
Chapter 5

Languages and Tools

“Programming today is a race between software engineers striving to build

bigger and better idiot-proof programs, and the Universe trying to produce

bigger and better idiots. So far, the Universe is winning.” – Rich Cook

This chapter addresses various language and tool prerequisites for working with the

software implemented for this research.

Section 5.1 introduces XML, which is used as a configuration and data representation

language. Java and J2EE, which were chosen as implementation platforms are discussed

in Sections 5.2 and 5.3 respectively. Section 5.4 presents the XDoclet tool, which enables

attribute oriented programming. The JUnit framework, used for writing software unit

tests, is introduced in Section 5.5. Finally, the chapter concludes with a brief summary

in Section 5.6.

5.1 XML (eXtensible Mark-up Language)

XML (eXtensible Mark-up Language) is a recommendation by the World Wide Web

Consortium (W3C)1, for defining structured documents [53]. Structure is imposed on

a text document by marking up the content with user defined tags. Figure 5.1 is an

example of a simple XML document, a structured list of phone numbers.

Note that, given the proper choice of tag names, a document is reasonably self de-

scribing. It should be clear, even to somebody unfamiliar with XML, that the example

1http://www.w3c.org/XML/

89

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 90

<?xml version="1.0"?>

<!DOCTYPE phoneBook SYSTEM "phonebook.dtd">

<phoneBook>

<contact>

<name>Joe Bloggs</name>

<phone type="home">012-315-7834</phone>

<phone type="cell">082-243-4244</phone>

</contact>

<contact>

<name>John Doe</name>

<phone type="home">012-514-1423</phone>

<phone type="work">011-612-3431</phone>

<phone type="cell">083-561-9542</phone>

</contact>

<!-- possibly more contacts -->

</phoneBook>

Figure 5.1: A Simple XML Phone Book Document

is a list of contacts in a phone book with their associated phone numbers. More impor-

tantly, because the document is structured, according to the phonebook.dtd document

type definition, software can make sense of it too. The power of XML stems from the

fact that standard tools can be used for manipulating any well formed document and

that the grammar for a particular type of document can be defined and extended to suit

its natural structure.

For example, the logical structure of a book can be broadly defined in terms of

chapters, sections and paragraphs. DocBook [115], which defines an XML document

type for marking up books and technical documentation, enables an author to write

a book based on its natural logical structure. Since the book is just another XML

document, the structure is machine readable and so standard style sheet templates can

be used to transform the document into any format, in any desired medium.

Section 5.1.1 defines the syntax requirements for XML documents to be well formed.

Next, document types and schemas are discussed in Section 5.1.2. Finally, the Document

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 91

Object Model (DOM) is explained in Section 5.1.3.

5.1.1 Well Formed Documents

A document and its tags, more formally known as elements, must satisfy certain rules

in order to be well formed [123]. Any well formed document is guaranteed to be parsed

without error by a standard XML parser.

There are three simple rules pertaining to elements: i) there must be one and only one

root element; ii) an opening tag must be followed by a corresponding closing tag, where

matching is case sensitive; and iii) elements must be properly nested, so an opening tag

which is outside the scope of a nested element must be closed in the same outer scope.

Elements may contain optional attributes, such as the type attribute in the phone

elements in the example. Further, elements may be empty, in which case the element

may be closed, using a shorter syntax, by suffixing the opening tag name with a forward

slash, for example <element/>, instead of <element></element>. Empty elements may

still contain attributes. Special cases include id attributes, which are used to associate a

document scoped unique identifier with an element, and corresponding idref attributes,

which are references that can be followed to elements identified by an id attribute.

Further, there are restrictions on the characters that may be used in attribute and

tag names. Only alphanumeric characters, hyphens, underscores and periods may be

used. Throughout a document, the literal strings “&” and “<” must be used

in place of the “&” and “<” symbols respectively, otherwise they would be mistaken

as mark-up. Similar string literals are defined for quote, apostrophe, and greater than

symbols, but their use is optional. Another way to prevent character data from be-

ing processed as mark-up is to include it within a special CDATA tag, for example

“<![CDATA[text that should not be processed]]>”. Finally, comments are en-

closed within the “<!--” and “-->” tags.

