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The dissertation forms part of an ongoing project for the modelling and eventual con-
trol of an electric arc furnace (EAF) process. The main motivation behind such a project
is the potential benefits that can result from automation of a process that has largely been
operator controlled, often with results that leave sufficient room for improvement. Previ-
ous work in the project has resulted in the development of a generic model of the process.
A later study concentrated on the control of the EAF where economic factors were taken
into account. Simulation results from both studies clearly demonstrate the benefits that
can accrue from successful implementation of process control. A major drawback to the
practical implementation of the results is the lack of a model that is proven to be an
accurate depiction of the specific plant where control is to be applied. Furthermore, the
accuracy of any process model can only be verified against actual process data.

There lies the raison d’etre for this dissertation: to take the existing model from the
simulation environment to the real process. The main objective is to obtain a model
that is able to mimic a selected set of process outputs. This is commonly a problem of
system identification (SID): to select an appropriate model then fit the model to plant
input/output data until the model response is similar to the plant under the same inputs
(and initial conditions). The model fitting is carried out on an existing EAF model pri-
marily by estimation of the model parameters for the EAF refining stage. Therefore the
contribution of this dissertation is a model that is able to depict the EAF refining stage
with reasonable accuracy.

An important aspect of model fitting is experiment design. This deals with the selection
of inputs and outputs that must be measured in order to estimate the desired parameters.
This constitutes the problem of identifiability: what possibilities exist for estimating pa-
rameters using available I/O data or, what additional data is necessary to estimate desired
parameters. In the dissertation an analysis is carried out to determine which parameters
are estimable from available data. For parameters that are not estimable recommenda-
tions are made about additional measurements required to remedy the situation.

Additional modelling is carried out to adapt the model to the particular process. This
includes modelling to incorporate the oxyfuel subsystem, the bath oxygen content, water
cooling and the effect of foaming on the arc efficiency.

Keywords: Electric arc furnace, identifiability, model fitting, parameter estimation.
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Chapter 1

Introduction

This introductory chapter outlines the motivation for the dissertation, the objectives and

contribution to furnace modelling. The objectives give a clear definition of focus of the

dissertation; an overview of the dissertation organization is also given.

1.1 Motivation

With the increasing concern in the world for the depletion of natural resources, iron ore

supplies are no exception; they too will invariably run low. A fitting solution to this

challenge is recycling. And the electric arc furnace (EAF) is an appropriate long term

solution. Its versatility lies in its facility for melting hot metal with any proportions of

scrap or iron ore. It is commonly used to melt charges made up solely of scrap with no

need for the often costly hot metal. Hence the preference for EAFs in mini mills that can

be set up with minimal infrastructure costs.

There is a gradual but steady worldwide trend where basic oxygen furnaces (BOF)

are being replaced by EAFs. The World Steel Organization reports a 34 % worldwide

adoption of EAFs in 2002 [1]. An adoption of 50 % is predicted for 2020. A similar,

albeit slower, trend is predicted for the South African industry.

The EAF remains one of the most poorly automated processes in the steel production

line where all automation has only an indirect effect on the critical process outputs. Im-

portant outputs such as steel temperature and composition are still heavily dependent on

operator control. With operator control, there abounds the accompanying disadvantages

of poor response to disturbances and inconsistent outputs, leading to poor product qual-

ity. The increasing complexity of the process also renders it difficult for efficient operator

control. Indeed, other factors such as material variations, production stoppages etc. will

have an inevitable negative influence on the process variables.

However real benefits can be achieved by implementation of process control on the

1
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Chapter 1 Motivation

EAF. It has the advantage of allowing good set-point following and rejection of distur-

bances, where the outputs can be precisely controlled within tight margins - this translates

to safer and profitable operation [2, 3]. The potential benefits from process control have

been demonstrated by simulation studies carried out by Bekker et al. [4, 5] and Oost-

huizen et al. [6,7]. In both cases modelling was carried out and the model assumed to be

an adequate representation of the process based on qualitative grounds: the model was

assumed valid based on expected model response to typical process inputs; however, only

limited plant data was used.

Most control systems rely on the existence of an adequate process model. This ade-

quacy depends on the intended use of the model but can ultimately only be tested using

real process data. The EAF model used in [5,7], can only be meaningfully adjusted using

plant input-output data so that the model response coincides with the process response

under similar conditions. This is typically a problem of system identification (SID) where

plant data is used in a procedure to improve model accuracy.

Save for unscheduled process stoppages, under normal operation, the furnace refining

stage operates intermittently because of the need for operator intervention when mea-

surements are taken (and to execute control actions). Therefore, the adjustment for bath

temperature and carbon content is an intermittent process, requiring measurement then

control action based on the newly arrived information. This cycle can repeat several times

during refining until adequate bath conditions are reached.

The direct problem of the above scenario is that various losses arise. Every measure-

ment requires the use of an appropriate probe that is typically not reusable. The delays

required for a measurement to be taken and then acted upon can be significant. Fur-

thermore, to take a temperature measurement, arc power must be reduced, lowering the

efficiency of the arc and thus increasing losses. The solution is to minimize the number

of measurements required in order to obtain reliable information about the plant states,

particularly temperature and carbon. An appropriate model for refining is a possible

solution to the problem: apply an initial measurement of the plant states and use the

model to predict future plant behaviour based on the subsequent inputs and knowledge

of the process response (which is implicit in the model).

The motivation for the current work is the ability to use the model as an accurate

representation of the plant refining stage. At a minimum it must be able to match the

input-output relationships that prevail in the furnace; this is achieved mainly by proper

adjustment of the model parameters. The physically based modelling approach of the

process demands that while being able to reproduce the process I/O relationships the

model variables must maintain a physical significance that is governed by the process

metallurgy. This requirement (and necessary adjustment) will apply to the inputs, the

Electrical, Electronic and Computer Engineering 2
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Chapter 1 Background

states, outputs and the parameters - more emphasis will be placed on the latter.

Controller design is typically based on linear models. Any inaccuracy in the linear

models will be corrected by the use of feedback. However, some outputs, such as temper-

ature and composition are expensive to measure - in time or direct instrumentation costs

- and only a few measurements are available per tap. An accurate nonlinear model that

serves as a good predictor of the plant can then be used to supplement these measure-

ments. Any newly obtained measurements can be used to update the model prediction

and thus improve the accuracy. In essence, the model will serve as a stand-in for the

actual plant, extrapolating variables for which only limited measurements are available.

The combination of measured values and predictions from the nonlinear model can then

be used as feedback in a control system; a similar approach was followed by Oosthuizen [7].

1.2 Background

A notable contribution to EAF modelling was made by Morales et al. [8]. An initial

contribution was the study of the slag foaming where extensive slag data was collected

and analyzed; the practical benefits of slag foaming by reduced electrical consumption

and improved yield were reported from continued use of foaming on a plant [9]. Later

work focused on the development of an EAF simulator where emphasis was placed on

the slag behaviour, particularly FeO and the effect of the properties of direct reduced

iron (DRI) on the process; the behaviour of carbon and temperature were treated, albeit

not in detail [8]. The results on slag foaming and EAF modelling were combined into a

single model where again the emphasis was on slag chemistry; a new concept of dynamic

foaming index was advanced - this adapts the foaming of the slag to the changing furnace

conditions [10]. A detailed comparison of the model prediction and plant data is given

for the static case but only data from 2 taps were used for comparison of results in the

dynamic case (as a function of time).

A comprehensive model for a materials refining process of ALZTM (MRPA) - essentially

a BOF process - was developed by Vercruyssen et al. [11]. The model provided a broad

coverage of components dissolved in both the slag and the bath. The model results were

compared to the limited plant data with reasonable accuracy; however, only data from

1 tap were used. The influence of adjustable parameters on the model outputs was also

studied. A refining simulator for the EAF was developed by Oltmann and Pretorius [12];

in the work, emphasis was placed on the tradeoff between the benefits of foaming and

yield losses that can result from excessive bath oxidation. Possible yield improvements and

reduction in O2 injection can accrue from injecting sufficient graphite to sustain a foamy

slag and injecting oxygen without over-oxidizing the bath - it is possible to decrease the O2

Electrical, Electronic and Computer Engineering 3
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Chapter 1 Background

injection rate once the critical carbon has been reached and the bath is more susceptible

to over-oxidation.

Nyssen et al. [13] developed an essentially static model of the EAF that serves as an

operator aid. Off-line calculations for the process operating scheme are performed prior

to furnace startup. Online adjustments are made to the model during the tap to take

into account the deviations from the precalculated values - these also include heat losses

through the water cooling system. Energy and productivity savings have been reported

from adoption of the model on an industrial process. Further work by the same authors

resulted in a dynamic model of the EAF, this has been implemented on two furnaces

where it functions as an operator aid, providing estimates of the progress of raw material

melting, foam height, bath temperature and composition [14].

The model originally developed by Bekker et al. [5] forms the basis for the current

dissertation. The model is derived from the energy and mass balances of the EAF. The

focus was on the use of off-gas variables to control the temperature, composition, pressure

and other outputs of interest. Extensive modelling was carried out for the scrap and solid

slag additives; the freeboard gases, including pressure; and the bath temperature and

composition. Model predictive control (MPC) was employed and it was shown that the

off-gas variable set can be successfully used primarily for control of the furnace pressure

(to minimize heat loss through air entrainment) and indirectly, the bath temperature.

Using the above model, MPC design was carried out where economic objectives were

used to formulate the cost function to be minimized by the controller [7, 15]; this is a

variation on the traditional approach of using functional objectives on the controlled

variables. Comparison with manual control reveals significant potential benefits from

implementation of the controller. A Monte Carlo type of simulation was carried out where

the effect of variations in model variables on the controller performance is simulated - this

provides a reliable evaluation of the controller design.

Another study focused on the economic aspects of EAF operation was carried out by

de Vos [16]. A static model of the EAF was developed and the objective was to optimize

slag additives in order to reduce costs.

The use of static models is a popular approach for the modelling of the EAF; [17, 18,

19, 20]. This has largely been inherited from the oxygen processes. Conceptually, it is

a straightforward approach that calculates the bulk mass and energy additions that are

necessary to achieve desired final steel properties such as temperature and composition.

This is done off-line before EAF operation; and sometimes re-tuned (during a tap) to

compensate for deviations as up-to-date tap data is made available. This latter step is

called the trim calculation, and it typically occurs at the early stages of oxygen blow to

adjust for the final oxygen blow.

Electrical, Electronic and Computer Engineering 4
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Dynamic control of the BOF process has been successfully implemented where a sub-

lance is lowered into the bath to sample the temperature and carbon composition [18,19].

This data is used in conjunction with off-gas analysis to calculate (on-line) corrections

to the blow. Other methods such as the use of laser sampling for carbon levels, drop-in

thermocouples, and sonic analysis (for decarburization and foaming estimates) have been

used with varying degrees of success.

Sonic analysis has been successfully adopted in EAF operation for the control of foam-

ing [21,22, 23]. Analysis of audible signals generated in the vicinity of the slag is used to

control graphite injection (and thus foaming). The audible signals can however be prone

to extraneous interference.

Significant research effort has been carried out on the effects of the various subsystems

on the EAF as a whole. Common cases are: the oxyfuel subsystem, foaming and the

electrical subsystem. Experimental work was carried out to demonstrate the advantages

of the oxyfuel subsystem and the increased use of oxygen in the furnace [19, 24, 25, 26].

Online off-gas analysis results are used to implement a feedback control system to optimize

the operation of the oxyfuel lances. Foaming is accepted as one of the methods to minimize

heat loss, improve arc efficiency and prolong refractory life. It has been studied extensively

with positive results [6, 27,9, 28,29,30,31].

More research was carried out into the electrical subsystem of the process. A pop-

ular approach is the use of neural networks, favoured for its facility in dealing with the

stochastic nature of the current and voltage signals: it was used in King and Nyman [32]

to predict the future arc behaviour and Raisz et al. [33] to predict the state of the fur-

nace (meltdown, flat bath of foaming) based on analysis of electrical signals. A notable

contribution was from Billings and Nicholson [34] where system identification of the de-

rived 3-phase arc model was carried out based on arc voltage and current relationships.

An important result is the evaluation of impedance and current control and the need for

a strategy that employs both approaches to improve power transfer to the melt. Later

work by the same authors [35] incorporates modelling of some metallurgical processes in

the refining stage of the furnace such as bath temperature and composition. Significant

drawbacks to good model performance were identified as process complexity, standard or

unscheduled process interruptions, poor instrumentation and availability of process data;

however, positive results were reported.

The current work builds on the modelling results of mainly Bekker et al. [5] and addi-

tional modelling work by Oosthuizen et al. [6] to estimate the adjustable parameters and

determine the prevailing conditions so that the model can be used as an adequate rep-

resentation of the EAF refining stage. Input-output data and initial conditions collected

from an EAF plant will be used to carry out the model fit.
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1.3 Contribution

The main contribution of the dissertation is to bridge the gap between the previously

simulation-based model of the EAF and the actual process. Process data is used to carry

out SID on the model. By adjustment of the model parameters it has been shown that

the model is a good representation of the EAF refining stage. The following is a list of

the various dissertation contributions:

• A verified EAF model

• Experimental data of EAF slag and bath chemistry and other properties

• Identifiability analysis of the EAF model

• A model of the furnace oxyfuel subsystem

• Additional modelling to adapt the existing model to the actual EAF being studied

• An extensive model fitting exercise using real plant data over several taps to fit the

model, instead of the maximum of two1 taps used in the open literature [10].

1.4 Dissertation approach

The work carried out in this dissertation makes a clear distinction between the meltdown

stage and refining. Model fitting will be done separately for refining and meltdown. There

is a strong bias towards the refining stage due to higher availability of plant data - it is

standard practice to obtain carbon and temperature measurements so that these will

not entail additional costs. The meltdown stage will be used mainly to provide initial

conditions for the subsequent refining stage; however, some limited fitting will be carried

out.

As previously discussed, the problem addressed by the dissertation is to determine

important model parameters based on plant data. The model provides a representation

of the EAF process. As a preliminary verification of the adequacy of this representation,

it is important to ensure that the model response matches the plant behaviour under

the same conditions. This means the model must depict expected plant behaviour such

as (among others) decarburization, melting or temperature increase when the furnace is

subjected to heat input, pressure increases when adequate gas generation takes place.

Therefore the initial step in this process is to obtain an understanding of the practical

EAF operation. This is then followed by a description of the model, and additional

modelling to accommodate process routes that may not be adequately represented. Using

1Much research has been carried out in order to obtain an overall fit for the model slag chemistry

[18,36]; in these cases more extensive tap data was used.
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measured plant data as inputs and initial conditions, it will be shown that the model is

able to depict the main process variables with reasonable accuracy.

The estimation of model parameters is essentially a SID process [37, 38]. The various

steps in the process are also followed in the dissertation. These begin with process un-

derstanding, experiment design and data collection, modelling, model fitting and, finally,

the validation of the numerical accuracy of the final model (or parameter values). This

part of the dissertation summarizes the tools commonly used for SID and that will also

applied to the problem of parameter estimation.

Once an adequate understanding of the model and the process is arrived at, the next

step is the collection of plant data. A preliminary step to this process is the experiment

design. For the dissertation this entails the determination of the conditions under which

plant measurements would be best obtained. However, due to the limitations placed

by production schedules and cost, the measurement process was not allowed to force

much deviation to normal process operation. Therefore, much of the measurements were

obtained under normal plant operating conditions.

The parameter values are determined by nonlinear cost minimization applied to the

nonlinear model. The cost is formulated in terms of the difference between the model and

plant responses under similar initial conditions and inputs. The total mean squared error

over all taps is used as the cost function in an essentially batch estimation process. Once

this cost is sufficiently low, the parameters are deemed adequate. Further tests used to

assess the model quality are the variance of the parameters, the magnitude of the model

residuals and the sensitivity of the model to outliers or bad data.

One set of data was used to determine the parameter values - this was the test or

estimation data. Once a satisfactory set of parameter values was obtained, the model was

simulated using data from a new data set (called validation data) that was not previously

used for estimation. The model output was then compared to the corresponding measured

plant data. This final step of model validation was used to test whether the model can

adequately reproduce plant output behaviour.

1.5 Organization

Chapter 2 of this dissertation present a brief overview of the EAF process as well as the

practices that are particular to the plant under study. A brief simulation of a heat cycle

using plant data is presented with explanations of the operating practices that occur along

the tap.

Chapter 3 provides an outline of the problem and the solution steps which also motivate

the later chapters. It will include a summary of SID theory and some tools used to obtain
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the dissertation results.

Chapter 4 sets out the experiment design and data collection process. An analysis of

the data is presented with comment on its significance for the actual process. Some plots

are given - these relate the collected data to others in literature, with a view to test the

veracity of the data.

In chapter 5 identification is carried out on the modified EAF model. The performance

of the model is discussed in relation to EAF practice.

In chapter 6 a brief model validation is carried out.

The dissertation concludes with recommendations for future work and conclusions in

chapter 7. As recommendation for future work, the chapter reassesses the control issues

related with the specific plant under study. Possibilities for control are discussed with

particular reference to previous work [5, 7].

Some process-specific detail, measured data and model variables are given in the ap-

pendix. It also outlines some implementation details concerning the model simulation

and parameter estimation.

Electrical, Electronic and Computer Engineering 8

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 2

Process modelling

This chapter presents an overall description of the EAF process under study. While the

main emphasis of this dissertation is on the refining stage, a discussion of the overall

process is given since many of the processes that precede refining also have a direct effect

on it. A description of the melting process is given, followed by the refining stage; several

plots from plant data are presented to illustrate the sequence of events.

This chapter also presents a modification to the original model to allow the use of

the ratio of O2 to fuel gas as manipulated inputs. An extended freeboard gas model is

presented. For refining, a simplified model is derived from approximations based on the

original model. The relationship between bath carbon content and oxygen activity is

discussed and the relevant equations presented.

2.1 Process description

While a broad description of the EAF process will be given, some emphasis will be placed

on the practice as studied at a local steel producer. All plant data used in this dissertation

was obtained from this 80 ton EAF installation, and will serve as a benchmark to test

the results of subsequent chapters. In general, the practice is similar to those followed in

other EAF melt shops [17,19].

Each tap in the furnace operation begins with the charging (into the furnace) of a

mixture of mainly scrap, other metallic elements and slag formers. The furnace roof

swings to the side, leaving the entire furnace open. A crane is then positioned above

the open furnace, the bottom of the charge basket opens, depositing the charge into the

furnace.

Some melt shops charge scrap at the beginning of a tap and then make continuous

additions of DRI and slag formers [39]. These are deposited in chutes at the roof of the

furnace using conveyer belts. This practice relies on an abundant and cost-effective supply
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of DRI. It also requires infrastructure such as conveyor belts to transport the material to

the furnace and chutes through which they can be deposited into the furnace.

A systematic layering of materials is followed when the charge is prepared in the

basket. A layer of shredded scrap is placed at the bottom of the basket; first to act as

a cushion to prevent damage when larger scrap pieces are dropped into the basket and

secondly, because it is soft and melts rapidly, it is able to create a metal pool at the

bottom of the furnace soon after arcing begins.

Most EAF melt shops follow a hot heel practice. At the end of each tap the furnace

is not emptied completely. A pool of hot metal varying between 5 and 15 ton remains

at the end of each tap. At the beginning of the next tap the hot heel is the first to

initiate melting of the soft shredded scrap. This creates a large pool of molten metal that

expedites subsequent melting of larger scrap pieces once arcing commences.

Once the furnace is fully charged, the roof swings into position to close the furnace

and the slag door is closed. The roof also mounts the three graphite electrodes; these are

lowered closer to the scrap and with the furnace practically sealed arcing begins. The arc

bores deep into the scrap directly below it. This has several consequences. A growing

pool of molten metal is created below the solid scrap. Significantly, the arc is shielded by

the surrounding scrap so that most of the heat energy is retained within the vicinity of the

scrap; otherwise the heat would be radiated to the water cooled panels and lost unused.

This effectively increases the arc efficiency. Furthermore, damage to the refractory linings

by the intense radiation from the arcs is reduced.

The arc is generated by the ends of three graphite electrodes that form an equilateral

triangle above the metal, centred about the vertical axis of the furnace. This means most

of the heat energy is concentrated near the centre of the furnace - energy transfer to

regions further from the centre is limited. Bore-in will ensure that the arc penetrates

deep enough into the scrap to shield the refractory above the scrap. On the other hand, it

is essential that a molten pool is formed early enough to protect the furnace bottom from

the arc [17]. At the early stage of bore-in the scrap will melt from below, by heat from the

arc, radiation and conduction from the pool and resistive heating; the scrap not directly

exposed to the arc or in direct contact with the molten pool will not melt as readily.

Therefore oxyfuel burners are used to heat the cold areas of the furnace. Composite

lances that mix fuel gas and O2 at the exit of the nozzle are placed strategically so that

heat energy from the flame is transferred to the cold areas in the furnace. Figure 2.1 shows

the configuration of the oxyfuel lances in the furnace. The burners are a highly efficient

supplementary heat source since the flame is able to reach larger areas of the scrap. The

high temperatures prevalent in the furnace and the abundance of O2 - it is kept higher

than stoichiometric - ensure that the combustion of the fuel gas is nearly complete [21].
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Figure 2.1: Placement of the oxyfuel lances in the furnace. Figure a) shows the top view

and b) the cross-sectional view. All the oxygen lances are inclined at a fixed angle of

approximately θ = 45 ◦, while the graphite lances are at θ = 60 ◦.

While the oxyfuel lances are strategically placed to transfer heat to all the regions in

the furnace, cold spots will always exist. These are depicted in figure 2.1, as regions of

solid raw material. These cold spots are also a source of scrap cave-ins and late melt-

ins. When a flat bath has been reached (typically near refining), solid scrap that may

be lodged in these cold spots has been observed to fall into the flat bath [17]. This can

happen especially with heavier pieces of scrap that are not easily melted by flame heat.

Some late melt-ins can also result when heavy scrap pieces remain suspended in the bath

well into the refining stage [22]. Some cave-ins that occur during meltdown can break the

electrodes as the scrap falls against the electrodes [17]. This is a catastrophic breakdown:

the bath carbon content will be inflated by partial dissolution of the graphite electrode,

the removal of which from the furnace will lead to long delays.

Different grades of scrap require varying levels of energy to melt [17]. This can be

explained in terms of the specific surface area available for heat transfer and the efficiency

of heat transfer between the scrap and the molten steel. A charge made up of metal sheets

or plates will melt rapidly due a large surface area available for heat transfer - and all

molten scrap will readily flow away from the heat source, leaving room for more scrap

to melt. Heavy scrap is denser and generally has a lower specific area for heat transfer.

It can be too solid and closely packed - tending to localize the arc - and slow melting

while preventing free access of arc heat to other regions of the melt. This has the effect

of reducing the effective melting power of the arc.

Light scrap (such as plates and turnings) is rapidly melted to form a pool of metal

at the furnace bottom while heavy scrap (such as butts and ingots) is placed directly
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below the arc to receive maximum arc power. In this location the heavy scrap will also

prevent the arc from boring into the furnace bottom while allowing sufficient depth to the

electrodes for effective heat transfer to the scrap surrounding it.

An added advantage of using high density scrap is the reduced charging time. With

heavy scrap two basket charges are sufficient, while lighter scrap will necessitate up to

three charges in order to fulfill the requirements for the meltdown mass - this is time-

consuming. On the other hand a heavy piece of scrap will likely break an electrode if it

happens to roll against it as the melt settles [17] and will be less susceptible to melting by

the oxyfuel burners. Therefore, the charge will always maintain a balance between heavy

scrap and light scrap.

Silicon is removed nearly completely during the decarburization period; in fact it is

removed well before the carbon, this typically happens early in the melting period [19].

In the refining period after t1 the bath silicon content is at an average value of 0.025 %

and a standard deviation of 0.0074 % ; it can be assumed to be the minimum composition.

This value will be taken as the silicon content at the asymptotic stage. Despite its small

quantities, silicon oxidation is also one of the most exothermic reactions.

2.1.1 The oxyfuel subsystem

The efficiency of the oxyfuel system depends on the ability of the combustion products

to transfer heat energy to the scrap. The heat transfer occurs mainly by convection and

radiation from the flame products; and, to a lesser extent, by conduction when excess

oxygen reacts with the charge [19].

As in the case of arc heat transfer, a large specific area of the scrap will favour effective

heat transfer. This follows since a large surface area will be exposed to the flame [19]. As

scrap melts, the overall efficiency generally decreases since less scrap will be in contact

with the flame. The molten steel will present a poor medium for heat transfer due to its

high temperature and small surface area.

The efficiency of the oxyfuel system also depends on the temperature of the scrap [19].

A low scrap temperature allows a higher degree of transfer of oxyfuel flame energy to

the scrap. A practical indication of the efficiency is obtained by monitoring the off-

gas temperature. A high off-gas temperature means that more of the freeboard heat is

removed with the off-gas, and less is transferred to the scrap. This typically occurs at the

late melting stage where the little scrap that remains is already at a high temperature

and the flat bath is receiving virtually none of the heat from the freeboard. Plant trials

reveal that the freeboard temperature ranges from 800 to 1200 ◦C (see subsection 4.3.4.2)

while the flat bath will be at a minimum 1520 ◦C, the melting temperature of steel [19];
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however, the average temperature of the total furnace charge will be lower due to the

presence of unmelted scrap.

At refining the operation of the oxyfuel burners follow three main preset programs,

depending on the desired steel carbon content. A low desired carbon content is generally

accompanied by high volumes of injected oxygen, while the highest desired carbon content

will have little oxygen lancing. Table 2.1 shows the settings for the volume of injected

oxygen and gas for the three grades of steel based on the desired bath carbon.

Table 2.1: Injection programs used for refining.

Grade Low C Medium C High C

Bath carbon %C < 0.2% 0.2 < %C < 0.4% %C > 0.4%

Operating mode lancing lancing burner

O2 flow rate [ Nm3/h] 1500 1200 900

fuelgas flow [ Nm3/h] 200 200 200

An adequate condition for effective results from auxiliary burners is good heat transfer

with (usually) light scrap that has a large specific area for heat transfer. The flue gas

can contain high levels of CO and H2 due to incomplete combustion. While the flame is

in contact with the charge, the flue gas (CO and H2) will tend to react with the scrap,

producing CO2 and H2O and oxidizing the iron. The resulting FeO leads to severe iron

slagging i.e. accumulation of FeO on the scrap surface. This can limit the degree of

heat transfer. However, a high carbon content in the charge can reduce the slagging [40].

Furthermore, the CO and H2 must be combusted downstream, and so placing higher

demands on the off-gas system. Yield losses have also been reported due to oxidation

of the molten steel by CO2, made possible by the high temperatures at the bath-gas

interface [19]. Therefore, to minimize bath oxidation, the burners must be operated only

when sufficient scrap is available and when the molten steel can flow rapidly away from

the flame area.

Once most of the scrap has melted, the use of oxyfuel burners can lead to yield

losses and lower efficiencies. The amount of scrap in contact with the flame decreases

as its overall temperature increases, leading to poor heat transfer. A rise in the off-gas

temperature is a good indicator of when oxygen burners should be stopped. Alternatively,

the temperature of the panels adjacent to the burners will begin to rise because of poor

heat transfer to the charge and the consequent heat build-up in the vicinity of the burners.

A general recommendation is that burner operation should be discontinued after 50% of

meltdown [19].

An alternative operating mode of the oxyfuel burners is oxygen injection. Once suffi-
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cient meltdown is achieved, the burners operate as high efficiency oxygen lances. Intensive

injection of oxygen into the bath begins by cutting the scrap under high temperatures.

Once a flat bath is attained carbon levels in the bath are generally high. The oxidation

of this bath carbon provides an efficient energy source: for every Nm3 of oxygen injected

0.75 Nm3 reacts with carbon [19]. Reduction of slag FeO by bath carbon is another route

by which decarburization takes place [5], and becomes more predominant with sufficient

stirring [41] and at lower carbon levels.

2.1.2 Deslagging

Deslagging is the process by which the slag layer above the steel is removed from the

furnace. It is important for removing impurities from the furnace and to limit the slag

height. Most furnaces are equipped with an opening above the slag line, used specifically

for deslagging. As foaming proceeds, the slag can increase to such a level that it begins to

overflow this slag door. Otherwise by tilting the furnace in the direction of the slag door,

the slag can be poured out of the furnace. In a typical refining stage, the furnace may be

deslagged several times - the first substantial mass will be removed before an initial bath

sample and temperature are taken. Then foaming, followed by deslagging will take place

several times as continuous sampling and adjustment of bath properties proceeds.

Phosphorus is transferred to the slag early in the heat while the temperature is rela-

tively low1. The first deslagging (at the start of refining) removes a substantial portion of

the phosphorus (as P2O5), thus preventing its reversion into the steel. It is also important

that the slag is removed before it reaches the refractories to prevent slag attack, in spite

of the favourable slag properties that may exist. A further (practical) motivation for

deslagging is to remove the thick layer above the bath so that measurement probes can be

inserted into the bath without contamination from the slag. Therefore, it is advantageous

to limit the number of temperature (and carbon and oxygen) measurements as this will

limit the number of times the furnace is deslagged, and thus reduce losses by maintaining

a foamy slag layer for longer.

2.1.3 The off-gas system

There are two main routes by which the exhaust fumes can be removed from the fur-

nace. The direct evacuation system is the main route, consisting of an induced draft that

withdraws freeboard gases through a hole (called the fourth hole) in the furnace roof [17].

1Other slag conditions that favour phosphorus removal such as high basicity, high FeO content and

high slag volume are typically in place: the CaO-SiO2 ratio (basicity) is always greater than the minimum

2.2 suggested by Taylor [17]; FeO can be found in high volumes and the slag volume is assumed sufficient.
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Alternatively, gases that escape through other openings (such as electrode ports, open-

ings between furnace panels and slag door) are collected by the secondary emission control

system. This is made up of a canopy hood installed in the roof work area directly above

the furnace; it withdraws all gases that are in the immediate environment of the furnace.

This secondary system makes the operation of the furnace under a slight positive pressure

less detrimental. This positive pressure operation will typically take place during the first

few minutes of melting when volatile materials burn, and significant flame and flash-off

are observed at all the furnace openings [19].

Significant volumes of air are entrained into the off-gas system as the gases are being

transported away from the furnace. This serves two roles: to cool the gas and to combust

the CO. The entrained air itself will increase the total volume of the gas as will the

combustion of CO. As a result, the off-gas system is usually designed to remove four times

as much gas as leaves the furnace [19], the rest being contributed directly or indirectly by

the entrained air. For the EAF being studied, the off-gas system operates at a mass flow

rate of 66000 Nm3/h [22].

Some metal has been known to vaporize under the influence of oxygen injection [18].

The oxygen and the vaporized metal will react to form a gaseous oxide. This accounts

for the presence of oxide fumes that will report to the off-gas system. In the EAF the

effect will be lowered by the presence of anthracite and fuel gas. Under oxygen lancing the

abundance of oxygen will make the effect inevitable, but it may be offset by the presence

of a slag layer that helps to cover the steel. Therefore, some limited iron losses through

the off-gas can be expected.

2.1.4 Process delays/interruptions

Several unscheduled interruptions are experienced by the process. Their direct effect on

the process is to introduce delays. These will typically increase the total energy losses per

tap and consequently the energy required to achieve the aimed bath temperature.

The prolonged application of arc energy will also increase the consumption of elec-

trodes. This in turn translates to an increase in bath carbon, although this is in small

quantities: on average, electrode consumption occurs at a rate of 147 kg/tap, based on

the number of electrodes replaced over a data record of 78 taps. The majority of this

consumption takes place during meltdown [19].

