ..t + jv.

Figure 3.42 Imaginary part of l/DTE(k p) where kp
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Figure 3.43 The real part of l/DTE(k,) shown in two planes: v = 0 and l = 0, where kp = l + jv.
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concluded that l/DTE(kp) is an even function of kp. In similar fashion, the other

forms of function g (that is 1/ (DTEDTM) and N/ (DTEDTM» were confirmed to be

I = f H~2)(kpR)f(kp) e -uo(kp)1. dkp
C

form of (3.36). In this regard, it is convenient to transform the complex kp-plane

into a new complex plane, w, by the relation: kp = kosin w [3]. Introducing

I = JH~2)(korsinesinw}f(kosinw} e -iAQrcoswcosokocoswdw (3.40)
C·

where C· is the transformed integration path. Assuming that f(kp) has a pole at

Apon the kp-plane, then with the transformed path C·, the pole is now located

at wp= 11"/2 +jcosh -1( Ap/ko) [3] whilst the branch points at kp = ± ko disappear

the following first order asymptotic approximation for ~2) [29]:

 
 
 



.[~. . e . n~ ~]2 -J "'OTsmSIDW----------e 2 4
1t korsinesinw

approximation will yield correct results even for the broadside direction e = O.

Therefore, making use of (3.41) and noting that eUn"/2) = jn, &"/4 =Ul/2 and

2j f(k sinw) e -jOcos(w-6) k sinwdw
1t nsine sinw 0 0

F(w) = jn 2'• J • f(kosinw) ko cosw
1t Q smesmw

and n = kor. The path C· may now be transformed to a steepest descent path CSD

transformation. From the particularities of the steepest-descent path ll, it follows

11 It is not within the scope of this text to derive these particularities; more details are given in [3].

 
 
 



that CSD crosses the pole at wp only when 8 > 8p = sin-1(ko/Ap)[3]. The integral

f = f + u( a - ap) f
C· CSD Cp

where U is the Heaviside unit step function12 and Cp a path surrounding the

pole at wp' A first-order analytical approximation for the integral along path CSD

-j/cor
I ""2jn+l cotanaf(ko sina) _e__

r

where Res is the residue of function f(kp) at Ap.It has been pointed out by Mosig

and Gardiol [3] that this asymptotic approximation is only valid if the pole is

located far enough from the saddle point, i.e. (kosin8 - Ap)r > > 1, otherwise a

modified saddle-point method must be used whereby the contributions of the pole

12 U(6) = 0 for 8 < 0 while U(6) = 1 for 8 ~ o.

 
 
 



coefficients lxi (i = L.M) and ~ (j= L.N). Mosig and Gardiol [3], applying (3.45),

M N

Ee = G:x (riD) La/xi eikogi
+ G:Y (riD) L b/Yi e

ikogj

i=l i=l

M N
E4> = G:x(rIO) La/xi eikogi

+ G:Y(rIO) L b/Yieikogj
i=l i=l

(
z ) exp(-J·k r)

= -j ~ cos4>fa(6) 0AO r

13 Ee and Eep for a RED are given in [3]. From this, G~x and G~x follow directly, while G~Y and GV
follow from rotational symmetry about the z-axis.

 
 
 



= _j (Zo) sin <I> .t; (e) exp( -j kor)
A e r
°

= -j(Zo)coS<l>.f. (e) exp(-jkor)
A ell r
°

cose
[cose - jTcotan(kohT)]

 
 
 



3.8 CONCLUDING REMARKS

The formal theoretical integral equation formulation of the micros trip antenna

problem as presented in Section 2.3 is but a relatively small first step in the

analysis problem. It is the numerical implementation of the analysis (and the

associated computer code development) that is the most cumbersome and time-

consuming part, and which requires substantial effort. Due to restrictions on their

length, journal articles contain a very limited amount of detail to aid in the latter

task. This chapter has provided such complete details required for direct

implementation of the formulation of [2,3,4], has illustrated graphically where and

why certain numerical difficulties arise, and how these may be handled. Such a

"pictorial guide" (for which all graphs were computed by the author), and the finer

points how to actually implement the numerical schemes, do not appear to be

available in the same detail elsewhere. The contents of the present chapter can

be summarized as follows: We saw that the required Green's functions, forming

the kernel of the integral equation, posed distinct numerical difficulties. These

were overcome by appropriate mathematical techniques, the applications of which

were discussed and illustrated in complete detail. In the solution of the integral

equation, it was mentioned that the introduction of discrete Green's functions

eased the computational task. A singularity problem in the selfterm evaluations

arose however, requiring the use of a pole extraction technique; the application

of this technique was illustrated. Since the construction of the moment method

matrix involves a large amount of computation, certain ways were described

whereby computation time could be reduced. This was achieved through

 
 
 



3.8 Concluding remarks

interpolation and the use of approximate expressions for the discrete Green's

functions. Illustrations were used to validate the use of these approximations.

Finally, far-field computational techniques were discussed and appropriate

expressions derived. Numerical techniques for the mixed-potential integral

equation method of microstrip analysis have therefore been developed and

implemented. This implementation is in the form of a computer code written in

FORTRAN.

 
 
 



4.1 INTRODUCTION

In Chapter 3 we discussed the numerical methods needed for the

implementation of the mixed-potential integral-equation formulation. This

implementation is now at our disposal for the analysis of arbitrarily shaped

microstrip antennas. Firstly, we will analyse rectangular microstrip patches and

give a comparison with known surface current distributions in order to verify the

present implementation. The method will then be applied to etched wire-grid

antenna arrays which have not yet been analysed rigorously. Theoretical results

will be given and discussed. A comparison with measured results will then be

given to verify the theoretical results.

4.2 VERIFICATION OF THE PRESENT ANALYSIS THROUGH COMPARISON

WITH KNOWN RESULTS

Rectangular microstrip patch antennas have been analysed rigorously and the

surface current distributions on these structures, at specific frequencies, are

known [2]. Consider a rectangular microstrip patch antenna with dimensions

60 x 40 mm on a dielectric substrate of thickness 0.8 mm and relative permittivity

€ r = (4.34, - 0.0868). An effective conductivity of a' = acui4 was assumed.