5.1.2 Document Types and Schemas

Documents that conform to a given structure, constrained by either a DTD (Document

Type Definition) or a schema, are known as valid documents. These constraints are

enforced by the XML parser before an application sees a document. Validated documents

permit software to make assumptions about the structure of a document, making XML

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 92

processing software easier, and safer, to write.

<!ELEMENT phoneBook (contact*)>

<!ELEMENT contact (name, phone+)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ATTLIST phone

type CDATA #REQUIRED

>

Figure 5.2: Phone Book Document Type Definition (phonebook.dtd)

Figure 5.2 provides the DTD for the phone book example. A DTD defines all the

valid document elements and their relationships with their children. A suffix of “?”, “*”

or “+” after a child element name determines the number of children elements which

may occur, namely, zero or one, zero or more and one or more respectively. Sequences

are indicated by a comma separated list of children. Thus, the second line indicates

that a contact element must consist of a name element followed by one or more phone

elements. Legal attributes are defined by an ATTLIST description. The PCDATA type

corresponds to character data that will be parsed for further mark-up, while the CDATA

type is ordinary character data. Note that an attribute value may not be of type PCDATA,

it will never be processed as mark-up. The DOCTYPE reference in the document instance

specifies which element in the DTD should be considered as the root element.

Instead of using a DTD, an XML Schema [112, 13] can be used to define a document

type. Schemas have several advantages over DTDs. Firstly, because the schema language

is just another XML document, there is no need to learn a separate DTD language, and

standard parsers and tools can be used to read and manipulate schemas. Furthermore,

XML Schema has a more extensive type system that supports inheritance. Most im-

portantly, because schemas are supported using namespaces, a single document can mix

document elements from multiple schemas, simply by declaring multiple namespaces that

reference different schemas.

The schema for the phone book example is presented in Figure 5.3. The xmlns:xs

attribute in the root element defines the xs namespace. Thus, elements prefixed by

xs: are instances of the http://www.w3.org/2001/XMLSchema schema. In this par-

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 93

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="phoneBook">

<xs:complexType>

<xs:sequence>

<xs:element minOccurs="0" maxOccurs="unbounded" ref="contact"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="contact">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element minOccurs="1" maxOccurs="unbounded" ref="phone"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="name" type="xs:string"/>

<xs:element name="phone">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="type" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:schema>

Figure 5.3: Phone Book Schema (phonebook.xsd)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 94

ticular case, the namespace is a reference to the definition of the valid elements for

an XML Schema document, which is also defined in terms of XML Schema. De-

fault namespaces of documents can also be defined by schemas. Thus, in the phone

book example, the DOCTYPE line can be omitted and the root element altered to read

<phoneBook xmlns="phonebook.xsd">, where phonebook.xsd is the file containing the

phone book schema.

5.1.3 Document Object Model (DOM)

The Document Object Model (DOM) provides a language neutral interface for manipu-

lating XML documents programmatically [58]. XML documents are represented by an in

memory tree based object structure, where nodes are defined for all possible components

of an XML document, including elements, attributes, comments and free standing text.

Since DOM bindings exist for all major programming languages, XML content to be

accessed, processed and manipulated in a standard way on any platform.

As an alternative to the DOM, the Simple API for XML (SAX)2 provides an event

model interface for processing documents. SAX, which is an extension of the Observer

pattern in Section 3.3.3, enables documents to be processed without the need to build

a, possibly large, in-memory representation.