Another delay that is typically encountered during the furnace operation is maxi-

mum demand power-off. This is used to prevent exceeding the maximum power limit as

prescribed by the power utility.2

2This delay occurs several minutes to the hour every hour during peak times from 11 AM to 3 PM.
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2.1.5 Charge constituents

Of the total scrap charged, a typical yield of about 90 % is reported [42]. The other 10 %

is lost as oxides to the slag, and to the off-gas system as vaporized iron, gaseous products

of oxidation and dust.

In the case of the current process, the total of the 2 to 3 charges consists mainly

of scrap, cast iron and slag formers. Table 2.2 shows the breakdown of the average

composition over 18 taps3. In a total charge of 80.5 ton, scrap makes up 69.4 ton; a

significant portion of the anthracite and slag formers is lost as dust to the off-gas system4.

This is approximated to up to 50% of all anthracite and 20 to 30 % of all slag formers [22];

the remaining anthracite is dissolved as carbon into the melting bath. The total slag

removed from the furnace is estimated to be approximately 20 ton (see subsection 4.3.4.3).

Bales, cut scrap and liquid iron are sometimes charged with the scrap.5

Table 2.2: Average charge constituents per tap.
Constituent Mass [ton] % composition
General scrap 69.37 73.61
Shredded scrap 3.65 3.87
Sponge iron 4.21 4.47
Pool iron 7.37 7.82
Cast iron 3.02 3.21
Lime 4.52 4.79
Dolomitic lime 1.15 1.22
Anthracite 0.96 1.02

The iron-based constituents - scrap, sponge iron, pool iron, cast iron - provide the main

raw materials that will melt into steel. Cast iron contributes to the bath carbon compo-

sition with its relatively high carbon content of 2 to 5 %. Similarly, pool iron, sourced

from a blast furnace, contributes to the bath about 5 % carbon and smaller amounts of

silicon, manganese, phosphorus and sulphur. Further details about the composition of the

various charge constituents are given in table 2.3. Most scrap units are assumed to have

a 100 % iron content since their composition is not measured. In any event impurities

3This is the number of taps for which data were collected and used throughout the dissertation.
4No information of this loss is available since the off-gas composition, or the resulting dust are not

measured.
5Some excess hot metal may be obtained from continuous casting operations - as happened for one of

the taps from the recorded data. But this is rare, and may be due to failure in casting operations which

necessitated that the hot metal be returned to the EAF. Only 17 ton of hot metal was charged for one

tap from a total of 78 taps (the total of all taps over 3 days, including the 18 monitored taps) - it is

expected that even less hot metal charging is used in general; the only source of hot metal in the EAF is

the hot heel.
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in the scrap will normally appear in trace quantities. Other constituents such as ash,

sulphur and phosphorus are not shown but may be found in varying quantities.

Table 2.3: Approximate composition of charge constituents.
Constituent % Fe % C % Si % CaO % MgO % SiO2 % Al2O3

General scrap 100 0 0 0 0 0 0
Shredded scrap 100 0 0 0 0 0 0
Cut scrap 100 0 0 0 0 0 0
DRI/Sponge iron6 78 0 1 0 0 3 3
Pool iron 95 4-4.4 1 0 0 0 0
Cast iron 95 2-5 0 0 0 0 0
Bales 100 0 0 0 0 0 0
Liquid iron 100 0 0 0 0 0 0
Lime 0 0 0 90.5 1.3 3 3
Doloma 0 0 0 63 37 0 0
Anthracite 7 0 80.3 0 0 0 0 0

Unlike BOF practices where the main hot metal charge is high in carbon, most scrap

input used for the EAF is generally low in carbon and so will the resulting molten steel.

Therefore, anthracite is charged into the furnace mainly to facilitate carbon pickup in the

bath. In practice, for medium carbon steel, carbon is charged at 2-12 kg/ton of molten

steel, depending on the projected oxygen injection and the desired end carbon [19]. In the

current process, on average 0.96 ton anthracite is charged for 87.6 ton of metallic charge,

giving 17 kg/ton. However, the effective carbon added to the bath will be lower since the

recovery rate from anthracite is less than 100 % : some anthracite is combusted during

burner operation and some is lost as dust to the off-gas. During melting, most of the

anthracite dissolves into the melting steel. Once a flat bath is reached, exothermic energy

is generated by decarburization of the high bath carbon. Given the right slag conditions,

the generation of CO will also improve slag foaming at early meltdown. While most of

the carbon is introduced into the bath only to be removed, its main role is foaming and

to supply chemical energy to the bath.

The other advantage of melting steel at a higher carbon content than specified is the

vigorous carbon boil that occurs as the temperature rises [17]. This effectively stirs the

bath, thus increasing the interfacial area between the steel and slag, and homogenizing

the temperature and composition. The evolution of CO also leads to removal of nitrogen

and hydrogen.

Direct reduced iron (DRI) is processed iron ore with a high metallization (i.e. a high

proportion of iron to oxides) - so called clean or virgin iron [19]. Its main advantage is

6At 88% total Fe and 78 % metallic Fe.
7Other components to be found in anthracite are: ash - 11.1% , volatiles - 7% , H2O - 1.6% and

sulphur - 1.3% .
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its low levels of tramp elements that are otherwise commonly found in scrap (Cu, Sn, Ni,

Cr, Zn, Pb). In the EAF, no practical refining method exists for removing these elements

from the steel. When the only available scrap is high in these tramp elements, the pure

DRI is used to neutralize the steel, effectively diluting the tramp elements [17]. The high

levels of oxides in the DRI will also contribute towards slag foaming.

The composition of the charge is also chosen based on the desired composition of the

melt. Table 2.4 shows the compositions of charge basket one and two as a function of the

desired end point carbon8. Pool iron and DRI are the only constituents that vary as the

desired carbon content of the bath changes. Pool iron is high in carbon and is increased

as the desired end carbon increases - because of the slow melt-in of the pool iron, a high

carbon level will be ensured at the end of tap. On the other hand the DRI is decreased

so that less FeO from the DRI will reduce bath decarburization.

Table 2.4: Basket composition [ton] for desired grade of steel (carbon composition).
Basket 1 Basket 2

Desired grade Low C Medium C High C Low C Medium C High C

C composition %C < 0.2% 0.2 < %C < 0.4% %C > 0.4% %C < 0.2% 0.2 < %C < 0.4% %C > 0.4%

Shredded scrap 10 10 10 5 5 5

Pool iron 2.0 4.0 6.0 0 0 0

Lime 2.0 2.0 2.0 2.0 2.0 2.0

Doloma 1.0 1.0 1.0 1.0 1.0 1.0

Anthracite 0.75 0.75 0.75 0.75 0.75 0.75

DRI 4.0 3.0 2.0 4.0 3.0 2.0

General scrap9 75 75 75 75 75 75

2.1.6 Refining

Once flat bath conditions have been reached the next important step in EAF operation

is refining. During this stage, the final adjustment of steel properties is carried out: the

bath composition and temperature are controlled to meet the final steel specifications.

In particular, the refining stage involves the removal of phosphorus, sulphur, aluminium,

silicon, manganese and carbon; with the latter being more important. With the increasing

use of oxygen, the control of the final oxygen content (and other gases such as nitrogen

and hydrogen) is also important. In all cases the final composition is generally controlled

to be lower than specification - alloying additions can be made in the ladle to raise the

composition to desired levels.

Once the charge is fully melted, the temperature and composition of the bath are

determined. A sample of the steel is extracted and processed for laboratory chemical

8This is the typical charge composition as used in practice [22].
9The scrap is chosen to fulfil final bath mass requirements, and may be slightly different from 75 ton.
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analysis. The sample chemical composition can be reported within 3 minutes from ex-

traction to analysis [22] in the absence of any operator delays or equipment malfunction.

The bath temperature is measured using a disposable thermocouple that is inserted into

the bath and reports the result instantaneously. A composite probe is also employed - this

gives instantaneous measurements of temperature, oxygen activity and calculated bath

carbon. It avoids the long delays involved in obtaining a detailed sample analysis at the

latter stages of refining.

Much of the removal of undesired elements from the bath occurs by oxidation. Oxy-

gen injection begins well before flat bath conditions are reached. As a result, some of

the refining reactions will take place before operator control (after a bath analysis and

temperature have been secured). For the purposes of this dissertation, the refining period

will be taken as the time from the first bath analysis to tapping; the preceding period is

pre-refining and generally overlaps with the late melting stage.

Removal of phosphorus, manganese, silicon and carbon occur mainly by oxidation.

Phosphorus is oxidized as P2O5 and transferred to the slag. The phosphate capacity of

the slag is controlled by CaO and MgO components of the slag [19]. Other factors such

as temperature, FeO and basicity are important for phosphorus retention in the slag i.e.

low temperature, high slag FeO and basicity. Therefore the first deslagging is important

for removal of large quantities of the phosphorus - this typically occurs at early refining

before the temperature is raised to a level that may cause phosphorus reversion into the

bath [17]. The slag additives are chosen to maintain sufficient basicity - a minimum of

2.2 CaO/SiO2 - and high levels of FeO are generally maintained (see table A.1 in the

appendix).

Manganese is oxidized from the bath as MnO and transported to the slag. Retention

in the slag is ensured by some of the conditions that apply for phosphorus: high FeO,

low temperature and lime-silica ratio less that 2.2. A lime-silica ratio of 2.2 will ensure

optimal conditions for retention of both manganese and phosphorus - this is generally

not possible. A good solution is to begin with a charge that is low in manganese or to

increase the proportion of DRI. Or, consistent oxygen injection will ensure a high rate of

manganese oxidation despite suboptimal conditions for its retention in the slag.

Sulphur has a detrimental effect on the steel surface quality as well as the mechanical

properties. It is also one of the more difficult elements to control: at most only half

the total sulphur introduced with the charge can be removed from the bath [17]. Some

(20 to 30 % ) desulphurization can be achieved during oxidation. Conditions that favour

successful removal of sulphur are: high basicity, low FeO, high slag fluidity and low bath

oxygen. Temperature and chemistry of the bath and slag are also important variables in

desulphurization. The sum of the acidic oxides, % SiO2 and % P2O5, has a negative effect
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on the sulphide capacity of the slag [19]. Lime additions can also improve desulphurization

but they must be accompanied by flux additives to maintain slag fluidity. Generally, the

reducing phase is favourable for effective desulphurization. However steel EAF operations

are oxidizing, so that desulphurization is deferred for the ladle metallurgy where reducing

conditions can be maintained [19].

Silicon is oxidized well before carbon. The reaction is highly exothermic, transferring

significant amount of energy to the bath and SiO2 to the slag. Its control is generally

simple and presents few challenges - in fact all silicon is removed completely during de-

carburization [17]. Therefore the bath is normally tapped with much lower silicon than

specified. Then ferrosilicon is added to raise the silicon level to specification.

Decarburization is the most important reaction in steelmaking [19]: it determines the

process time, slag FeO levels and consequently the yield and refining. Experimental results

reveal two routes by which decarburization takes place [20, 36, 43]. Above the critical

carbon content ( % Ccrit), the removal of carbon is proportional to the rate of oxygen

injection - it is also independent of the carbon content. The % Ccrit lies in the range 0.1−
0.6 % , established by the corresponding oxygen volume flow rates of 1 − 4.5 m3/(t.min).

Below % Ccrit, the decarburization is proportional to the carbon content. Specifically,

the rate of decarburization is proportional to the difference between the current carbon

content and the equilibrium carbon content (see subsection 2.2.1 for details) - this is

effectively decarburization by FeO reduction [5, 19,41].

The latter reactions are:

Fe +
1

2
O2 = FeO (2.1a)

FeO + C = Fe + CO (2.1b)

net: C +
1

2
O2 = CO (2.1c)

Both patterns of decarburization result in the same net reaction (2.1c), so that either will

suffice. The original model derivation models decarburization by FeO reduction [39], this

will be retained in the current dissertation. Any deviation can be corrected by adjustment

of the appropriate rate constant (kdC).

2.1.7 Differences between original and current EAF

With the preceding discussion of the process under study, a discussion about the original

model derivation and how it relates to the current process is in order. The model derived

in Bekker [5] and later used by Oosthuizen [7] was based on a 150 ton process with a
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significant hot metal charge, continuous DRI and slag feeds and oxygen injection from

the beginning to the end of tap. The following differences are observed:

• Only a relatively small hot heel is used at the beginning of tap and no hot metal

charge is made.

• All carbon and silicon originate from the scrap and other metallic charge. Their

composition in the molten steel will increase only as the solid metal melts. In the

original derivation, these impurities are dissolved in the liquid metal charge and

decrease progressively.

• The generation of slag FeO and SiO2 will not occur until well into the tap when

sufficiently flat bath conditions have been reached and oxygen injection commences.

• This means decarburization and desiliconization will only occur once proper slag

conditions are in place, not from the beginning of tap.

• Oxyfuel burners serve as an additional source of heat energy during early meltdown.

Once most of the metal is melted they operate as high efficiency oxygen lances to

inject oxygen - cutting the remaining scrap, oxidizing impurities from the bath and

increasing the slag metal-interaction by vigorous bath stirring - this oxygen injection

occurs throughout the tap for the original model.

• There are no continuous feeds of slag or DRI; these are introduced into the furnace

as part of the charge.

• There are relatively low levels of carbon in the scrap with limited contributions from

cast iron and pool iron - bath carbon levels are increased by carbon pickup from

the charge anthracite.

With the above discussion, the model decarburization, desiliconization and bath ox-

idation cannot proceed as originally derived. Decarburization is given by the difference

between the current (XC) and equilibrium (Xeq
C ) carbon concentrations:

ẋ3 = −kdC(XC −Xeq
C ). (2.2)

For successful decarburization, (XC−Xeq
C ) > 0, made possible by the availability of FeO,

liquid slag and a high bath carbon. At initial melting some liquid slag is developed, but

no FeO or SiO2. A situation can result with low FeO, finite liquid slag (increasing the

equilibrium point) and low bath carbon where XC < Xeq
C . This will lead to an increase in

bath carbon - impossible since there is no source for this additional carbon. To circumvent

this problem, the initial FeO, SiO2 and liquid slag are deliberately exaggerated (in practice
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the magnitudes of these states are negligible until near-flat bath conditions have been

reached). The same values are used for each tap so that their effect is consistent from

one tap to the next and will not violate the resulting mass and heat balances. This

maintains the necessary conditions where bath carbon and silicon are always higher than

their equilibrium concentrations.

Only small initial values of dissolved carbon and silicon will be used; a major portion

is introduced as solids - carbon as anthracite and silicon in the scrap. Therefore, over the

entire tap simulation, the dissolved carbon and silicon will increase gradually in proportion

to the scrap melting rate.

2.2 The process model

2.2.1 The EAF model

A detailed description of the model is given in Bekker [5]; it was later updated by Oost-

huizen et al. [6]. In this subsection, only a listing of the important equations will be given.

The non-linear model has the form

Σθ :





ẋ = f(x, θ,u)

y = h(x, θ,u)

x(0, θ) = x0

(2.3)

where x ∈ <n, u ∈ <m, y ∈ <p and θ ∈ <q are the state, input, output and parameters of

the system.

The following definitions are used to describe the current masses of carbon and silicon

at time t relative to their equilibrium concentrations with the FeO in the slag. At steady

state, the concentration of carbon and silicon in the bath will be at equilibrium with

the FeO in the slag. That is, their current concentrations will change so as to reach

equilibrium, hence the following equations.

XC =
x3/MC

x2/MFe + x3/MC + x4/MSi

(2.4)

XFeO =
x7/MFeO

x6/Mslag + x7/MFeO + x8/MSiO2

(2.5)

Xeq
C = kXC

(
x6MFeO

x7Mslag

+
x8MFeO

x7MSiO2

+ 1

)
(2.6)

XSi =
x3/MSi

x2/MFe + x3/MSi + x4/MSi

(2.7)

Xeq
Si = kXSi

(
x6MFeO

x7Mslag

+
x8MFeO

x7MSiO2

+ 1

)2

(2.8)
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where Xi and Mi are (respectively) the molar fraction and molar mass of element or

compound i. The equilibrium concentrations for carbon (Xeq
C ) and silicon (Xeq

Si ) are

based on the concentrations of the slag-based constituents FeO (x7), SiO2 (x8) and the

composite slag which is made up mainly of the CaO and MgO parts of the slag (x6); the

corresponding equilibrium concentration constants are given by

kXC = XFeOXC = 491 · 10−6

kXSi = X2
FeOXSi = 8.08 · 10−8

(2.9)

A listing describing the variables used above and in the rest of the model is given in

section A.1 of the Appendix.

The heat energy derived from the chemical reactions in the bath is given by:

p1 = (∆HC(S) + ∆HFeO −∆HCO)kdC/MC(XC −Xeq
C )

p2 = (−2∆HFeOd1/MO2)ηFeO

p3 = ((∆HCO2 −∆HCO)2k
air1

k
PR

x14)

p4 = (∆HSi S −∆HSiO2 −∆HSiO2 S)
kdSi

MSi

(XSi −Xeq
Si )

p5 =
d1

MO2

(x12 − TO2)Cp(O2)

p6 = k
air1

k
PR

x14(x12 − TAIR)Cp(O2)

p7 = k
air2

k
PR

x14(x12 − TAIR)Cp(N2)

p8 = −2d3Cp(Slag(S))(x12 − Tslag)/Mslag

p9 =
−%metd2(λFe + Cp(Fe(s)))(x12 − TDRI)

MFe

p10 = −ktherea1x1
x2

x1 + x2

(x12 − x13)− ktherea5x5
x6

x5 + x6

(x12 − x13)

p11 =
x7kgrd5(∆HFeO −∆HCO)

(x6 + x7 + x8)MC

p3 , p6 and p7 relate to heat energy interactions due to air entrainment. p6 and p7 are

heating losses to entrained O2 and N2; p3 is the heat input from combustion of freeboard

CO by entrained O2. These contributions only apply under negative furnace pressure,

otherwise they have no influence on the heat balance. Since the model is based on simple

heat balance, the different modes of heat transfer - radiation, convection and conduction -

are not explicitly handled. That is, all the energy input (via some efficiency constants) is

transferred to the furnace without regard to the specific mode of transfer. This simplifies

modelling without violating the heat balance. The total energy from chemical reactions

is pt = p1 + ... + p12, where p12 is defined in the next subsection (2.2.2)
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The model state equations are given by:

ẋ1 =
−MFektherea1(x1)(x12 − x13)

√
(x13/x12)

(λFe + Cp(Fe(S))(x12 − x13))

+
MFektherea1(x1) max(Tl − x12, 0)

λFe

(2.10)

ẋ2 =
MFektherea1(x1)(x12 − x13)

√
(x13/x12)

λFe + Cp(Fe(S))(x12 − x13)
+

x7kgrMFed5

(x6 + x7 + x8)MC

+
MFe

MC

kdC(XC −Xeq
C ) +

2MFe

MSi

kdSi(XSi −Xeq
Si )−

2MFed1

MO2

+ 0.825d2

−MFektherea1(x1) max(Tl − x12, 0)

λFe

(2.11)

ẋ3 = −kdC(XC −Xeq
C ) (2.12)

ẋ4 = −kdSi(XSi −Xeq
Si ) (2.13)

ẋ5 =
−Mslagktherea5(x5)(x12 − x13)

√
(x13/x12)

λSlag + Cp(Slag(S))(x12 − x13)
+d3

+
Mslagktherea5(x5) max(Tl − x12, 0)

λSlag

(2.14)

ẋ6 =
Mslagktherea5(x5)(x12 − x13)

√
(x13/x12)

λSlag + Cp(Slag(S))(x12 − x13)

−Mslagktherea5(x5) max(Tl − x12, 0)

λSlag

(2.15)

ẋ7 =
2MFeOd1

MO2

η
FeO
− MFeO

MC

kdC(XC −Xeq
C )−2MFeO

MSi

kdSi(XSi −Xeq
Si )

− x7kgrMFed5

(x6 + x7 + x8)MC

+ 0.13d2 (2.16)

ẋ8 =
MSiO2

MSi

kdSi(XSi −Xeq
Si ) + 0.045d2 (2.17)

ẋ12 = (pt + η
ARC

d4 − kV T (x12 − Tair))/

[
x2Cp(FeL)

MFe

+
x3Cp(C)

MC

+
x4Cp(Si)

MSi

+
2x6 + 2x7 + 3x8

Mslag

Cp(Slag(L)
)

]
(2.18)

ẋ13 =
ktherea1(x1)(x12 − x13)x2/(x1 + x2)

x1Cp(Fe(S))/MFe + 2x5Cp(Slag(S))/Mslag

+
ktherea5(x5)(x12 − x13)(1−

√
(x13/x12))x6/(x5 + x6)

x1Cp(Fe(S))/MFe + 2x5Cp(Slag(S))/Mslag

(2.19)

Electrical, Electronic and Computer Engineering 24

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 2 The process model

ẋ14 =

(
x9

MCO

+
x10

MCO2

+
x11

MN2

+
x18

MH2O

+
x19

MCH4

+
x20

MC3H8

+
x21

MH2

+
x22

MO2

)
Rẋ12

V ol

+
Rx12

V ol

(
ẋ9 + ẋ10 + ẋ11 + ẋ18 + ẋ19 + ẋ20 + ẋ21 + ẋ22

)
(2.20)

ẋ15 = x16 (2.21)

ẋ16 = x17 (2.22)

ẋ17 = − 2

tdτ1τ2

x15 − 2τ1 + 2τ2 + td
tdτ1τ2

x16 −
( 1

τ1

+
1

τ2

+
2

td

)
x17 + u1 (2.23)

Under negative pressure, equations for the freeboard gas masses are given by

ẋ9 = −Πx9+
MCO

MC

kdC(XC −Xeq
C ) + 2MCOk

air1
k

PR
x14+

MCOd5

MC

(2.24)

ẋ10 = −Πx10−2MCO2kair1
k

PR
x14 (2.25)

ẋ11 = −Πx11−MN2kair2
k

PR
x14 +

d5

150
(2.26)

ẋ18 = −Πx18 + dH2O − 2MCH4kair1
k

PR
x14 − 0.4MC3H8kair1

k
PR

x14

−2MH2kair1
k

PR
x14 (2.27)

ẋ19 = −Πx19 + dCH4 + 0.5MCH4kair1
k

PR
x14 (2.28)

ẋ20 = −Πx20 + dC3H8 + 0.1MC3H8kair1
k

PR
x14 (2.29)

ẋ21 = −Πx21 + dH2 + 2MH2kair1
k

PR
x14 (2.30)

ẋ22 = −Πx22 + d1(1− η
PC

) (2.31)

The above equations for ẋi, i = 9, . . . , 11 and i = 19, . . . , 22 are valid for x14 < 0 (i.e.

negative pressure). Under positive pressure they are given by

ẋ9 = −Πx9 +
MCOd5

MC

+
MCO

MC

kdC(XC −Xeq
C )− k

PR
x14x9

ζ
(2.32)

ẋ10 = −Πx10−k
PR

x14x10

ζ
(2.33)

ẋ11 = −Πx11−k
PR

x14x11

ζ
+

d5

150
(2.34)

ẋ18 = −Πx18 + dH2O − k
PR

x14x18

ζ
(2.35)

ẋ19 = −Πx19 + dCH4 −
k

PR
x14x19

ζ
(2.36)

ẋ20 = −Πx20 + dC3H8 −
k

PR
x14x20

ζ
(2.37)

ẋ21 = −Πx21 + dH2 −
k

PR
x14x21

ζ
(2.38)

ẋ22 = −Πx22 + d1(1− η
PC

)− k
PR

x14x21

ζ
(2.39)

where

Π =
[(2KM/(tdτ1τ2))x15 − (KM/(τ1τ2))x16]hd

(kUu2 + hd)(ζ)
(2.40)
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and

ζ = (x9 + x10 + x11 + x18 + x19 + x20 + x21 + x22), (2.41)

the total freeboard gas mass, and Tl ≈ 1500 ◦C is the melting temperature of the steel.

2.2.2 The oxyfuel subsystem

A further contributor to furnace heating is the oxyfuel system [44]. In the current im-

plementation it consists of 3 composite oxygen-and-fuel gas lances placed at an angle of

120o adjacent from one another, at a 45o pitch. The central core of each lance carries a

stream of oxygen while the outer rim injects fuel gas. In one mode the lance acts solely

for injection of oxygen in which case, some fuel gas is still injected for cooling the lance.

In burner mode, the pressure and flow of oxygen are significantly reduced, allowing for

efficient mixing with the fuel gas.

The inputs to the combustion reaction are fuel gas and O2, both of which are ap-

proximately at room temperature. In this study the fuel gas has the following volume

composition: 45.5% H2, 27% CH4, 19% CO, 4.7% CO2, 1.8% C3H8 and 1.6% N2.

The net enthalpy of the combustion reactions is given, in general, by:

∆Hr,T = (∆HT)P − (∆Ho)R

= (∆HT + ∆Ho
f )P − (∆Ho

f )R

= ∆Ho
r + (∆HT)P , (2.42)

where R and P refer to reactants and products; the reactants enter at room temperature.

∆Ho
r is the standard enthalpy of reaction and (∆HT)P is the enthalpy of the products

which leave the reaction at temperature T , relative to room temperature.

The values for ∆Ho
f , the standard enthalpy of formation, are commonly available [45],

while the enthalpy ∆HT is given by:

∆HT =
∑

i

∫ T

298

CidT, (2.43)

where the sum is carried out over all the reactants or products and Ci is the specific heat

of the element or compound i.

The heat energy contribution from the oxyfuel system can be derived from the reac-

tions:

C3H8 + 5O2 → 3CO2 + 4H2O

2CO + O2 → 2CO2

2H2 + O2 → 2H2O

CH4 + 2O2 → CO2 + 2H2O;
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N2 is inert.

The resulting energy and mass balance for each reaction must take into account that

the combustion is not complete. Factors such as temperature, nozzle design and com-

bustion ratio dictate the mixing between the fuel gas and O2 with the effect that η, the

efficiency of mixing and combustion, is a strong function of the gas flow rates. Therefore

η is an adjustable parameter that depends on the operating point of the oxyfuel burners.

The resulting mass balances, in molar flow rate Ṅx, are:

ṄCO2 = η(3ṄC3H8 + ṄCO + ṄCH4)

ṄH2O = η(4ṄC3H8 + ṄH2 + 2ṄCH4)

The excess oxygen is given by

ṄO2 =
dO2

MO2

− η
(
5ṄC3H8 +

1

2
ṄCO +

1

2
ṄH2 + 2ṄCH4

)
, (2.44)

where dO2 is the O2 mass flow rate. Depending on the the burner mode of operation the

excess oxygen will either report to the off-gas or the bath. In burner mode the low rate

and pressure of injection mean that most of the oxygen is confined to the freeboard, while

in lancing mode most of the high-speed oxygen stream will reach the bath. Integrating

the above discussion into a format compatible with the original model derivation results

in the following equations for the energy inputs from the oxyfuel system:

p
C3H8

=−dgXC3H8

MC3H8

{
η(3∆Ho

CO2(T ) + 4∆Ho
H2O(T )) + (1− η)(∆Ho

C3H8(T ))−∆Ho
C3H8(298K)

}

p
CO

=−dgXCO

MCO

{
η2∆Ho

CO2(T ) + (1− η)(∆Ho
CO(T ))− 2∆Ho

CO(298K)

}

p
H2

=−dgXH2

MH2

{
η(2∆Ho

H2O(T )) + (1− η)(2∆Ho
H2(T ))− 2∆Ho

H2(298K)

}
(2.45)

p
CH4

=−dgXCH4

MCH4

{
η(∆Ho

CO2(T ) + 2∆Ho
H2O(T )) + (1− η)(∆Ho

CH4(T ))−∆Ho
CH4(298K)

}

p
N2

=−dgXN2

MN2

η∆Ho
N2(T )

p
O2

=−ṄO2∆Ho
N2(T )

where Xi and Mi are the mass fraction and molar mass of gas i; dg is the mass flow

rate of the fuel gas and Ho
x(T ) is the enthalpy of compound (or element) x at temperature

T - assumed equal to the bath temperature. px is the power (in [kW]) generated or

consumed by x. Therefore, the net heat energy contribution from the oxyfuel system is

p12 = p
C3H8

+ p
CO

+ p
H2

+ p
CH4

+ p
N2

+ p
O2

.
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2.2.3 Water cooling system

The water cooling has become a necessity in modern EAF design. This is mainly because

of the high electrical power that is dissipated in the furnace. With this high power arc

radiation it is important to cool the refractories that line the furnace walls and roof

especially at flat bath conditions when the arc may be poorly insulated by foaming10 [19].

It is possible that some contribution to the heating of the water cooling panels originates

from the oxyfuel subsystem. However this is overshadowed by the excessive radiation

from the arcs, and no literature has been found that studies the effect of oxyfuel radiation

on the sidewalls.11

The energy lost to the cooling water system is given by

∆E = hv(Tout − Tin) (2.46)

The temperature of the inlet and outlet flows are continuously measured. This makes

the water cooling variables amenable for use as a feedback variable. While this may be

so, the practical implementation of this variable set for feedback is not supported by the

results that are presented in chapter 4.

2.2.4 Bath oxygen activity

The relationship between bath oxygen activity and carbon was described by Chou et al. [43].

The main formula is used here without the derivation (see the reference for details

Chou et al. [43]):

ln[ % O][ % C] = ln P + ln xCO − ln K27 − ln fC − ln fO, (2.47)

10When adequately foamed the arc is sufficiently shielded. Both foaming and water cooling have made

possible the advent of ultra high power furnaces as they limit the erosion of the furnace refractories and

sidewalls by arc radiation [46].
11A technique used to estimate the efficiency of the oxyfuel subsystem, is to monitor the temperature

of the sidewalls adjacent to the burner lance. Increasing sidewall temperatures indicate a decrease in heat

transfer to the scrap since the heat is now being transferred to the sidewalls instead of the scrap [40].

This indicates that the oxyfuel system will have an effect on the sidewall temperature, but it is expected

to be relatively small under normal operation. A physical model for this behaviour is beyond the scope

of this dissertation. However a state-space model based on the bulk furnace temperature and its effect

on the water cooling temperature will be considered.
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where

ln K27 = 4.77 +
2692.5

T
ln fO = 0.4606[ % O] + 0.2994[ % C]

log fC = 0.1666[ % C]− 0.01585[ % C]2 + 9.9613 · 10−7[ % C]3(T − 273)

+3.0246 · 10−5[ % C](T − 273)

ln fC = 2.303 log fC,

and fx is the activity coefficient of component x, xCO is the partial pressure of CO,

K27 is the equilibrium constant for the reaction C+O=CO and ln P is the total pressure,

assumed close to atmospheric, then ln P = 0, since P is taken as the reference pressure. To

obtain the dissolved bath oxygen, equation (2.47) must be solved (nonlinearly) for [ % O],

at a given temperature and bath carbon - the latter are adequately modelled [5]. That

(2.47) provides an adequate depiction of bath oxygen given bath carbon will be shown

in the model fitting (chapter 5). The bath temperature lies within a confined range so

that it has only a limited influence on [ % O]; and, for bath carbon below 0.5 % C, the

relationships are practically independent of temperature [36].

Alternatively, the bath oxygen can be determined from the prevailing slag FeO condi-

tions [36]. The equilibrium constant of slag FeO is given by

KFeO =
[aO]

(aFeO)
≈ [ % O]

γFeOXFeO

(2.48)

with

log KFeO = −6320

T
+ 2.765, (2.49)

where KFeO can be obtained from standard thermodynamic tables, Xk is the mole fraction

of component k and ak is the corresponding activity. Therefore, given the slag FeO, the

bath oxygen can be estimated or vice versa.