Rooftop subdomain basis functions will be used in the moment method expansion

 
 
 



4.2 Verification of the present analysis

and for this reason the patch is decomposed into 9 x 6 square cells referred to as

charge cells in Chapter 2 (Figures 2.2 and 2.3). In this case, these charge cells all

have equal size. A coaxial feed is used for the patch antenna and the coaxial

probe is located at the centre of the (2,2) charge cell, its position being indicated

by the bold dot in Figures 4.1 through 4.5. In [2], the surface current distributions

on this patch are shown at four resonances, as well as an off-resonance frequency.

According to numerical results given in [2], the first four resonance frequencies

are at 1.206 GHz (TMlO), 1.783 GHz (TMo1), 2.177 GHz (TMu) and 2.405 GHz

(TM20). Since microstrip patch computations were simply done in order to be able

to validate the computer code through comparison with the patch data given in

[2], the frequency was simply varied until the current distributions obtained

agreed with those in [2]. Such agreements were found at 1.210 GHz, 1.793 GHz,

2.1876 GHz and 2.398 GHz; all within 0.56% of the values given in [2]. This

discrepancy is often much less than what arises due to uncertainties in the

fabrication process and material parameters [3]. The code can thus be considered

validated. The real and imaginary parts of the surface current distributions on this

patch at these frequencies are shown in Figures 4.1 through 4.5. Feedpoints are

indicated and the numerical values given, correspond to the peak values of

current represented by the longest arrows. When compared, close correspondence

with published results [2] can be seen.

 
 
 



t 1

 
 
 



 
 
 



1 1 1

t 1 1 1 1 t
~ 1 1 1 t

I I 1 1 1 1 1 1.J,

l l

(b) Imaginary component. Maximum value = 1.799 A

 
 
 



 
 
 



 
 
 



4.3 THEORETICAL RESULTS FOR ETCHED WIRE-GRID ARRAYS

The implemented integral equation formulation is, of course, not restricted to

the analysis of patch antennas and is applicable to larger and more complex

micros trip structures such as etched wire-grid arrays. The purpose of this section

is to examine the behaviour of these brick-wall arrays in order to come to a better

understanding of their operation. We will examine current distributions on these

structures (the relationship between the actual current distributions on the wire-

grid structures and the coefficients which are solved for in the moment method

matrix equation, is given in Appendix E) and show the effects on the far-field

radiation patterns. Radiation patterns are determined directly from computed

current distributions and are essentially exact, except for finite groundplane

effects.

For the purposes of the analysis, the brick-wall arrays will be assumed placed

on the xy-plane with x-directed horizontal segments (long segments) and y-

directed vertical segments (short segments). Since the vertical segments radiate

the dominant vertically polarized electric field, the zy-plane represents the E-

plane (¢ = 90° in Figure 4.6). The H-plane then coincides with the zx-plane

(¢ = 0°). Radiation patterns will be determined in these principal planes!, as a

function of the angle on either side of the z-axis in the appropriate plane.

Theoretical results for specific antenna geometries will now be discussed.

1 Weare not restricted to these planes, however.
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4.3 Theoretical results for etched wire-grid arrays

4.3.1 AS-element unifonnly excited linear array

Consider the linear array shown in Figure 4.7 with t = 2s = Aeffand equal

vertical element widths wn = Aeff/20 (n= 1,2,..5). Aeffis the wavelength at some

centre-frequency fo in the presence of the dielectric substrate and groundplane.

The difficulty in determining Aeffis of course that it is not only a function of € l"

but also of the dielectric substrate thickness, frequency and specific line widths.

. Let us assume, for the moment, that we do not have access to a rigorous

numerical method such as this one. We would then have to consider an

approximation for Aeff (t), design and fabricate the antenna, measure the

performance and redesign until optimum performance is obtained. This trial-and-

error method may become time-consuming and expensive. To illustrate this,

suppose we were to design and fabricate a 5-element linear brick-wall array with

an approximate value for t obtained by assuming Aeff~ Ao/v"€;' (which assumes

the radiators are completely immersed in the dielectric). Use of the numerical

method to examine the current distributions along horizontal segments AE and

A' E', as well as along the vertical segments of this structure for a dielectric

substrate of thickness 0.8 mm and €r = (4.34, - 0.0005), at a frequency of 10 GHz,

reveals a distribution on the structure as shown in Figure 4.8. Note that this

approximation for Aeffdoes not give the desired 3600 phase shift along the

horizontal segments. The discontinuities in the current distributions occur at

points where the vertical segments are attached to the horizontal ones. For this

same case, the currents along the vertical segments are also shown in Figure 4.8.
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4.3 Theoretical results for etched wire-grid arrays

Note that due to structural symmetry, the currents on A I A would be the same as

that on E I E; similarly for B'B and D'D. Despite the fact that the vertical

elements have equal widths, their current amplitudes differ. This is due to the

incorrect selection of t. For these currents, the normalised H-plane radiation

patterns are shown in Figure 4.9. It can be seen that this approximation for t

does not give a desired radiation pattern and another approximation has to be

considered. If we had in fact fabricated the antenna, it would probably not have

fulfilled our requirements. However, using an implementation of the rigorous

integral-equation formulation, we can examine the performance of this antenna

before fabrication. We therefore alter t p.'err) and use the computer code to

examine current distributions until they are as shown in Figure 4.10. This amounts

to a value for Aefr of 1.19 Ao/V€;'. (In this same way, values for Aerr related to

specific geometries will henceforth be determined.) We can now define a quantity,