5.2 Java

Java is a modern, high level, general purpose, object oriented programming language

[33, 59]. Programs written in Java are compiled into an intermediate language, known

as byte code, which is interpreted at run time by a Java Virtual Machine (JVM). Benefits

of Java include:

• Platform and Vendor Independence: A cornerstone of Java has always been

the concept of write once, run anywhere. This goal has been achieved by virtue of

the JVM, since only the underlying virtual machine need be ported to each plat-

form where Java is supported. Supported platforms include Windows, Linux and

MacOS. Further, the Java specification is guided by the Java Community Process

2http://www.saxproject.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 95

(JCP)3, giving multiple vendors the opportunity to contribute and participate in

the decisions that dictate the future direction of Java. Competing JVM imple-

mentations are available from multiple Java vendors, including Sun Microsystems,

IBM, BEA4 and the Blackdown project5, ensuring diversity in the market place

and the future safety of the Java platform. A completely free JVM implementation

is also being worked on by the GNU Classpath community6, along with a native

Java compiler as part of the GNU Compiler Collection (GCC).

• Garbage Collection: Garbage Collection (GC) relieves a programmer from hav-

ing to explicitly manage memory deallocation, resulting in safer code due to the

reduced risk of introducing difficult to find memory leaks. GC is associated with

at least some overhead, since an additional process must be executed from time to

time to recycle unreferenced memory. Counter intuitively, in spite of this overhead,

GC can have a net increase in the performance of an application7. For example,

heap compaction performed by GC increases the likelihood of cache hits. Further,

since GC only executes when memory is tight, programmes with a low memory

footprint may never need to run a GC cycle. Another factor to consider is that

smart pointer based reference counting techniques, which are typically employed

to simplify memory deallocation in non-GC languages, can carry a much higher

overhead than GC, since counters need to be updated for every assignment. Worse,

reference counting techniques are dangerous because they cannot deal with circular

references or anonymous objects. Finally, explicit destructors can be a significant

performance overhead for stack allocated resources.

• Java Foundation Classes (JFC): The Java platform, which is guaranteed to

be available on any compliant JVM, is defined in terms of the JFC. The JFC, or

Java APIs, provide XML processing, Input/Output (I/O), Graphical User Inter-

face (GUI) and networking services to applications. Further, since version 1.5 of

the JFC, a type safe collections framework using templates is also provided. Also,

the reflection API is a fundamental reason Java was chosen as an implementation

3http://www.jcp.org
4http://www.bea.com
5http://www.blackdown.org/
6http://www.gnu.org/software/classpath/classpath.html
7http://www.digitalmars.com/d/garbage.html

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 96

language for this research. The JFC has been through many revisions, gradually

improving its design, which is heavily based on design patterns. For example, I/O

services such as buffering and compression are provided using Decorators (refer

to Section 3.2.3) and the collections framework supports Iterators (refer to Sec-

tion 3.3.2).

• Tool Support: Many high quality Java development tools are freely available.

At least two good enterprise class development environments are available for free,

namely Eclipse and NetBeans. The Javadoc tool, packaged with the standard

Java SDK (Software Developer Kit), extracts special comments in the source code

into a navigable HTML (HyperText Mark-up Language) format. XDoclet (refer to

Section 5.4), originally based on Javadoc, can be used to generate various artifacts

from meta-data embedded in special Javadoc comments. Debugging distributed

and server side applications can be made simpler with a logging framework such

as Log4j8. JUnit (refer to Section 5.5) is a unit testing framework for Java. The

build process of complex Java projects is script-able using the Apache Ant9 build

tool.

These are only the tools that have been used, or are being considered, for this re-

search. There are many other free third party tools, frameworks and APIs available

for Java, supported by a diverse Java community.

• Performance: Java is still plagued by the stigmatism of poor performance due to

early and immature implementations of the JVM. This situation is further exac-

erbated by the intuition that interpreted languages with additional GC overheads

must have inferior performance to natively compiled languages. Modern HotSpot

[1] JVMs, however, have dramatically improved the performance of Java, to the

point where it is comparable and in certain circumstances superior in performance

to natively compiled languages such as C/C++ [25, 95]. HotSpot JVMs sport

state of the art generational GC algorithms, speculative run time optimisation us-

ing dynamic profiling, and Just In Time (JIT) compiling of critical code, known

as hot spots, to instructions optimised for the local processor. Numerous micro-

benchmarks [72, 76, 23, 70] have been conducted, which show Java performance to

8http://logging.apache.org/log4j/docs/index.html
9http://ant.apache.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 97

be on par with other languages.