2.2.5 The reduced model

The simulation model as it stands has as its main drawback the long computational time.

This becomes increasingly important when thousands of iterations of the model have to

performed, especially during optimization. The object is then to obtain a reduced model

that has fewer computations - by removing some unnecessary terms - while maintaining

a reasonable level of accuracy compared with the original model. To establish notation,

the reduced model will be referred to as MR and the original model as M.

The system equations given in the previous section are valid for an entire tap. They

describe the furnace conditions from the time that an initial basket charge is made through
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refining until the final tap is made. An important assumption that stems from the model

derivation is that the tap is a continuous uninterrupted process from start to end. Clearly

this is rarely a case in practical furnace operation. Various changes can be made to the

process at any stage during the tap; these include (among others): charging, levelling of

input scrap, making additives, arcing, lancing, etc. In addition, there are also outright

process interruptions due to delays, breakdowns, maintenance etc. These affect the valid-

ity of the assumption of process continuity to varying degrees. Some actions are directly

accounted for in the model e.g. arcing, lancing, burner operation while others will simply

invalidate the model.

The above discussion highlights the inherent unpredictability of the EAF operation.

This leads to large variations in the various process variables between taps. A further

complication is that very few of these variables are measured in the first place thus jeop-

ardizing any efforts at increasing modelling accuracy.

One approach is to relax the assumption of process continuity, but this is accompanied

by the burden of a more intensive modelling effort. This is better avoided. An alternative

is to identify regions during a tap where the process is continuous and more consistent

from one tap to the next. This is the approach followed by the current work. In particular,

only the refining stage is isolated for study.

The choice of the refining stage leads to several advantages. Once an initial temper-

ature measurement and sample have been taken at some initial time t = t1, except for

deslagging, the process is uninterrupted until a second measurement is made12 (at t = t2).

These are the only times at which plant measurements are made in practice; these mea-

surements can be used for model tuning. Furthermore, this is typically a flat bath stage

when all melting has occurred; the modelling assumption of homogeneity is also valid. As

far as bath conditions are concerned, consistency is assured from tap to tap.

Process variables that undergo significant change during refining are bath temperature,

carbon and silicon concentrations (masses), masses of SiO2 and FeO in slag and all the

freeboard gases. Under the above assumption all masses of the bath and composite slag

are at steady state - they can be treated as constants. The oxyfuel system injects large

volumes of gases into the freeboard. Air entrainment is the only mechanism by which the

furnace heat balance (and hence the bath temperature) can be affected by the freeboard

gases; this happens only under negative pressure; otherwise for all practical purposes, the

freeboard has no effect on the temperature and chemistry of the bath.

While air entrainment does represent a substantial energy loss, it is insignificant com-

pared to contributions from arc input, bath oxidation and graphite injection. The relative

12The time at which the second measurement is taken in arbitrary: it depends on operator assessment

of the progress of refining since the first measurement was taken.
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contributions of these heat sources and sinks will be discussed in chapter 5. This motivates

the omission of pressure from the reduced model.

With the above discussion and assumptions in mind, the model can be reduced since

some of the states are unchanging or have little effect on the system dynamics under

consideration: the time evolution of bath temperature and impurity concentrations. The

modified system equations are given by

ẋ3 = −kdC(XC −Xeq
C )

ẋ4 = −kdSi(XSi −Xeq
Si )

ẋ7 =
2MFeOd1

MO2

− x7kgrMFed5

(m
T (slag)

+ x7 + x8)MC

+ 0.13d2

ẋ8 =
MSiO2

MSi

kdSi(XSi −Xeq
Si ) + 0.045d2

ẋ12 = (pt + η
ARC

d4 − kV T (x12 − Tair))/[
m

T (Fe)
Cp(FeL)

MFe

+
2m

T (slag)
+ 2x7 + 3x8

Mslag

C
p(slag(L))

]

where the molar concentrations are given by

XC =
x3/MC

m
T (Fe)

/MFe + x3/MC + x4/MSi

XFeO =
x7/MFeO

m
T (slag)

/Mslag + x7/MFeO + x8/MSiO2

Xeq
C = kXC

(
m

T (slag)
MFeO

x7Mslag

+
x8MFeO

x7MSiO2

+ 1

)

XSi =
x4/MSi

m
T (Fe)

/MFe + x3/MSi + x4/MSi

Xeq
Si = kXSi

(
m

T (slag)
MFeO

x7Mslag

+
x8MFeO

x7MSiO2

+ 1

)2

m
T (Fe)

and m
T (slag)

are the total masses of the slag formers and bath - both are assumed

constant. At refining, the concentration of carbon and silicon in the bath is low (less

that 0.1 % in weight); their effect on temperature is neglected. Furthermore, combined

reduction of FeO in the slag by bath carbon and silicon is negligible when compared to

that of graphite and oxygen injection, hence their contribution to x7 (slag FeO) is omitted.

The heat balance changes accordingly. By the assumption of positive pressure, the

heating losses due to air entrainment can be neglected: p6 = p7 = 0; the heat of com-

bustion of CO can be eliminated since no oxygen is entrained: p3 = 0. No continuous

material feeds are made hence p8 = p9 = 0. A completely flat bath means p10 = 0 since

these is no melting. The most significant components of chemical heat balance originate
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from: bath oxidation p2, graphite injection p11; p1 +p4 has little effect on the heat balance

since under refining conditions Si% + C% < 0.25 wt % and their overall contribution is

negligible.

Over several taps, the average chemical energy contribution from each of the various

sources will be discussed in chapter 5 - this also explains the choice of p2 , p5 and p11 as

the only chemical energy sources for MR.

Thus, the equations for the heat balance are reduced to:

p2 = (−2HFeOd1/MO2)ηFeO

p5 =
d1

MO2

(x12 − TO2)Cp(O2)

p11 =
x7kgrd5(∆HFeO −∆HCO)

(x6 + x7 + x8)MC

pt = p2 + p5 + p11

The following map collects the parameters that are relevant to the reduced model:

θ =




kdC

kdSi

kgr

k
V T

η
ARC

η
FeO




;

where kdC and kdSi are the rate constants for removal of carbon and silicon from the bath;

kgr is the graphite reactivity constant; η
ARC

and η
FeO

are the efficiencies of arc energy input

and bath oxidation. The above equations also apply under negative pressure, particulary

when the operating pressure is close to 0 Pa - this is assumed to be the prevailing condition,

so that the MR is applicable under negative or positive pressure. This assumption is also

supported by the relatively low contribution of the furnace pressure to the overall heat

balance.

2.3 A typical tap

The following section essentially illustrates the previous discussions. The main aim is to

demonstrate the dynamic behaviour of the various process variables under typical furnace

conditions. These conditions are as close to the real operation as possible. Inputs and

initial conditions are obtained from plant data as far as possible - these are discussed in

detail in the chapters that follow. The refining stage of the simulation that follows is used

throughout the dissertation to carry out the parameter estimation where the parameter
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values will be chosen based on the difference between the simulation and the corresponding

measured data.

2.3.1 Operating conditions

The furnace has a rated capacity of 80 ton14, with a maximum power input of 40 MW. On

average 86.3 ton of raw materials is charged onto a hot heel of approximately 5 to 10 ton,

which is assumed to be at 1600 ◦C, slightly lower than the average 1650 ◦C specification

on bath temperature at tap time. The freeboard volume is approximated as a cylindrical

volume of 74 m3 with a diameter of 5.6 m.

2.3.1.1 Inputs and initial conditions

The primary inputs to the furnace are the electrical arc input, the oxygen injection and fuel

gas injection; another input is the graphite injection. Previous modelling [5] incorporated

inputs such as DRI and slag, these do not exist as continuous inputs in the current process:

they are part of the batch furnace charge instead. The choice of initial conditions will

become clearer in later chapters.

2.3.2 The heat cycle

The heat cycle profile gives a graphic presentation of the power on (and off) time during

meltdown and refining. Important events and delays are also marked by changes in the

power profile. Also correlated to the power-on times are the oxygen and fuel gas inputs as

the oxyfuel system cycles between burner and lancing (refining oxygen injection) modes.

Figures 2.2 to 2.9 show the measured plant inputs and corresponding model outputs for

one tap.

The off-times in the arc input (and oxygen) typically mark the time at which charges

are made or when unscheduled delays occur. These off-times are accompanied by abrupt

changes in pressure and the off-gas states.

Figure 2.3 shows a plot of the fuel gas and oxygen inputs. The variation in the levels of

O2 and fuel gas point to a change in the operating mode of the oxyfuel burners. The sharp

rise in injected oxygen and slight decrease in fuel gas indicate the onset of oxygen lancing.

At this stage the fuel gas serves only to cool the lance. After each basket charge, the

oxyfuel system operates in burner mode, then switches to oxygen lancing when sufficient

liquid metal is generated 15. The operating mode after the third basket is strictly oxygen

14It is typical for the tap to operate with a total bath mass of up to 86 ton.
15This decision is typically based on the total electrical input consumed up to that time - the consump-

tion of electrical input is a good indicator of the progress of melting in the bath.
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Figure 2.2: Arc input for an actual tap. The times at which power is off - −1 < t < 1,

17 < t < 19 and 31 < t < 33 minutes - are the charging times when raw material

additions are made into the furnace. The refining stage begins near the end of tap. It

is characterized by intermittent drops in power to enable temperature measurements.

Temperature measurements were obtained at t = [47, 49, 51] minute. The long dead time

from 54 to 60 minutes marks the time at which oxygen injection was used to lower the

high bath carbon of Tap 1 ( see table A.1 of the appendix).

lancing since sufficient hot metal is available from melting of the previous two baskets.
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Figure 2.3: Oxygen and fuel gas input.
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Figure 2.4: Graphite.

From the previous model derivation, it was assumed that the hot metal charge was

the only source of carbon and silicon, and that comparatively low levels are to be found

in the scrap and DRI charge [39]. The converse is true in the present case (and in most

EAFs with little or no hot metal charge): the scrap is the main source of silicon and

some carbon - while anthracite is the primary source of carbon. Therefore, in addition to

decreasing in proportion to their distance from equilibrium, the bath carbon and silicon

will also increase in proportion to the melting rate of scrap and dissolution of anthracite

(assumed to be proportional to the scrap melting rate). Hence figure 2.6, depicting a

gradual increase in carbon and silicon followed by an asymptotic decrease as the scrap

melting and anthracite dissolution proceed. Figure 2.5 depicts the progress of melting as

more scrap is added with every charge, first at t = 0 , t ≈ 21 and t ≈ 33 minutes 16. The

corresponding change in temperature is shown in figure 2.9.

The melting of scrap can result in excessive heat loss during the initial stages of a tap

when the liquid steel mass is significantly lower than the scrap mass Tl. This can result

in a liquid temperature drop that is well below the melting point of steel. Physically,

this means that some of the liquid steel solidifies. This effect is captured in the model by

ensuring that all liquid steel below Tl is solidified. This is reflected in equations (2.10) and

(2.11). Furthermore, the heat loss from liquid steel is made proportional to the fraction

of liquid steel to total steel mass x2/(x1 +x2). This effectively prevents the instantaneous

drop in liquid temperature (physically not possible) that would otherwise be reported by

16The rate of melting is governed by the coefficients ktherea1 and ktherea5 , their values will determine

the extent of melting between charges. Melting may be complete between charges (especially when light

scrap is used) or significant levels of solid scrap may be carried over to be melted with the additional

charge. The values of the melting coefficients can only be estimated when an accurate measurement of

the solid and liquid masses is available.
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the model when scrap is added. This discussion also applies to liquid and solid slag.
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Figure 2.5: Solid and liquid metal masses.
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Figure 2.6: Masses of dissolved carbon and silicon.
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Figure 2.7: Mass of slag and associated oxides.
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Figure 2.8: Furnace pressure.
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Figure 2.9: Metal temperature.
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2.4 Conclusion

This chapter presented a description of a practical operation of an EAF process. The

increase in bath mass, silicon and carbon were incorporated into the model to depict the

progress of melting and the pickup of carbon and silicon.
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Chapter 3

System identification

System identification (SID) is a broad field that deals with mathematical modelling of a

process from experimental data. First a mathematical model of the system is formulated

from observation of the process. The model is then adjusted to reduce its error relative to

the process data. The final test of the model adequacy is how well it is able to represent

the data. The purpose for this model design will determine how adequate the model is:

feedback control might allow a less conservative model, while simulation and prediction

may require better accuracy.

This chapter presents an overview of the methods and procedures commonly used for

system identification. These will be used to obtain the results presented in the chapters

that follow.

Any modelling exercise is frequently just an approximation of the real process. Many

factors influence the process behaviour, some are too complex to model satisfactorily while

others are simply not well understood. The object is then to model the process to capture

important process interactions in order to fulfill the intended purpose of the model. All

behaviour that is unaccounted for will constitute modelling errors. These generally result

from errors in initial states, disturbances, model parameters and the model structure.

Section 3.1 presents an overview of the SID process. This is followed by a discussion

of the parameter estimation problem in section 3.3. The specific problems of selection

of appropriate error functions and regularization are discussed in sections 3.4 and 3.5.

Model validation is discussed in section 3.6; this is followed by a brief chapter summary.

3.1 The SID loop

The system identification process follows four distinct steps [37]:

• Experiment design and data collection

This stage of the process centres around the collection of process data that best
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depicts the response of the process outputs to inputs. This data must be maxi-

mally informative, and therefore requires careful experiment design where decisions

are made about the particular input-output set that must be measured and when

to measure (including the frequency of measurement). At all times the various

constraints will hold - such as practical limitations on inputs, and operational limi-

tations dictated by production requirements in the case of industrial plants.

• Model structure selection

Based on initial inspection of the data, a set of suitable candidate models is selected

for evaluation. These models can be existing generic input-output mappings (such

as ARX, NARX, etc); or a combination of physically based models that are derived

from prior knowledge of process behaviour. The latter (called grey box models)

reflect the basic physical laws governing the process and are predominantly charac-

terized by adjustable parameters that have physical significance. Black box models

however have parameters whose adjustment could lead to accurate depiction of the

input-output relationship without regard to the internal physics of the process. This

is said to be the most crucial yet difficult part of the SID procedure. For this dis-

sertation, the model selection is not required since the model derived by Bekker [5]

will be used as the basis for the SID; however, some modelling has been done (see

chapter 2). Strictly, a grey box nonlinear model will be used. Possible model choices

are the reduced or the linearized model.

• Model selection/fitting

Once a candidate set of models is selected, the next step is to evaluate their per-

formance/suitability against the collected data. A successful model must be able to

reproduce the measured data as well as possible. In the case of this dissertation the

model selection is essentially a selection of the parameter set (values) for which the

model delivers acceptable results.

• Model validation

Validation constitutes the final step where the successful model is tested for suit-

ability for its intended purpose. This can be simulation or control design.

The above procedure is iterative. It may be necessary to iterate from step 1 to 4 as the

model evolves until it is deemed suitable. An initial pass may fail because: the data were

not informative enough to guide model selection, the model was not appropriate enough
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or that it did not lend itself well to numerical procedures required to carry out the fit.

Figure 3.1 illustrates the SID loop - it presents a combination of the procedures outlined

in Ljung [37] and Norton [38].

Figure 3.1: The SID loop [37,38].
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3.2 Prediction error methods

Prediction error (PE) methods deal with the ability of a model to predict new data given

some sequence of previous data, Zt−1 = [y(1), u(1), y(2), u(2), . . . , y(t− 1), u(t− 1)]. The

PE is then given by

ε(t, θ) = y(t)− ŷ(t|θ), (3.1)

where y(t) is the measured output and ŷ(t|θ) is the model output at t, given some pa-

rameter vector θ. The error originates from unmodelled dynamics or measurement noise

in its broadest sense. For successful prediction, the model output ŷ(t|θ) must be forced

to be as close to y(t) as possible by appropriate choice of θ. That is, at t = N , select θ̂N

so that the PE’s ε(t, θ̂N), t = 1, 2, . . . , N , become as small as possible [37].

The model output is given by

M(θ) : ŷ(t|θ) = g(t|Zt−1, θ) (3.2)

Recast in state-space form, (3.2) becomes:

M(θ) :





ẋ = f(t, x, θ, u)

ŷ = h(t, x, θ, u)

x(0, θ) = x0

where x ∈ Rn, u ∈ Rm, y ∈ Rp and θ ∈ Rq are the state, input, output and parameters

of the system; x0 is the initial condition vector. The input u(t) is defined on [0, T ].

Using initial conditions x0 and past data, from t = 1 to t = N − 1, determine θ that

minimizes ε(N − 1, θ). Then at t = N , select θ̂N so that the prediction errors ε(t, θ̂N),

t = 1, 2, . . . , N , become as small as possible.

3.3 Parameter estimation

The next step in SID is parameter estimation. At this stage, a suitable model set has

been selected. The search for the best model within the set then becomes the problem

of estimating θ [37]. The selection of parameters is based on how closely they allow the

model to approximate the plant behaviour. That is, a set of parameter values for which

the model output coincides (as well as possible) with the plant output under the same

inputs and initial conditions. (The notation used in this section closely follows that of

Ljung [37]).

The closeness between the model and the plant is easily determined by evaluating the

error between the model output and the plant output. Assuming some parameter θ∗ has

been selected, the error of the corresponding model M(θ∗) is defined as

ε(t, θ∗) = y(t)− ŷ(t|θ∗), (3.3)
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that is, the difference between the plant output y(t) and the model output ŷ(t|θ∗) given

the parameter θ∗. The error is evaluated at t = 1, 2, . . . , N , from N input-output data

points in the data record. The model output is given by the system

M(θ) :





ẋ = f(t, x, θ, u)

ŷ = h(t, x, θ, u)

x(0, θ) = x0

The parameter estimation problem can then be stated as

θ̂ =
arg min

θ∈D
VN(θ) (3.4)

where

VN(θ) =
1

N

N∑
t=1

l(ε(t, θ))

=
1

N

N∑
t=1

l(y(t)− ŷ(t)), (3.5)

y(t) and ŷ(t) are (respectively) the measured and model outputs at measurement time t;

and l(·) is a scalar-valued function that is applied to the error ε(t, θ). A common choice

is l(ε) = 1
2
ε2, the least squares error. However, the least squares estimate suffers from

the drawback that large errors are given more emphasis such that one large error could

be allowed to dominate the resulting estimate. This is severely detrimental when outliers

or bad data are present in the measurements - the results could become useless. An

alternative is l(ε) = 1
2
|ε|R, where R is chosen as R = 1 [47]. The resulting output will be

the median of the data points instead of the mean which can be dominated by large-error

data points.

Many approaches exist for solving (3.4) and some are built into software packages such

as Matlab and Maple. For smooth error functions (VN(θ)) gradient-based methods can

be successfully employed to determine θ. With this approach an iterative update of θ is

carried out in the direction of steepest descent of the error function, i.e.

θτ+1 = θτ − η∇VN |θτ (3.6)

where ∇VN |θτ is the gradient of VN evaluated at θτ in the iteration step τ ; η is the

learning rate. The iteration continues until ∇VN = 0 or some other stopping criterion

is satisfied. A detailed discussion of steepest descent and other optimization methods is

given in Bishop [47].
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3.3.1 Handling constraints

Physically derived models often have parameters that have physical relevance. Their

values will vary from process to process but will always lie within specific ranges that are

practically feasible. Depending on the error criterion, the resulting parameters may be

able to minimize the error but their values may not be justifiable in practice. This may

lead to a problem of exaggerating certain process routes at the expense of others or allow

behaviour that is totally erroneous: such as negative arc efficiencies and negative heat

losses.

At a minimum, the parameter values must be confined within ranges that prevent

behaviour that is completely erroneous. This applies to the sign and expected order of

magnitude. On the other hand, sufficient freedom must be allowed so that reasonable

variation can take place - this will account for the inherent variability in the process and

errors that may be implicit in the modelling i.e. moderate model errors can offset by

appropriate adjustment of the parameters.

Bounded constraints can be applied to the parameters so that the parameter estimation

problem then becomes

θ̂ =
arg min

θ∈D
VN(θ) (3.7)

subject to

θmin < θ < θmax (3.8)

Several methods exist for augmenting the original penalty function in order to trans-

form the constrained optimization problem to an unconstrained one [48, 49]. The main

idea is to increase the penalty function value proportionally to the extent of constraint

violation: the penalty function value increases as the parameters approach the constraints

and is further inflated for as long as the constraint violation persists. These methods are,

however, inefficient and have been replaced by methods that solve the Kuhn-Tucker (KT)

equations1 [50].

3.4 Norm selection

The original LSE penalty function may not be sufficient for some situations. One of the

drawbacks of the standard LSE error function is that is responds significantly to data

points that have the largest error. These outliers may well be valid data that represent

extreme regions of plant operation; or they may result from incorrectly labelled data.

These few outliers, (whatever their origin) will lead to values of the estimate that are

1The parameter estimation for the model fit will be carried out using the Matlab function fmincon(),

this implements the Kuhn-Tucker equations to solve the constrained minimization problem.
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strongly biased to the outliers while data that are representative of typical plant operation

will be poorly fitted.

This situation can be remedied by using influence functions (subsection 3.6.1) for

detecting outliers. In many cases, however, this may not be the most efficient procedure -

in the current format the procedure relies on simulation results which are computationally

expensive. Then the selection of an appropriate error function is a viable alternative.

The so-called robust norms have their origins in robust statistics [37, 47]; the idea is

to use norms (error functions) that are robust to unknown variation in the pdf of the

innovations (the past prediction errors i.e. that part of the output that is not predicted

by the past errors). The Minkowski-R error function is given by Bishop [47] as

E = |ε|R, (3.9)

which reduces to the standard LSE when R = 2. When a large value of R is chosen, the

error will tend to be dominated by a (generally) small number of outliers. However, for

R < 2 the error will tend to give equal weight to all data points, reducing sensitivity to

outliers [51]. When R = 1, a minimum error solution will result in a conditional median

as opposed to the mean of the data.

To illustrate [47]: given the error function

E(y) =
∑

n

|ŷ − yn|, (3.10)

and minimizing with respect to ŷ, leads to

∂E

∂ŷ
=

∑
n

sign(ŷ − yn) = 0, (3.11)

where

sign(x) =





−1 x < 0

0 x = 0

1 x > 0

(3.12)

To satisfy (3.11), sign(ŷ− yn) must have an equal number of points greater than and less

than zero - a condition that is satisfied when ŷ is the median of the data yn. If data point

yn happens to be very large, it will not have undue influence on the solution for ŷ.

While the absolute error is less sensitive to outliers, it does result in a biased estimate.

That is, given some true value of the parameter vector θ∗, the estimate θ̂ obtained using the

absolute error with infinite data will result in a finite δ = E[θ∗ − θ̂]. Of primary concern

in the estimation is to obtain a model that closely resembles the actual process, while

maintaining the parameters within reasonable practical limits; the problem of finding the

true parameter is secondary. In any event, it is not possible to determine the value of

this bias since the real value of the parameter is unknown - nor can it be known perfectly,

since the model is at best only an approximation of the process.

Electrical, Electronic and Computer Engineering 45

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 3 Regularization

3.5 Regularization

In many applications the nonlinear least square (NLS) problem may be ill-conditioned,

in the sense that the Hessian is ill-conditioned; or if the number of parameters is greater

that the number of outputs, then the solution may not be unique, the parameters can

take on any number of values. Regularization can be employed to impose constraints on

the parameters, especially when they have practical significance. In particular, when θ

has many parameters the new penalty function can have the form [37]:

Ṽ = V + δΩ (3.13a)

Ω = |θ − θ
#|2 (3.13b)

where choosing |θ − θ
#|2 as the regularizing term penalizes the difference between θ and

some fixed point θ
#
. Some of the parameters will have a lesser influence on Ṽ ; these will

tend the most to θ
#
. A large value of δ will force more parameters to the vicinity of θ

#
.

The choice of θ
#

will then dictate the default values of the parameters in θ that have

the weakest influence on the system response. Regularization has the effect of pulling these

parameters to known values. On the other hand, this may indicate that these parameters

could have been disregarded from the estimation at the outset. Or, irrespective of the

influence on system response, θ
#

can be chosen to contain default values for parameters

whose values are well known. This choice will be informed by prior knowledge of the

practical values of some parameters in θ. To reduce computational burden, it may be

preferable to remove a well-known parameter from the estimation problem since the search

space increases exponentially with the number of parameters.

An alternative interpretation is that when the matrix ∂2V
∂θ2 is ill-conditioned, the term

δΩ can be chosen to improve the conditioning, hence the name regularisation. The choice

Ω = |θ − θ
#|2 results in

∂Ṽ 2

∂θ2
=

∂2V

∂θ2
+ δI, (3.14)

thus making the Hessian better conditioned. This essentially translates to the previous

interpretation where the conditioning of the Hessian matrix will determine the sensitivity

of the error to the specific parameters - ill-conditioning points to an imbalance in influence

of the parameters on the error function. The relative influence of a parameter on the error

function is proportional to the inverse of the singular value of the Hessian corresponding

to that parameter. That is, the smallest singular value corresponds to a parameter for

which the error function has the largest curvature (in the direction of the corresponding

eigenvector).
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3.6 Model validation

Once a suitable model has been obtained - in this case, one whose parameters allow it to

meet some performance criterion - the next step is to determine if it is adequate. That is,

whether the model meets its intended purpose: to act as a predictor of process behaviour.

One approach is to evaluate the variance in the parameters. Relative to the parameter

value, a high variance in the estimate indicates an anomaly or a large uncertainty in the

parameter values obtained [49].

An alternative method is to analyse the residuals [37]. The resulting sequence of the

residuals should be small. A small cross-correlation (auto-correlation) in the residuals

confirms the common assumption (and requirement) that the error sequence is white i.e.

Rε
N(τ) =

1

N

N−1∑
t=1

ε(t, θ̂N)ε(t + τ, θ̂N), (3.15)

should be small for τ > 0. In addition, the error sequence must be uncorrelated with the

input i.e. Rε,u
N (τ) must be small; where

Rε,u
N (τ) =

1

N

min(N,N−τ)∑

t=max(1,1−τ)

ε(t, θ̂N)ε(t + τ, θ̂N), (3.16)

effectively computing the correlation between the input and error sequences shifted rela-

tive to each other via τ .

Another practical method of validation is simulation. Similar inputs are applied to

the model and the true system. The difference between the two outputs should be small.

The off-line equivalent of the procedure is to test that the model is able to produce the

right input-output relationship for new data. This data not used for estimation is called

validation data set. The set of data to which the model was fit, is called the estimation

or test data set.

3.6.1 Influence function

The idea behind the influence function is to monitor the effect of outliers on the final

parameter estimate [37]. It is prudent to remove (or reduce the influence of) any obser-

vation that has an overly predominant effect on the error function, since the data point

(observation) may not be representative of the underlying process. This can happen due

to drastic errors in measurement equipment or simple user-induced errors from inferior

data collection methods (such as incorrectly matched or labelled input-output data pairs).
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Practically, to determine the influence of a data point on the final estimate, compute

I = δT δ (3.17)

with

δ = θ̂N − θ̂N,k (3.18)

where θ̂N is the estimate obtained for the entire data set and θ̂N,k is obtained when data

point k is excluded. Any data point that has a large influence on the estimate will lead

to an equally large I , which is essentially the euclidian distance between θ̂N and θ̂N,k.

The practical application of the influence function is to identify data points that

deviate significantly from the overall data set. A related approach is to monitor the error

that is contributed by each data point. This is residual analysis.

3.6.2 Residual analysis

Residual analysis is another tool that can be employed to identify outliers. Once a rea-

sonable model has been found - one that describes the majority of the underlying process

data - residual analysis will reveal data points for which the error is significantly large.

These data points the model was not able to reproduce are called the residuals, simply:

ε(t) = ε(t, θ̂N) = y(t)− ŷ(t, θ̂N) (3.19)

Any data point for which (3.19) is inordinately large may indicate that it is inadequately

represented by the model. This may occur as a result of gross errors in data recording or

collection (bad data) and when the system is operating in a region that is not adequately

modelled (outlier).

In addition, the residuals have a lot to say about the quality of the model [37] - a good

model will have small residuals. A further property of a good model is that the residuals

must be uncorrelated with any past inputs; if they are, then some of the inputs were

poorly modelled for in the first place. Furthermore, the auto-correlation of the residuals

must be white i.e. they must not be correlated.

The relationship between the method of influence functions and residual analysis is

that the method of influence functions shows the effect of the data on the estimate, while

the residual analysis shows the effect of each data point on the model error.

3.7 Statistical properties of the estimates

Once a single-point estimate of the parameters is obtained, the question of the reliability of

the estimate arises. That is, what is the level of confidence associated with the parameters?

Electrical, Electronic and Computer Engineering 48

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 3 Statistical properties of the estimates

This problem can be addressed by determining the variance of the estimate. A high

confidence is assured for parameters with the smallest variance. This variance can be

used to determine the confidence intervals that are commonly associated with any of

the important variables in the parameter estimation: residuals and their correlations as

well as the parameters themselves. The following equations for estimating the confidence

bounds were derived in Ljung [37].

3.7.1 Confidence interval

Assuming that the kth component of the estimated parameter vector θN obeys

√
N(θ̂

(k)
N − θ

(k)
0 ) ∈ AsN(0, P

(kk)

θ ), (3.20)

where P
(kk)

θ is the (k,k)th diagonal element of the matrix Pθ and θ0 is the true parameter.

That is, the variable
√

N(θ̂
(k)
N − θ

(k)
0 ) converges in distribution to a Gaussian distribution.

Then, the probability that the estimate θ̂
(k)
N lies in the vicinity of the true parameter can

be obtained from

P (|θ̂(k)
N − θ

(k)
0 | < α) ≈

√
N√

2πP
(kk)

θ

∫

|x|<α

e−x2·N/(2P
(kk)

θ )dx, (3.21)

the integral over a normal distribution with zero mean and variance σ2 = P
(kk)

θ /N .

A common requirement is to specify a 95 % (or other) confidence interval on the

estimate. Then, using (3.21), a probability value P ∗ is specified for which α must be

determined iteratively. At each iteration, the integral must be evaluated and α adjusted

appropriately until P (|θ̂(k)
N − θ

(k)
0 | < α) is close to P ∗. This procedure is commonly

simplified by the use of statistical tables where probability values P ∗ are given along with

the corresponding α [52] from which the bounds can be estimated. The bounds on the

parameter will be θ
(k)
N −α < θ̂

(k)
N < θ

(k)
N +α with a confidence level of P ∗ (typically chosen

as P ∗ = 0.95, the 95 % confidence level).

3.7.2 The covariance matrix

The covariance of the parameters can be determined from

Cov θ̂N =
1

N
Pθ, (3.22)

where Pθ can be calculated from

P
θ

= λ0[Eψ(t, θ̂0)ψ
T (t, θ̂0)]

−1 (3.23)
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where λ0 is the variance of the zero mean error sequence and ψ(t, θ̂0) is the derivative of the

error with respect to θ - it is calculated as ψ(t, θ̂) = − d
dθ

ε(t, θ)|θ=θ̂. These variables must

be estimated at the true θ which is generally not known; therefore, they are approximated

as [37]:

P
N

= λ̂N

[
1

N

N∑
t=1

ψ(t, θ̂0)ψ
T (t, θ̂0)

]−1

= λ̂N

[
V
′′
(θN)

]−1

(3.24)

λN =
N∑

t=1

ε2(t, θ̂N) (3.25)

The above equations apply to the case of a continuous process. For the EAF, the refining

stage is a batch process with only a few data points available per tap. To form the error

function, the model error is evaluated for each tap at all the available data points and

all the tap errors are summed to obtain an total error over all taps. This final error is

deemed equivalent to ε(t, θ0).