€err, so that Aerr = Ao/../€;cr where Ao is the free space wavelength. €err is an

effective relative dielectric constant accounting for the fact that the radiators are

on the air-dielectric interface of the microstrip structure. € err = 1.552 for the

present case, for which € r I = 2.2. The horizontal currents now provide the

correct "phasing" to the vertical elements and the latter have essentially equal

amplitudes due to their equal widths. From Figure 4.10 we can also see that the

currents along horizontal segments AE and A I E I are equal in amplitude but 180

degrees out of phase. For this reason, radiation due to these currents interfere

destructively in the far-field over a sector broadside to the array, the effectiveness

thereof determining the cross-polarization levels over the main beam. The

 
 
 



4.3 Theoretical results for etched wire-grid arrays

associated normalised H-plane radiation patterns for the 5-element brick-wall are

shown in Figure 4.11, with a beamwidth between first nulls (BWFN) of some 40°

and a side lobe level of -13 dB, which is to be expected from a uniformly excited

linear array. The cross-polarization level is below -55 dB for much of the main

beam and below -40 dB throughout.

From Figure 4.10 we notice that (with the feedpoint at C') when the

horizontal currents provide the correct phasing to the vertical elements, there is

a current minimum at the feedpoint. This implies a relatively high input

impedance. We therefore next examine the effect on the radiation patterns of

moving the feedpoint to an existing current maximum. The radiation patterns for

this structure with a feedpoint moved J...efff 4 along a horizontal segment, are

shown in Figure 4.12. These radiation patterns, with rather high levels of cross-

polarization, are highly undesirable. It was found that by moving the feedpoint the

current distributions on the structure are disturbed to such an extent that the

structure can no longer be considered resonant. A manifestation thereof can be

seen in the radiation patterns shown in Figure 4.12.

One of the reasons for wanting to utilise these brick-wall arrays, is to obtain

relatively broadband behaviour. In this regard, we examine the behaviour of this

specific 5-element linear array over the frequency band 9 (fl) to 11 GHz (fu). H-

plane radiation patterns at different frequencies in this band were determined and

are shown in Figures 4.13 and 4.14. According to [34], an antenna is defined as

broadband if the impedance and radiation patterns do not change significantly

over about an octave (fuffl = 2) or more; clearly from a radiation pattern
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Figure 4.10 Current distributions on the 5-element linear brick-wall array which was designed using the
numerical analysis method.
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Figure 4.12 Radiation patterns for the 5-element linear brick-wall array, with the feedpoint moved to a
position where a feedpoint at C I yielded a cu"ent maximum.
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Figure 4.13 Nonna/ised H-plane radiation pattems for the 5-element linear array at 9, 9.5 and 10 GHz. This
array was designed for a centre-frequency of 10 GHz.
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4.3 Theoretical results for etched wire-grid arrays

Using numerical experimentation a resonant structure was designed for which the

current distributions are shown in Figure 4.16. In this case, Aerr = 1.195 Ao/.f€/

(in other words, the effective relative dielectric constant for this case is 1.541).

Once again, the horizontal currents provide the correct phasing to the vertical

elements, and the latter have essentially equal amplitudes, due to their equal

widths. Normalised radiation patterns for this structure in both principal planes

are shown in Figures 4.17 and 4.18. In the H-plane we now have a BWFN of

some 30° and an increased number of side lobes. The side lobe level is still at

-13 dB with predicted cross-polarized radiation below the -47 dB level (-60 dB

over the main beam). In the E-plane, radiation is strongly affected by the

groundplane and is similar to that for a rectangular microstrip patch antenna [2].

Up to this point we have only been able to attain side lobe levels of -13 dB.

This is the lowest that can be achieved from uniformly excited linear arrays. From

array theory [34], however, we know that the side lobe level of a linear antenna

array may be reduced by introducing amplitude tapering in the element

excitations. In some arrays, however, this requires a complex, and hence

expensive, feeding network. On the other hand, the element excitations of these

etched brick-wall arrays may be varied by simply varying the widths of the vertical

elements: the wider the element, the higher the relative current amplitude

therein. This is investigated next.
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Figure 4.16 Current distributions on the horizontal and vertical elements of the 7-element linear an-ay
discussed in Section 4.3.2.
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Figure 4.18 Nonnalised E-plane radiation patterns for the 7-element linear brick-wall array discussed in
Section 4.3.2.
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experimentation, it was found that i = Aerr = 1.12 Ao/./'€;' yields the expected

 
 
 



4.3 Theoretical results for etched wire-grid arrays

case. This illustrates the ease with which the side lobe levels of these etched

brick-wall arrays may be reduced.

To examine the effects of feedpoint placing on the radiation patterns of these

tapered brick-wall arrays, a similar 5-element linear array was analysed. An

existing array, which had not been designed with the help of the integral equation

method, was used for this experiment. Although this antenna was initially

designed for a centre-frequency of 10 GHz, measurements showed that the

antenna had a minimum in ISui at 10.37 GHz. For this reason, we also analyse

this antenna at 10.37 GHz. Firstly, for the feedpoint at C' (Figure 4.19), the H-

plane radiation patterns are shown in Figure 4.22 (these patterns remind of the

radiation patterns which were obtained for the array discussed in Section 4.3.1

using an incorrect value for Acrr (Figure 4.9». Now, by moving the feedpoint of

this same array a distance of Acrr/4 from C' towards B', the radiation patterns

are modified to that shown in Figure 4.23. Thus, we have moved from a situation

of a local maximum at e = 0° to that of a minimum. This seems to suggest that

by carefully selecting the feed position, some degree of radiation pattern synthesis

might be possible.
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4.3 Theoretical results for etched wire-grid arrays