A simple benchmark, called NastyPSO, was performed around the time the decision to

port the implementation code used in this research to Java was being made. NastyPSO10

is a quick and dirty implementation of a simple particle swarm optimiser (refer to Sec-

tion 2.4.1) in C#, C++ and Java. To make the benchmark fair, no language specific

libraries are used. For example, the random number generator used in the code is

implemented by NastyPSO in each language. Thus, the only differences between the

implementations are syntactic. Further, no OO features of are used, purely testing the

number crunching ability of each language. The source code for NastyPSO is made

available so that the results presented in Table 5.1 can be verified independently by the

reader.

Table 5.1: NastyPSO Performance

Language Compiler / VM Time (seconds)

C++ Intel Compiler (-O3 -march=pentium4) 391.3

C++ Intel Compiler (-O3 -march=pentium4 -mp) 570.6

Java Sun HotSpot VM 1.4.2.03 (-server) 584.6

Java IBM VM 1.4.1 584.8

Java Sun HotSpot VM 1.5.0 beta1 (-server) 600.8

C++ GNU Compiler 3.3.2 (-O3 -march=pentium4) 742.8

C++ GNU Compiler 3.3.2 754.0

Java JRockit 8.1 756.8

Java GNU Compiler (GCJ) 934.4*

Java Blackdown 1.4.1 (-server) 945.0

Java Sun HotSpot VM 992.4*

Java Sun Classic VM 1596.5*

C# Mono 0.28 2572.9

Times recorded are the CPU scheduled time given by the Unix time command, so the

results are invariant to varying load on the machine. Unfortunately, some parameters,

10http://cilib.sourceforge.net/NastyPSO/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 98

which are hard coded in the implementation, have changed since the time the benchmark

was performed and were not properly recorded. Further, times suffixed by an asterisk

have been interpolated based on a run conducted several months earlier, where the

versions of the compilers and virtual machines were not recorded. The scaling was

performed relative to the performance of the Sun HotSpot (Server) VM, which was a

common denominator in both sets of results, even though the versions may not have

matched. That said, conclusions about the relative performance of the implementations

are still valid, even though the times may not exactly match those produced by the

current version of the code.

The first conclusion evidenced by the results is that the choice of JVM can have a

measurable performance difference. In fact, selecting the server parameter of the Sun

JVM made the difference from one of the worse performing configurations to one of the

best. The server JVM performs more aggressive run time optimisations at the cost of

slower startup times, making it suitable for long running processes. Surprisingly, the

free GNU compiler was unable to match the best JVM performances, even under very

heavy optimisations for the platform. The Intel11 compiler was able to outperform the

best Java configuration, however, if the compiler was forced to reject optimisations that

may affect the floating point precision then this difference was not significant. C# was

tested under the free Mono platform and was found to perform significantly worse than

any of the other configurations. Microsoft’s12 implementation of the .NET platform was

not tested, since it is not platform independent.

Unfortunately, OO polymorphic method calls are still expensive, even in C++ al-

though less so than Java, making object based polymorphic numeric types expensive,

particularly in the tight loop applications needed by CI algorithms. Fortunately, object

in-lining [18] may provide a solution to this problem in future. Object in-lining is a

compile time optimisation that essentially unpacks code into a calling class whenever

polymorphism is not required, so a developer can write clean OO code while leaving the

hard work of making it perform well to the compiler.

11http://www.intel.com
12http://www.microsoft.com

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 99

5.3 Java 2 Enterprise Edition (J2EE)

Java 2 Enterprise Edition (J2EE) is centred around Enterprise Java Bean (EJB) tech-

nology, enabling the development of scalable multi-tiered enterprise class applications

[8]. EJBs are software components that are managed in the context of an application

server container. The container forms the interface between EJB components and the

underlying platform, providing caching, clustering, security, session, transaction, and

persistence management services.