3.8 Conclusion

The method of influence functions helps to identify outliers so that they can be eliminated

from the data set. Some of the data cannot be perfectly isolated. Robust norms ensure

that the detrimental effect of these latter outliers is reduced. Regularization is a good

mechanism to build prior knowledge into the error function and to deal with parameters

that are insignificant. Finally, model validation can be used to assess the adequacy of a

model for its intended purpose. The methods and tools discussed in this chapter will be

used to obtain and analyse some of the results of the chapters that follow.
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Experiment design and data analysis

This chapter presents the first step in the system identification process: experiment design.

It involves the progress from the information that is required in order to run a realistic

simulation of the furnace to the procedures followed and the actual data collection process.

It also gives a brief presentation and analysis of the data collected.

The first section (4.1) outlines the required information in order to run a realistic

simulation of the process - this simulation is an essential building block for model fitting.

Section 4.2 gives the process and detail on the specific requirements for measurement of

plant input and output data in order to carry out successful parameter estimation - the

discussion will centre around identifiability (and distinguishability). Some requirements

on the necessary initial conditions will also be given. Section 4.3 details the data collection

process; this includes a discussion on information available in practice and how far it fulfills

the requirements. Finally, section 4.4 summarizes the data and draws comparisons with

data presented in other literature; it will also include an analysis of the data and how

they relate to furnace practice.

4.1 Model simulation requirements

In order to accurately depict the actual process, the conditions that prevail on the process

must be known. For the model, it is important that information pertaining to all the model

variables is available - this will be the initial conditions, the inputs, outputs and states.

Many of the requirements are obvious and implicit from operation of the model however,

they will be stated for completeness.
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4.1.1 Model variables

A successful simulation will use information from several variables that are specific to every

furnace practice. The obvious and main motivation for the need for such information

is that if the simulator is to represent a particular furnace, it must be subject to the

conditions that prevail on the real process. The objective in collecting the information is

to obtain a picture of the process that is as realistic as possible.

4.1.1.1 Model inputs

The primary model inputs are: the average electrical power input, oxygen injection, fuel

gas injection, graphite injection, DRI and slag input flow rates and the off-gas variables

off-gas mass flow rate and the slip gap width. In the original model derivation slag and

DRI were treated as continuous inputs, deposited through the furnace roof from conveyor

belts. In this case however, all DRI and slag input is made as part of the furnace charge,

and contributes instead to the initial conditions. All other inputs are continuous.

The fuel gas and oxygen inputs serve two roles. In burner mode, fuel gas is combusted

to transfer heat energy to the bath. In lancing mode, the oxygen flow rate is significantly

increased while that of fuel gas is reduced, serving only to cool the lance and shape

the oxygen stream. The distinct changes in these flow rates are important to determine

the prevailing mode of operation so that the appropriate effect can be produced from the

model: heat transfer in burner mode and bath oxidation in lancing. The pressures of these

material flows are directly correlated with the flow rates, providing alternative information

to distinguish operating modes; these are, however, not used in this dissertation.

The width of the slip gap u2 [m] determines the amount of air that is entrained into the

duct at the exit of the fourth hole. This air reacts with and cools the furnace off-gas [19].

The product is extracted via the off-gas system at the flow rate given by u1 [kg/s]. The

variables are important to quantify the amount of gas that leaves the furnace and hence its

contribution to the furnace mass balance. They are also important for the downstream

properties of the off-gas such as temperature and composition. These have been dealt

with in Bekker [5] where the main aim was a detailed study of the off-gas system; this is

outside the scope of the current work, where the main focus is on the furnace itself.

4.1.1.2 Initial conditions

Unlike in linear systems (where superposition applies) the role of initial conditions cannot

be ignored for this nonlinear system. The correct initial masses and temperatures must

be available in order to obtain a true representation of the process.
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A hot heel practice is adopted to prevent mixing between the steel and slag during tap-

ping [7]. It is also used in modern furnaces where steel-slag mixing is not a problem since

bottom tapping is used. However, this practice persists because of the added advantage

of maintaining a high furnace temperature during the turnaround time before the next

tap commences. This will decrease the overall losses since less energy will be expended

on reheating the furnace up to the bath temperature. Therefore, the temperature and

mass of the hot heel must be considered in the furnace heat and mass balances. This is

particularly important when these variables change from one tap to the next as they will

the affect the final steel temperature and mass.

The initial conditions relating to the gas phase have a limited effect on the process

because of their short time constants, as opposed to the temperature and liquid/solid

phases. That is, the residence time of any initial gas mass in the furnace is short due to

the rapid decay in mass brought on by the off-gas system. A high initial gas mass will

be accompanied by a corresponding high furnace pressure transient. All the same, there

is no practical mechanism by which a high initial gas mass can exist. For the purposes

of this dissertation, the initial mass of the gas phase is assumed to be zero 1; the same is

assumed for the initial relative furnace pressure.

Initial conditions on the furnace material states will be established by the mass and

composition of the charge. The mass of each charge constituent is reliably measured. In

addition, the approximate composition of the materials can be obtained from the product

manufacturers, except scrap.

4.1.1.3 Initial temperatures

The temperature of both the initial solid and liquid states are required to simulate the

process. Therefore, the mass and temperature of the liquid and solid steel must be

available at the beginning of tap. These, together with other variables, will determine the

melting rate and the bath temperature as a function of time.

The bath temperature at refining is crucial information that enables operators to make

control decisions in order to meet the target steel properties. In practice, several of these

measurements are obtained since manual control is an iterative trial and error process.

The first temperature measurement will be used as the initial temperature for model

simulation (and fitting) at refining. Under perfect mass and energy balances, this initial

temperature is all that is required to accurately predict the temperature at any time. It

is just as important for model fitting and subsequent simulation (or prediction) once an

accurate model has been arrived at.

1For simulation purposes a minimum value of 10× 10−6 kg is used.
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The mass of the hot heel is typically less than 10 % of the total charge; furthermore,

it can be relatively constant from one tap to the next. As a result, any error in the

estimation of the hot heel temperature and mass will introduce only a fraction of error

into the overall bath temperature and mass balance. The hot heel temperature can be

reliably assumed to equal the temperature of the previous tap - this is accurately known.

Any error in the hot heel mass estimate, should not introduce significant error in the

estimate of the final temperature, provided the hot heel temperature remains close to the

tapping temperature. Certainly, accurate estimates of the hot heel mass will improve the

overall heat balance but in practice measurement of the initial refining temperature is

more important than that of the hot heel.

The bath temperature is one of the two most important variables in the furnace

operation; all efforts must be made to know it as much as possible.

4.1.1.4 Water cooling

In keeping with previous work [7], a strong motivation for the use information of the

water cooling system is the favourable circumstance that the flow rate and temperature

are continuously measured. This makes the water cooling system a good candidate for use

as a feedback variable in process control since it could provide valuable information about

the temperature variations in the furnace. It is expected that the difference between the

inlet and outlet temperature is correlated with the furnace heat balance: water cooling was

generally accepted as a common fixture in modern EAFs as it was able to cool the panels

to prevent excessive wear of the refractories under increasing arc power [19]. Therefore,

the flow rate and temperature of the cooling water must be obtained.

4.1.1.5 Material composition

Scrap is the most abundant raw material charged into the furnace yet it is also the

one for which the least information is available. The composition of the final product will

invariably depend on that of scrap. Scrap can be bought from suppliers where an accurate

analysis of grade and composition is available but is often not cost-effective, a case that

applies in this dissertation. Clean scrap will generally be low in impurities and can be

assumed to be made up of pure iron. At the other extreme material such as concrete,

hydrocarbons and high levels of residuals have been reported [22]. Hydrocarbons and

other dirt will generally combust or be released for disposal in the slag but residuals are

not easily removed - in fact this is the main drawback of the EAF practice: the inability

to produce low residual steel [17, 19]. A charge high in residuals such as tin, copper,

nickel, molybdenum and tungsten can render the final product unusable - it may have to
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be retained in the EAF where it can be diluted by additions of DRI and cleaner scrap.

Knowing the exact composition beforehand can allow selection of the right proportions

of the scrap and DRI, which can successfully dilute these impurities to acceptable levels.

For modelling purposes, only the mass is available, and it will be (weakly) assumed that

the scrap is pure iron, with low levels of silicon and carbon.

The composition of injected graphite is important to determine the theoretical recovery

rate and the composition of the slag into which it is injected. The carbon content will

have direct implications for the extent of foaming in response to injected graphite. The

graphite is made up mainly of carbon, with impurities such as ash and SiO2, the latter

being relevant for slag SiO2 levels since the injected graphite will deposit some of its SiO2

into the slag.

Bath oxygen activity is a good indicator of the slag FeO and the bath carbon. Bath

carbon and FeO are inversely related [19,18]: a high FeO is accompanied by low levels of

bath carbon and vice versa. FeO is in turn directly related to bath oxygen activity: with

high bath oxygen, the FeO will be high (and bath carbon low); the converse also applies.

4.1.2 Model parameters

With exception of inputs and initial conditions, the parameters are the most important

variables required to carry out a realistic model simulation. Their values determine the

effects of the various interactions in the model. The main heat and material balances are

controlled by the various parameters: the extent of scrap melting, liquid steel heating,

bath oxidation, decarburization and desiliconization is controlled by the various associated

parameters. Accurate knowledge of the parameters that govern a given process is crucial

for an accurate depiction of the process by the model, given the same inputs and initial

conditions.

The input-output requirements to enable parameter estimation will be dealt with in

detail in the next section. Other parameters, such as furnace characteristics of diameter

and volume, material properties and relevant states are well known.

4.2 Identifiability

Parameter estimation presupposes the existence of a unique mapping from the parame-

ters to the input-output set. To address the validity of this assumption the problem of

identifiability must be considered. Identifiability fulfills the practical requirement that

parameters can be expressed as a function of known system quantities, such as inputs

and outputs [53]. It gives information about possibilities for estimation of parameters:
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whether all system parameters can be estimated, and if not all, which can be estimated;

suggestions are also made about the time interval during which measurements would pro-

duce the best results. Some of the results of this section were covered in Rathaba et

al. [54].

4.2.1 Model parameters

Several parameters in the model are physico-chemical constants that are well known.

Others depend on the specific furnace practice and must be deduced from prior knowledge

about the specific operation. The parameters that will be considered for the identifiability

study and the subsequent estimation are:

• kdC - bath decarburization rate constant

• kdSi - desiliconization rate constant

• kgr - effect of graphite injection on reduction of FeO in slag

• kV T - EAF heat loss coefficient

• kPR - effect of EAF pressure on gas flow into and out of the furnace

• kU - effect of off-gas slip-gap on air flow into the off-gas duct

• ktherea1 - scrap and solid steel melting rate constant

• ktherea5 - solid slag melting rate constant

• η
ARC

- efficiency of transfer of arc energy to the bath

• η
FeO

- heat transfer efficiency from bath oxidation

The parameters ktherea1 and ktherea5 replace the products karea1kther1 and karea5kther5

respectively. The latter were used in the original model derivation and are replaced here

for convenience: the replacement reduces the number of parameters without affecting the

model behaviour.

The above parameters are perfect candidates for model adjustment: they are highly

process dependent and vary according to operating conditions. This section concentrates

on identifiability of the model with respect to these parameters.

4.2.2 A brief outline of the theory

The work of Xia and Moog [53] presents the different concepts of identifiability from a

differential algebraic perspective. In this section a brief outline of the results and their

interpretation is presented.
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The nonlinear model of subsection 2.2.1 has the form

Σθ :





ẋ = f(x, θ,u)

y = h(x, θ,u)

x(0, θ) = x0

(4.1)

where x ∈ <n, u ∈ <m, y ∈ <p and θ ∈ <q are the state, input, output and parameters of

the system. Assume that

rank
∂h(x, θ, u)

∂x
= p , (4.2)

i.e. the measurements of the various outputs are linearly independent. θ is the parameter

to be identified; and x0 is independent of θ.

Definition 1 The system Σθ is said to be algebraically identifiable if there exist a T > 0,

a function Φ : Rq ×R(k+1)m ×R(k+1)p → Rq such that

det
∂Φ

∂θ
6= 0 (4.3)

and

Φ(θ, u, u̇, . . . , u(k), y, ẏ, . . . , y(k)) = 0 (4.4)

hold on [0, T ], for all (θ, u, u̇, . . . , u(k), y, ẏ, . . . , y(k)). u, u̇, . . . , u(k) and y, ẏ, . . . , y(k) are

the derivatives of the input u(t) and output y(t, θ, x0, u); u(t) ∈ Ck [0, T ], i.e. the input is

continuous and k-times differentiable on [0, T ].

The above definition suggests a test for algebraic identifiability. Given the system Σθ,

form an equation Φ∗(θ, u, y) = 0; in theory the assumption of observability (4.2) makes

it possible to eliminate the state x completely. Differentiate, scale and multiply the left-

hand side of Φ∗(θ, u, y) = 0 [55] to form (4.4) until (4.3) is satisfied; where (4.3) implies

that a unique solution for θ can be determined from (4.4).

Note that for algebraic identifiability θ can (in theory) be expressed in terms of the

input, output and their derivatives - no state information is required. If the system is not

algebraically identifiable it may be geometrically identifiable.

Definition 2 The system Σθ is said to be identifiable with known initial conditions if

there exist a positive integer k and a function Φ : Rq×Rn×R(k+1)m×R(k+1)p → Rq such

that det(∂Φ/∂θ) 6= 0, and

Φ(θ, x0, u(0+), u̇(0+), . . . , u(k)(0+),

y(0+), ẏ(0+), . . . , y(k)(0+)) = 0 (4.5)

hold for all (θ, x0, u(0+), u̇(0+), . . . , u(k)(0+), y(0+), ẏ(0+), . . . , y(k)(0+)); u(t) and y(t, θ, x0, u)

are evaluated at t = 0+.
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Used as a test for identifiability, definition 2 follows a similar procedure as definition 1.

The system Σθ is not algebraically identifiable since either (4.2) or (4.3) cannot be satisfied.

If rank∂h(x,θ,u)
∂x

< p some states cannot be estimated from input-output information alone.

This is where initial conditions x(0+) can be used as additional information to complement

the partially know x(t); in this case, x(t) (as well as u and y) will be evaluated at t = 0+.

As in definition 1, more equations are generated until (4.3) is satisfied. If this fails the

system is also not identifiable with known initial condition. At the outset, this means

the parameters cannot be estimated using available information; this generally leaves

fewer options for any parameter estimation procedure and alternative models must be

investigated.

For a given system algebraic identifiability implies that the parameters can be es-

timated using only input and output information. On the other hand, if a system is

not algebraically identifiable or rank∂h(x,θ,u)
∂x

< p it may still be possible to determine the

parameters using some state information - in the form of initial conditions. Xia and

Moog [53] have shown that identifiability with known initial condition is equivalent to

geometric identifiability.

To summarize: form n − 1 equations from the output equation y = h(x, θ, u). For

algebraic identifiability, these n equations (including y = h(x, θ, u) ) will be used to

solve for x in terms of y, u, and θ. Therefore, there are n equations with n unknowns

x = [x1, . . . , xn]T . Taking more higher-order (n + q) derivatives of the output, q more

equations can be formed with q unknowns θ = [θ1, . . . , θq]
T . θ can now be expressed in

terms of the input and output, and their derivatives. A similar procedure is followed

for geometric identifiability, with the exception that information about known initial

conditions is used since some states are not observable.

The foregoing summary is valid for the single output case. An extension to the multi-

output case follows a similar development [53], this will be used for the analyses that

follow.

4.2.3 Identifiability analysis

Identifiability of nonlinear systems is studied using different approaches, and some char-

acterization and algorithms are developed by [55, 56, 57, 58] - the approach is essentially

differential algebraic. The complexity introduced by initial conditions on the identifiabil-

ity results is touched on in Auduloy et al. [58]; Saccomani et al. [59] extends the results

to characterize the identifiability when the system is not accessible from certain initial

conditions, a situation that can lead to potentially erroneous conclusions.

The approach taken in this dissertation follows the procedures developed by Xia and
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Moog [53] which go beyond a mere test for the identifiability of a system. It provides a

suitable platform from which practical suggestions for the the actual parameter estimation

can be explored. In essence, the result of the work is to determine if the system parameters

can be expressed in terms of the input-output measurement set. It also goes further to

determine the theoretical minimum number of these input-output measurements that

must be made in order to estimate the parameters.

The first use of the identifiability analysis considers the simplified model of subsection

2.2.5. The following map collects the relevant parameters:

θ =




kdC

kdSi

kgr

η
ARC

η
FeO




;

Let complete observability take on the form

h(t, x, θ, u) =




y3

y4

y7

y8

y12




=




x3

x4

x7

x8

x12




;

then (4.2) is satisfied. The above measurements are not uncommon in EAF practice:

carbon and silicon can be obtained from bath analysis results and the bath temperature

is also measured as standard practice. FeO and SiO2 can be obtained from slag analysis;

this is not standard practice but several samples have been collected for analysis (see table

A.1 of the appendix).

Taking the first derivative ∂h/∂t (= f(t, x, θ, u)) gives

Φ = f(t, x, θ, u)− [ẏ3, ẏ4, ẏ7, ẏ8, ẏ12]
T . (4.6)

Then, the Jacobian

∂Φ

∂θ
=




Γ 0 0 0 0

0 Λ 0 0 0

0 0 Ω 0 0

0 −MSiO2

MSi
Λ 0 0 0

0 0 0 0 Ψ




, (4.7)

and the corresponding rank

rank
∂Φ

∂θ
= 4, (4.8)
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with

Γ = −XC + Xeq
C ,

Λ = −XSi + Xeq
Si ,

Ω = − x7MFed5

(m
T (slag)

+ x7 + x8)MC

,

Ψ = − 2∆HFeOd1/MO2[
m

T (Fe)
Cp(FeL)

MFe
+

2m
T (slag)

+2x7+3x8

Mslag
Cp(slag(L))

] .

That is, of the 5 parameters, only 4 can be uniquely determined from the measure-

ments. Furthermore, the submatrix diag([Γ, Λ, Ω, Ψ]) must be invertible; this is satisfied

when (XC −Xeq
C ) 6= 0 and (XSi −Xeq

Si ) 6= 0. Near equilibrium, XC ≈ Xeq
C and XSi ≈ Xeq

Si .

Therefore, measurement of carbon and silicon content must be made early in the tap,

before the asymptotic stage is reached. This would be the early flat bath stage when all

the scrap is fully melted and a homogeneous distribution is achieved.

It is clear that equations ẋ4 and ẋ8 are redundant in the parameter kdSi; only one of

them is necessary for estimation of kdSi. In practice, a bath chemical analysis is taken for

every tap while slag analysis may only be carried out during plant trials. Therefore, the

bath silicon content (x4 = y4) is favoured as a measured output; the SiO2 can effectively

be discarded in subsequent identifiability analysis.

Computing the time derivative of ẏ12 and rearranging leads to

Φ = g(t, x, θ, u)− [ẏ3, ẏ4, ẏ7, ẏ12, ÿ12]
T , (4.9)

where

g(t, x, θ, u) =
[
ẋ3, ẋ4, ẋ7, ẋ12, ẍ12

]T
; (4.10)

ẋi are given in (2.50) and ẍ12 = ∂ẋ12/∂t. The rank

rank
∂Φ

∂θ
= 5. (4.11)

That is, there are 5 equations in 5 unknown parameters: the system is algebraically

identifiable. Under conditions of noise-free measurements and an error-free model, to

determine the first time derivative of a measured variable would require two measure-

ments, and three for the second derivative. Thus, from the vector [ẏ3, ẏ4, ẏ7, ẏ12, ÿ12]
T ,

only two measurements are required to evaluate ẏ3, ẏ4, ẏ7; and three measurements for

ẏ12 and ÿ12. In both cases, finite difference methods can be employed to approximate the

time derivatives [60].
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In the next example, the model for the entire tap is used. This results in a 17th order

non-linear model with 10 parameters:




θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10




=




ktherea1

ktherea5

kdC

kdSi

kgr

kPR

kU

kV T

η
FeO

η
ARC




, (4.12)

Considering the ideal case when all states are measured as outputs, then y = x and

assumption (4.2) holds. Forming (4.4),

Φ = g(t, x, θ, u)− [ẏT , ÿ12]
T , (4.13)

where

g(t, x, θ, u) = [f(t, x, θ, u)T , ẍ12]
T , (4.14)

results in

rank
∂Φ

∂θ
= 8; (4.15)

i.e. 8 of the 10 parameters can be estimated, therefore, the system is not algebraically

identifiable. On examining the rank loss in (4.15) when parameters are added or removed

from (4.12) a tradeoff is noted among the energy-related parameters. Any two of the

parameters in the triplet [kV T , η
FeO

, η
ARC

] can be estimated, provided one of them can

be fixed. In practice, the heat loss coefficient, kV T is well know from observation of bath

temperature loss during operational delays. In fact, if kV T can be fixed to a reasonable

degree of accuracy, the system will then be algebraically identifiable since (4.13) would

have 8 equations in 8 unknowns.

As an aid to experiment design, the above analysis also reveals that only 2 measure-

ments are needed for each output; except for temperature (y12) where 3 measurements

are needed to evaluate the second-order time derivative. Also, to determine the effect of

pressure (via kPR) on air entrainment or expulsion of freeboard gases, it is necessary to

sample only one of the freeboard gases. In the case of scrap melting, it is sufficient to

measure either the mass of the bath or the scrap to estimate ktherea1 ; the same applies

to slag (for estimating ktherea5). No sample of the SiO2 content in the slag is required;
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measurement of the actual silicon content in the bath will suffice for estimating kdSi, the

rate constant for removal of silicon from the bath. The conclusions made in example 1

about measurement of carbon and silicon content also apply in this case.

The above discussion applies for the entire tap. A more realistic scenario is the use of

measurements that are part of standard EAF practice as well as the slag analysis that was

obtained for the purposes of the model fitting - these apply to the refining period. The

measurements are bath carbon, silicon, FeO, SiO2, slag, temperature and pressure. This

leads to g(x, θ, u) = [ẋ3 , ẋ4 , ẋ6 , ẋ7 , ẋ8 , ẋ12 , ẋ14]
T . At refining, all scrap and solid slag are

fully melted so that the melting rate parameters ktherea1 and ktherea5 can be disregarded.

Measurement for the compositions is always reported in terms of percentages. It is possible

to use these percentage values to obtain the actual masses for each component since the

bath and slag masses can be estimated from the charge additions and hot heel mass.

The identifiability results for the model given the above parameters and output mea-

surements are as follows. Forming

Φ = g(t, x, θ, u)− [ẏ3 , ẏ4 , ẏ6 , ẏ7 , ẏ8 , ẏ12 , ẏ14]
T , (4.16)

and evaluating the jacobian results in

rank
∂Φ

∂θ
= 6. (4.17)

That is, of the 10 parameters, 6 can be estimated - the system is not algebraically iden-

tifiable. Taking additional time derivatives on the pressure and temperature - so that

g(t, x, θ, u)− [ẏ3 , ẏ4 , ẏ6 , ẏ7 , ẏ8 , ẏ12 , ẏ14 , ÿ12 , ÿ14]
T increases the rank to 8 - any higher time

derivatives cannot be practically obtained.2 However, inspection of the bath temperature

equation indicates that higher order derivatives are possible, so that the temperature-

related parameters [η
FeO

, η
ARC

, k
V T

] can be estimated from y
(3)
12 , the third order time

derivative of temperature. As mentioned previously, k
V T

can be estimated by other means;

in that case, the model is algebraically identifiable.

When the test for algebraic identifiability fails, information about initial conditions

can be used to test for geometric identifiability. This is a weaker system property but it

removes the burden of having to measure outputs that are either too impractical or costly

to obtain. Algebraic identifiability relies on eliminating all variables that relate to the

state (the x’s), and representing the system solely as a function of inputs, outputs and

their derivatives. For geometric identifiability, however, some states cannot be eliminated

(the system is not completely observable). For these states, information about initial

2The identifiability analysis was carried out using the Maple symbolic math engine called from within

Matlab. Further time derivatives exceed the system resources available on an Intel Pentium 4, with 512

MB of RAM.
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conditions can be used, so that as in the case of algebraically identifiability, the system

can then be expressed as a function of inputs, outputs and their derivatives, where the

unobservable states have been replaced by their initial conditions. The evaluation of the

variables must be confined to the vicinity of the initial time t = 0+.

Algebraic identifiability is a stronger system property; in fact, it implies geometric

identifiability [53] - which generally requires more information to estimate the system

parameters. In practice, this could mean implementing an additional sensor measurement

- a generally expensive option.

4.2.4 Distinguishability

Parameter identifiability can also be defined in terms of output distinguishability [56].

Distinguishability answers the question of whether system outputs obtained with different

parameter values can be distinguished from one another.3

Definition 3 For the system (4.1) and the set of parameters Ω the pair of parameter

values (θ , α), θ ∈ Ω, α ∈ Ω, is said to be indistinguishable if

h(x, θ, u) ≡ h(x, α, u)

for a given set of [x0, u(·)] and 0 ≤ t ≤ T . Otherwise the pair is said to be distinguishable.

Definition 3 provides an alternative method for analysing the identifiability properties

of the system. It is a simple test that also formed the basis for derivation of identifia-

bility results in Tunali and Tarn [57]. It is also not computationally expensive since the

main computation involves a model simulation with varying parameter values. Since the

method is simulation-based, both input information and initial conditions are necessary.

In this sense, distinguishability is similar to geometric identifiability which uses partial or

full information about the initial conditions. Distinguishability points to the uniqueness

of model outputs under different parameters with similar initial conditions and inputs.

Geometric identifiability shows the uniqueness of parameter values under similar inputs,

outputs and partial or full information about the initial conditions. The distinguishability

test will be shown to produce practically relevant results.

The distinguishability test is closely related to the question of model sensitivity to pa-

rameters. Here the sensitivity of each state (or output) is evaluated relative to parameter

changes. A similar procedure was carried out in Vercruyssen et al. [11] to determine the

influence of model parameters on a stainless steel converter model.

3With the same initial conditions and inputs.
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The distinguishability test will be carried out by changing each parameter by 1%.

For the parameter set θ = [θ1, . . . , θ10]
T the output will be recorded at each turn when

each parameter is perturbed by 1% while the rest are held at their nominal values. The

nominal parameter values are : θ = [0.03, 0.005, 80, 10, 5.54, 0.1, 8.43, 5.9, 0.5, 0.5]T .

The results are summarized in table 4.1 and figures 4.2 to 4.5 for some important outputs;

the parameter numbers are assigned as in (4.12).

• The scrap (and other metallic charge) show little response to all the parameters

since at refining all solids are fully melted. There is practically no change in bath

mass (slag) for changes in the respective parameters ktherea1 and ktherea5 .

• At refining, the liquid metal mass is sensitive to several parameters: η
FeO

, kgr, kdC

and kdSi, in order of decreasing sensitivity.

• As can be inferred from the model derivation, the masses of carbon and silicon are

most sensitive to their corresponding rate constants. Other parameters such as η
FeO

will have an effect (albeit marginal) since they influence the equilibrium point and

hence the removal of these impurities. The energy related constants such as η
ARC

,

k
V T

have very limited influence.4

• The electrical arc makes the greatest contribution to the furnace heat balance - this

explains the high sensitivity of liquid temperature to η
ARC

. In order of decreasing

sensitivity, other parameters with a marked influence on temperature are η
FeO

and

k
V T

. Significant sensitivity to the efficiencies η
FeO

(θ9) and η
ARC

(θ10) is observed;

these have a direct effect on the effective heat energy input and the resulting change

in temperature.

• Air tightness has the greatest effect on the pressure via k
PR

, this is followed by the

off-gas flow constant k
U
, graphite injection efficiency kgr and decarburization rate

constant kdC. Figure 4.5 shows the results. It is understandable that kU should

produce a variation in the pressure since it controls the release of gases through the

off-gas system. The parameter kU controls the effect of the off-gas slip gap.

• Liquid metal mass and temperature exhibit little sensitivity to most parameters

considering that the mean values are 1723.4 K and 1.3190 × 105 kg respectively.

The liquid mass shows some response to changes in the parameter (kther1karea1).

This is to be expected since these parameters (heat transfer coefficient between

4The minute sensitivity to η
ARC

and k
V T

is mainly due to the effect of these constants on the bath

mass.
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liquid metal and solid scrap, and contact area between liquid metal and solid scrap)

have a direct effect on the scrap melting rate - and the resulting liquid mass.

• As in the case with the carbon content, the silicon content of the bath is affected

only by the scrap melting rate through the parameters kther1 and karea1. As expected

it is predominantly affected by kdSi.

The above discussion applies for a given set of nominal parameter values and operating

point (input and state). Due to the nonlinearity of the system, different results will be

obtained if the nominal parameter values are changed. In this case the nominal parameter

vector was obtained from the estimation of chapter 5. It will be assumed these values are

close to the operating point of the furnace 5. Therefore, these results should apply over

the typical operating region of the furnace. Very little deviation will occur in the case of

parameters such as kdC, kdSi and the melting rates.

The above discussion is summarized in table 4.1.

Table 4.1: Response of model states to a 1% change in parameter values (the entries are
multiplied by a factor of 100).

ktherea1 ktherea5 kdC kdSi kgr kP R kU kV T ηFeO ηARC

x1 0 0 0 0 0 0 0 0 0 0
x2 0.019 0 1.4 0.019 0.35 0 0 0 0 0
x3 0.00060 0 0 0.0060 0.071 0 0 0 0 0
x4 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0 0 0 0 0 0 0
x6 0 0.054 0 0 0 0 0 0 0 0
x7 0 0 0 0 0 0 0 0 59.0 0
x8 0 0 0 0.55 0 0 0 0 0 0
x9 0 0 0.83 0 0 0.21 0.067 0.00029 0.0026 0
x10 0.0000032 0.0000027 0.80 0.00010 0.00017 14.0 0.029 0 0 0.00019
x11 0.0000020 0.0000013 0.79 0.000055 0.000095 8.4 0.020 0 0 0.00014
x12 0 0 0 0.083 0 0.44 0.0042 0 5.3 10.0
x13 50.0 7.9 0 0.0027 0 0.019 0 0 0.18 0.34
x14 0 0 1.2 0 0 0 0.30 0.0000039 0.0056 0

The response of the system to parameter changes has a strong time dependence. An

obvious example is the case of the surface-to-area ratios and the heat transfer coefficients

between phases, i.e. ktheri and kareai: the system outputs (and states) only respond

significantly to changes in these parameters at the early stages of melting. Their effect

is negligible towards the flat bath stage. This can be clearly noted in the results of table

4.1. The liquid bath and slag masses are insensitive to the melting rate constants. The

change in the solid mass is because only 1 kg solid scrap is allowed to remain at refining6;

this small mass also has the effect of amplifying the sensitivity of the solids temperature

5An alternative method is to do a type of Monte Carlo analysis [7] but this will be computationally

intensive in order to obtain a result that can be reasonably arrived at from inspection on a proper choice

of operating point.
6This serves as a simulation convenience to prevent division by zero.
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Figure 4.1: Change in bath mass for 1% excitation in the parameters.
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Figure 4.2: Change in carbon content for 1% excitation in the parameters.

(x13) - in reality this temperature is undefined since there are (practically) no solids at

refining.

A valuable result of the current study is that while not all the parameters can be

identified, suggestions are made about which parameters can be identified. This reduces

the uncertainty in the model since there are fewer parameters that are estimated without

taking into account the system behaviour - the other parameters are obtained using input-

output data, and initial conditions.
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Figure 4.3: Change in silicon content for 1% excitation in the parameters.

kther1 kther5 kdC kdSi kgr kPR kU kVT nFeO nARC
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Parameter θ
x

P
er

ce
nt

ag
e 

ch
an

ge
 in

 T
em

pe
ra

tu
re

Figure 4.4: Change in bath temperature for 1% excitation in the parameters. The small
values are because the change (and the temperature range during refining) is taken with
respect to the relatively large temperature value of approximately 1500 ◦C.