The current distribution on this structure, for a given set of material parameters,

is shown in Figures 4.30 and 4.31. From these figures, it can be seen that the

horizontal currents correctly feed the vertical elements and the latter have

essentially equal current amplitudes because of their equal widths. The E- and H- ,

plane far-field radiation patterns for these currents, on the structure represented

in Figure 4.29, are shown in Figures 4.32 and 4.33. From the H-plane radiation

patterns of this array, we notice that the cross-polarization characteristics have

improved from that shown by the 4-level array (Figure 4.27). We also note that

the side lobe level has increased from -23 dB to -13 dB, since the collapsed

distribution in the H-plane is now effectively uniform (because the array lattice

is completely filled). The increase in the sidelobe levels is accompanied by a

decrease in the BWFN (compared to the previous case) to some 30°. The BWFN

in the E-plane has become approximately 100°, and a sidelobe at -19 dB has

formed. The behaviour is different from that observed for the linear arrays simply

because for the present planar array case the array aperture transverse dimension

is larger. This observation leads naturally to consideration of the even larger

planar array in Section 4.3.6.
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assumes the dielectric substrate and groundplane2 to extend to infinity in the

2 Unless stated otherwise, t~e dielectric substrate and metallic groundplane have the same transverse
dimensions
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4.4 Measured results for etched wire-grid arrays

4.4.1 A 5-element linear tapered etched brick-wall array with t ••Acff

The geometry of this array is shown in Figure 4.19 and theoretical results are

discussed in Section 4.3.3. An existing array which had been etched on RT / duroid

dielectric substrate backed by a metallic groundplane with transverse dimensions

(according to Figure 4.37) of X = 7.47 Aeff and Y = 3.18 Aeff was used for this

experiment. Since this 5-element array itself has transverse dimensions of

ax = 4.7 Aeff and ay = 0.64 Aeff (in other words, ax = 4.05 t and ay = 0.55 t

since t '* Aeff for this specific arraf), the structure has a peripheral zone with

widths wI = 1.27 Aeff and w2 = 1.385 Aeff• This is certainly an electrically small

groundplane. The H-plane co-polar radiation pattern of this structure was

measured at 10 GHz and a comparison between measured and predicted results

is shown in Figure 4.39. The comparison is surprisingly good when considering the

limited dimensions of the groundplane and dielectric substrate. In order to more

accurately predict the radiation patterns of this array, one would need to

considerably increase the transverse dimensions of the dielectric substrate and

groundplane. Although it would be difficult to enlarge both the dielectric substrate

and metallic groundplane of this "already-fabricated array", it is possible to

enlarge the groundplane portion only. This was accomplished by simply using

domestic tin foil to carefully cover a large non-conducting sheet, and securing the

micros trip antenna on the conducting tin foil. The important matter is that there

be electrical contact between the metallic groundplane of the original microstrip

structure and the tin foil. The groundplane now has dimensions of X = 24.21 Aeff

3 Also bx = 4.0 Aeff and by = 0.5 Aeffo

 
 
 



4.4 Measured results for etched wire-grid arrays

and Y = 19.13 Acer. One must of course, keep in mind that this is not the ideal

setup since the dielectric substrate still has not been enlarged. Nevertheless, the

H-plane co-polar radiation pattern of this antenna was measured and a

comparison with predicted results is given in Figure 4.40. It is interesting to note

that even for the array secured on this "home-made" groundplane, the

correspondence is much closer than that shown in Figure 4.39. This seems to

suggest that finite groundplane effects are primarily responsible for the deviation

between measured patterns for structures with electrically small groundplanes and

their computed patterns (which assume infinitely large groundplanes).

In general, the cross-polarized radiation pattern of a micros trip antenna is very

difficult to predict accurately and is sensitive in practice to the size of the

groundplane. Nevertheless, the H-plane cross-polarized radiation pattern of this

array on the large groundplane was measured and a comparison with predicted

results is shown in Figure 4.41. The overall angular behaviour of the cross-

polarization is correctly predicted, but not the details.

For this 5-element linear tapered etched brick-wall array, 5 megabytes of

memory was needed with approximately 22 hours of CPU execution time.
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Figure 4.39 Measured and predicted H-p/ane co-polar radiation pattems for the 5-e/ement linear brick-wall
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e: - (2.2,-0.001)
r

f = f = 10 GHz
o

_I~_~I-~~ *-A. ff

FEED POINT ) 4
e

NORMALISED H-PLANE CO-POLAR RADIATION
o

20 40 60
THETA (DEGREES)
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4.4 Measured results for etched wire-grid arrays

4.4.2 A 5-element linear tapered etched brick-wall array with t = Aell

This array which is described theoretically in Section 4.3.3 was etched

according to Figure 4.37 on a groundplane with dimensions of X = 13.47 Aerr and

Y = 9.85 A err, so that wI = 4.65 Aerr and w2 = 4.71 Aerr• Taconic [37] substrate

with €r' = 2.2 and h = 0.787 mm was used for this array. The H-plane co-polar

radiation pattern is shown in Figure 4.42. Close correspondence between

measured and predicted results is observed for this array, especially at smaller

angles: finite ground plane effects become greater at larger angles. The

encouraging fact about these results is that the first side lobe level at -23 dB is

closely predicted. Figure 4.43 shows the measured and predicted E-plane co-polar

radiation patterns. Since the E-plane pattern is broad, and there is "hard"

diffraction from the groundplane edge in this plane, one expects the groundplane

to have a strong effect on this pattern (as for the case of rectangular microstrip

patches [2]). This expectation is borne out in Figure 4.43.

The H-plane cross-polar radiation pattern of this tapered array was measured

and a comparison with computed results is given in Figure 4.44. Due to finite

groundplane effects, however, the correspondence between theoretical and

practical results is not entirely satisfactory.