An EJB comprises three essential components: i) an application interface; ii) a home

interface; and iii) an implementation class. The application interface, also known as a

business interface, specifies the services that a bean provides to clients. Programming

to an explicit interface with no direct knowledge of the implementation means that the

implementation can be switched without affecting any clients. The Java Naming and

Directory Interface (JNDI) provides an additional level of indirection, making implemen-

tation classes configurable at application deployment time. Thus, EJB clients are not

aware of the implementing class details, they are only exposed to an abstract JNDI name

for the implementation providing the service. Primarily, home interfaces are responsi-

ble for managing the life cycle of individual beans, providing methods for locating and

creating them. Beans are destroyed by calling a remove method directly on an instance.

Services that apply to more than one particular bean instance are also provided by the

home interface, making those services analogues for class scope, or static, methods. Fur-

ther, EJB interfaces for local and remote clients are differentiated in J2EE, so different

subsets of a bean’s services can be provided to local and remote clients. Finally, an im-

plementation class for an EJB provides the code behind both the home and application

interfaces.

The J2EE architecture is layered, cleanly separating different responsibilities into

separate layers. At the lowest level, the persistence layer, discussed in Section 5.3.1, is

responsible for managing the storage of application data. Above that, the application

layer, in Section 5.3.2, is responsible for handling all the application logic, also known as

business logic. The presentation layer, discussed in Section 5.3.3, provides the interface

to the user. In general, separating the architecture into even more layers is possible, if

it makes sense to do so in the context of the application. The purpose of the layers is

to improve maintainability of the code by decreasing the dependencies between layers,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 100

changes to one layer should at worst affect the layer immediately above it. In addition,

the separation of application and presentation logic means that the same application

logic can be used for multiple presentation mediums. For example, a rich GUI client and

a web interface, both separately implemented in the presentation layer, should share

the same application logic. Finally, the deployment of J2EE applications is discussed in

Section 5.3.4

5.3.1 Persistence Layer

Two types of persistence EJB exist in the J2EE specification, Container Managed Persis-

tence (CMP) beans and Bean Managed Persistence (BMP) beans. BMP beans require

persistence logic to be manually coded by the developer, while CMP beans delegate

persistence logic to the application server container.

Persistence EJBs, also known as entity beans, present an OO view of an underlying

relational database [30], or indeed any data store. Although the object relational map-

ping need not necessarily be a one-to-one correspondence with the underlying database

tables, each entity bean instance typically represents a single row in a relational database

table. Each column corresponds to a property of the CMP bean, where a property has

its usual OO definition of a field with an accessor, or get method, and a mutator, or set

method. Relationships are represented by collection valued properties. These relation-

ships are typically bidirectional, with many-to-many relationships being supported by

collections on each side of the relationship. Figure 5.4 illustrates how the one-to-many

relationship between between a customer and a number of accounts would be represented

by entity beans.

Note how the home interface, only shown for the customer entity, can be used to

locate existing- and create new entities. More importantly, for CMP beans, it is not

necessary to provide implementations for any of the methods, they are simply declared

abstract, and the private fields are omitted. The container provides all the necessary

functionality to query the underlying database and ensure that the interface works as

expected. The database is automatically updated whenever collections are manipulated

or a mutator is called. Further, CMP beans can have a significant performance advantage

over hand crafted database interactions, due to entity caching and preloading.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 101

Figure 5.4: EJB Entity Relationship

5.3.2 Application Layer

Three types of application layer EJBs exist, message driven beans, stateless session beans

and stateful session beans.

Message driven beans provide an asynchronous interface for clients accessing appli-

cation layer objects via the Java Messaging Service (JMS), typically using XML based

messages. A message driven bean’s interface consists of a single on message method,

which must unpack the message and do something sensible with it; perhaps calling other

application layer beans or sending off other messages as a result.