An extension of the above result was provided by the distinguishability test. It was

possible to decide which parameters have the greatest influence on which outputs. This

enables the choice of parameter-output pairings that can result in more accurate parameter

estimates. The time dependent nature of the system sensitivity to parameter changes gives

an indication of the time during a tap when measurements should be taken.
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Figure 4.5: Change in relative pressure for 1% excitation in the parameters.

Designing for a small variance in a certain component of θ means the predictor has

to be sensitive to that component. It is important to choose measurement outputs y(t)

and inputs u(t) so that the predicted output becomes sensitive with respect to parameters

that are important for the application in question [37]. This justifies the distinguishability

analysis.

The results provide an analysis of which parameters can be estimated using input-

output data. Once this requirement on the plant information is known any method

can be used to carry out the actual parameter estimation. That is, the identifiability

establishes the requirements on plant information for parameter estimation; they provide

confirmation about the parameters that can be estimated from measured data - some of

results are intuitive and can be traced back to the original model derivation. Refining is

of relatively limited duration, and thus presents little flexibility in the choice of intervals

over which best estimation results can be obtained.

4.2.5 The time interval for estimation

The identifiability results suggest that measurement of carbon should only be carried

out at the early melting stage but before the asymptotic stage is reached. For practical

reasons, the measurement at early melting will not produce reliable results. At this stage,

large blocks of scrap, particularly cast iron, can still be found in the molten pool. Any

sampling for composition will not take into account the significant change that may occur

as this scrap melts. On the other hand, bath carbon displays small variations towards the
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late asymptotic stage as a result, it will also be least sensitive kdC. Because of the low

magnitudes of the carbon, the effect of measurement errors will increase. Therefore, the

time between the late melting and the late asymptotic stage is most practically feasible.

This also applies to measurement of bath silicon although it will be shown in chapter 5

that its levels are too low to observe any systematic behaviour.

4.2.6 Model sensitivity

The question of model sensitivity is a generalization of the test for distinguishability.

The sensitivity of the model states and outputs to parameters can be analysed by

considering the response of these variables to changes in the parameter values. A simple

technique to achieve this is to temporarily set the model parameter to zero and monitor

the response [47]. A more rigourous approach is to consider the Hessian of some scalar

function of the state or output [47, 61]. The Hessian can be used to identify the least

significant parameters in the model.

Consider some scalar function g(t, θ), where θ is a parameter vector of m components.

The Hessian is defined as

H =




∂2g
∂θ2

1
· · · ∂2g

∂θ1∂θm

∂2g
∂θ2∂θ1

. . .
...

∂2g
∂θm∂θ1

· · · ∂2g
∂θm∂θm


 (4.18)

It is evaluated at relevant values of state, output and parameter. For the purposes of the

current model, the choice of g(t, θ) can be the point value (in time) of the state or output

itself or their mean time integral. The latter will be chosen as it takes into account the

cumulative effect of the variation in parameter. This results in gi(θ) = 1
t2−t1

∫ t2
t1

xidt for

state xi and similarly for outputs.

Due to the complexity of the model, symbolic computation of the Hessian is involved7,

if not impossible. Numerical computation is preferred as it fits seamlessly into the original

simulation framework - the main difference is the use of perturbations on the parame-

ter values. The finite difference method of central differences results in the following

components of the Hessian [47]:

∂2g

∂θi∂θj

=
1

4ε2
{g(θi + ε, θj + ε)− g(θi + ε, θj− ε)− g(θi− ε, θj + ε)+ g(θi + ε, θj + ε)+O(ε2)}

(4.19)

where ε is the perturbation on each possible pair of parameters θi and θj; the second-order

terms can be neglected.

7Symbolic computation using a computer package such as Maple was carried out with poor results.
Evaluation of the large resulting matrix proved to be unwieldy.
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The operating region at which the Hessian is evaluated will have an effect on the

results. To circumvent this problem, process data from several taps will be used and the

resulting components of the Hessian will be the average obtained per parameter per data

set. The expectation is that any parameter with no effect on the state (or output) will

have lead to a zero or small value of the corresponding Hessian component. From this it

can be reasonably assumed that the results apply to all taps.

The relative magnitudes of the Hessian elements also point to the relative importance

(the so-called saliency [47]) of the parameter to a particular variable. The saliency of

parameter i is calculated as

Si = Hiiθ
2
i /2 (4.20)

where Hii is the (i, i)th diagonal element of the Hessian.

4.3 Data collection

4.3.1 Furnace inputs

Most furnace inputs are part of the overall automation system. The average power input,

the oxygen, fuel gas and graphite injection rates are measured online. These inputs were

sampled at intervals of 10 seconds. The choice of this sampling time was a practical

convenience as it short enough to capture the essential input variations - particularly of

the gases - while still allowing time and space for storage in the appropriate databases8.

A shorter time is preferable at refining since some consecutive temperature (at times

simultaneously with carbon and oxygen activity) can be separated by just one minute,

making a shorted time interval all the more important. In the end 10 s proved adequate.

The only available information on the off-gas system inputs is the size of the slip gap

and the overall mass flow rate. Unlike the original derivation [39,5], the off-gas fan power

(and resulting mass flow) is constant and cannot be manipulated. The reported off-gas

volume flow rate is given as 66000 Nm3/h [22]. This corresponds to a molar flow rate of

808 mol/s. Off-gas systems are designed to exhaust a mass flow that is four times that

which actually exists the furnace at the fourth hole [19]. Therefore, of the 808 mol/s, a

fifth (161.6 mol/s) will be the moles of gas that leave the furnace. The off-gas composition

will vary depending on the mode of operation: early meltdown will have high levels of

CO2 and water vapour from combustion of fuel gas while higher volumes of CO will be

generated from decarburization at refining. Adopting these values leads to a mass flow

rate of approximately u1 = 4.5 kg/s, made up of CO.

8A shorter time interval would place a high burden on the database for the online processing and
storage of the data.
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4.3.2 Slag data

In total, 48 slag samples were collected from 18 taps. The first 30 samples were collected

from 10 successive taps, with 3 samples per tap. One sample was extracted at first

deslagging before the bath sample and temperature are obtained. The second sample was

extracted at some time during refining9; and the last sample was obtained at tap time.

The 8 remaining samples were collected from another set of 8 successive taps at turndown.

In practice, the slag contains FeO and ferric iron [17]. The analysis results report FeO

and Fe2O3 so the final FeO used is the total iron oxide content of the slag, obtained as

( % FeO)t = % FeO +
2MFeO

MFe2O3

% Fe2O3 = % FeO + 0.9 % Fe2O3 (4.21)

Due to mixing between the slag and bath, some pure iron was found in the slag - this iron

was not taken into account as it relates to the bath and not the slag.

4.3.3 Initial conditions

The following is a list of initial conditions on the various model states and how they were

obtained. A distinction is made between initial conditions at the beginning of tap and at

the beginning of refining. Few numerical values will be given, these vary from tap to tap

and will be presented along with the main results of the model fitting (see chapter 5).

• Solid steel mass

It is assumed there is no solid mass at refining. For the entire tap the mass of steel

is determined by the metallic charge inputs such as scrap, DRI, cast iron, etc.

• Liquid steel mass

The hot heel mass will fix the initial conditions for the liquid steel mass at the

beginning of tap. The estimated bath mass at refining is based on the metallic

charge inputs less the estimated FeO (discussed below) and impurities.

• Bath carbon

Bath carbon at the beginning of a tap is fixed by the mass of the anthracite input,

the estimated carbon composition of cast iron and pool iron. It is assumed there

is no carbon originating from either scrap or the hot heel; if there is, it would be

negligible compared to anthracite.

• Bath silicon

Bath silicon originates from the DRI, pool iron and scrap. The initial silicon in the

9Preference would be for the middle of the refining stage but this cannot be known a priori, since the
length of the refining period varies from tap to tap.
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steel is determined from the slag chemistry at refining and the estimated mass of

SiO2 - a product of the oxidation of the corresponding bath silicon (the values are

given in chapter 5, subsection 5.5.1).

• Solid slag

At the beginning of tap, the solid slag is fixed by the slag additives in the charge.

Most slag will be fully melted at refining therefore it is assumed there is no solid

slag at refining.

• Liquid slag

Some liquid slag may be retained with the hot heel, this will be small, so, for all

practical purposes, no liquid slag exists at the beginning of tap. Refining slag is

established mainly by slag additives in the charge, with low levels of MnO, MgO,

P2O5, TiO2 and chromium oxidized from the bath - these are neglected.

• FeO in slag

As in the case of liquid slag, there is no FeO in the slag at the beginning of tap.

Refining slag FeO is based on the slag analysis: given the slag FeO and CaO per-

centages, the mass of CaO is known reliably from the lime and doloma inputs for

the charge. Then the approximate mass of FeO can be determined.

• SiO2 in slag

The initial SiO2 at the beginning of tap is obtained by the same procedure used for

FeO; this value is added to the bath silicon content at refining.

• Furnace gas phase

All gas masses, either at the beginning of tap or at refining are zero since the

beginning of refining or a new tap follows the opening of furnace which will remove

all the gases.

• Bath temperature

The initial bath temperature at the beginning of tap is the temperature of the hot

heel, taken as the temperature of the previous tap. Taking an average over all

taps results in x12(0) = 1647 ◦C. At refining, a temperature measurement is taken

before operator control can take place - this temperature will be used as the initial

temperature.

• Scrap and solid slag temperature

Room temperature is assumed for the charge inputs at the beginning of tap. There

are no solids at refining, so that the corresponding temperature is immaterial; a

value of 1400 ◦C will be used.
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4.3.4 Model outputs and states

Special trials were carried out to obtain measurements from the furnace that are otherwise

not carried out as part of normal furnace operation. These are additional temperature

measurement, bath and slag chemistry analysis. The timing for extraction of these sam-

ples was dictated mainly by operational constraints so that it was not possible to obtain

samples at regular time intervals10. However, all times for extraction of samples or mea-

surement of temperature, carbon and oxygen activity were recorded.

The following is a list of states and outputs and discussion how each variable was

measured.

• Solid and liquid steel mass

The mass of scrap and other raw materials is measured as it is charged into the

furnace. However, the changes in these masses as melting progresses cannot be

practically measured. The flat bath (the time at which bath sample is extracted)

provides a crude estimate for the time at which all the scrap has melted: this interval

from charging to flat bath establishes the maximum time for a complete melt - it

is possible for the flat bath stage to be reached earlier so that the melting rate

obtained from the model will be lower than in practice. On the other hand, late

melt-ins and scrap cave-ins mean that melting proceeds beyond the supposed flat

bath stage, but the masses involved are relatively small so that it can be assumed

that only a small error will be introduced by these effects.

• Bath carbon

Dissolved carbon is measured as a percentage of the total elements dissolved in the

steel. At the flat bath stage, a sample of the bath is extracted for laboratory analysis.

It takes 4 to 9 minutes from the time a sample is extracted to the time the analysis

results are made available to the operator 11. In practice, subsequent measurements

for dissolved carbon are obtained using a composite probe that reports the oxygen

and carbon content instantaneously. This is essentially an oxygen probe that sam-

ples the bath oxygen content and estimates the carbon based on a predetermined

empirical relationship. For the experiment runs, in addition to the standard initial

bath sample, two bath samples were extracted (for analysis) at various times during

refining - all times for the actual extraction of the sample were recorded. Therefore,

10Foaming and deslagging are integral operations in refining - no temperature sample can be taken
until the slag layer covering the bath is sufficiently reduced, the same applies for extraction of the bath
sample. The slag sample can only be extracted once the foamy slag has stopped flowing through the slag
door; this is important for safety reasons.

11Based on the times recorded for the actual extraction of the sample and when the analysis data is
reported.
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the bath carbon measurements were obtained either by laboratory analysis or the

composite lance readings. Some discrepancy in these measurements was observed

and is discussed in the appendix (subsection A.5.1).

• Silicon

The report on dissolved silicon is obtained from the analysis of the bath sample (the

same samples used for carbon). The silicon composition was obtained from three

samples at various times during refining.

• Solid and liquid slag

As in the case of solid metal, only the initial mass of the solid slag additives is

available. The melting rate can only be inferred from the assumption that all slag

is fully melted by the flat bath stage. Some of the slag additives are lost as part of

EAF dust through the off-gas system - a mechanism called carryover [19]. Clearly

this will reduce the effective mass of the slag - but this loss is assumed negligible

as it represents just a part of an overall EAF dust at 9-18 kg/ton of melted steel.

This EAF dust will be made up of slag additives, dirt, rust and anthracite. The

composition of the slag was obtained from analysis results of 10 taps. 3 slag samples

were extracted for at refining for each tap: one at the first deslagging, the second

at an intermediate time and the last at tapping. The analysis results are given in

the appendix in tables A.1 and A.2. The slag is predominantly made up of CaO

and MgO, with traces of MnO and Al2O3 - other components such as chromium,

phosphorus and TiO2 constitute an average of 1.18 % . The mass of slag at the time

of analysis can be calculated based on the composition and known mass of the slag

additives - the results are given in section A.3 of the appendix.

• FeO and SiO2

The analysis of the slag also reports the percentages of FeO and SiO2. The corre-

sponding masses can be calculated based on the known mass and composition of

the slag (in the previous paragraph).

• Gas phase

The gas phase masses are not measured. Analysis of the off-gas has been carried

out by other authors to study the effects of the oxyfuel subsystem [26,62].

• Solid temperature

No practical method exists for measuring the temperature of the solid steel as melt-

ing proceeds. The evaluation of this model output will be based on what can be

reasonably expected based on process understanding.
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• Liquid temperature

The minimum liquid temperature is the melting temperature of 1500 ◦C - a check on

the value of the temperature is that it must not drop below this value. The refining

temperature is measured at several times after the first deslagging up to tap time.

• Furnace pressure

The furnace pressure is measured continuously as part of the overall furnace au-

tomation system. As in the case of inputs it is sampled at 10 s intervals.

• Oxygen activity

Due to the relationships among bath oxygen activity, carbon and FeO an empirical

equation can be used to describe the effect of oxygen on the bath carbon and FeO.

Stated differently, the carbon content and FeO can be used to estimate oxygen

activity. This is the preferred approach since it uses information about carbon and

FeO which are adequately modelled.

Bath carbon and FeO are inversely related [18,19]: a high FeO indicates very low levels

of bath carbon and vice versa. FeO is in turn directly related to bath oxygen activity:

with high bath oxygen, the FeO will be high (and bath carbon low) and vice versa.

4.3.4.1 Cooling water measurements

Implementing water cooled panels has become a necessity in furnace design due to the

high temperatures the side walls become exposed to. The cooling water absorbs some

heat energy from the excessive arc radiation. As with other online measurements the

temperatures of the inlet Ti and outlet water To streams are measured continuously. The

flow rates are constant at fr = 230 m3/h for roof panels and fw = 135 m3/h for the side

wall panels. Figure 4.6 shows a representative tap run along with the measured inflow

and outflow water temperatures. A definite response to energy inputs can be observed,

however it lies within a small range of temperature values: an average of µ
Tr

= 42.5 ◦C

and a standard deviation of σ
Tr

= 3.06 ◦C for the roof and for the wall, µ
Tw

= 40.51 ◦C

and σ
Tw

= 3.68 ◦C. Over all taps (tap 1 to 10 of table A.1) these values become

µ
Tr

= 45.64 ◦C

σ
Tr

= 4.36 ◦C

µ
Tw

= 42.50 ◦C

σ
Tw

= 1.92 ◦C.

A maximum temperature difference between the input and output water flows of 10 ◦C,
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and a flow rate of 365 m3/h means that the cooling water absorbs

365 m3/h

3600s/h
(4.2kJ/kg ◦C)(10 ◦C) = 4.3 MW, (4.22)

where 4.2kJ/kg ◦C is the heat capacity of water. Given that the arc is 50% efficient,

this represents approximately 22% (4.3MW/(40MW*50%)) of the total arc loss. A much

larger value would be expected since the water cooled panels are expressly designed to

absorb a large part of the radiated arc heat losses. The difference To − Ti should also be

much larger than the maximum 10 ◦C. This points to a possible fault in the temperature

measurements or a poor water cooling system.

The use of the water cooling temperature as a feedback variable (as suggested by

Oosthuizen [7]) will be hampered by the limited range over which this temperature varies.

These measurements can provide indirect information about the temperature of the bath.

With a range of approximately 10 ◦C, the resolution on the actual bath temperature will

be (assuming a range from 1500 to 1700 ◦C) approximately 10 ◦C. This will still be subject

to measurement errors on the temperature of the water itself. It is also heavily dependent

on the assumption that the temperature of the water cooling system is a reflection of the

bath temperature - and not the temperature of the freeboard. It also depends on the

contribution of each of these sources to the water temperature. These issues are beyond

the scope of the current dissertation; therefore, the cooling water temperature will not be

considered for the remainder of this dissertation.

4.3.4.2 Freeboard temperature measurements

During the plant trials where slag samples were collected, the freeboard temperature was

measured for two taps (tap 5 and 6 in table A.1 of the appendix). A thermocouple was

inserted in an opening near the centre of the furnace roof. In both cases, the thermocouple

results were recorded. The results are shown in figures 4.7 and 4.8; each figure plots the

measured temperatures and the corresponding inputs: arc, oxygen and fuel gas. There is

a clear correlation between the measured temperature and the furnace inputs - mainly arc

energy input. However, it is not possible to conclude from the plots if the temperature

response is a result of arc energy input, burner energy input or oxygen lancing.

The original model derivation assumed a freeboard temperature equal to the bath

temperature. For modelling convenience, a temperature of 1400 ◦C was assumed for all

reactions. This is also the temperature at which the gases leave the furnace - it is higher

than the average measured freeboard temperature. Therefore, the modelled heat loss to

the off-gas will be higher than in practice.
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Figure 4.6: Change in the cooling water temperature over a single tap. The wall inlet water
temperature is not measured directly. For the roof temperature, very little difference is
observed between the inflow and outflow temperatures - the values are nearly coincident.
The average change in temperature is approximately−0.0077 ◦C with a standard deviation
of 0.168 ◦C. These values point to a very small change in temperature - only the absolute
changes in the outlet temperatures depict any meaningful trends.

4.3.4.3 Furnace hot heel

Reliable information about the hot heel enables accurate estimates of the total steel

mass (since the metallic charge mass is well known). This in turn will enable accurate

temperature prediction. Under the assumption of consistent practice, the average mass

and temperature of all hot heels will be the same (while the impurities will be negligible).

This assumption is consistent with that made in Bekker [5]. This means the hot heel

will not have a significant effect on the whole tap. To estimate the size of the hot heel

the furnace was initially emptied then normal operation resumed for 21 taps after which

the furnace was emptied again. During this period the mass of all metal tapped was

measured. With this setup it was possible to arrive at a value for the average hot heel

mass, given by the difference between total steel tapped and the estimated metal at tap

time. This results in µ = 2.43 ton and a high standard deviation σ = 7.81. This points
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Figure 4.7: Measured freeboard temperature. The inputs are shown to explain the change
in the temperature values over time. Oxygen lancing takes place in the intervals 700 <
t < 950 s and 1500 < t < 2750 s, coinciding with a rise in lancing O2 and a drop in burner
O2 and fuel gas inputs. Although the fuel decrease is only slight, the burning effect is
nullified by the choice of flow rates and the shaping of the oxygen stream - during lancing
the fuel gas only serves to cool the lance.
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Figure 4.8: Measured freeboard temperature. The inputs are shown to explain the change
in the temperature values over time. The delay from 450 s to 1550 s is due to installation
of a second thermocouple - the measurements during this interval may be erroneous.
Oxygen lancing takes place in the intervals 2150 < t < 2350s and 2900 < t < 3850s.
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to potentially large variations in the hot heel mass; these variations are also evident in

the mass of tapped steel shown in table 4.2 - for tap 1, the difference between the tapped

steel and the total charge (11.42 = 86.97 - 75.55 ton) originates from the hot heel of the

tap.

Table 4.2: Mass of steel tapped per charge.
Tap Tapped [ton] Charge [ton] Calculated hot heel
1 86.97 75.55 0
2 60.39 76.13 15.74
3 73.51 78.03 20.27
4 62.67 76.99 34.59
5 73.98 76.26 36.86
6 74.54 76.09 38.41
7 74.54 75.19 39.05
8 73.44 74.17 39.78
9 64.67 75.61 50.73
10 78.68 75.10 47.14
11 74.54 76.59 49.19
12 82.82 77.10 43.46
13 53.84 75.79 65.41
14 66.32 75.56 74.65
15 77.65 75.70 72.71
16 69.37 75.78 79.12
17 71.05 72.31 80.37
18 76.58 75.92 79.71
19 69.02 76.18 86.87
20 77.22 75.89 85.54
21 69.45 75.80 91.89
22 86.28 74.80 0

The hot heel listed is the calculated hot heel mass. The hot heel mass in each tap is

based on the difference between the total metallic charge and the mass of steel tapped.

From an empty furnace, for example at tap 2, the hot heel mass is the difference between

total metal input and the mass tapped. Not all the metal charged is tapped or is retained

as hot heel. Some metal is lost to the slag, impurities are oxidized out of the bath, and

dirt (which is included in the mass measurement) is transported to the slag. These cannot

be practically accounted for, and introduce error into the estimated total furnace mass.

This error accumulates, leading to the increase in the calculated hot heel mass from one

tap to the next.

Based solely on the difference between the net metallic charge (with iron losses through

slag taken into account) and the mass of steel tapped, the hot heel mass from one tap to

the next escalates. This indicates that other metallic losses are not taken into account.

This error will be a result of any of several sources:
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• the uncertainties in the slag mass (and the corresponding metal loss);

• the metal loss through the off-gas (by vaporization);

• dust, dirt, oils and other contaminants that are included in the measurement of the

metal charge mass;

• the composition of the metallic charge (which may be high in impurities that sub-

sequently report to the slag);

• the latter could mean the slag mass and the corresponding iron losses were under-

estimated.

No accurate measurement of the slag mass is available; however, an estimate of the average

slag mass per tap can be obtained. This is estimated based on the total amount of slag

transported from the furnace over a given period. The total slag removed from the furnace

over a period of 12 hours is 240 ton. During this period, 12 taps were recorded, leading to

an average slag mass per tap of 20 ton [22]. This is nearly twice the estimated (average

12.9 ton) total slag mass. From this result, the total iron loss will be higher, and so will

the contribution to the slag from the metallic charge - in the form of oxides and dirt.

Nonetheless the initial mass of slag, FeO and SiO2 was calculated based on the measured

slag composition and the recorded mass of slag additives (see section A.2.2)

Taps 1 and 22, are the taps for which the furnace was fully emptied into the ladle.

This mass will include some slag carried over from the furnace since deslagging cannot

remove the slag completely. One of the advantages of a hot heel practice is to prevent

slag carry-over; therefore, it will be assumed that this slag is insignificant.

On the other hand no other method exists to obtain the exact mass of the hot heel. It

cannot be determined merely based on the mass balance from tap to tap since the amount

of steel tapped is highly variable and there is a high uncertainty in the mass of the slag 12.

The best accuracy that can be obtained with respect to the mass balance is an average

over several taps instead of at an individual tap basis.

In any event, with the assumption of constant hot heel mass holding, the hot heel

should have little effect on the average heat and mass balance (and hence the temperature).

It will be clear from the model fitting results that this assumption may be valid since a

reasonable temperature fit is obtained.

12Deslagging invariably removes high volumes of iron, but the mass of slag removed is not measured
- only an average over several taps is available. A lower limit on this iron loss can be estimated from
information about of slag additive - under the assumption that all slag is removed at the end of tap.
Then, based on the known slag analysis, the bath steel loss can be determined.
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4.4 Analysis of collected slag data

The main aim of this section is to provide a summarized presentation of the slag data and

relate it to similar data collected in other furnace literature, particularly Fruehan [19].

Three slag samples per tap were collected at various stages of refining for 10 taps; a further

8 samples were collected from 8 taps at tap time. This section presents the analysis results

of the EAF slag; similar data was presented in Fruehan [19] for the BOF and Q-BOP.

The experimental conditions such as basicity however, may not be the same.

Bath carbon is a strong function of the slag FeO. Low bath carbon will generally be

accompanied by high levels of FeO. This is a direct consequence of decarburization by

FeO: high carbon in the bath will reduce the slag FeO, otherwise the FeO will remain in

the slag, and even increase due to higher levels of O2 injection. This relationship is shown

in figure 4.9.
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Figure 4.9: Relationship between slag FeO and bath carbon. The bath carbon values are
the combined results of direct bath sample analyses and estimates based on the measured
steel oxygen activity (reported by the composite lance).

This is in effect the relationship captured by the bath decarburization equation of

(2.12). The equilibrium equation for the decarburization is given by Bekker et al. [39] as

( % FeO)[ % C] = 1.25, (4.23)

this is also plotted in figure 4.9. Figure 4.10 presents an alternative plot, where the slope

of the straight line is calculated as

( % FeO)
√

% C = 7.5, (4.24)
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for C < 0.1 % ; similar results were presented in Fruehan [19] in the case of the basic oxygen

furnace where the slope was calculated to be ( % FeO)
√

% C = 4.2 ± 0.3 for C < 0.1 % ,

with a temperature range of 1610 ± 20 ◦C. The temperature range of the collected data

is larger at 1617 ± 31 ◦C; this narrow temperature range will have a negligible effect on

the FeO-carbon equilibrium.
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Figure 4.10: Relationship between slag FeO and bath carbon.

Figure 4.11 shows the plot of the relationship between the bath oxygen and the slag

FeO. This relationship was discussed in subsection 2.2.4. Some of the scatter in the data

can be explained in terms of the bath carbon content and other dissolved elements such

as manganese and silicon. These will influence the concentration ratio

[ ppmO]

( % FeO)
= K, (4.25)

where, for equilibrium, K = 26 ± 9 with basicity B = 3.2 ± 0.6 [19] and K = 20.86 for

the corresponding concentration ratio line. For instance, a high bath carbon will lower

the bath oxygen, hence the tendency of the data to scatter above the concentration ratio

line for C > 0.05 % .

As an alternative to the oxygen-carbon relation of subsection 2.2.4, the following

empirical relation can be obtained from the data:

K
O−C

=
[ % O][ % C]

p
CO

=
[ % O][ % C]

Px
CO

, (4.26)

where K
O−C

= 2.4 · 10−3 (at 1600 ◦C) for equilibrium concentrations [36] and p
CO

is the

partial pressure of CO, here determined as being proportional to the mole fraction x
CO

;
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Figure 4.11: Relationship between slag FeO and bath oxygen. The concentration ratio
line is a fit to the data resulting in K = 20.86 and ◦ - % C < 0.05; ∗ - % C > 0.05.

P is the total pressure, assumed to be atmospheric13. Figure 4.12 plots the bath oxygen-

carbon relationship from collected data (see table A.1 in the appendix). One set of data

is obtained from the composite oxygen lance. This lance analyses the bath for oxygen

activity and estimates the bath carbon based on a predetermined empirical oxygen-carbon

relationship. The second set of data (also on figure 4.12) is the bath oxygen content vs the

analysis carbon. In this case the carbon content is from the analysis of samples obtained

closest to the time when the bath was analysed for oxygen content. The carbon samples

chosen were extracted within 2 minutes from the oxygen analysis - no other taps have

carbon analysis results that lie within this period, hence the low number of data points.

Fitting the data to (4.26) results in K
O−C

p
CO

= 2.749 · 10−3. Assuming a partial

pressure of 0.9P - since the gas generated in the slag-metal interface is predominantly CO

- results in K
O−C

= 3.1 · 10−3. From the scatter of the analysis carbon and oxygen data

(denoted by *) it is clear that the constant K
O−C

will be higher than 3.1 · 10−3. However

due to the lack of sufficient data, the value of K
O−C

= 3.1 · 10−3 will be assumed accurate

enough for all practical purposes since the estimated carbon (reported by the composite

probe) is used in practice as a reliable measure of the actual bath carbon.

13This is a valid assumption since the furnace pressure deviates only slightly around the pressure
P = 100 kPa.
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Figure 4.12: Relationship between bath carbon and oxygen. Concentrations for equilib-
rium conditions and the fit to the data are shown. o - composite oxygen probe: oxygen
analysis and estimated carbon composition; * - oxygen analysis vs actual carbon analysis.

4.5 Conclusion

Experiment design is essential to any model fitting exercise. The requirements on the plant

data must be met in order to carry out a realistic simulation of the actual process. This in

turn forms an integral part of the parameter estimation process. The relationship between

the model outputs, inputs and the parameters was studied - this is essential to establish

whether available plant information can be used to estimate the model parameters. The

collected data was analysed and compared with data obtained in other plant trials. This

data is used for the model fitting of chapter 5.
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Identification of furnace data

The focus will mostly be on the bath carbon and temperature. These are the more

commonly available data that are measured as part of standard furnace practice. Refining

is also the most practical stage for which the model can be fit to a reasonable extent.

The flat bath and stirring typical at refining mean that the modelling assumption of

homogeneity (in the material and temperature) holds [39].

The problem addressed by this chapter is to fit the model to plant data. This mainly

involves the selection of appropriate parameter values so that the model response matches

the plant response to similar input. This also extends to other variables of interest such as

initial conditions, heat losses and inputs that are not precisely known but are important

in solving the problem. As far as possible the estimation of parameters will be carried

by breaking down the model into its component parts. This will avoid the curse of

dimensionality where the computational burden involved in the parameter estimation

will increase exponentially with the number of parameters [47].

This chapter applies the results of the previous chapters to fit the model to data

collected from an EAF installation. Comments and discussions regarding other variables

will be made as appropriate.

This chapter is organized as follows. An overview of the estimation process as im-

plemented in this dissertation is presented in section 5.1. Practical considerations that

are possible threats to model validity are discussed in the next section (5.2). Brief model

fitting for the meltdown temperature and slag phase elements is carried out in sections

5.3 and 5.4, respectively. The main results of the fit for refining temperature, carbon,

oxygen activity and pressure are presented in section 5.5. Properties of the resulting pa-

rameters such as bias and variance are discussed in section 5.6. Section 5.7 summarizes

the parameter estimate results and relates them to the furnace mass and energy balances.
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5.1 The parameter estimation process

The estimation of the parameters will be carried out using the tools outlined in chapter

3. Each tap is treated as a separate batch with associated initial conditions, input and

output measurements. These variables were discussed in chapter 4. In this section an

overview of the parameter estimation process is given.

Two approaches can be followed: batch or online estimation. In batch estimation,

the model is presented with the relevant plant data and the sum of the error over all

taps is evaluated. The parameter estimate is computed by minimizing this total error.

The estimate is computed over an entire set of taps. In sequential or online estimation,

an estimate is obtained for data from each tap1 and updated for each new set of tap

data. In the current problem the data set is not large enough to take advantage of

online estimation. The sequential estimation is suitable for online parameter estimation

where the parameters can be updated as the conditions of the furnace change. For the

dissertation, only batch estimation will be used.

The general process is to select a parameter vector, present the model with initial

conditions of the specific tap, apply the measured inputs from the tap and then obtain

a record of the corresponding model output. The error between the model output and

the plant output is evaluated at some ti where the plant output was measured. The mea-

surement of output data (bath chemistry and temperature) was not obtained at regular

intervals so that ti+1 − ti 6= ti+2 − ti+1
2 and the model error is evaluated at arbitrary

intervals during the refining period. The overall mean error is evaluated for each tap up

to the last tap; the average is taken over the number of measurement points per tap. The

overall mean error is then calculated as the sum of the average tap errors which in turn

is averaged over the total number of taps. The parameter estimation problem is then to

minimize this total average error by appropriate selection of the parameters. That is:

1. select an initial parameter vector θ0,

2. simulate each tap using the corresponding measured data and evaluate the average

error over the data points;

3. then compute the total average error V over the total number of data points

1In the case of the EAF data collected, a set of tap data will be a collection of data containing the
inputs and outputs sequence and initial conditions for the particular tap. Therefore, in the sequential case
each set of tap data can be treated as a single data ”point” that is used to estimate the parameters. This
modification is necessary since the furnace is a batch process with only a few data points per batch (tap).
Each tap has only a few output data points with associated initial conditions. There is no continuity in
time from one tap to the next.

2In the case of measured temperature, interpolation was used between actual measurements - this
increases the number of samples and improves the model temperature fit.
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4. if V is a minimum, stop else continue

5. update parameter vector θj

6. if V is a minimum, stop else go to step 2

The process is illustrated in figure 5.1

Initial θ∗

Simulate model
for tap i

Vi =
∑N

n=1 ŷn − yn

i > M ?
(last tap?)

Yes

No

V =
∑M

i=1 Vi

V < ε No

Yes

Calculate new
θ

Figure 5.1: The parameter estimation loop for N data points per tap and a total of M
taps.

5.2 Threats to model validity

The EAF is a highly stochastic process. While a majority of the behaviours in the furnace

are deterministic, practical and operational considerations will have a marked effect on

the states in the furnace.

The model was derived under the assumption that all the states in the furnace evolve

deterministically. This assumption is valid most of the time but unmeasured disturbances

will have an effect on the process such that the assumption will cease to hold. For instance,
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under applied energy input, the bath temperature does not always increase nor does the

bath carbon content always decrease in the presence of sufficient slag FeO or oxygen

injection. These problems arise mainly from the distributed nature of the temperature

and composition in the bath; a discussion of an approach that takes this distributed nature

into account is given by [63] and [64]. The results were obtained for the submerged arc

furnace but it is expected that they will apply in the case of the EAF. However, it must

be borne in mind that an extensive sampling campaign was carried out to obtain the data

that was used to arrive at reliable statistical results - much less data was used in the

current dissertation.

This section will investigate the regions of operation of the furnace under which the

state behaviours will proceed as expected based on theory, and conditions under which

these expectations are not met. Possible explanations for the anomalous behaviour will

be given based on observed furnace practice.

5.2.1 Effect of scrap cave-in

Scrap cave-in occurs when pieces of scrap fall into the molten bath. Depending on the

size and shape of the scrap, some of the scrap will remain attached to the furnace side

walls. As the charge melts, most of this scrap will fall into the bath. This generally occurs

early during meltdown but has also been observed in the late stages of refining. A typical

example of the latter case normally occurs after temperature and carbon measurements

are being taken for adjustment. In this case all measurements of temperature and carbon

up to the time of cave-in will be invalid. This is the case that has direct implication in

this dissertation.

The effect of the cave-in on the temperature and composition of the bath will depend on

the properties of the falling scrap. Qualitatively, a cave-in will always result in a decrease

in the bath temperature and, depending on composition of the scrap, a decrease, increase

or no change in the bath composition. In all instances, to quantify the resulting changes

to the bath the mass and composition of the scrap must be known. This information is

generally not available.

Plant data where cave-in has been observed resulted in an average change in bath

temperature of −15 ◦C; the increase in carbon composition can be negligible or as high

as 0.023 % . On average, a larger change in bath temperature was observed as opposed

to carbon composition. Since the oxygen content is closely related to the carbon, it also

undergoes comparatively little change.
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5.2.2 Effect of unmelted scrap

During refining some solid scrap in the bath can go undetected. The effect of this scrap

on the validity of bath temperature and analysis is similar to that of cave-in, but may

be less detrimental. A cave-in is suspected when a sudden excessive splashing of the slag

occurs. Then the operator is able to take additional measurement once the scrap is fully

melted. On the other hand, unmelted scrap can hardly be detected under a foamy slag

and measurement readings will be used under these (unfavourable) conditions. As in the

case of cave-in a temperature decrease will occur with the effect that larger energy inputs

are required to increase the temperature to the desired level. Late melt-in is proposed

as a possible explanation for the disproportionately slow increase in temperature that is

observed for some taps.

Cave-ins and late melt-ins are a common occurrence in the EAF practice. However

they are an undesirable occurrence as they upset the normal running of the furnace, this

in the form of delays. They are variable, and due to the lack of data relating to the masses

and compositions involved, they cannot be reliably quantified. Therefore, these anomalous

occurrences will not be included in the model fitting. That is, all data for which a cave-in

was observed or a late melt-in is suspected will be rejected. This approach is similar to

that adopted by operators in practice: reject all measurements up to the time of cave-in

or suspected melt-in and take new measurements on which new control decisions will be

based.

On the other hand, these abnormal occurrences could be avoided by judicious choice

and treatment of the scrap charge: large pieces of heavy scrap must be cut before charging,

or a regime for charging could be adopted where most of the large scrap is introduced in

the first charge, affording longer time for melting the high density scrap. The positioning

of the oxyfuel lances can be optimized to better cope with cold spots. In fact some melt

shops employ manipulatable lances that are able to follow the scrap as it melts (or to be

targeted to specific cold spots for accelerated melting) [19].

5.2.3 Unscheduled delays

Some unscheduled delays during refining will have a marked effect on the consistency of

refining operation. While heat and energy balances will be maintained, the source and

extent of inputs and disturbances will vary depending on the delay. Several cases are

worth a mention, viz. slipping and joining of electrodes, maximum demand power off and

delays in obtaining bath samples.

In the absence of any foaming events (and arc input), prolonged delays will decrease

the foam height since the gases trapped in the foam will only last a finite time - the gas
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residence time is finite. This will in turn increase the coefficient k
V T

by increased heat loss

from the bath surface. The heat loss from the furnace will therefore be higher. However

little or no measurement takes place during these delays, so the loss will be impractical

to quantify.

Maximum demand power-off occurred in approximately 28 of all 78 taps collected3.

These occur when the power consumption of the EAF exceeds the hourly limits that are

set based on the maximum power that may be drawn from the electrical supply utility [22].

They will typically influence the refining stage, since they occur towards the end of tap

when high levels of electrical energy have been consumed. On average, the delay lasts for

3.7 min with a standard deviation of 2.0 min. With no graphite injection (and negligible

bath carbon), there is little gas generation to sustain a stable foam even under suitable

slag conditions. The interfacial area between the slag and bath is small since no oxygen

injection takes place; therefore the effect of decarburization will be too insignificant to

sustain a steady foam. Therefore, the foam will gradually decay, leading to increased heat

losses.

5.2.4 The effect of deslagging

In practice, deslagging presents several complications that cannot be reasonably or prac-

tically quantified. Several cycles of deslagging take place during refining. The first is the

main deslagging that removes a large volume of slag4 before a bath sample is extracted

and temperature measurements are taken. The mass of this eliminated slag will vary de-

pending on the prevailing slag volume and the time for which the deslagging takes place.

The difficulty posed by the deslagging is that the eliminated slag is not measured.

For convenience, it will be assumed that this deslagging does not have high associated

temperature losses since the slag and bath are at the same temperature - the only loss

will result from a reduced foam. Then the overall heat loss coefficient k
V T

will account

for the heat loss that may occur from this deslagging (along with other heat loss routes

such as radiation).

5.3 Model fit for meltdown temperature

Very little measurement of process output takes place during meltdown. One piece of

output information relating to this stage is the temperature at flat bath. The time

at which this temperature measurement is taken is regarded in this dissertation as the

practical onset of the flat bath stage: it is loosely assumed that when a first temperature

3Of the 78 taps only 18 were monitored and for 10 taps out of the 18 more extensive data was collected.
4This has the added advantage of removing sulphur and phosphorus before they revert into the steel.
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measurement is taken the bath has fully melted - this may not be true at all times. The

decision that a flat bath stage has been reached - and therefore that the bath is ready

for temperature measurement - is usually based on operator intervention or can be an

estimate from the computer control system based on the EAF static model [22]. This

decision is based on several factors:

• visual inspection of the furnace slag or bath - the colour and viscosity of slag changes

as a function of temperature;

• interpreting the audible noise patterns emanating from the furnace - the level and

frequency of the noise is a strong function of the current state of the furnace,

• monitoring the activity of the arc voltage and current levels - large current and

voltage fluctuations take place at early meltdown then decrease near flat bath (along

with the audible noise levels), and

• the total electrical energy consumed is often a good indicator of when melting has

occurred; however, its accuracy will depend on the quality of scrap and the size of

the charge.

These indirect methods are used successfully by operators to make decisions about when

a flat bath stage has been reached.

A study of a related problem of estimating the furnace conditions based on arc current

and voltage signal variations has revealed a close correlation between the various signal

patterns and the state of the furnace [33]. An analogue to this is the interpretation of

audible noise patterns (by operators) as indicators of the furnace state.

Once a flat bath is detected (according to the opinion of the operator), a bath tem-

perature is taken and a sample extracted for laboratory analysis. The temperature will

be a function of all the prevailing furnace conditions from beginning of tap up to t = t1.

It will depend on all material additions, inputs and initial conditions - information in re-

spect of these has a varying degree of availability. The temperature will also be strongly

influenced by the energy losses during the tap, which are largely affected by unmeasured

disturbances. In the ideal case, a successful fit for temperature will indicate that the

model was able to depict/represent the main behaviour of the plant and that unmodelled

disturbances were insignificant after all or that their effect was successfully smoothed out

of the model by using a number of taps for the parameter estimation.

Significantly, a successful fit means that the energy balance of the furnace is maintained

by appropriately taking into account the energy inputs, sinks and losses. The losses will

be the balance of all input energy not accounted for in the sinks. That is, all energy not
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used to melt and then provide the superheat to raise the temperature of the raw materials

above melting point.

The chemical energy defined by PT is the net energy. This energy results from the

reactions that take place in the bath, the slag, the freeboard and the interface between

these phases. It also takes into account the significant loss of calorific and sensible energy

of the product gases to the off-gas.

The parameters that influence the final temperature of the bath are

• η
ARC

• η
OXF

• η
FeO

• k
V T

As mentioned, only one measurement of temperature is available per tap. For any

one tap, the system is underdetermined: there are 4 unknowns in only one equation

Φ(η
ARC

, η
OXF

, η
FeO

, k
V T

) = 0.

The melting rate constants ktherea1 and ktherea5 determine the rate at which melting

will proceed. When a solid is introduced into the furnace, the temperature of the liquid

group will drop to a level dictated by the existing energy balance - the solids will effectively

cool the furnace. Based on the model, a situation will occur where the bath temperature

drops well below the melting point of 1538 ◦C [17] and thus solidify - this does not occur in

practice. The main reason is the assumption of homogeneity that was made in the original

model derivation: in practice, only liquids in the vicinity of the solids will solidify, on the

other hand the model will predict low levels of liquid temperatures since the energy balance

applies over the entire charge and not at the solid-liquid interface, as happens in reality

where there is a finite interface for heat transfer. Therefore care must be taken not to have

melting rates that force the liquid temperatures too low - to preserve as close a depiction

to reality as possible, otherwise it must always be borne in mind that this deviation from

reality is a modelling convenience. The melting rate is inherently distributed in nature -

treating it as a constant is a simplification. However, only an average representation is

important for the application of the model. A lumped parameter model will be adequate

for control purposes where feedback is used to compensate for modelling errors.

An analysis of the off-as composition will reveal valuable information on the value of

η
ARC

and possibly η
FeO

. Products of the combustion of the oxyfuel system are exhausted

with the off-gas. The extent of this combustion is controlled by η
OXF

. In the presence of

sufficient O2, a η
OXF

= 1 means that all fuel inputs to combustion are consumed, leaving

only H2O, CO2 and excess O2 as products to be removed through the off-gas. On the

other hand, low efficiency will present the entire fuel gas to the off-gas analysis, together
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with the unused O2. Some contribution to the off-gas composition will come from the

slag-metal reactions and graphite injection into the slag. Nonetheless, an analysis of the

off-gas is the most practical and direct method to obtain information pertaining to the

oxyfuel system and the parameters that govern it.

During lancing, O2 is injected as a high energy stream directly into the bath. Some

fuel gas is also injected; in this case its main role is to shroud the O2 stream. It also serves

to cool the lance nozzles under the extreme heat of the furnace environment. Very little

combustion takes place. Lancing will be accompanied by generation of large volumes of

FeO. A measurement of the changes in slag FeO and the injection of O2 will indicate

just how much FeO is generated for a given volume of O2, whence the value of η
FeO

can

be estimated. Indeed the FeO being generated will depend on the bath decarburization

and any foaming that may be taking place - these factors must be taken into account in

estimating η
FeO

. The rate of FeO generation disregarding decarburization and foaming

will provide an upper limit on the value of η
FeO

.

The effect of k
V T

is attributed to the inherent losses that result by virtue of the furnace

being at a higher temperature than its immediate environment. When a fully charged

furnace is put into an idle state - with no arc or burner heat input - the heat losses will

be governed largely by k
V T

(and to a lesser extent by cooling water losses). Such an idle

state under a complete foam, closed roof and slag door, result in a reported temperature

loss of 2 to 3 ◦C/minute [22]. A minimum value of k
V T

can then be estimated from

ẋ12 = − k
V T

(x12 − T
AIR

)[
x2Cp(FeL)

MFe
+ x3Cp(C)

MC
+ x4Cp(Si)

MSi
+ 2x6+2x7+3x8

Mslag
Cp(Slag(L))

] , (5.1)

giving k
V T min = 0.837 kW/K. This value will be higher when there is no adequate foaming,

and when the slag door or furnace roof are open. This will happen at various stages during

meltdown: when the roof and slag door are opened for charging, furnace inspection or

relining (fettling) of the furnace walls and when conditions are not conducive to proper

foaming. Generally, a higher value for k
V T

should be expected.

Water cooling is another distinct mechanism by which the heat energy of the furnace

is lost. The detrimental effect of excessive arc radiation on the refractories is alleviated by

the cooling of the panels onto which the refractries are attached. The water loss will be

a function of all the heat inputs to the furnace, with the overriding contribution coming

from the arc radiation (and to a limited extent from the oxyfuel system). When the

furnace is idle for charging the cooling loss is at its minimum, while a peak in this value

is reached during arcing (and oxyfuelburner mode). The heat energy removed with the

water will be given by

∆E = (Tout − Tin)ṄH2O, (5.2)
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where Tin and Tout are the temperatures of the inlet and outlet flows; ṄH2O is the molar

flow rate of the cooling water, generally flowing at a maximum of 23 mol/s. For this

dissertation the average ∆E per tap will be taken as the constant loss over the tap,

except at off-times when no power is applied and little change in the water temperature

takes place.

η
ARC

can be defined as the ability of the arc to transfer its heat energy to the bath.

Under ideal conditions all the arc energy will be transferred to the bath, in which case

η
ARC

= 1. However significant losses occur when large regions of the arc are not covered

either by the scrap or foam. Scrap bore-in keeps large regions of the arc covered - this only

happens at early meltdown. Under flat bath conditions foaming can be used to shield the

arc. At all other times the arc is exposed and significant losses occur by arc radiation to

the furnace walls and roof.

The efficiency of the arc at meltdown is reported as η
ARC

= 0.6 [19]; this will serve as

the starting value for all parameter estimation that will follow. Arc energy contributes

at least 75 % of all energy inputs to the furnace [19] - it will have the largest effect on

the bath temperature, therefore η
ARC

will be the main parameter used for fitting bath

temperature. For an equivalent-sized furnace the oxyfuel subsystem contributes 5-10 %

to the energy input, and chemical reactions 30-40%, of which a large part originates from

bath oxidation. In order of fitting authority the efficiency parameters are: η
ARC

, η
FeO

and

η
OXF

. Assuming that a similar practice is followed for the current plant, the initial values

arrived at are

η
ARC

= 0.506

η
FeO

= 0.748

η
OXF

= 0.7

k
V T

= 0.420

These are used as starting values in the penalty function minimization procedure that

follows. Collecting the parameters into a single vector gives:

θ = [η
ARC

, η
FeO

, η
OXF

, k
V T

]T , (5.3)

arranged in order of decreasing output sensitivity. The parameters: kdSi, kdC and kgr, will

have a marked effect on the chemical energy of the furnace, but their primary effect is

on the mass balance, from which they will be estimated. It is assumed that no foaming

occurs during meltdown. This may not be completely valid since an automatic foaming

system is in place 5. This will control the injection of graphite but, when it occurs, it will

5The decarburization reaction will generate high levels of CO which will foam any slag that has melted
at that time.
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generally be confined to the late melting stage, no more than 5 minutes before meltdown

ends. The average effect of this foaming on η
ARC

will generally be negligible since the

foaming only occurs for a short period during the entire meltdown stage. Therefore the

assumption is valid for all practical purposes.

An improved accounting for the energy losses in the furnace will help the determina-

tion of the true values of temperature parameters. Underestimating the losses will lead

to higher energies being made available to use in the furnace, thus leading to an overes-

timate of the temperature values. To remedy this, the values arrived at for the efficiency

parameters will be lower than in practice, or as obtained in other work (where efficiency

is reported [19]). The converse is also true. Therefore an incorrect estimate of the losses

will lead to impractical values for efficiency, even if a good fit for temperature is obtained.

5.4 Model fit for the slag phase

The original model derivation treats the slag as one composite state made up mainly of

CaO and MgO; these are lumped together into one state with equivalent heat of fusion,

heat of solution, molar mass and specific heat [39]. FeO and SiO2 are modelled separately

as materials dissolved in the slag. Other components such as Al2O3 , MnO, phosphorus

and chromium are assumed negligible. This assumption is verified by the results of table

5.1, which shows the average slag compositions. CaO, MgO, FeO and SiO2 make up, on

average, more than 90 % of the slag. The values in table 5.1 are averages over the total

collected slag data - the actual values will vary depending on the properties of the scrap

and the slag additives.

Table 5.1: Average slag composition.
Component Composition [%]
CaO 38.85
MgO 5.73
FeO 33.27
SiO2 11.17
Al2O3 3.90
MnO 3.83

5.4.1 Model fit for refining slag

Based on the reported slag analysis and charge composition the average slag mass can be

computed. The important constituents in the slag are FeO, CaO, SiO2 and MgO, with

trace contributions from Al2O3 and MnO. CaO results from slag additions of lime and

doloma; the masses of these additives are known - part of the charge practice is to measure
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all the additives to achieve accurate proportions. All the lime and doloma charged are

melted to form CaO and MgO in the slag. The composition of CaO in lime is 90 % and

63 % in doloma. Using the composition of CaO and the mass of slag additives, the slag

mass can be calculated for each tap. In summary, the average percentage FeO in slag per

tap is µ = 33.3 % with a standard deviation of σ = 6.1 % .

5.4.2 Model fit for refining FeO

The charge DRI makes a small direct contribution to the slag FeO (FeO≈ 10 % DRI 6),

with the main component originating from bath oxidation. On the other hand, the FeO

mass is decreased through reduction by decarburization and graphite injection. Therefore,

variables with the most direct influence on the change in FeO are: the parameters (θslag =

[η
FeO

, kgr , kdC]) and inputs: oxygen injection, graphite injection, bath carbon. No DRI

injection takes place, therefore it does not contribute to changes in the FeO (since all the

charge DRI is fully melted before refining).

Slag FeO levels have direct implications for the decarburization and desiliconization.

It, together with slag and SiO2, establishes the equilibrium conditions which drive the

rate of these reactions. The slag is fixed by material additions and most bath silicon is

oxidized to SiO2 early at refining - very little changes occur in the mass of slag and SiO2 at

refining except by deslagging. Therefore FeO is the only slag constituent that fluctuates

during refining: by decarburization, graphite injection and bath oxidation.

Figure 5.2 depicts the model output relative to the measured slag output where the

adjustable parameters are [η
FeO

, kgr]; kdC is only used for the adjustment for decarbur-

ization as it is the primary parameter that governs this behaviour. The 95 % confidence

interval is used to depict the variation in the model output when the parameters are varied

from their nominal values. From section 3.7.2, the variation in parameters is of the form

θ
(k)
N − α < θ̂

(k)
N < θ

(k)
N + α, where α is the parameter variation that corresponds to the

95 % confidence level. This confidence interval depends on the properties of the model

after it has been fitted to the data. It will therefore not hold if the operating point of the

furnace or the statistical properties of the data change significantly.

The time axis of the plots in figure 5.2 and all other plots in subsequent sections is

taken as the time in minutes from midnight; i.e. the time of day converted to minutes.

The refining period of tap 1 begins at approximately 424 minutes, equivalent to 7:04 AM.

The model FeO output has a consistent offset above the measured FeO. This is due mainly

to the effect of a high η
FeO

- it was adjusted to accurately model the bath carbon and

temperature at the expense of the slag FeO.

6Based on the difference between the total and metallic Fe content of DRI (88− 78% ) [22].
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Figure 5.2: Model slag % FeO (solid) compared to the measured % FeO [wt % ]. The
line −−− depicts the interpolation between the measured FeO values; the solid line
depicts the model FeO output. The model 95 % confidence interval is shown as the dotted
line (· · · ). Each plot is generated over a time window of 20 minutes from the first minute
of simulation - this enables comparison among the taps.

5.4.2.1 The relationship between bath carbon and slag FeO

Measurement of slag FeO is not standard practice. The average slag FeO calculated in

table 5.1 can be used as an estimate for all unmeasured slag FeO. Another approach is

to take advantage of the relationship between the bath carbon and slag FeO. High levels

of bath carbon are accompanied by low levels of FeO and vice versa. This relationship

was discussed in section 4.4. Using the measured carbon and corresponding slag data, an

empirical relationship can be determined; this can be used to estimate the FeO based on

the measured bath carbon7.

7The model decarburization is derived from a similar relationship: the difference between the bath
carbon at a given time and the equilibrium carbon. Near equilibrium, the relationship between the model
carbon and FeO approaches that of the measured values.
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5.4.3 Model fit for refining SiO2

Direct contributions to the slag SiO2 originate from lime and DRI additions. Each contains

approximately 3 % SiO2. Over the 18 taps, these sources translate to an average of 3.1 %

SiO2 and not the measured 11.17 % - the deficit must originate from the bath. This means

0.73 % Si was oxidized from the bath - this value fixes the initial bath Si, in addition to

the negligible 0.028 % Si that remains as the minimum bath Si (see subsection 5.5.1).

5.5 Model fit for refining

Refining is the final stage in EAF operation where the properties of the steel can be

adjusted to meet specifications as required by downstream processes. A meltdown tem-

perature of the bath is taken and a steel sample is extracted for laboratory analysis. The

analysis will report the compositions of the various alloying elements and impurities in

the bath; carbon is the most important alloying element. Based on this information about

bath temperature and chemistry, controlled adjustment of these variables commences.

It is common to have more than one temperature measurement during refining. Many

reasons exist for this. The main one being that obtaining the required bath temperature

is a continuous adjustment process: a measurement is taken followed by operator control;

this process continues until the aim temperature is reached. Other reasons are the error in

instrumentation, improper placement of sampling probe during measurement or sampling

before all scrap is fully melted (including cave-in) - each of these is remedied by taking

additional measurements.

This section presents the results of the model fit for the bath carbon, silicon, tempera-

ture, and other furnace states. Input data and initial conditions obtained in the previous

chapter will be applied to the model derived in Bekker [5] - with some modifications from

chapter 2 and Oosthuizen [7]. A comparison of the model and plant response to the same

inputs is presented and evaluated. A final set of parameter values is obtained.

5.5.1 Model fit for refining silicon

The sources of SiO2 in the slag are the bath and direct SiO2 contribution from DRI and

lime. The latter can be assumed to have been fully melted at refining and will contribute

no additional SiO2 to the slag. Due to its large quantity, the bath contributes significant

levels of silicon, despite a small percentage of 0.73 % . Regardless of the source, bath

silicon reaches its asymptotic stage well before refining since it is oxidized early in the

process [19]. A strong confirmation of this is the composition of bath silicon at refining,

measured simultaneously with carbon. The average composition (over the entire refining

period) is µ = 0.028 % with standard deviation σ = 0.0046 % , a constant composition

Electrical, Electronic and Computer Engineering 99

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 5 Model fit for refining

for all practical purposes - this also establishes the minimum bath silicon. In comparison,

carbon decreases significantly from the beginning to the end of refining: from an average

initial µ = 0.096 % and standard deviation σ = 0.041 % , it drops to a final average of

µ = 0.040 % (with standard deviation σ = 0.0093 % ). In fact the actual composition

of silicon is always much lower than the minimum specification of 0.1 % - adjustment to

meet this specification is relegated to the ladle furnace.

For all practical purposes the bath silicon is assumed to be at its minimum at refining,

with very little desiliconization taking place. Therefore, the corresponding rate constant

will be chosen at kdSi = 0 i.e. no desiliconization takes place at refining.

5.5.2 Model fit for refining carbon

Previous work in model adjustment of carbon to plant data was to fit the model output

for an entire tap simulation to a constant carbon measurement at tap time [5]. The fact

that the measured carbon is constant does not show the ability of the model to depict

decarburization sufficiently. Because data from only one tap was used, the extension of

the model to variations such as bath mass, carbon content, slag chemistry etc. were

not take into account. On the other hand, an exhaustive simulation was carried out

where natural variations were allowed in material feed rates and compositions, and power

transfer efficiencies [7]. The resulting effect on output was considered but not the accuracy

of the output itself, as it would respond in an actual furnace to the same variations. In all

cases, however, the response to input was the same as expected from an actual process,

but could not be verified sufficiently due to lack of plant data.

The dynamics of bath carbon and temperature are one-way decoupled. As the model

stands, temperature has a limited effect on decarburization. This was shown in the

identifiability study in chapter 4. In practice, the removal of carbon from the bath is

independent of temperature. On the other hand, decarburization will have an effect on

temperature by the reduction of FeO which is endothermic. A similar argument can be

made for desiliconization. For this reason the fit for carbon and silicon will be carried out

first, and then the parameters fixed to be used in the next section for the model fit for

temperature.

With the slag conditions established as in the above section, the fit for carbon essen-

tially reduces to that of estimating the decarburization rate constant. Several measure-

ments for bath carbon were obtained along the refining stage. The model fit was carried

out by minimizing the error between the model output and the measured bath carbon con-

tent. The output is the percentage composition of bath carbon, given by Oosthuizen [7]:
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y =
x3/MC

x2/MFe + x3/MC + x4/MSi

. (5.4)

An alterative is to use the actual mass of bath carbon, but this may be prone to errors

in the modelling for the bath mass.

The results for the carbon fit over the test taps are shown in figure 5.3. The model

output is shown relative to the measured values. The corresponding decarburization rate

constant is kdC = 53.341 kg/s, with a mean error of
√

V
N

= 0.012 % .

In each of the plots shown, the model bath carbon is initialized to an arbitrary value

until a valid measurement is available. It is then re-initialized to the first valid measured

carbon as soon as it is available at some t1 - hence the instantaneous rise or drop in bath

carbon at the first valid measured carbon. The model fit for the carbon is then carried

out between t1 and tend i.e. the error is evaluated only at points subsequent to the first

measured data point. This is necessary since the measured results for each of the variables

are obtained at different times. A similar procedure is followed for the temperature fit; this

is not necessary for fitting to the slag data since the slag was always the first measurement

to be obtained during the plant trials.

The one measurement at Tap 1 was deemed unreliable as it deviates significantly from

the carbon trajectory. Furthermore, for this tap, no cave-in was detected or late melt-

in suspected; a consistent temperature increase was also observed (see subsection 5.5.4),

therefore, accepting this measured carbon would introduce a significant deviation from

the general trend of the other data points of the same tap. A similar argument can be

made for Tap 9 and Tap 10 where an increase in the measured carbon is observed. In

most cases, a cave-in or late melt-in seldom has a significant effect on the carbon content

although exceptions are possible in the cases of the high carbon cast iron or pool iron

being involved in the cave-in or late melt-in. The possible explanations for the deviations

are: improper sampling conditions, improper placement of sampling probes, or inherent

error in the measuring instrument.

In practice, the last measurement is used as a conclusive record of the bath carbon.

For all practical purposes, the bath temperature and composition can be assumed to be

fully homogeneous near tapping. Therefore, this last measurement can be treated with

the highest confidence and used as a benchmark for assessing the plausibility of other

measurements during refining. The first measurement will not be as reliable since the

bath may not be fully melted or the temperature not appropriate for extraction of a

sample.8

8In practice, samples may be rejected because the temperature is too low or the sample was extracted
close to a piece of solid scrap. This is rare (one sample was rejected from the 10 monitored taps), but it
may occur unnoticed during a tap in which case, the analysis results may be inaccurate.
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Figure 5.3: The model fitting to measured carbon data [wt % ]. o - measured carbon;
* - rejected carbon measurement and the solid line is the model carbon output.
The model is initialized to an arbitrary bath carbon level (0.1 % ) - the carbon level is
updated as soon as a valid measurement is made available, hence the instantaneous rise or
drop in carbon near the first valid measured carbon. The model 95 % confidence interval
is also shown as the dotted line (· · · ). It is only slightly visible in tap 1 - it is too narrow
to be visible on the other taps. Each plot is generated over a time window of 20 minutes
from the first minute of simulation and over a carbon range from 0 to 0.2 wt % - this
enables comparison among the taps.
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Figure 5.4: Residuals of the carbon output for all test taps. The tap number Ti,
i = 1, . . . , 10, is followed by the error at the single-point carbon measurements for the
refining period shown in figure 5.3. Tap 4 has no error.

5.5.3 Bath oxygen activity

As mentioned, oxygen injection provides a valuable source of chemical energy. Depending

on the bath conditions, some of the oxygen injected will oxidize the bath while some of

it will remain dissolved in the bath. It is the limits on this dissolved oxygen that restrict

the degree to which oxygen can be injected into the bath. High oxygen has detrimental

effects on the quality of the final product. This is in the form of metallic oxide inclusions

that result from oxidation of iron, manganese, silicon, aluminium, etc - they affect the

cleanliness of the steel [36]. The oxygen also has the effect of reducing the alloying

efficiencies (recovery rate) and leads to generation of gas (CO) as the steel solidifies [17].

Although deoxidizers can be used to lower the oxygen content, they introduce additional

raw material costs and compromise the cleanliness of the steel by introducing oxides that

may have to be removed by downstream processes. A low oxygen content is also important

for the removal of sulphur from the steel.

Two important factors determine the solubility of oxygen in the steel. These are tem-

perature and the presence of deoxidizers such as silicon, manganese and carbon; the latter

being the more prevalent at refining. Solubility is directly proportional to temperature; at

typical refining temperatures (from 1500 to 1700 ◦C), it ranges from 0.15 to 0.3 % [O] [20].

This is based on the calculation

− log( % O) = 0.8

% O = 0.15 %
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and

− log( % O) = 0.5

% O = 0.3 %

In practice, the measured oxygen content lies in the range 0.02 % (200 ppm) to approxi-

mately 0.12 % (1200 ppm), so that it is always within the solubility limits.

At high levels of bath carbon, decarburization is able to lower the oxygen to a content

approaching equilibrium conditions [17]. The slag FeO and bath oxygen are also well

correlated: high levels of FeO are accompanied by high levels of bath oxygen and vice

versa. Therefore, oxygen activity will be a function of the bath carbon content (and the

injected oxygen).

The oxygen activity output was derived in chapter 2. Figure 5.5 presents the model

bath oxygen activity output compared to the measured oxygen activity. The model output

uses the bath carbon to calculate the oxygen activity and any error in the oxygen activity

is a direct consequence of the error in bath carbon9. Therefore, the model fit for carbon

will dictate the final oxygen activity. An alternative is to use the bath FeO content

to calculate the oxygen activity, but the model carbon fit is considered more reliable

and is the preferred choice; and, a reasonably accurate oxygen-carbon relationship was

determined in section 4.4 by fitting equilibrium concentration to measured data therefore,

no further fitting for the oxygen-carbon relation is necessary.

9Assuming the oxygen-carbon relation of subsection 2.2.4 is sufficiently accurate.
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Figure 5.5: The model fitting to measured bath oxygen [ppm]. o - measured oxygen;
* - rejected measurement. The line − − − depicts the interpolation between the mea-
sured oxygen values; the solid line depicts the model oxygen output. Not every
measurement of oxygen activity has a corresponding bath carbon measurement - some
carbon measurements were reported from the bath sample analysis for which O2 activity
measurements are not available, hence the fewer data points for oxygen activity compared
to the carbon.
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Figure 5.6: Residuals of the oxygen activity for test taps.

5.5.4 Model fit for refining temperature

Under flat bath conditions, all solids are fully melted therefore, it can be assumed that

the net heat input is superheat used for increasing the temperature of the bath and slag.

Arc power, O2 and fuel gas inputs are maintained at constant levels10, where the fuel gas

serves only to cool the lances during oxygen blowing. The constant oxyfuel inputs mean

the efficiencies η
FeO

and η
OXF

- which is very low at refining - are also constant throughout

refining. The O2 stream is highly energetic, flowing as a supersonic jet - it is assumed a

change in slag depth has little effect on the ability of the stream to reach the bath.

The slag depth will have a marked effect on η
ARC

. A thick slag layer will improve the

efficiency of heat transfer from the arc to the bath. By shielding the arc, the slag will

receive a significant amount of heat by radiation directly from the arc. Some of this heat

will be transferred directly to the bath from the slag. Secondly, most radiant energy from

the arc is maintained in the vicinity the slag-metal region as a result, a great portion

of it will be absorbed by the bath. Whatever the mechanism, a thick foam is known to

increase the efficiency of the arc.

The foam has the effect of stabilizing the arc - one of the necessary conditions for

maximum power transfer to the bath [35]. A sufficient foam will thus allow for higher

voltages to be applied to the bath.

The opening and closing of the slag door has a marked effect on the furnace tem-

perature. When open, the slag door acts as a radiator, becoming a conduit for heat to

leave the furnace by radiation to the outside environment. Under refining operation, a

low pressure exists, carrying with it large volumes of entrained air. This air is entrained

only to be heated then removed with the off-gas - it can represent a significant heat loss.

10Power and O2 are at maximum levels, except when measurements are taken, in which case the power
input may be lowered or switched off; the same can be said for oxygen injection.
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After the first deslagging, the furnace slag door remains open until tapping. The open

door allows measurement of bath properties and enables slag outflow that results from

intermittent foaming and deslagging. The heat losses via the slag door will be relatively

constant and accounted for by k
V T

, the heat loss coefficient.

Strictly, the ability of foaming to prevent heat loss from the bath surface will also have

a direct effect on k
V T

. The foamy slag - made in large part of gas bubbles - is a poor heat

conductor. By covering all areas of the bath surface, it presents better heat insulation to

the bath. In addition, less heat energy is lost to the water cooling system. Thus, foaming

tends to decrease the furnace heat losses (k
V T

) and increase the overall furnace thermal

efficiency.

Arc efficiency has a much higher influence on temperature and furnace heat balance

than the heat loss resulting from k
V T

. Therefore, to simplify derivation, it will be assumed

that foaming will have a direct influence only on arc efficiency. Omitting this effect on k
V T

will have a negligible effect on the overall energy balance. It could, however, overestimate

furnace losses at the expense of higher arc efficiency. When no deslagging occurs, the

increase in arc efficiency (above its level with no foaming) will be proportional to the

foam depth, which in turn is proportional to the mass of graphite injected [6]. Successful

foaming will also rely on a steady supply of FeO in the slag, generated by injection of O2.

Steelmaking slags are maintained at conditions that are conducive to foaming [18,19],

i.e. high viscosity and surface tension, FeO in slag at 15 to 20 %, and basicity B > 2.5,

estimated as

B =
% CaO + 1.4 % MgO

% SiO2 + 0.84 % P2O5

≈ 1.17
% CaO

% SiO2

, (5.5)

where the approximation applies when MgO < 8 % and P2O5 < 5 % [18]. The average

basicity obtained from plant data (see table A.1) is µ = 4.151 with a standard deviation

of σ = 0.624. It is controlled as part of standard charge practice by using appropriate

quantities of lime (a source of CaO and SiO2) and sources of SiO2 such as DRI with

1.0 to 5.0 % SiO2, [17] and scrap (though to a limited extent). Therefore, high slag

basicity is guaranteed for all practical purposes.

The average FeO content of the slag is µ = 33.27 with standard deviation σ = 6.089.

This is higher than the average 15 to 20 % stated above but successful foaming has been

observed at these higher slag FeO levels [22]. Furthermore, successful foaming studies have

been carried out at higher slag FeO contents [29,30,31]. In each one of the taps (recorded

in table A.1) successful foaming was observed. With this in mind it can therefore be

assumed that the plant slag conditions were conducive to foaming. However, no comment

can be made about the optimality of these foaming conditions since only visual inspection

was used.
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5.5.4.1 The effect of foaming on arc efficiency

As discussed previously, slag foaming has a direct effect on arc efficiency and bath tem-

perature. Under the assumption of adequate foamy slag conditions, the arc efficiency at

refining is given by:

η
ARC

= η
ARC 0 + αdgr (5.6)

where α is an adjustable constant; η
ARC 0 is the nominal arc efficiency without foaming

and dgr is the graphite injection rate. Recast, the above equation can be written as

η̇
ARC

= α ˙dgr

η
ARC

(0) = η
ARC 0 ,

allowing straightforward incorporation into the original state-space model. The above

expression (5.6) simply evaluates the increase in arc efficiency as a function of the total

graphite injected during refining.

An alternative method for incorporating the effect of foaming on arc efficiency is based

on the results obtained in Oosthuizen et al. [6], presented here with limited detail. The

slag depth (in centimetres) is given as

Hf = VgΣ

with the foam index

Σ = 20172.58(%FeO)−2.07,

obtained empirically for slag FeO concentrations of 20% to 40%. (The foam index can

be interpreted as the gas retention time [30].) Vg is the superficial gas velocity [cm/s],

obtained from the total volume of gas generated in or flowing through the slag. Then,

the arc efficiency is assumed to increase as a linear function of slag depth as:

η
ARC

= η
ARC 0 + βHf , (5.7)

subject to a reported practical upper limit η
ARC

< 0.9, with the nominal efficiency chosen

as η
ARC 0 = 0.4 [19], applicable when no foaming takes place. The above limits also apply

to (5.6).

Consistent with the reasons of Oosthuizen [7], above a thickness of 30 cm the slag has

no effect on arc efficiency increases. Below 30 cm, there will be a linear change in efficiency

(as a function of slag depth), governed by the adjustable parameter β. The use of both

η
ARC 0 and β in (5.7) means that η

ARC
is effectively a sum of two unknown parameters. To

simplify parameter estimation, β will be determined as the gradient of the straight line

that relates the arc efficiency to slag depth, where η
ARC 0 is the y-intercept. Then

β =
0.9− η

ARC 0

30− 0
, (5.8)
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resulting in only one adjustable parameter, η
ARC 0.

The results of the model fit for refining temperature are shown in figure 5.7 for fitting

to the recorded tap data. Inspection of the plots indicates an overall good fit. However,

Tap 1 and Tap 5 have the large offset errors; with Tap 1 having a generally poor fit. The

latter was a high carbon tap - to reduce this carbon level, only oxygen injection was used,

with the arc power switched off for most of the refining stage. A better fit for this tap

can be achieved by increasing η
FeO

but this will occur at the expense of a temperature

overshoot for other taps since these low carbon taps have lower energy generation by

oxygen injection. A better presentation of the fitting accuracy and the comparison of the

error from tap to tap is shown in residuals plot of figure 5.8.

A linear interpolation is used between two adjacent measured temperatures to ap-

proximate the furnace temperature. This is considered adequate since most adjacent

measurement points are separated by only a few minutes and, under flat bath, the pre-

dominant relationship between temperature and arc input is linear. This interpolation

provides flexibility in evaluation of the error function and prevents the need to solve

the problem as merely a two-point boundary problem: in this case any trajectory for

temperature is possible as long as target temperature is reached - this could introduce

temperature changes that are not physically possible. In effect the interpolation is a

method of introducing prior knowledge about bath temperature into the error function.

The parameters adjusted for the model fit are η
ARC

, k
V T

and, to a lesser extent, η
FeO

whose value was adjusted in the fit for FeO, although it does have a substantial effect on

the bath temperature due to its effect on bath oxidation.

The initial single-point values arrived at for the parameters are:

k
V T

= 2.08 0.40 < k
V T

< 8.00

η
ARC

= 0.51 0.40 < η
ARC

< 0.80

η
FeO

= 0.75 0.50 < η
FeO

< 0.80

β = 0.00 0.00 < β < 0.02

kdC = 54.90 5.00 < kdC < 100.00

kgr = 0.42 0.30 < η
ARC

< 10.00

(5.9)

with a corresponding mean squared penalty of V
N

= 215. The results of the model

temperature response compared to the measured temperature are shown in figures 5.7

and 5.8.
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Figure 5.7: Model temperature output compared to the measured values [ ◦C].
o - measured temperature; * - rejected temperature measurement. The model is initial-
ized to an arbitrary bath temperature (1400 ◦C) - the temperature is updated as soon as a
valid measurement is made available, hence the instantaneous rise or drop in temperature
near the first valid measured temperature. The model 95 % confidence interval is also
shown (· · · ). Tap 8 was rejected altogether since only 2 temperature measurements were
available, separated by approximately 40 seconds with an increase from 1630 to 1643 ◦C
- this range is too short to allow any meaningful conclusions to be made about the data.
Each plot is generated over a time window of 20 minutes from the first minute of simula-
tion and over a temperature range from 1400 to 1800 ◦C - this enables comparison among
the taps.
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Figure 5.8: Residuals of the temperature fit for all test taps. The tap number is followed
by the corresponding residual plot over the relevant period of the tap as shown in figure
5.7. For each tap, the residual is evaluated from the first to the last valid measured
temperature.

5.5.5 Model fit for refining pressure

The furnace pressure has important implications for the gas mass balance and the furnace

heat balance. Pressure levels will dictate the extent of air entrained and its subsequent

removal through the off-gas with other gases generated in the furnace. The furnace

entrains air, then heats it to a higher temperature only to remove it with the off-gas, thus

incurring energy losses; these can be significant for negative pressures. On the other hand

maintaining a positive pressure will lead to the release of hazardous gases into the furnace

work area, exposing the workers to health risks. Therefore a tradeoff must be made. The

ideal would be to operate the furnace at zero pressure, but in practice, a slight negative

pressure is adopted. An alternative is to use a secondary gas extraction system that is

located in the roof of the furnace work area. This system rapidly removes gas fumes in

the vicinity of the furnace. It is particularly useful when positive pressures cannot be

avoided as during the early melting stage, foaming and when cave-ins occur.

The parameters that are directly responsible for the behaviour of the furnace pressure

are the gas masses, the pressure constants (k
U

and k
PR

) and the off-gas mass extraction

rate u1. The latter is constant, based on the estimated volume flow rate of the off-gas -

this is given as 66000 Nm3/h [22] (see also section 4.3).

The pressure measurements respond only to peaks in furnace pressure. The instrument

is not sensitive to pressures below a certain (unknown) level. A pressure that is expected

to equal atmospheric pressure is not registered, neither are negative pressures11. On the

11Various stages of operation in the furnace will have a marked effect on the pressure. The opening and
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other hand, a distinct response is observed to a large positive pressure as a result of

foaming. Therefore the model fit for pressure will only attempt to fit to these peaks,

while other pressure levels will be verified based on physical insight. The results of the

pressure fit are shown in figure 5.9.
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Figure 5.9: The model fitting to measured furnace pressure [Pa]. The original reported
units of the measured pressure are mmH2O. The multiplicative factor of 9.8 Pa/mmH2O
was applied to the measured data. The result was relatively high positive pressure values
with an unrealistic offset: the mean pressure was at least 2000 Pa. This necessitated the
use of yet another gain factor of K=0.01, to result in the pressure values shown. Solid
line - model pressure; dashed line - measured pressure.

The preceding fit for pressure cannot be considered conclusive. Errors in the fit will

closing of the slag door and furnace roof should display a consistent effect on the pressure measurement.
The same should apply in the case of refining where negative pressure conditions will prevail throughout
except when graphite injection takes place - this does produce the expected response. It is possible the
measuring instrument is only sensitive above a certain positive pressure.
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have a negative effect on the energy balance when considering the heat loss to air entrain-

ment. However, this effect will be negligible relative to the main energy sources and other

heat loss routes such as loss through refractories, radiation, water cooling and furnace

side walls. The error can be absorbed into other system parameters e.g. a higher arc

efficiency (or a lower heat loss coefficient) when the entrainment losses are exaggerated

and vice versa.

5.6 Analysis of parameter estimates

5.6.1 The error norm

The error norm used throughout the foregoing estimation is the least squares norm. It is

given by

V
N

=
λT

NT

NT∑
t=1

ε2
T
(t) +

λC

NC

NC∑
t=1

ε2
C
(t) +

λFeO

NFeO

NFeO∑
t=1

ε2
FeO

(t), (5.10)

t is the time at which a measurement is available and ε(t) = y(t)− ŷ(t). The plant relative

pressure is sampled at regular intervals of 10 seconds; other outputs such as temperature,

carbon and FeO are available at arbitrary time instants with no fixed sampling time. λx

is an appropriate weight - it can be chosen to place an arbitrary weight on an output and

its contribution to the penalty function V
N
. Here, the outputs are assigned equal weight,

leading to

λT = 1

λC = 9 · 105 (5.11)

λFeO = 0.405

5.6.2 The method of influence functions

This section evaluates the influence function method (of section 3.6.1) applied to the

model fit. In each case, the data set from one tap was omitted from the overall data.

Then a parameter estimate was obtained in the same manner as in section 5.5. The

results are shown in table 5.2; the tap number refers to the tap data that was omitted

from the data set in order to obtain the corresponding estimate.

The absence of tap 1 results in the highest arc efficiency and lowest η
FeO

, compared

to the other 9 cases. This is the only tap in the data set for which oxygen injection

makes the largest heat contribution: arc input occurs for a comparatively short period

throughout the entire refining stage, while high levels of oxygen are injected to remove

the bath carbon (see the appendix section A.2.3 for input profiles). Inclusion of tap 1

in the data set results in values of η
ARC

and η
OXF

that are generally confined to a small
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range. The large change in the values of these parameters (from tap 1 onwards) indicates

that tap 1 has a large influence on the entire data set. (These are also the parameters

to which the model is most sensitive.) As a result, tap 1 should be eliminated from the

data set as it does not fall within the typical operating range of the refining stage. kdC is

relatively unchanged for all taps - this points to a greater consistency of the process carbon

relationships i.e. decarburization is not unduly influenced by any one tap, including tap

1. On the other hand, k
V T

and kgr fluctuate significantly.

Table 5.2: Influence function results with the corresponding tap skipped.
Tap # ε

Temp
ε

C
ε

FeO
k

V T
η

ARC
η

FeO
kdC kgr

1 2.702 0.008 2.316 5.785 0.851 0.581 53.819 0.300
2 7.018 0.002 2.021 0.400 0.488 0.703 55.552 0.300
3 2.451 0.008 6.488 2.354 0.519 0.848 51.889 0.986
4 1.550 0.002 5.889 1.781 0.494 0.794 54.077 0.366
5 13.516 0.013 5.281 3.062 0.574 0.896 54.665 2.108
6 2.382 0.005 1.173 1.411 0.500 0.759 54.688 0.489
7 6.766 0.006 3.201 1.425 0.509 0.765 56.502 0.880
8 4.489 0.003 3.060 1.522 0.499 0.768 54.283 0.456
9 8.000 0.011 3.915 0.400 0.465 0.743 53.865 0.714
10 1.761 0.004 4.552 0.400 0.420 0.844 54.815 3.528

5.6.3 Parameter error bounds

So far the parameter estimation has been carried out with the view to obtain a single

point estimate. While this does deliver an estimate that minimizes the error on average,

it does not give sufficient information about the parameters or the resulting model. Other

methods or tools exist for obtaining both the value of the parameters and other informa-

tion that relates to them i.e. the variance in the parameters, the asymptotic properties

of the parameters, and importantly a measure of the confidence in the estimates - this

will indicate the range over which the parameters allow the model to represent the data

satisfactorily.

The error bounds or confidence intervals on the parameters can be calculated from

the covariance matrix as discussed in section 3.7. Using equation (3.24) to calculate P
N

gives

PN =




0.09116 0.01156 0.007380 −0.0009926 −0.001058
0.01156 0.03796 −0.02401 0.002883 −0.0007672
0.007380 −0.02401 0.03378 −0.004042 0.002731
−0.0009926 0.002883 −0.004042 0.01841 −0.00008065
−0.001058 −0.0007672 0.002731 −0.00008065 0.09225


 (5.12)

Electrical, Electronic and Computer Engineering 114

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 5 Analysis of parameter estimates

Then, the covariance is obtained using equation (3.22):

Cov θ̂N =
1

N
PN =




0.03039 0.003852 0.002460 −0.0003309 −0.0003526
0.003852 0.01265 −0.008004 0.0009611 −0.0002557
0.002460 −0.008004 0.01126 −0.001347 0.0009102
−0.0003309 0.0009611 −0.001347 0.006137 −0.00002688
−0.0003526 −0.0002557 0.0009102 −0.00002688 0.03075


 (5.13)

where N = 3 was used, based on the average number of data points per tap.

The corresponding error bounds on the parameters are obtained from the variance of

each parameter which is the diagonal element of Cov θ̂N . Then the 95 % confidence inter-

val on the parameters can be calculated using equation (3.21). The results are presented

in table 5.3; θN is the single-point estimate of the parameters.

Table 5.3: Confidence interval on parameters.
Parameter Lower bound θN Upper bound
kV T 1.73 2.08 2.42
ηARC 0.29 0.51 0.73
ηFeO 0.54 0.75 0.96
kdC 54.74 54.90 55.05
kgr 0.08 0.42 0.76

The above bounds on the parameters were used to generate the model output plots of

the previous sections where the model outputs at the upper and lower parameter bound

were shown along with the output at the single-point estimate.

The final parameter estimate is:

k
V T

= 2.0761 kW/K

η
ARC

= 0.5063

η
FeO

= 0.74774

β = 0

kdC = 54.895 kg.s−1

kdSi = 0 kg.s−1

kgr = 0.42019 kg−2

k
PR

= 0.5 kg/(s.Pa)

k
U

= 8.43

h
d

= 2.1 m

No improvement in the temperature fit was achieved by incorporating the effect of

foaming into the calculation for arc efficiency. Hence the value of β = 0. Both kgr and β

have a direct effect on the furnace heat energy: kgr controls the effect of graphite injection

on the furnace heat (and masses); and β also controls the effect of graphite on the furnace

heat via arc efficiency. As far as furnace heat is concerned, the two parameters control the

same effect: it is possible for kgr to be set to such a value that it sufficiently captures the
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effect of foaming on furnace heat without the need for adjusting arc efficiency in response

to graphite injection (via β). Therefore β is redundant.

5.7 Furnace heat balance

This section gives a summary of the various heat sources and sinks and their relative

contributions during refining and for the entire tap. This final step provides a preliminary

check on the validity of the obtained model. Table 5.4 presents a summary of the various

heat sources and sinks. The results are normalized to the total mass of steel being used

i.e. in units of kWh/ton.

Table 5.4: Furnace energy contribution for refining [kWh/ton].
Source/sink Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 Tap7 Tap8 Tap9 Tap10
Decarburization -13.16 -4.68 -6.63 -4.65 -6.13 -4.24 -7.64 -2.83 -14.42 -3.37
Theoretical bath oxidation 261.65 128.87 137.89 115.04 157.49 89.62 160.70 57.31 200.53 110.36
Effective bath oxidation (ηFeO ) 195.64 96.36 103.10 86.02 117.76 67.01 120.16 42.86 149.94 82.52
CO combustion by air 60.25 27.73 23.87 19.86 39.61 15.28 29.32 10.04 49.65 17.64
Desiliconization 2.11 0.47 1.25 0.68 1.08 0.87 1.48 0.60 2.19 0.99
Heating loss: injected O2 -26.86 -13.28 -14.05 -11.56 -15.72 -8.84 -15.94 -5.54 -20.48 -11.12
Heating loss: O2,air -5.65 -2.71 -2.29 -1.83 -3.65 -1.40 -2.71 -0.93 -4.57 -1.63
Heating loss: N2,air -20.59 -9.86 -8.33 -6.65 -13.31 -5.10 -9.86 -3.37 -16.66 -5.94
Heating loss to slag input 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Heating loss to DRI input 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Melting of steel and slag -0.12 -0.10 -0.09 -0.07 -0.10 -0.06 -0.09 -0.04 -0.13 -0.07
Graphite injection -0.76 -1.56 -3.08 -2.86 -2.53 -3.70 -1.75 -0.54 -3.29 -2.90
Oxyfuel energy 12.86 7.50 7.03 5.85 8.63 4.71 8.42 3.09 11.99 5.57
Total Arc input 210.32 164.00 172.86 200.60 280.58 164.73 270.61 102.02 274.10 189.80
Effective Arc input (ηARC ) 106.48 83.03 87.52 101.56 142.06 83.40 137.01 51.65 138.77 96.10
Heat loss via kV T -40.77 -26.59 -22.94 -18.37 -29.84 -15.16 -26.88 -10.17 -41.89 -17.76
Water loss -0.04 -0.02 -0.02 -0.02 -0.03 -0.01 -0.03 -0.01 -0.04 -0.02

The above results are dependent on the parameter estimates: the effective arc power

input depends on η
ARC

, energy from bath oxidation on η
FeO

, heat loss by graphite injection

on kgr, etc. Also, the total arc power is shown along with the effective power input that

results from use of the efficiency parameter η
ARC

- some of the input power is lost through

various routes such as radiation and inefficiency of the electrical distribution. Of the

refining oxygen injected, some oxidizes the bath while the rest is retained in the slag

or lost with the off-gas, hence the listing of the theoretical (that would result had bath

oxidation been 100 % efficient) and effective (through the parameter η
FeO

) bath oxidation

- the latter is used in the model as contribution from oxygen injection.

Only a small contribution results from the oxyfuel subsystem. This is mainly due

the fact that during refining, the injection of fuel gas only serves to cool the lances and

that most of the injected oxygen is used for bath oxidation - this is the main route by

which the oxyfuel system contributes to the energy input during refining. Furthermore,

the contribution of bath oxidation is comparable to that of arc input. This only occurs

since the refining stage has the highest volume of injected oxygen; the arc energy input
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dominates when the energy input is considered over the entire tap - these results are

shown in table 5.5.

Table 5.5: Furnace energy contribution for the entire tap [kWh/ton].
Source/sink Tap1 Tap2 Tap3 Tap4 Tap5 Tap6 Tap7 Tap8 Tap9 Tap10
Decarburization -37.63 -35.99 -31.14 -34.98 -35.91 -38.56 -42.71 -38.13 -40.19 -42.54
Theoretical bath oxidation 582.26 423.03 404.36 328.60 356.63 277.19 354.25 278.47 388.82 324.37
Effective bath oxidation 435.38 316.31 302.36 245.71 266.66 207.27 264.89 208.23 290.74 242.54
CO combustion by air 314.20 183.14 181.37 82.68 104.93 314.96 237.04 242.81 178.17 225.58
Desiliconization 103.02 99.00 93.37 91.11 94.94 87.86 95.80 92.80 99.32 86.34
Heating loss: injected O2 -54.40 -39.07 -35.84 -26.60 -28.37 -25.77 -31.88 -27.73 -33.22 -27.41
Heating loss: O2,air -23.74 -13.30 -12.88 -4.75 -6.11 -18.94 -16.27 -17.01 -12.90 -14.25
Heating loss: N2,air -86.49 -48.46 -46.91 -17.29 -22.26 -68.99 -59.27 -61.98 -46.99 -51.93
Heating loss: slag input 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Heating loss: DRI input 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Melting of steel and slag -742.94 -730.06 -730.51 -741.55 -743.53 -721.53 -741.85 -730.86 -721.49 -750.79
Graphite injection -3.80 -5.27 -7.93 -6.41 -5.16 -5.92 -3.89 -1.79 -7.93 -6.52
Oxyfuel energy 143.74 115.31 112.94 100.31 105.29 127.48 111.90 111.15 126.11 107.90
Total Arc input 1277.79 1191.37 1180.11 1077.17 1173.36 1119.15 1229.37 1216.45 1265.87 1181.52
Effective Arc input 646.94 603.19 597.49 545.37 594.07 566.62 622.42 615.88 640.90 598.20
Heat loss via kV T -24.97 -20.76 -18.70 -14.53 -15.48 -20.28 -17.28 -17.85 -19.32 -15.60
Cooling water loss -0.14 -0.12 -0.11 -0.10 -0.11 -0.14 -0.11 -0.11 -0.13 -0.11

5.8 Conclusion

Due to the nonlinearity of the process, the parameter estimation will be highly dependent

on the operating conditions. These will in turn be dependent on the initial conditions

and the magnitude of the inputs. It is possible to obtain values for the parameters for

which there will be relatively high confidence. This has been demonstrated by the small

parameter variance of some taps; however, other taps had values that are too large to be

practical. The main threat to the applicability of the model is the high variability of the

process: in some operating regions it is possible to have highly accurate process depiction

(with a high confidence), while other operating regions may compromise the accuracy of

the model. A serious drawback is the inability to accurately infer these operating regions,

in which case a clear distinction could be made for when the model can be used with high

confidence and when it cannot.
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Model validation

The model validation process will test the performance of the model against data on

which it was previously not fitted - the parameters obtained in the previous chapter will

be used. In addition to data from 10 taps, data from an additional 8 taps were collected

- this will be used for the validation. For the validation set of data, only the analysis

obtained at the end of tap is available for the slag; and less bath carbon and silicon data

are available.
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6.1 Bath temperature

The results for the model performance on validation data are shown in figure 6.1. The

error performance is poorer than in the case of the test data - this is expected. Tap 14 is

of has the longest duration and the largest final temperature error. But the responses to

heat input are well matched. The source of the significant error is likely that the increase

in the model temperature begins well before the measured temperature, possibly due to

incorrectly recorded measurement times. There is also a significant delay of at least 10

minutes in between measurements. Tap 15 has a large error mainly due to the occurrence

of a cave-in between the first and last measurement. The response of the other taps is

generally acceptable. The corresponding residual plot is shown in figure 6.2. Tap 16 has

the least error mainly due to its short duration (of 2 minutes) relative to the other taps.

The model generally performs better on the shorter duration taps.
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Figure 6.1: Model temperature output compared to the measured values [ ◦C] for the
validation data. o - measured temperature; * - rejected temperature measurement. The
line − − − represents the interpolated temperature between valid measurement points;
the solid line depicts the model temperature output. The 95 % confidence interval
is shown with the line (· · · ).
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Figure 6.2: Residuals of temperature for the validation data.

6.2 Bath carbon

This section presents the results of the model carbon output performance against vali-

dation data. The model carbon output error is significantly lower than the temperature

output error for tap 14. This is generally the case for the other taps where, overall, the

model performance for carbon is significantly better than for temperature. As expected,

the cave-in during tap 15 increased the bath carbon content, but the final model carbon

error was relatively accurate. The worst carbon error is in tap 16, mainly because of the

short duration between measurements and possible error in measurement - the rate of

decrease in carbon for tap 16 is the largest in all the collected data.
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Figure 6.3: Comparison of model carbon output and measured bath carbon.
The model fitting to measured carbon data [wt % ]. o - measured carbon;
* - rejected carbon measurement. The model is initialized to an arbitrary bath carbon
level (0.1 % ) - the carbon level is updated as soon as a valid measurement is made avail-
able, hence the instantaneous rise or drop in carbon near the first valid measured carbon.
The model 95 % confidence interval is also shown as the dotted line (· · · ). It is only
slightly visible in tap 1 - it is too narrow to be visible on the other taps.

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

T 11 T 12 T 13 T 14 T 15 T 16 T 17 T 18

Re
sid

ual
s [%

 C]

Tap number

Carbon residual plot for validation data

Figure 6.4: Residuals of the carbon output [wt % ].
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6.3 Bath oxygen activity

Comparison of the model oxygen output to measured oxygen is shown in figure 6.5. This

is accompanied by a plot of the residuals in 6.6. The oxygen errors for all the taps closely

resemble the carbon errors, except tap 11. This can be expected (for tap 11) since the

largest errors in oxygen occur at the measurement points for which data were rejected -

the same data were rejected in the carbon measurement. The results for taps 16 and 17

have large errors for oxygen as they did for carbon. The results are relatively accurate

for taps 14 and 15.

640 645 650 655 660 665
0

500

1000

T
ap

 1
1

690 700 710 720
0

500

1000

T
ap

 1
2

765 770 775 780 785 790
0

500

1000

T
ap

 1
3

820 830 840 850
0

500

1000

T
ap

 1
4

895 900 905 910 915 920 925
0

1000

2000

T
ap

 1
5

965 970 975 980 985 990
0

500

1000

T
ap

 1
6

1025 1030 1035 1040 1045 1050
200

400

600

T
ap

 1
7

1075 1080 1085 1090 1095 1100 1105
0

500

1000

T
ap

 1
8

Figure 6.5: Comparison of model oxygen activity output [ppm] to measured validation
data. o - measured oxygen; * - correspond to rejected carbon measurements. Not every
measurement of oxygen activity has a corresponding bath carbon measurement - some
carbon measurements were reported from the bath sample analysis for which O2 activity
measurements are not available, hence the fewer data points for oxygen activity compared
to the carbon.
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Figure 6.6: Residuals of the oxygen output [ppm].

6.4 Conclusion

The model performance against validation data is comparable to the performance against

test data in the previous chapter. An important factor is the duration over which the

model output is compared to the measured data - a short measurement duration results

in accurate temperature predictions while the opposite is true for carbon. Overall, the

results for the carbon output are better than for temperature.
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Conclusion and recommendations

7.1 Summary of dissertation results

The main focus of the dissertation was to deliver a model that is able to depict an actual

EAF process as well as possible, first by updating an existing model to accommodate cur-

rent EAF practice and by fitting the resulting model to process data. A large part of the

modelling exercise was carried out by Bekker et al. [39]. The effect of gas evolution on the

slag foam height was later studied by Oosthuizen et al. [6]. The focus of the modelling in

the current dissertation was to incorporate the oxyfuel subsystem into the existing EAF

model. The effect of the oxyfuel subsystem on the energy balance and the refining oper-

ations were studied. Model reduction was carried out, resulting in a simpler model that

is valid only for the refining stage while significantly reducing the computational burden

that is otherwise introduced by simulation with the complete model. Several modifica-

tions were also introduced to depict the effect of charging on the furnace mass balance.

Chapter 2 also presented a description of EAF operation with several observations from

EAF practice.

Chapter 3 presented an overview of the system identification process as well as some

tools that are commonly used to carry out parameter estimation and to evaluate the

quality of the resulting parameter estimates (and hence the model as a whole). The

model fitting problem of the current dissertation was solved using these tools.

The main aim of chapter 4 was to identify the important process variables that must

be measured, first to obtain a successful realistic simulation of the process and then to

enable parameter estimation. The conditions under which these measurements could be

most informative were also considered. This is essentially a problem of experiment design,

though the application of the results were highly constrained by the limited obtainable

plant data and the need to maintain normal operating conditions while measurements

were being obtained. The identifiability results form an important contribution as they

are well correlated with what can be expected from process operation. An analysis of
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slag data was also presented and shown to correspond well with results from similar

experiments.

Part of chapter 4 consisted of the collection and analysis of process data. Important

data collected includes bath temperature and composition, and slag analysis results. An-

cillary data such as the freeboard temperature and the cooling water temperature were

also collected - these help to establish an improved freeboard heat balance, albeit with

limited impact on the overall furnace heat balance since it (the freeboard heat contri-

bution) is comparatively smaller. A complete record of measured relative pressure was

also collected, however, its integrity is questionable for most operating stages of the fur-

nace. An analysis of the freeboard gases is a desirable set of data as it would, in addition

to pressure, allow a reliable estimate of the oxyfuel subsystem overall performance and

efficiency.

The main results of the dissertation were presented in chapter 5. The practical imple-

mentation of the parameter estimation process was outlined together with discussions of

the various threats to model validity that arise from the EAF process operation and the

data from which it is collected. An initial model fit was carried out over the melting stage

of the furnace. This resulted in the parameter values required to satisfactorily depict the

progress of melting and the changes in the temperatures of the solid and liquid phases.

The effect of the high variability in the process was outlined by the wide range of

parameter values obtained. This was revealed by the comparison of the overall model fit

and the model fit on a tap-for-tap basis. Highly accurate estimates were obtained for the

latter case while some taps exhibited large errors when the overall estimate was obtained.

A raw record of the measured data as well as comments on the practical model simu-

lation and parameter estimation are given in the appendix.

7.2 Conclusions

The accuracy of the model is easier to verify at refining: most of the assumptions in the

original model derivation hold at this stage of the process. This is also the stage where

the behaviour of the various states is understood with better accuracy; much research

and insight gained in the study of the oxygen furnace applies to the EAF during refining

with little modification.

The temperature response during refining should be easier to predict since the super-

heat required to raise the bath temperature to a given level is more predictable. However,

several unmeasured disturbances have an obviously negative impact on the accuracy of

the temperature modelling. These range from unmeasured variations in material mass

and composition to the effect of pressure on air entrainment. The effects of deslagging,
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cave-in and late melt-in on the bath temperature are too critical to ignore. Despite these

disturbances, the final accuracy was reasonable.

Refining presents a more predictable response of bath carbon to decarburization. Un-

like temperature, carbon is susceptible to fewer disturbances, with the result that its

modelling proved to be more accurate. The effect of deslagging, cave-in and late melt-in

is less detrimental on the bath carbon: despite intermittent deslagging, sufficient slag FeO

is maintained and the unmelted scrap is generally low in carbon so that only a limited

increase in bath carbon will occur.

The collected furnace slag and bath data is a good contribution to EAF research 1.

Their analysis and the ability of the model to reproduce them in general, is a further

contribution as it provides a first successful step in the effort to control the EAF process.

Much improvement in the model accuracy can be achieved by a more consistent furnace

operation or measurement of disturbances. The current EAF practice is highly variable

from one tap to the next. This exacerbates the effect of unmeasured disturbances since

it is likely to change as unpredictably.

7.3 Recommendations for future work

The work carried out in this dissertation includes off-line estimation of parameters. If

the model is installed at a plant, a crucial problem will be the need for the model to

adapt to changes in the plant conditions. The model can implicitly take into account

changes in inputs and initial conditions. Changes in physical parameters such as furnace

dimension can be made as part of user input. On the other hand changes in the furnace

such as refractory properties, energy efficiency, heat losses and reaction rates will change

the inherent input-output relationships. The problem is therefore to adjust the model

parameters online in response to the changes in the furnace. In this way the model can

respond to changes in the furnace (within practical limits) without expert intervention.

This may not be necessary when the model is used in a feedback control system where

modelling errors will be compensated for by feedback.

In practice, the information on the bath analysis has a substantial delay associated

with it. The process of obtaining an analysis of the bath chemistry involves acquiring

the bath sample, cooling it (a short duration) and transferring it to the laboratory where

it can be analysed. The total duration of this process can range from 4 to 9 minutes2,

or even longer, depending on the availability of sample analyser. This can have serious

consequences implications for controller design.

1It has been reported that most EAF melt shops are reluctant to release their analysis results [18]!
2Based on the times recorded for the actual extraction of the sample and when the analysis data is

reported.

Electrical, Electronic and Computer Engineering 126

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Chapter 7 Recommendations for future work

7.3.1 Controller design

The aim of the controller design is to demonstrate the benefits of control on the process.

Previous authors have designed controllers for the process, however, their main focus

was on the use of the off-gas variables as the primary manipulated variables. While

the success of this approach has been demonstrated, the off-gas variables have only an

indirect or secondary effect on the main process variables such as decarburization, bath

temperature, and iron yield.

Inputs with a direct influence on the process are fuel gas and oxygen injection, power

input, graphite injection. Efficient control of power input is a well-established technique

that is able to transfer maximum power to the process. Due to the high powers that are

involved and the switching constraints enforced by the power system, and the transformer

tap changing that allows for only discrete levels of power transfer, power input - as it is

currently applied in most EAFs - may not lend itself easily to continuous control. The

number of times a transformer changes tap positions has a direct influence on its operating

life, therefore it is done only when necessary.

Depending on the level of bath carbon, oxygen injection will have serious implications

for the iron yield and chemical energy input. With low bath carbon excessive oxygen

injection will generate large volumes of FeO that cannot be restored into the bath - since

very little bath carbon is available. In this case graphite injection can be used while at

the same time foaming the bath. Conditions of high bath carbon call for less graphite

injection to allow for effective decarburization. The control problem is then to regulate the

oxygen injection and graphite injection to maintain a healthy balance between foaming,

yield and decarburization.

Feedback control of foaming presents many opportunities for successful control of

the furnace temperature. Sustaining a stable slag foam for long periods will increase the

furnace heat efficiency: deslagging will only occur when bath measurements are required3.

Control will better maintain the foam within values that are known to produce optimal

results. On the other hand, the challenge is the instrumentation to measure the slag

height which can be used as a feedback variable 4.

Foaming control can be accompanied by the control of slag FeO. Successful control of

the FeO is achieved by maintaining a balance between bath oxidation (by oxygen injection)

and FeO reduction by graphite injection (and decarburization): excessive oxygen injection

will generate high levels of FeO which will be disposed of with the slag unless sufficient

graphite is injected to restore some of the FeO to the bath. (The graphite injection is

directly responsible for foaming.) The main advantage of FeO control will be the ability

3And the first deslagging to remove phosphorus.
4Other alternatives are the use of furnace audible signals to infer the state of foaming operations.
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to limit material losses such as overuse of oxygen and yield losses. Control of both

foaming and FeO can be simultaneously achieved by accurate knowledge of bath carbon,

and control of oxygen and graphite injection, provided a reliable method exists to either

measure or reasonably infer the slag foam conditions.

Given a highly accurate model, the number of bath measurements can be reduced to

just the first bath analysis and temperature. These can be used to initialize the model

after which it will be able to accurately predict the temperature and composition. This

will eliminate the serious delays and energy losses required to obtain bath measurements.
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Appendix A

Appendix

A.1 Nomenclature

Below is a list of all variables and parameters used throughout the dissertation.

List of abbreviations

BOF Basic oxygen furnace
DRI Direct reduced iron
EAF Electric arc furnace
LS Least square(s)
ODE Ordinary differential equation
OXF Oxyfuel
ppm Parts per million
RHS Right hand side
SID System identification
M Main nonlinear model
ML Linearised model
MR Reduced nonlinear model
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Model states

x1 solid steel [kg]
x2 liquid steel [kg]
x3 dissolved carbon [kg]
x4 dissolved silicon [kg]
x5 solid slag mass [kg]
x6 liquid slag mass [kg]
x7 FeO mass in slag [kg]
x8 SiO2 mass in slag [kg]
x9 CO in freeboard [kg]
x10 CO2 in freeboard [kg]
x11 nitrogen in freeboard [kg]
x12 bath and molten slag temperature [K]
x13 scrap and solid slag temperature [K]
x14 relative furnace pressure [Pa]
x15 [kg.s2]
x16 [kg.s]
x17 mass flow through the off-gas system [kg]
x18 mass of water vapour in the freeboard [kg]
x19 mass of methane in the freeboard [kg]
x20 mass of propane in the freeboard [kg]
x21 mass of hydrogen in the freeboard [kg]
x22 mass of oxygen in the freeboard [kg]

Inputs

u1 off-gas turbine flow [kg/s]
u2 slip gap width [m]
d1 rate of oxygen injection [kg/s]
d2 rate of DRI input [kg/s]
d3 rate of slag input [kg/s]
d4 average arc power input [kW]
d5 rate of graphite injection [kg/s]

Outputs

y1 Bath temperature [ ◦C]
y2 Percentage carbon [wt % ]
y3 Bath oxygen activity [ppm]
y4 Percentage FeO [wt % ]
y5 Relative pressure [Pa]
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Parameters

Cp(k) heat capacity of element/compound k [kJ/(mol.K)]
Mk molar mass of element/compound k [kg/mol]
Xk mole fraction of element/compound k
Xeq

k equilibrium mole fraction of element/compound k
λ(k) latent heat of fusion of element/compound k [kJ/mol]
∆Hk enthalpy of formation of compound k [kJ/mol]
Tk initial temperature of element/compound k [K]
k

air1
mole fraction of oxygen in air [mol/kg]

k
air2

mole fraction of nitrogen in air [mol/kg]
k

XC
equilibrium concentration constant for carbon

k
XSi

equilibrium concentration constant for silicon
kdC decarburization rate constant [kg/s]
kdSi desiliconization rate constant [kg/s]
kgr graphite reactivity constant
ktherea1 melting rate constant of metallic charge [kW/(K.kg)]
ktherea5 melting rate constant of solid slag [kW/(K.kg)]
k

V T
heat loss coefficient [kW/K]]

k
PR

furnace pressure constant
h

d
pressure distribution constant

η
FeO

efficiency of bath oxidation
η

ARC
efficiency of arc power input

%met percentage metallization of DRI

A.2 Tap data

A.2.1 Analysis results

The following table summarizes the analysis results for the slag and bath chemistry. The

time at which each sample was extracted is also shown; here, the actual time of day at

which the data was recorded is used, with units [hh:mm]. The data relates to tap data

collected from 7h00 to 17h10 on 18 November 2003 - taps 1 to 10, and 10h00 to 18h10

on 19 November 2003 - taps 11 to 18. The results of the slag mass calculations of section

4.3.4 are shown in table A.3.

For the first 10 taps, extensive measurement were carried out - 3 slag samples, addi-

tional steel analyses and temperature readings. For the other taps, normal operation and

measurement occurred with only one slag sample extracted at tap time. Under normal

operation, at least one temperature and carbon measurement is taken.
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Table A.1: Measured bath and slag data.
Tap # Time % C % Si O2[ppm] Time Temp ◦C Time %FeO %SiO2 %CaO %MgO % Al2O3

1 7.05 0.199 0.03 - 7.15 1619 7.04 17.70 18.2 50.53 3.53 5.10
7.15 0.125 - 219 7.16 1630 7.16 31.55 10.5 43.45 3.33 3.07
7.16 0.119 - 229 7.20 1678 7.20 36.53 9.08 37.57 3.47 2.73
7.20 0.043 - 658

2 8.14 0.082 0.01 - 8.14 1598 8.11 27.04 13.7 43.74 5.08 3.69
8.16 0.060 - 448 8.16 1618 8.16 30.25 12.5 43.09 5.42 3.51
8.18 0.054 - 504 8.18 1638 8.18 39.20 10.3 34.41 5.43 3.01
8.21 0.039 - 704 8.21 1640

3 9.10 0.111 0.03 - 9.13 1597 9.10 31.50 13.4 40.13 5.04 4.13
9.14 0.053 - 514 9.15 1636 9.14 26.21 12.6 46.07 6.38 3.90
9.17 0.043 - 623 9.18 1631 9.17 31.82 11.4 40.48 6.14 3.48

4 10.14 0.078 0.02 - 10.14 1594 10.13 32.13 11.6 41.14 5.46 4.32
10.20 0.043 - 648 10.20 1610 10.18 29.80 10.7 43.12 5.77 4.13

10.21 1658 10.20 31.65 10.1 41.13 5.77 3.78
5 11.36 0.060 0.02 - 11.37 1586 11.33 37.80 9.85 36.39 5.14 3.48

11.42 0.056 - 466 11.42 1602 11.43 38.25 7.58 36.15 5.11 2.72
11.44 0.040 - 699 11.44 1658 11.45 38.12 8.10 39.83 5.69 2.91

6 12.51 0.060 0.03 - 12.53 1615 12.50 43.95 10.8 29.38 5.25 4.14
12.55 0.048 0.03 - 12.55 1647 12.53 43.65 10.1 30.32 5.43 3.84
12.55 0.026 - 1048 12.56 45.29 9.61 30.21 5.38 3.68

7 13.43 0.088 0.03 - 13.43 1571 13.40 34.52 11.7 37.95 5.41 5.00
13.45 0.071 0.03 - 13.47 1546 13.44 34.81 11.6 37.65 5.49 5.03
13.47 0.065 - 376 13.49 1601 13.48 36.35 9.41 32.00 5.71 3.96
13.49 0.054 - 481 13.51 1615
13.55 0.046 - 572

8 15.05 0.056 0.03 - 15.07 1630 15.04 37.33 8.96 38.27 8.07 3.81
15.07 0.051 0.03 - 15.08 1643 15.06 35.64 9.24 37.74 7.81 3.92
15.08 0.037 - 738 15.08 35.06 8.57 34.60 7.30 3.62

9 16.02 0.157 0.03 - 16.05 1540 15.56 26.96 11.7 40.20 7.23 4.58
16.06 0.106 0.03 - 16.08 1615 16.06 26.57 10.6 43.41 7.05 4.22
16.08 0.062 - 481 16.10 1636 16.09 27.05 10.2 39.16 6.34 4.00
16.09 0.072 0.03 - 16.13 1660
16.10 0.093 - 293
16.13 0.033 - 845

10 17.03 0.078 0.03 - 17.05 1579 17.02 24.57 14.8 42.47 5.31 4.36
17.05 0.085 0.03 - 17.07 1614 17.05 23.91 15.0 44.46 5.98 4.57
17.09 0.044 - 624 17.09 1647 17.09 25.08 15.2 43.29 6.50 4.64
17.09 0.059 0.03 -

11 10.37 0.112 0.02 - 10.36 1570 10.43 35.69 11.1 36.17 5.59 3.83
10.39 0.034 - 760 10.39 1600
10.42 0.030 - 894 10.42 1638
10.44 0.045 - 604 10.44 1631

12 11.34 0.057 0.02 - 11.41 1566 11.47 36.34 11.6 34.72 6.96 3.89
11.45 0.034 - 804 11.45 1631
11.47 0.031 - 920 11.47 1673

13 12.43 0.081 0.02 - 12.45 1585 12.50 34.91 10.2 37.55 5.68 3.59
12.48 0.042 - 642 12.48 1623
12.50 0.039 - 678 12.50 1621

14 13.42 0.115 0.04 - 13.47 1594 14.10 36.18 10.8 34.39 5.48 3.78
13.50 0.050 - 531 13.50 1610
14.08 0.033 - 823 14.05 1658
14.10 0.030 - 930 14.08 1621

14.10 1652
15 14.56 0.068 0.03 - 15.02 1589 15.09 41.95 10.2 34.43 6.04 3.57

15.06 0.036 - 861 15.05 1626
15.09 0.035 - 757 15.06 1641
15.11 0.030 - 907 15.08 1626

15.10 1650
16 16.03 0.075 0.03 - 16.04 1624 16.05 37.33 10.2 37.51 5.83 3.47

16.06 0.034 - 861 16.06 1645
17 16.54 0.080 0.03 - 17.00 1564 17.10 31.93 12.4 39.96 4.31 4.53

17.06 0.036 - 356 17.04 1566
17.08 0.035 - 592 17.06 1588

17.08 1639
18 17.56 0.169 0.03 - 18.05 1582 17.10 31.93 11.2 39.96 6.76 4.20

18.01 0.093 0.02 - 18.08 1618
18.09 0.060 - 592 18.09 1661
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Table A.2: Detailed slag analysis data (showing the tap number and analysis (in wt %)
for each of the samples per tap).

ID SiO2 Al2O3 Fe(tot) Fe(met) FeO Fe2O3
5 TiO2 CaO MgO K2O MnO P Cr

Tap1/1 18.2 5.10 14.5 0.72 11.7 6.70 0.70 50.5 3.53 < 0.02 5.45 0.53 0.08
Tap1/2 10.5 3.07 27.3 2.79 14.2 19.3 0.45 43.5 3.33 < 0.02 4.66 0.40 0.13
Tap1/3 9.08 2.73 33.0 4.61 18.2 20.4 0.39 37.6 3.47 < 0.02 4.35 0.29 0.13
Tap2/1 13.7 3.69 23.2 2.16 16.0 12.3 0.55 43.7 5.08 < 0.02 4.49 0.34 0.10
Tap2/2 12.5 3.51 25.1 1.62 18.1 13.5 0.51 43.1 5.42 < 0.02 4.09 0.30 0.09
Tap2/3 10.3 3.01 33.4 2.92 25.9 14.7 0.43 35.4 5.43 < 0.02 3.56 0.25 0.08
Tap3/1 13.4 4.13 25.5 1.00 18.2 14.8 0.55 40.1 5.04 < 0.02 4.37 0.30 0.09
Tap3/2 12.6 3.90 22.7 2.28 14.8 12.7 0.54 46.1 6.38 < 0.02 3.89 0.28 0.07
Tap3/3 11.4 3.48 28.1 3.35 17.7 15.7 0.49 40.5 6.14 < 0.02 3.60 0.23 0.07
Tap4/1 11.6 4.32 26.0 1.04 16.5 17.3 0.58 41.1 5.46 < 0.02 4.13 0.24 0.14
Tap4/2 10.7 4.13 26.0 2.82 17.2 14.0 0.56 43.1 5.77 < 0.02 3.71 0.23 0.13
Tap4/3 10.1 3.78 28.4 3.76 17.2 16.1 0.50 41.1 5.77 < 0.02 3.45 0.20 0.12
Tap5/1 9.85 3.48 31.8 2.40 24.4 14.9 0.50 36.4 5.14 < 0.02 3.86 0.21 0.09
Tap5/2 7.58 2.72 36.5 6.78 19.6 20.8 0.40 36.1 5.11 < 0.02 2.83 0.18 0.07
Tap5/3 8.10 2.91 31.1 1.46 21.4 18.5 0.42 39.8 5.69 < 0.02 3.10 0.17 0.07
Tap6/1 10.8 4.14 34.6 0.47 31.4 13.9 0.55 29.4 5.25 < 0.02 4.63 0.20 0.09
Tap6/2 10.1 3.84 35.1 1.13 29.9 15.3 0.51 30.3 5.43 < 0.02 4.09 0.19 0.09
Tap6/3 9.61 3.68 36.1 0.87 29.2 17.9 0.49 30.2 5.38 < 0.02 3.98 0.17 0.08
Tap7/1 11.7 5.00 28.1 1.31 21.7 14.2 0.60 38.0 5.41 < 0.02 4.28 0.22 0.11
Tap7/2 11.6 5.03 27.9 0.80 23.2 12.9 0.59 37.6 5.49 < 0.02 4.51 0.21 0.11
Tap7/3 9.41 3.96 31.1 2.83 21.7 16.3 0.50 32.0 5.71 < 0.02 4.31 0.17 0.09
Tap8/1 8.96 3.81 30.3 1.32 25.2 13.5 1.34 38.5 8.07 < 0.02 3.54 0.20 0.08
Tap8/2 9.24 3.92 29.4 1.68 19.6 17.8 1.35 37.7 7.81 < 0.02 3.52 0.19 0.08
Tap8/3 8.57 3.62 34.3 7.01 18.6 18.3 1.23 34.6 7.30 < 0.02 3.28 0.18 0.07
Tap9/1 11.7 4.58 22.5 1.59 16.0 12.2 1.76 40.2 7.23 < 0.02 4.26 0.23 0.18
Tap9/2 10.6 4.22 23.5 2.86 12.8 15.3 1.82 43.4 7.05 < 0.02 3.40 0.16 0.14
Tap9/3 10.2 4.00 27.6 6.60 12.9 15.8 1.54 39.2 6.34 < 0.02 3.06 0.17 0.12
Tap10/1 14.8 4.36 20.9 1.75 15.4 10.2 0.89 42.5 5.31 < 0.02 4.51 0.28 0.11
Tap10/2 15.0 4.57 20.1 1.49 14.2 10.8 0.89 44.5 5.98 < 0.02 4.40 0.27 0.11
Tap10/3 15.2 4.64 20.7 1.25 12.8 13.6 0.90 43.3 6.50 < 0.02 4.17 0.25 0.11
Tap11 11.1 3.83 29.4 1.68 21.6 15.7 3.10 36.2 5.59 < 0.02 3.37 0.15 0.08
Tap12 11.6 3.89 29.2 0.94 23.0 14.8 2.38 34.7 6.96 < 0.02 3.17 0.14 0.08
Tap13 10.2 3.59 32.2 5.03 18.6 18.1 1.15 37.6 5.68 < 0.02 3.21 0.18 0.07
Tap14 10.8 3.78 33.1 5.00 21.9 15.8 0.83 34.8 5.48 < 0.02 3.13 0.19 0.06
Tap15 10.2 3.57 33.8 1.22 22.6 21.5 0.65 34.4 6.04 < 0.02 3.08 0.21 0.08
Tap16 10.2 3.47 30.7 1.63 21.8 17.2 0.59 37.5 5.83 < 0.02 3.29 0.20 0.08
Tap17 12.4 4.53 27.8 2.93 18.1 15.4 0.70 40.0 4.31 < 0.02 3.42 0.23 0.07
Tap18 11.2 4.20 25.4 2.38 16.1 15.0 0.61 41.7 6.76 < 0.02 3.42 0.24 0.06

A.2.2 Initial slag masses

The slag masses in table A.3 were calculated based on the mass of the known charge

input and the slag composition. That is, given the mass and composition (see table

2.3) of the slag additives and the analysis results of the slag, the total liquid slag (CaO,

MgO and other components), FeO and SiO2 can be determined. For instance, tap 1:

% CaO = 50.53 % corresponds to a mass of mCaO = 0.905×4.51+0.63×1.02 = 4.72 ton;

with % FeO = 17.7 % , mFeO = mCaO×%FeO
%CaO

= 4.72×17.7
50.53

= 1.65 ton. Other slag components

such as SiO2 and the total slag itself can be calculated in a similar fashion. Note that

since SiO2 lies within a relatively small range, the average SiO2 composition of 11.17 %

was used.

5Calculated as Fe2O3 = 1.43
(
Fe(tot)− Fe(met)− FeO

1.286

)
, with units of percentages.
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Table A.3: Initial slag mass estimates (in [ton] ) from analysis data.
Tap # Liquid slag FeO SiO2 Lime Dololime
1 6.65 1.65 1.04 4.51 1.02
2 6.96 3.05 1.26 4.61 1.20
3 6.83 3.75 1.33 4.42 1.24
4 6.65 3.77 1.31 4.51 1.19
5 6.71 4.97 1.47 4.50 1.13
6 7.23 7.08 1.80 4.45 1.12
7 6.91 4.39 1.42 4.52 1.16
8 6.48 4.70 1.41 4.55 1.16
9 7.35 3.20 1.33 4.47 1.16
10 7.45 2.85 1.30 4.40 1.50
11 7.02 4.72 1.48 4.52 1.09
12 7.23 5.01 1.54 4.56 1.04
13 6.85 4.44 1.42 4.53 1.06
14 7.32 5.03 1.55 4.59 1.09
15 6.55 5.86 1.56 4.55 1.09
16 6.58 4.77 1.43 4.51 1.12
17 6.67 3.74 1.31 4.47 1.01
18 7.08 3.53 1.33 4.59 1.30

A.2.3 Furnace inputs

This subsection provides a record of the inputs used to obtain the results throughout

the dissertation. The inputs were collected online during the measurement trials. These

include arc power input, graphite injection, fuel gas and oxygen injection. The oxygen

consists of two components: the burner oxygen - used in burner mode and to cool the

lances - and refining oxygen that is injected for decarburization. The slip gap width and

the off-gas flow are constant at 0.5 m and 0.5 kg/s throughout. Furthermore, there are

no continuous feeds of DRI and slag - the plots of these constant inputs will therefore not

be shown.
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Figure A.1: Furnace inputs for tap 1.
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Figure A.2: Furnace inputs for tap 2.
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Figure A.3: Furnace inputs for tap 3.
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Figure A.4: Furnace inputs for tap 4.
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Figure A.5: Furnace inputs for tap 5.
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Figure A.6: Furnace inputs for tap 6.
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Figure A.7: Furnace inputs for tap 7.
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Figure A.8: Furnace inputs for tap 8.
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Figure A.9: Furnace inputs for tap 9.
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Figure A.10: Furnace inputs for tap 10.
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A.3 EAF pressure

This section analyses the plant data relating to the measured furnace pressure, the re-

sults obtained in practice and its expected behaviour based on the knowledge of furnace

operation. The furnace pressure is a good reflection of the changes that take place in

freeboard masses and general furnace openings. Increasing the size of the openings will

have a marked effect on the pressure, with a tendency towards lower pressure values.

Particular examples are the furnace roof and slag door; other openings such as elec-

trode ports and openings between furnace panels are permanent and will have no effect

on the changes in the pressure. Given a perfect instrument for measuring pressure, the

following scenarios should result.

• Open roof

When the furnace roof is open, the relative pressure will be zero. Any value recorded

will mark the point of zero relative pressure and it should always be the same (within

practical limits) for all conditions when the roof is open. It can be expected that

furnace pressure readings will be relative to this constant offset.

• Early meltdown

During early meltdown the scrap will prevent any air entrainment [19], and the com-

bustion of volatile materials will generate high gas volumes, both these mechanisms

will increase the furnace pressure (hence the blowing out of flames from all furnace

openings at the onset of arcing).

• Opening of slag door

The refining stage involves the injection of oxygen into the bath and high levels

of foaming. For the duration of foaming the slag door is kept open so that excess

slag can flow out of the slag door and measurement probes can be inserted into

the furnace. With no graphite injection the pressure should be negative. How-

ever, instantaneous pressure spikes will coincide with graphite injection as rapid gas

evolution takes place in the slag.

• Burner and lancing modes

In burner operation, with the furnace sealed, significant gas volumes are generated

with the effect that pressure increases occur. Oxygen injection will, despite the large

volume of O2, lead to little or no pressure increases since the main product is FeO,

not a gas.

The above scenarios are reflected in the following figure where the results of two typi-

cal heat cycles are presented. Some correlation can be noted between the pressure and

Electrical, Electronic and Computer Engineering 146

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  



Appendix A Model simulation

graphite injection. However very little sensible pressure changes occur in response the on-

set of burner mode, lancing or opening of the roof or slag door. As a result, the pressure

record cannot be considered reliable for model fitting.

A.4 Model simulation

The model simulation is computationally intensive. This is due to the subsampling that is

used to accommodate the gas phases and pressure which have very short time constants.

In the solution of the main model differential equations (using Runge-Kutta methods [65]),

the slowly varying states such as masses are sampled at a longer time interval e.g. ∆t = 1

second. To carry out the subsampling, the differential equations are further solved within

the interval ∆t from ti to ti+1 at a much smaller sampling time of ∆ts = (ti+1 − ti)/N ,

where N is the number of subsamples and interval i = 0 at the beginning of the model

simulation and i = M at the end of the entire tap simulation. Therefore, the model

equations are effectively solved M × N times - the smaller the N and/or M , the faster

the model simulation. Decreasing the number of subsamples will significantly shorten the

model simulation time as these subsamples are typically chosen to be 300 to 1000 - a

significant computational expense when a long model simulation is required. It is possible

to decrease the subsamples to N = 1, but this must be accompanied by an equal decrease

(by the same factor) in the pressure constant k
PR

. The pressure will be exaggerated (since

the furnace is made significantly air tight) and the gas phase equally decreased. Except

for these states (gases and pressure), the model response will be the same as with the

higher number of subsamples. This shortened simulation time is advantageous particularly

for parameter estimation when hundreds and even thousands of function evaluations are

required. It can be used to obtain an initial parameter set that can subsequently be

applied to the model with with higher N , since these parameters are close to the solution.

This approach has been successfully used to shorten the parameter estimation process in

this dissertation.

A.5 Measurement considerations

A.5.1 Discrepancy between carbon measurements

A problem experienced in the data analysis is the discrepancy between carbon measure-

ments obtained using two different methods: extracting a bath sample for laboratory

analysis with a mass spectrometer and using a composite lance which reports tempera-

ture, oxygen activity and bath carbon. Table A.4 shows the results recorded from several

taps and the corresponding measurement times (these values are derived from table A.1).
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In all the measurements shown no cave-in was detected.

Table A.4: Comparison of carbon measurements.
Sample analysis Composite probe

Tap # Time % C Time % C
6 12:55 0.048 12:55 0.028
8 15:07 0.051 15:08 0.037
9 16:09 0.072 16:08 0.062

16:09 0.072 16:10 0.093
10 17:09 0.059 17:09 0.044

Tap 6 is a clear example of the difference between the carbon content reported from

the analysis and a reading from the composite probe. The results are within one minute

of each other but the analysis results are twice as much as the probe readings. For taps

8 and 10, the analysis results are also higher. A major cause of the discrepancy could

be the inaccuracy of the bath carbon estimate that is obtained from the measured bath

oxygen when using the composite lance or factors such as undetected late melt-ins (or

cave-ins) or inhomogeneous bath conditions.

Electrical, Electronic and Computer Engineering 148

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  RRaatthhaabbaa,,  LL  PP    ((22000055))  


	Front
	Title page
	Summary
	Acknowledgements
	Contents

	Chapter 1 - Introduction
	1.1 Motivation
	1.2 Background
	1.3 Contribution
	1.4 Dissertation approach
	1.5 Organization

	Chapter 2 - Process modelling
	2.1 Process description
	2.2 The process model
	2.3 A typical tap
	2.4 Conclusion

	Chapter 3 - System identification
	3.1 The SID loop
	3.2 Prediction error methods
	3.3 Parameter estimation
	3.4 Norm selection
	3.5 Regularization
	3.6 Model validation
	3.7 Statistical properties of the estimates
	3.8 Conclusion

	Chapter 4 - Experiment design and data analysis
	4.1 Model simulation requirements
	4.2 Identfiability
	4.3 Data collection
	4.4 Analysis of collected slag data
	4.5 Conclusion

	Chapter 5 - Identification of furnace data
	5.1 The parameter estimation process
	5.2 Threats to model validity
	5.3 Model fit for meltdown temperature
	5.4 Model fit for the slag phase
	5.5 Model fit for refining
	5.6 Analysis of parameter estimates
	5.7 Furnace heat balance
	5.8 Conclusion

	Chapter 6 - Model validation
	6.1 Bath temperature
	6.2 Bath carbon
	6.3 Bath oxygen activity
	6.4 Conclusion

	Chapter 7 - Conclusion and recommendations
	7.1 Summary of dissertation results
	7.2 Conclusions
	7.3 Recommendations for future work

	Bibliography
	Appendix A