Measured and predicted radiation patterns for this array at a frequency of

11 GHz are shown in Figure 4.45. Even though this is not the centre-frequency

good correspondence between measured and predicted results is observed. This

illustrates the fact that the numerical method is accurate at frequencies other than

the centre-frequency. This is important, considering that one is interested in

examining broadband behaviour of these brick-wall arrays.
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Figure 4.43 Comparison between measured and predicted E-plane co-polar radiation patterns for the 5-
element linear tapered array.
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Figure 4.44 Measured and predicted H-plane cross-polar radiation patterns for the 5-element linear tapered
brick-wall array.
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4.4.3 A 3-level brick-wall array

The geometry of this array is shown in Figure 4.29 and theoretical results are

given in Section 4.3.5. In that section we saw that for the given material

parameters and resonant behaviour at 10 GHz, that structure requires

t = Aeff = 1.145 Ao/..r€';'. However, in order to increase the variety of arrays for

which computations were performed, an array was etched with t = 1.072 AO/"/€;'

- this will be off-resonance at 10 GHz. This brick-wall array was etched on

RT /duroid [38] substrate (h = 0.787 mm and €r = (2.2,-0.001» with the

orientation shown in Figure 4.38. In other words, the array is deposited on the

diagonal of a rectangular groundplane of dimensions X = Y = 15 Aeff• This

implies that the widths of the peripheral zone are wI = 6.725 Aeff and

w2 = 5.475 Aeff. Measurements are now carried out in the two principal planes:

the H-plane (¢ = 0°) and the E-plane (¢ = 90°). Measured and predicted H-

plane co-polar radiation patterns for this 3-level brick-wall array are shown in

Figure 4.46. Close correspondence can be seen, even at large angles, and this

despite the fact that t '" Aeff and the structure therefore not resonant. This

supports the usefulness and generality of the numerical method.
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Figure 4.46 Measured and predicted H-plane co-polar radiation patterns for a 3-level brick-wall anay with
I = 1.072 -ttl've;! at 10 GHz.
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4.5 Concluding remarks

measured co-polarization pattern shown in Figure 4.48. The level of the measured

cross-polarization is some 20 dB above the value predicted.

4.5 CONCLUDING REMARKS

The general integral equation formulation of Section 2.3, implemented as

described in Chapter 3, was used in this chapter to examine the operation of

etched brick-wall antenna arrays. In order to validate the implementation

developed by the author, computed current distributions for a rectangular

micros trip patch were satisfactorily compared to previously published results. In

the design of wire-grid antenna arrays, dimensions are selected in terms of AeCC•

The difficulty in determining values for AeCC is that it is not only a function €r but

also of the dielectric substrate thickness, frequency and specific line widths. It was

also shown how the numerical method can be used to determine values for Aeff

related to specific geometries. Current distributions on several specific geometries

were examined, and the radiation patterns determined directly from these

computed current distributions (these are essentially exact, given a current

distribution, except for finite groundplane effects).

Several brick-wall arrays were fabricated and close correspondence between

measured and predicted co-polar radiation patterns was found. This essentially

validates the use of the present analysis for the design of brick-wall arrays. Cross-

polar radiation patterns are very difficult to predict accurately, and are dependent

on the actual size of the groundplane, an aspect not included in the numerical

model. Through a simple experiment, we showed that by increasing the transverse

 
 
 



4.5 Concluding remarks

dimensions of the metallic groundplane, closer correspondence between measured

and predicted radiation patterns could be observed. We also investigated,

theoretically, the effects on radiation patterns, of moving coaxial feedpoints.

These effects seemed to be very much case dependent. This numerical method

is equally valid at off-centre frequencies (important in determining the pattern

bandwidth of the antenna), and this was illustrated by the close correspondence

between measured and computed radiation patterns at 11 GHz for a 5-element

linear tapered array which had been designed for a centre-frequency of 10 GHz.

The fact that numerical experimentation can be performed on etched wire-grid

antenna arrays to examine current distributions, means that it is now possible to

carefully design for some desired aperture distribution and hence radiation

pattern.

 
 
 



The versatility of array antennas has been known for many years but their widespread

use was prevented by their relatively high cost compared to alternative antenna types.

More recently the realisation of arrays in microstrip has altered such considerations - not

only are microstrip antennas relatively in-expensive, but they can be directly integrated

with printed feed networks and active circuits. While many microstrip antenna

geometries have been proposed and investigated experimentally, only a few of these (and

the micros trip wire-grid array is not one of these) have enjoyed a rigorous theoretical

analysis. One reason for this is probably the very substantial and time-consuming effort

involved between the integral equation analysis formulation and its actual numerical

implementation in practice - the numerical analysis of layered structures is fraught with

difficulties, the finer details of whose solution is seldom readily available. The principal

contributions of this thesis therefore are:

(a) Chapter 3, which gives an illustrative guide to the numerical "pitfalls" encountered

in the application of the spatial domain integral equation analysis of microstrip

antennas (which guide shows such aspects in a form more easily understandable

than has heretofore been the case), and which provides information down to the

finest detail on the numerical implementation of the analysis. Such detail was

previously not readily available.

 
 
 



Chapter 5

(b) Chapter 4, which applies a rigorous full-wave integral equation analysis to

microstrip wire-grid arrays in order to achieve desired aperture distributions. This

does not appear to have been done previously, and the design of such arrays

through numerical experimentation is now possible.

 
 
 



DEFINITION OF THE SPATIAL FOURIER TRANSFORM;

THE SPECTRAL DOMAIN

+00 +IID

!(kx,ky) = 21
1t f f j(x,y) exp(-jkxx-jkyy)dxdy

-Olt -CIIJ

+00 +_

j(x,y) = 2
1

1t f f !(kx,ky) exp(jkxx +jkyy)dkXdky
-. -00

where x and yare spacial domain variables; kx and ky representing their spectral domain

 
 
 



Appendix A

The application of the spectral domain method in electromagnetics was developed

and refined by Mittra [41] and numerous coworkers, beginning in the 1970's. Only

recently some examples of the application of this method to microstrip structures have

appeared in the technical literature. The first paper dealing with the full wave approach

to microstrip problems was presented in 1981 by Itoh [32]. Several authors have since

proposed spectral domain methods as viable alternatives to their spatial domain

counterparts [41,42,43,44,45,46,47,48].

 
 
 



DERIVATION OF THE GREEN'S FUNCTIONS FOR A GROUNDED

DIELECTRIC SLAB

(
d2 2)---+u· A=O

dz2 I

where uj
2 = ~ 2 + Js,2 - ~ 2 = kp

2 - ~ 2 and ~ is the wavenumber of medium i. Since (B.l)

 
 
 



where a and b are unknowns (they may be functions of the spectral variables ~ and ky)

A = i l!0 exp( -u 0 z )
41t Uo

where uo2 = kp
2 - ko2 and ko the wavenumber in free space. In the case of an x-directed

 
 
 



v: - 02 -

Hence, let A = iAx + :i~o Choosing now for ~ and ~ general expressions of the form

- !-La
A =-

x 21t
sinhu (z + h)

(D TE sinhuh)

- !-LaA = -(e - 1)Jo k
:: 21t T x

coshu (z + h)
DTE DTM coshuh

where DTE = Uo + u coth uh, DTM = €rUO + U tanh uh, u2 = k/ _ €~2,

 
 
 



N sinhu (z + h)
I

D 1'£ D TM sinhuh

potential of a single unit point charge (Vq) by the well-known expression [3]

- j kJ: -V= --V
j cu q

- 1V =--
q 21tE: o Nsinhu(z + h)

D 1'£ D TM sinhuh

Appropriate expressions for the vector potential (.4.) due to a RED, and the scalar

potential (Vq) due to a single unit point charge, have now been determined in the

 
 
 



Since DTE and DTM depend on ~ and Js, only through the radial spectral variable

k/ = ~2 + Js,2, the inverse Fourier transform can be written as a Hankel transform [3]:

7-1[i( kp)] = f J 0 (kp R) kpj( kp) dkp
o

7-1 [jkzi(kp)] = -cos4> f J1 (kpR)k~ j(kp)dkp
o

 
 
 



with r = i x + y Y + i z, R = I r - r' I and ep = tan-1[(y-y')/(x-x')]. The integrals

above are line integrals on the complexkp -plane where kp = A + jv. Mosig and Gardiol

[3] have found that integration along the contour described by the real positive l-axis,

kp = A in the expressions above. Therefore

..
Ax(rlr') = 1-10 f Jo(AR)~exP(-uoz)dA

21t 0 DTE

..
Vq(rlr') = _1_ f Jo(AR) _A_N_exp( -UOZ)dA

21teo 0 DTE DTM

z ~ 0 follow directly: Gv=Vq\ G~x=" and Glx=~. The other terms of the dyadic

Green's function are either zero (G~Y= Gr = 0), not important for the purposes of this

1 The Green's function Gv is viewed as the scalar potential created by an isolated point charge on the
air-dielectric interface. Since these charges do not exist in the real world, Gv is rather considered to be a
useful mathematical device.

 
 
 



.•
Ax(rlrl) = ~o J Jo(i..R)...!::-di..

21t 0 DTE

.•
Vq(rlrl) = _1_ f Jo(i..R) i.. N di..

21t eo 0 DTE DTM

In conclusion, expressions for the vector potential (A) due to a RED, and the scalar

potential (Vq) due to a single unit point charge, have now been determined in the spatial

domain «B.16) through (B.18». These expressions are valid for z ~ 0; however, for

surface current computation the special case z = 0 is to be considered. Far-field

 
 
 



ANALYTICAL INTEGRATION OF THE SINGULAR PART IN VECTOR

POTENTIAL DISCRETE GREEN'S FUNCTION SELFTERM

EVALUATIONS

In the evaluation of the discrete Green's function selfterms the situation arises where

the observer and a source cell coincide. This leads to singularities in the discrete Green's

function integrands due to the presence of the Green's functions therein. It was then

suggested by Mosig and Gardiol [3] that the singular parts of the Green's functions be

extracted as follows: G = Gs + (G - Gs)' where G represents the Green's functions and

Gs the static values given by [3]

GAX;(r/r') = J10

41t I r - r' I

for the scalar potential; € r is the complex relative permittivity which takes into account

dielectric losses. The discrete Green's function integrands with the difference terms

(G-Gs) are well-behaved functions and can be integrated numerically, while the

integrands with the static parts, although being singular for r = r', are analytically

integrable. It is the purpose of this appendix to perform such an analytical surface

 
 
 



Since only an expression for rvs(r/r)l is given in [3], it is the purpose of this appendix

to derive analytically an expression for r;'~(r/rIj)' where r lies within the boundaries of

the x-directed current cell centred at rIj. In the construction of the Cij submatrix, r;.x

f r:(r/rXj) dx
c.:1

point along the test segment Cxi placed within the source current cell at rIj. Surface

1 The subscript s indicates that the Green's function, appearing in the discrete Green's function
integrand, has been replaced by it's static part.

 
 
 



p:(r/r xj) = f _1_ G:(r/r')[ 1 - Ix' ~ Xxj I] t;dS' (C.6)
S lJ.oko .z,

Since r xi has no effect on the final expression (a correct choice does however simplify

mathematical manipulation), we may conveniently suppose that the source current cell

is centred at rxj = (0,0). Therefore

Sois now the surface occupied by the x-directed current cell centred at (0,0). Application

p:(r/O) = f-1-[GAX;(r/r')+(G:(r/r')-GAX;(r/r'») J[l-Jfl]t;dS' (C.8)
slJ.~ a

o

P:s(r/O) = f ko G~:(r/r') [1 - 21] dS'
s lJ.o a

o

p:s(r/O) = ko f 1 dS' - ~ f Ix'i dS'
411: So I r-r' I 411:a So I r-r'l

 
 
 



Appendix C

Since So is centred at the origin, the x-directed test segment therein extends along the

x-axis and therefore we know that the singularity is bound to this axis (Figure c.t). Also,