Session beans typically present a session Facade [4] (refer to Section 3.2.4) to clients,

which only exposes those parts of the system which are interesting to a given client. Some

clients may require application state to be stored over multiple synchronous requests. For

example, a shop application would need to store the contents of a shopping cart for the

duration of the user session. A J2EE application server container automatically handles

session state by creating a new instance of a stateful session bean for each client. Sessions

that do not require state should use stateless session beans, enabling the container to

share a single instance amongst multiple clients, if it is more efficient to do so.

Having the server container manage message and session beans means that applica-

tions can easily be scaled up over multiple servers. For load balancing, an application

server simply needs to ensure enough stateless beans are instantiated for a particular ser-

vice to saturate the given hardware. Fault tolerance is achieved by ensuring that stateful

beans are distributed to one or more backup servers. All this is achieved without the

explicit knowledge of the developer, making it easier to write scalable, fault tolerant

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 102

applications.

5.3.3 Presentation Layer

The presentation layer presents a developer with many choices. The interface presented

to users might be a heavyweight rich client implemented using the JFC or it may be a

highly accessible web application powered by a combination of any number of existing

presentation tier frameworks. For example, Struts13 with JSP (Java Server Pages)14

or the recently released JSF (Java Server Faces)15 framework. It could even be a very

thin layer that simply forwards messages to an underlying message driven bean, perhaps

implementing an electronic mail interface.

GUIs should make use of the Model View Controller (MVC) [4] architectural pattern.

The model, which represents data or functionality behind the user interface, is accessed

via session beans in the application layer. A view is responsible for presenting its model

to the user and returning control to the controller after the user takes action. The

controller then determines the next view based on the current view and the action taken

by the user. In the case of Struts, the controller is implemented by a single Servlet16

which directs application flow between various views which are implemented by JSPs.

5.3.4 Deployment

The real power of J2EE stems from the ability to customise an application at deployment

time without altering any source code. Depending on the application server, this deploy-

ment configuration, also known as a deployment descriptor, is usually specified in one

or more XML documents. The following are some of the most important configurable

aspects of J2EE applications:

• Security: J2EE provides a declarative security model based on the Java Authen-

tication and Authorisation Service (JAAS)17 specification. User and role based

access rules for beans and their individual methods are declared in the deploy-

ment descriptor. The container performs run time security checks for each method

13http://struts.apache.org/
14http://java.sun.com/products/jsp/
15http://java.sun.com/j2ee/javaserverfaces/
16http://java.sun.com/products/servlet/index.jsp
17http://java.sun.com/products/jaas/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 103

call and throws a security exception if a client attempts to call any unauthorised

method. The open source JBoss18 application server provides this functionality by

wrapping EJBs inside a security Proxy (refer to Section 3.2.5), which performs any

necessary checks before delegating requests to the actual bean.

• Entity Relational Mapping: Even though the container can provide the im-

plementation for database interactions, it is still necessary to inform the container

about the type of database, along with table and column names onto which entities

are mapped. Further, the entity methods that participate in relationships need to

be declared.

• Transactions: EJB containers are capable of providing full ACID (Atomicity,

Consistency, Isolation and Durability) transaction support [30]. Transaction bound-

aries are specified in the deployment descriptor for beans and methods. For meth-

ods, a transaction is opened at the start of a method call and is closed again when

the method exits normally. If an EJB exception is thrown then the transaction

is rolled back with no side effects. The Container may also perform deadlock

detection and roll back transactions that cause deadlock. The isolation level of

transactions is typically also configurable. Transaction support is also provided

using a Proxy in JBoss.

• Application Server Configuration: The configuration, pertaining to a given

application, for the application server is usually also specified in the deployment

descriptor. For example, the caching and preloading behaviour for entities is con-

figurable in JBoss. Clustering strategies and other performance related settings,

such as bean instantiation policies, can also be configured.

5.4 XDoclet

XDoclet19 is a free attribute oriented programming tool, which can be used to generate

artifacts from annotations embedded as special Javadoc comments in source code.