~(rIO) = ko f 1 dS' - ~ f ~dS'
2 n I I r - r' I 2 na I I r - r' I

~ ~

centred at (0,0). Let us suppose that r = r~ where 0 ~ rx ~ a/2; we also have

r' = x'x + y'y. Thus I r - r,1 = [(rx-x,)2 + y,2]1/2. Analytical integration may be

simplified by application of the substitution x" = x' - rx and y" = y'. This implies that

accordingly. So" is now the area on the x"y"-plane described by -b/2 ~ y" ~ b/2 and

r" = [X,,2+y,,2]1/2and dS" = r"dr"d<t>".Then

 
 
 



k kr~;(.irxlO) = _0 f dr"dq," - _o-f I r"cosq," + rx I dr"dq,"
21t 1/ 21ta 1/

SOt: SOt:

o ~ r" ~ b/2 cosec(¢")

a2 = tan-1[b/(2(a+rx»]; 'ff - a3 ~ ¢" ~ 'ff -a2;

Let us consider the two terms in (C.l3) separately. For the first term, integration may
,

 
 
 



k ( <1>""1 b <1>" It-"2 <1>" 11: It] (C.tS)= ~ (a-rX)lntan(-+~) I +-lntan(-) I -(a+rX)lntan(-+-) I
211: 2 4 0 2 2"1 2 4 It-"2

t~n(4311:)
\ (C.t6)-----

w{~x-~2l

(t /
2

/
(a - Ix) see <1>"

So
x-current cell

Figure C.t: X-directed current cell with test segment exf) The observer (singularity) is situated on the x-axis
at rx- Sub-intervals with integration limits on 4>'" and r'" are indicated.

 
 
 



We note from (C.16) that tan(31l"/4) = -1 appears in the argument of the natural

logarithm !. However, for 0 :s; rx :s; a/2 we have a2/2 < 'ff 14, and therefore

'ff12 < 3'ff 14 - azl2 < 'ff. This implies that the denominator will always be negative,

bringing about a positive argument for the logarithm. This argument may be rewritten

3tan( -1t)
4

3 "2tan( -1t --)4 2

-tan(1t - ~1t)
4

3 "2-tan(1t - -1t +-)4 2

in that expression. This integrand consists of I r" COS(/)" + rx I which transforms to

I x" + rx I in rectangular coordinates. This implies that

X" + rx for X" ~ -rx

 
 
 



x=x' =0 and secondly from there on to the edges of the current cell (Figure C.1).

 
 
 



"3r b tan("2) r; "2 1t r; "3 1t
+ _x_InI· I - -Intan(- +-) + -Intan(- +-)

2 " 2 2 4 2 2 4
tan(2)

2

Now 12 may be written as

kcP "2 1t kob2

12= - 41t Intan("2+"4)+161ta[cosec("3)-cosec("2)]

"3
k 2 ko b tan(-)

r " r-~Intan(2 +~) +__x_ln 2
41ta 2 4 41ta "2

tan(-)
2

 
 
 



Finally, r~~(irxlO) = 11 + 12, where 11 is given by (C.l8) and 12 by (C.26). Therefore

ili(X2---
(X1 1t b 2 2 (X2 1t

(a -T ) In+_J_+-) +-In +(a +T )In+_J_+-)
x .., 2 4 2 tan( :1) x'" 2 4

k ~b2oa (X2 1t "'0
--lntan(- +-) + --[cosec«XJ -cosec«X2)]

41t 2 4 161ta

2
~T (X

__ "'O_x Intan(~ + ~ )
41ta 2 4

ko ( )2 In (Xl 1t--- a-r tan(- +-) +
41ta x 2 4

kOTx (Xl 1t
---(a-r )lntan(-+-)

21ta x 2 4

(X3
~ b cotan(-)
"'Orx 2--In· I
41ta (Xtan(_l)

2

-a/2 ~ rx ~ 0 is a mirror-image of 0 ~ rx ~ a/2 and therefore r~(-irxlO) = r;':(irxlO).

 
 
 



DETERMINATION OF THE RADIATED ELECTRIC FIELDS OF A

MICROSTRIP ANTENNA GIVEN THE SURFACE CURRENT

DISTRIBUTION

In this appendix we will derive expressions for the radiated electric fields of a

micros trip antenna once the surface current distribution is known. Although final

expressions for the radiated fields of a HED on microstrip are given in [3], no derivation

is included and since the author is of the opinion that insight can be gained from such

an exercise, it is performed in this appendix.

A general expression 1 for the electric field in terms of vector and scalar potentials

A(r) = f GA (rlr'). J,(r') dS'
So

-
GA is the Green's function associated with A(r) while Js is the surface current

distribution. Since this is a mixed-potential formulation, the scalar potential due to the

surface current distribution (related to the charge distribution through the continuity

1 This is a general expression not unique to microstrip.

 
 
 



equation) has to be determined. Applying the Lorentz gauge [49] to A(r) and making use

-
of the equality V.GA(r/r') = J1.€VGv(r/r') [3] leads to an expression for the scalar

= -~f VGy(r/r').J (r')dS'
JCJ) •

So

E(r) = f GE(r/r') .J,(r')dS'
So

-
Green's function GE• This Green's function will now be expanded. The three-dimensional

 
 
 



Appendix D

-
dyadic Green's function GA may be written as

i A iy

i GU 0 G:Ii

GA = j Gf"
(D.7)

0 GJ!

i Grx G%Y G:Ii Ii

We also have

i A iy

i ~G a2 a2
--G --G

ax2 v axay v axaz v

a2 a2 a2 (D.S)
\l\lGv = j --G -G --G

ayax v ay2 v ayaz v

a2 a2 a2

£ --G --G -G
azax v azay v az2 V

-
Therefore GE may be written as

i j £

1 & G . GU 1 a2 1 a2 G . GJCl.-- -Jw Ii ---G --- -Jw Ii

i jw ax2 v jwaxay v jwaxaz v

1 a2 1 a
2 G . GY1 1 a2 G . GY% (D.9)

j ---G -.--- v-Jw Ii --- v-JW Ajwayax v Jway2 jwayaz

£ 1 a
2 G . Grx 1 a2 G . G%Y 1 a2

G .GZ1.--- -JW --- -JW Ii -.---. v-Jw Iijw az ax v Ii jw az ay v Jwaz2

 
 
 



a set of discrete coefficients Ixi (i = L.M) and ~ (j = L.N) each related to a charge cell

of dimensions a and b. With this in mind, Mosig and Gardiol [3] have shown that in the

M N

Ee = G;xCr/O) L alxieil:ogj + G;YCr/O) L blyjeil:ogj
j=l i=l

M N
E4> = G:xCr/O)Lalxieil:ogj + G:Y(r/O)LbIYieil:ogj

j=l i=l

determine G~x, G~Y,G~x and G~Y.To illustrate such a transformation, consider for a

D = D(x) i + DCy) j + D(z) £

 
 
 



D(X) = Dxxx + DYXj + Dzx£

IP) = D xy X + D YY j + D r;y £

D(z) = Dxz.x + DYZj + DU£

Now with a rectangular-to-spherical coordinate transformation, D(x) becomes

D rx = D xx sine cos<l> + D yx sine sin<l>+ D Z% cose

D ex = D xx cose cos<l> + D'X cose sin<l> - D zx sine

D~ = - D xx sin<l> + D yxcos<l>

G;X(r/O) = G;(r/O) cose cos<l>+G~x(r/O) cose sin<l>-G:(r/O)sine (D.16)

Gr(r/O) = -G;(r/O)sin<l> + G:(r/O)cos<l> (D.17)

G~(r/O) = Gi(r/O) cose cos4> + Gr'(r/O)cosesin4> - Gi(r/O) sine (D.IS)

G:'(r/O) = -Gi(r/O)sin4> + Gr'(r/O)cos4> (D.19)

Let us now, for example, expand a:X(r/O). From (D.9) it follows that

 
 
 



G:X = (-!- LGv-jw G::)cosecos4> +(-!- &- Gv)cosesin4>
JW aX2 JW ayax

(DolO)

-(-f-~G -jWG:)Sin6
Jwazax v

..
G::<r/r') = ~o J Jo(lR)-!:- e -"01. dl

2n 0 DTE

Gf (rlr') = G::(r/r')

..
Gy(rlr') = _1_ J Jo(lR)-!:- e -"01. dl

2n€o 0 DTE

The partial derivatives in (D.9) (some of which appear in (D.20» may be obtained

 
 
 



Therefore we have for G~X(r/O), from (D.20):

 
 
 



[

• GO ]JW J.1 A-u
- 0 f Jo(AR)-e otdA cos8cos4>

21t 0 DTE

By expanding GE 6y, GE~x and GE~Y in similar fashion and defining

 
 
 



[
. I ] MJU> ~O X·--(E:,-1)coscPI3 +. 4 sine ) Lalxi~koKl +
2it Ju>2itE:O R i",1

 
 
 



[
. I 1 1E = ( J<U !-Lo1 + 1 _ 2 ( ~ i sin<l> +

4> 21t 0 j<U21t eoR j CJ>21teO R

Closer inspection2 of the integrands in (D.33) through (D.37) leads one to the

-jlcor

10 ...j cotan6/0(kosin6) _e_ ;
r

 
 
 



x2uo(x)N(x)

DTE(x)DTM(x)

where Resj is the residue of function fj (i=2,3,4) at Ap• Since 11 only appears in terms

with "R" in the denominator (D.38 and D.39), and because these terms tend to zero in

M

[Ao(€, - 1)cos<j>/3 + A2 cos<j>/4] sine ) La/xi ej/.:o
g

, +
i=l

N
[Ao( €, -1 )sin<j>/3 + A2sin<j>/4 ] sine ) L b/

yj
ejJ.:ogj

j=l

 
 
 



AI

E. = ( [AoIo - A2cos24>I2]sin4> + [A2cos4>sin4>I2]cos4> ) E aI~i e
jkog

, +
i-I

N

( [ -AoIo +A2sin24>I2]cos4> - [A2cos4>sin4>I2]sin4> ) L blyjej~J
jal

where

Ao
j CJ) fJ.o (D.46)=

21t

and

A2
1 (D.47)=

j CJ) 21t eo

 
 
 



THE RELATIONSHIP BElWEEN THE COEFFICIENTS IIi AND Iyi

AND ELECTRICAL CURRENT FLOWING ON THE ELEMENTS OF

WIRE-GRID ARRAYS

The solution to the moment matrix equation yields the coefficients lxi and lyi. The aim

of this appendix is to examine the relationship between these coefficients and the

1 M
J = - ~ I.T(r -r.)

$X bLJ XIX .a
i,,1 (~)

1 N
J =-~I.T(r-r.)

sy a f::t. YI Y YI (~)

{
I - Ix Ifa

Tx(r) = o
; Ix I < a , Iy I < bf2

; elsewhere

and a similar expression holds for T/r). These expressions give the relationship between

coefficients lxi and ~, and the surface current density existing on the radiator. From these

 
 
 



expressions it also follows that coefficients Ixi and ~ have dimensions of current (A). To

relate these coefficients to the total current flowing on an element of an etched wire-grid

S

Itot(x) = .E Ii(x)
i=1

(~)

 
 
 



m

ItoC<x2) = L Ln
i=4

 
 
 



Ix! I~ IX3 • Iv :~(x)
-" f ,e.>, ··t·----, ----t---

", '. '1,;-"'.. . ,,:./ ><. : w; I
X6

: ~(x)

(( ····1·········· ·······i········ ..··.-:·",·.-:······i··· : :.: _ ~ ~ ~ ~ ~ ~ofx)
b 1I dy . --+ I (x) : • x7 :I (x)tl 4,,; 4({ - . - + .. .. '" _ ~ --.. -+--_ -:- .

~Xl~

Figure E.I: Decomposition of an x-directed segment on an etched radiator to calculate the total cu"ent
flowing along the segment. Rooftop basis functions are used in the moment method solution.
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