XDoclet is an invaluable tool for EJB developers, enabling them to automatically

generate any required interfaces and deployment descriptors directly from an annotated

18http://www.jboss.org
19http://xdoclet.sourceforge.net

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 104

implementation class for an EJB. For example, to mark a method for inclusion in the

application interface, a developer need only include an @ejb.interface-method anno-

tation in the Javadoc comments preceding the method. Declaring JAAS access rules

for a method can be achieved by prefixing the method with an @ejb.permission tag

followed by the appropriate user or role based permissions. Similar tags are defined for

declaring entity relation mappings, transaction boundaries and application server specific

configurations.

The recent syntax enhancements for annotations in Java 1.5 means that future ver-

sions of XDoclet may move their annotations out of Javadoc comments into the actual

code. An advantage of proper annotations will be the ability to query these attributes us-

ing the standard Java reflection API. For example, it would be possible to query security

annotations before calling a method, where currently the only way to determine these

permissions is to attempt the operation and catch the security exception that might be

thrown.

XDoclet is more general than simply an EJB tool, with tags defined for various other

applications, including the Spring framework, Hibernate, JDO, Axis, Struts and JSF

amongst many others.

5.5 JUnit

Unit testing is the practice of performing automated tests on units of code, typically

testing the behaviour of the public interface of individual classes. The fact that the tests

are automated is the most important factor. Automated tests are easy to run, meaning

they can be scripted into the build process to give early warning of something getting

broken during code maintenance. This safety net gives developers more confidence to

work on the code, particularly when maintaining code they did not write, since even

small changes can be tested against the entire test suite, rooting out any unexpected

side effects. If the tests pass then chances are nothing got broken, assuming the tests

are representative of the required behaviour.

Tests should be maintained in tandem with the code. The XP (eXtreme Program-

ming) paradigm [11] advocates writing a complete test suite for a unit before writing its

implementation, so that passing all the tests becomes the measuring standard for the

completeness of the implementation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 105

Unit tests serve another important purpose, namely documentation. Unlike com-

ments which can easily fall out of synchronisation with the code implementation, auto-

mated tests immediately show any discrepancies that need to be addressed. Unit tests

implicitly document the intended behaviour of the code, since that is precisely what they

are testing.

JUnit20 is a free framework that facilitates unit testing in Java. Figure 5.5 illustrates

the Test Composite (refer to Section 3.2.2) employed by JUnit.

Figure 5.5: JUnit Composite Test Framework

Graphical and command line tools which are capable of executing a Test, which may

be an entire suite of tests, are provided. The TestSuite composite can be used to build

a hierarchy of test cases that mirrors the package hierarchy of the software, with one

TestCase dedicated to each class being tested. Adding new tests for a class is made

trivial, only requiring the developer to write another method prefixed with the string

“test”. The JUnit framework uses the Java reflection API to introspectively call each

test method in turn. The setUp() and tearDown() methods are called by the framework

before and after each test method respectively. These methods can be used to configure

a fixture that is available to all the test methods. Various methods for testing assertions

are inherited in via the Assert class. Assertions that fail are gathered into a test result

and are reported by the tool after all the tests have been executed.

20http://www.junit.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 5. LANGUAGES AND TOOLS 106

5.6 Summary

XML and Java were introduced as languages used in the development of CILib and

CiClops. In particular, Java was motivated as an appropriate choice of implementation

language due to its platform and vendor independence, garbage collection, the Java

foundation classes, good tool support and high performance.

Next, an overview of the J2EE framework, which is used by CiClops, was presented.

J2EE provides powerful services, such as container managed persistence and transactions,

to applications built using EJBs.

Finally, the XDoclet tool and its role in easing EJB development was discussed,

followed by a brief introduction to the JUnit testing framework.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5 - Languages and Tools
	5.1 XML (eXtensible Mark-up Language)
	5.2 Java
	5.3 Java 2 Enterprise Edition (J2EE)
	5.4 XDoclet
	5.5 JUnit
	5.6 Summary

	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography

