
Chapter 4

Open Source Software (OSS)

“Gnu: n. [Hottentot gnu, or nju: cf. F. gnou.] (Zo[”o]l.) One of two species

of large South African antelopes of the genus Catoblephas, having a mane

and bushy tail, and curved horns in both sexes. [Written also gnoo.]

Note: The common gnu or wildebeest (Catoblephas gnu) is plain brown; the

brindled gnu or blue wildebeest (C. gorgon) is larger, with transverse stripes

of black on the neck and shoulders.” — Webster’s Revised Unabridged Dic-

tionary.

Open Source Software (OSS) [92], also known as free software [105], is any software dis-

tributed under a license conforming to the Open Source Definition (OSD) as published

by the Open Source Initiative (OSI)1. An unannotated copy of the current OSD is at-

tached as Appendix C, however, later versions may be published on the OSI web site as

the definition is refined. An annotated version, describing the motivation for each clause

of the definition, is also available from the OSI web site. Unlike the OSI, which ap-

proaches OSS from a very pragmatic perspective, the Free Software Foundation (FSF)2

approaches OSS from a more ethical ideology concerned with civil liberties. Essentially,

free software licenses are designed to protect four basic freedoms:

• Freedom of use: Recipients of OSS are granted the right to use the software for

any purpose.

1http://www.opensource.org
2http://www.fsf.org

73

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 74

• Freedom to source: Recipients of OSS are provided free access to the source

code.

• Freedom to modify: Recipients of OSS are granted rights to prepare derivative

works.

• Freedom to distribute: Recipients of OSS are granted rights to distribute the

software, in original or modified form, either for free or for a fee.

While the OSI and FSF have somewhat different motives and are in disagreement

about whether OSS should properly be called free software and vice versa, a common

ground lies in the terms of the licenses that they both advocate. Therefore, the most

popular OSS licenses and their characteristics are surveyed in Section 4.1.

OSS has many benefits for both developers and users of the software. From the user

perspective, the zero marginal cost and high quality of OSS are often cited. Section 4.2

discusses the OSS ecosystem while concentrating on the benefits of OSS to developers.

A common misconception regarding OSS is that it cannot be utilised for financial gain,

however, it is certainly possible to make money from OSS through indirect sale business

models such as those mentioned in Section 4.3. In fact, many large industry players such

as IBM3, Sun Microsystems4 and Novell5 have embraced OSS for profit.

OSS is of particular importance to developing countries. In particular, Section 4.4

discusses OSS in a South African context. Further, certain software pertaining to this

work is distributed under an OSS license. Since this work constitutes University of Pre-

toria intellectual property, strong motives for releasing the software under such a license

are provided in Section 4.5. Finally, this chapter concludes with credits in Section 4.6,

listing the OSS that has been instrumental in completing this work.

4.1 Licenses

The characteristics of the most popular6 and best known OSS licenses are compared in

Table 4.1. The complete text of these licenses are provided in Appendix E as a reference.

3http://www.ibm.com
4http://www.sun.com
5http://www.novell.com
6According to SourceForge, http://sourceforge.net/softwaremap/trove list.php?form cat=14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 75

Terms and conditions for many other free software licenses are available on the OSI and

FSF web sites. In addition, many OSS licenses have multiple versions and it should be

noted that this work only considers the latest versions of those licenses at the time of

writing. Newer versions will more than likely be published by the OSI or FSF as they

come to exist.

While all of the licenses listed in Table 4.1 are OSI approved and are classified as

free software licenses in terms of the four freedoms presented at the beginning of this

chapter, they can be further divided into two broad categories: those that are copyleft,

or GPL style; and those that are not, such as the BSD or MIT style licenses. Copyleft

licenses place an additional restriction on the software, so they are less permissive and

are therefore arguably less free licenses, requiring that any modifications, if distributed,

must be made available under free terms again. A copyleft clause in a license essentially

prevents free software from becoming non-free, which benefits the free software commu-

nity as a whole even though the rights of any given individual within that community

are curtailed.

The GNU General Public Licence (GPL), developed by the FSF as the license for the

GNU Project7, is probably the most important free software license in existence, with in

excess of 39 thousand SourceForge8 software projects licensed under its terms, including

software developed for this work. The compatibility of other licenses to the GPL is an

important characteristic of a license, since software licensed under incompatible terms

cannot be linked against GPL software.

Table 4.1 further characterises licenses based on whether they permit additional war-

ranty or liability protection to be sold and whether the license grants patent rights in

addition to the four basic freedoms of free software.

Sections 4.1.1 through 4.1.9, in turn, detail the characteristics of each of the licenses

presented in Table 4.1.

4.1.1 Academic Free License (AFL)

The Academic Free License (AFL, version 2.1), in Appendix E.1, is a non-copyleft license

provided by the OSI. Software specific details are avoided in the license terminology,

7GNU: A recursive acronym for GNU’s Not Unix; refer to

http://www.fsf.org/gnu/thegnuproject.html for information about the GNU Project
8http://www.sourceforge.net

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 76

Table 4.1: Open Source License Characteristics

License Copyleft GPL Compat. Warranty Prov. Patent Lic.

AFL X X X
√

ASL X X
√ √

AL X
√ √

X

BSD (original) X X X X

BSD (revised) X
√

X X

CPL
√

X
√ √

GNU GPL
√

-
√

X

GNU LGPL -
√ √

X

MIT X
√

X X

MPL - -
√ √

OSL
√

X X
√

making the license ideally suited for non-software works, such as documents, while still

being general enough to apply to software.

The second clause grants a recipient of a work covered by the license a royalty-free

right to use and sub-license patents. In addition, if a recipient enters into any patent

infringement action against a licensor or licensee, that recipient’s rights under the license

are terminated. The patent termination clause makes the AFL incompatible with the

GPL.

No provision is made for a licensor to sell additional warranty or liability protection.

The work is licensed as is, without any warranties, aside from a warranty that applicable

copyrights and patents are owned by the licensor, and disclaims all liability.

4.1.2 Apache Software License (ASL)

The Apache Software License (ASL, version 2.0) is a free software license with similar

patent grant and termination clauses to the AFL, also making it incompatible with

the GPL. Clause 9 permits anyone who distributes software under the ASL to provide

additional warranty or liability protection. Finally, the license is not copyleft, meaning

that any recipient may distribute the software under different license terms as long as

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 77

all the obligations of the ASL, as specified in Appendix E.2, are met.

4.1.3 Artistic License (AL)

The Artistic License (AL, version 2.0beta4), presented in Appendix E.3, is designed to

protect an originator’s artistic control over future versions of the software. In essence it

requires modified versions to clearly indicate any changes and satisfy one of the following

conditions: i) the changes must be submitted back to the original contributor for con-

sideration in the standard version, ii) the package must be renamed to something that

cannot be confused with the original, or iii) it must be made available under free terms

to whomever it is distributed to.

Although the AL is scattered with hints of copyleft concepts, clause 6(b) clearly allows

the software to be made non-free, so long as any changes are documented and that it

cannot be confused with the original work. The license is, however, GPL compatible

and although no specific clause specifically applies to additional warranty provisions,

the standard warranty disclaimer text, in clause 11, does permit such provisions to be

stipulated in writing. Patent licenses are not covered.

4.1.4 BSD Licenses

The revised BSD license, presented in Appendix E.4, is an extremely permissive non-

copyleft license which primarily ensures that copyright notices are properly maintained.

The original version had an additional advertising clause, requiring the University of Cal-

ifornia, Berkeley and its contributors to be credited in any advertising material, making

it incompatible with the GPL. Neither version permits the names of any contributors

to be used as an endorsement to promote the licensed work. Both forms of the license

explicitly disclaim all liability and warranties while saying nothing about patents.

4.1.5 Common Public License (CPL)

The Common Public License (CPL, version 1.0), in Appendix E.5, has been designed to

facilitate the commercial use and distribution of software. The CPL is not compatible

with the GPL. It has similar patent grant and termination clauses to the AFL and ASL,

but unlike those licenses, it offers some copyleft characteristics.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 78

The copyleft terms in the CPL are not as stringent as the GPL, since separate modules

may be licensed under their own terms. While derivative works are explicitly excluded

from this concession, it is not explicitly clear where the boundary between a module

and a derivative work lies. Binary distribution under another license is also permitted

provided that i) warranty and liability exclusions are carried over, ii) source code is made

available to a recipient on request, and iii) the terms of the other license do not otherwise

conflict with requirements of the CPL.

Warranty and other liability protections may be offered provided that any other

contributors are properly indemnified. That is, a distributor offering additional protec-

tions accepts all responsibility, including defending any legal claims made against any

contributor.

4.1.6 GNU General Public Licenses (GPL and LGPL)

The GNU General Public License (GPL, version 2), presented in Appendix E.6, is a

strong copyleft license. In fact, the GPL is the original definition of copyleft. That

is, the copyleft terminology was coined by the FSF to encompass those properties of

the GPL that keep software free. In the case of the GPL, copyleft is accomplished by

requiring that any derivative work must again be distributed under the free terms of the

GPL, if it is distributed at all. As a consequence, if a portion of a work is licensed under

the GPL then the whole may not be distributed at all, except under terms of the GPL,

since the whole would qualify as a derivative work.

On the other hand, the GNU Lesser, or originally Library, Public License (LGPL,

version 2.1), in Appendix E.7, has more relaxed copyleft requirements. The LGPL

was originally written to enable a free software library to be used by a non-free, or

proprietary, work without requiring the whole to be made freely available. However, any

improvements or other changes to the library itself are still required to be distributed

under the free terms of the LGPL. That is, a work covered by the LGPL will remain free

while any other separate work that links against it, technically a derivative work, is not

required to be released under the terms of the LGPL. Since the LGPL is applicable to

more works than just libraries, it was renamed the Lesser GPL, to reflect the less stringent

copyleft requirements. Any recipient of a LGPL work may choose to redistribute it under

the more restrictive copyleft terms of the GPL.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 79

Incompatibilities with the GPL arise from clauses 6 and 7 of the GPL, which state

that a distributor may not impose any further restrictions on a recipient beyond what the

terms of the GPL permit. To do so would render a work undistributable under the GPL.

For example, a condition of the GPL is a royalty free right to use the software licensed

under its terms, however, if a combined work consists of some non-GPL portions which

would prevent such royalty free use, perhaps due to a patent, then the right to distribute

the GPL portion falls away too, leaving the whole in a state which cannot be distributed

under either license. For this reason, patent termination clauses in other licenses cause

an incompatibility with the GPL. Neither the GPL nor the LGPL explicitly include

a patent grant, however, clauses 6 and 7 do provide free software with a certain level

of protection from patents, in so far as the free software cannot be distributed by a

patent holder under terms other than the GPL. The FSF has recently announced plans

to release a new version of the GPL9, which is likely to have patent terms that are more

compatible with other popular OSS licenses. Since the LGPL is essentially the same as

the GPL, except for the more lenient copyleft terms, it is GPL compatible.

Both the GPL and LGPL grant distributors of software the freedom to offer additional

warranties or liability cover to their recipients.

4.1.7 MIT License

The MIT license, presented in Appendix E.8, is probably the least restrictive free software

license. Permission to use, modify and distribute the software is granted provided that

the copyright and permission notice is preserved. The permission notice also includes a

simple disclaimer which explicitly disclaims any liability or warranties. Since it essentially

does not place any restrictions on the software it covers, it is GPL compatible and non-

copyleft.

4.1.8 Mozilla Public License (MPL)

The Mozilla Public License (MPL, version 1.1), in Appendix E.9, has similar copyleft

properties to the LGPL. Clause 3.7 permits a larger work to be composed and distributed

under a different license provided that the MPL requirements are fulfilled for the covered

code. In addition, patent licenses, subject to litigation termination terms, are granted

9http://www.eweek.com/article2/0,,1730102,00.asp

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 80

by the MPL. Clause 3.5 explicitly provides for warranty support or liability obligations

under the condition that other contributors are properly indemnified. Finally, an initial

developer may, subject to clause 13, choose to license portions, or the whole, of the work

under multiple license terms, including GPL, making those parts GPL compatible.

4.1.9 Open Software License (OSL)

The Open Software License (OSL, version 2.1), presented in Appendix E.10, is virtually

identical to the AFL, except that copyleft properties are ensured by clause 1c, which

requires derivative works to be distributed under terms of the OSL. Like the AFL, the

OSL grants patent licenses, is not GPL compatible and makes no provision for additional

liability or warranty cover.

4.2 The Open Source Ecosystem

Hardin’s tragedy of the commons describes the inevitable demise of any freely shared

resource, the commons, if no resource allocation policy is enforced [51]. As an example,

Hardin considers the scenario of a public pasture which is freely shared amongst a number

of cattle farmers. The grazing cost, in terms of damage to the pasture, of another head

of cattle is diluted by the commons, while any given farmer still retains the full profits

associated with owning more cattle. This imbalance gives each farmer the incentive to

add more and more cattle, to extract the maximum value from the commons as quickly

as possible before it degrades due to over grazing. There is no incentive to contribute to

the maintenance of the commons, since any returns would again be diluted.

Freely available OSS, however, does not suffer this tragedy [92, 44, 104]. There are

two contributing factors to the tragedy of the commons: i) there is a limited supply

of resources; and ii) the lack of an enforced allocation policy drives demand up until

the supply is depleted. Fortunately, in today’s Internet connected world, software costs

virtually nothing to duplicate. As a resource, software is not depleted by the act of

copying, so free riders do not degrade the commons. On the contrary, a larger user base

actually increases the value of OSS. Thus, the demand side of the equation is taken care

of, and tragedy is avoided. On the other side of the equation, there are strong incentives

for developers to contribute to the commons, ensuring sufficient supply of free software.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 81

Compelling reasons why people and organisations contribute to the free software

commons include:

• Peer review and reputation rewards: A large user base can be a free soft-

ware project’s biggest asset. Aside from the benefits of having users provide bug

reports and feature requests, high profile projects also offer the highest reputation

rewards, attracting the attention and cooperation of other developers. The peer

review process associated with more developers, in turn, improves the quality of

the software.

• Cost and risk sharing: Customising existing free software to meet the specific

needs of a user can be cheaper than developing a solution from scratch. Further,

there is a strong incentive to contribute any improvements back to the community,

even ignoring possible copyleft constraints on the existing software. To see why,

consider the situation where a user chooses not to contribute those improvements

back to the community. Now, that user needs to maintain a separate version,

possibly merging it with improvements from the community version from time

to time. This can be an expensive undertaking, particularly if the community

version undergoes incompatible changes. Contributing the changes back avoids

this problem. Thus, it is a reasonable assumption for an initial contributor of

software to expect others to contribute improvements, initiating a cost sharing

development excersise. Also, the community offers safety. The risk of having only

a few people being able to maintain the software can be mitigated by sharing that

maintenance burden with the community, so that more than one entity has a vested

interest in the survivability of the software.

• Growing secondary markets: Very importantly, there is money to be made from

free software. By growing the community around a free software product, related

secondary markets are opened up. The indirect sale business models presented in

the next section exploit this property.

4.3 Business Models

OSS licenses typically do not prevent the distribution of software for a fee, however, some

do require that such a fee be at most the reasonable cost of copying. More importantly,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 82

all OSS licenses explicitly grant any recipient the right to freely distribute the software

again, making it difficult to build a direct sale business based on OSS. That said, several

indirect sale business models exist to exploit free software for financial gain [92]:

• Loss leader/market positioner: Free software is used to maintain or create a

secondary market for other non-free software. Thus, the use of the free product

drives sales of the non-free product. For example, giving away free development

tools in order to maintain the market for application servers, which is what IBM

is doing with the Eclipse platform to drive sales of their WebSphere10 solution.

• Widget frosting: Hardware products typically require accessory software which

does not have any sale value independent of the hardware. For example, drivers

or configuration software. By opening up the software, a hardware vendor can

benefit from a larger developer pool, better reliability through peer review and

maintenance beyond the expected product life cycle. All without sacrificing any

revenue stream, since it is the hardware that brings in the money. A concrete

example is Apple’s11 decision to open source Darwin, the core of MacOS X, since

they are primarily interested in selling the hardware on which the operating system

runs.

• Give away the recipe, open a restuarant: The software is provided freely

and services are sold to the created market. For example, vendors may choose

to sell support contracts, performance assurances, customisation services, training

and maintenance of the software according to the client’s time table. RedHat12, for

example, sells support and patch management for their open source Linux product.

• Accessorising: Accessories to the software are sold. Trivial examples include

mugs and t-shirts, while publishers such as O’Reilly sell high quality books about

free software. Other accessories might include non-free plug-ins that enhance the

functioning of the software.

• Free the future, sell the present: Software is initially sold under a closed

license with the provision that it will be released under a open license at a later

10http://www-306.ibm.com/software/webservers/appserv/was/
11http://www.apple.com
12http://www.redhat.com

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 83

date. Sales volumes are driven by the expectation that the software will become

free later, while the vendor benefits from the reduced maintenance overhead later

in the product life cycle.

• Free the software, sell the brand: The software implementation is free. Cus-

tomers must satisfy compatibility requirements and pay for the certification of the

brand.

• Free the software, sell the content: The software is free, while content sub-

sciptions are sold. For example, a game engine might be given away freely while

the story is sold for a price.

• Dual licensing: This model requires the vendor to own, or at least control, all

copyrights pertaining to the software. The product is released to the public under a

strong copyleft license, such as the GPL, making it impossible to distribute the free

software component as part of other non-free commercial software. Simultaneously,

the software is sold, under a non-free license, to clients that wish to incorporate the

software into commercial software. A community is built around the free version of

the software, building market awareness of the product. Typically, improvements

from the community may only be incorporated into the non-free version with the

permission of a contributor. Vendors may require copyrights to be signed over in

order for improvements to be incorporated into the free reference version. Dual

licensing has been successfully employed by MySQL13, for their database product,

and Sun Microsystems14 , for their StarOffice product which is available in a scaled

down form as OpenOffice15.

The common theme amongst open source business models: software is provided for free

to produce a secondary market where additional value can be sold for a price.

4.4 Open Source in a South African Context

An official open source strategy [3] has been proposed by the local South African gov-

ernment. The proposal addresses the benefits of OSS in a South African context, rec-

13http://www.mysql.com
14http://www.sun.com
15http://www.openoffice.org

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 84

ommendations for building local competencies in open source and a long term strategy

for providing government support for open source projects.

Key economic benefits, amongst others identified in the report, are the development of

local software development skills and the saving of foreign currency, since most commer-

cial software is developed abroad. By leveraging open source as an educational vehicle,

local skills in software development are developed, which in turn will stimulate SMME

(Small, Medium and Micro Enterprises) growth in the IT (Information Technology) sec-

tor. Some responsibilities (quoted directly from the report) of educational institutions

for building a capacity in open source are:

• “It is critical that strong linkages be set up with institutions of higher learning to

build a national collaborative network that can be extended internationally.”

• “Training for OSS developers and OSS users must be available. Institutions of

learning must fulfil a role in this respect.”

• “A well-run research programme will be needed to enable optimal understanding

and decision making on OSS. The model for this research programme should be

built on the networking nature of the OSS development model, harnessing the

potential of institutions of higher leaning and schools.”

The advantages that OSS holds for the local economy makes it the responsibility of

every South African citizen to leverage OSS whenever it makes business sense, reducing

foreign spending on software and creating a demand for local skills in the secondary

markets discussed in the previous section. The Shuttleworth Foundation16 is setting a

fine example by actively promoting OSS in South Africa, targeting the general public

with a wide reaching “Go Open Source”17 awareness campaign, and facilitating the use

of OSS in schools.

16http://www.shuttleworthfoundation.org
17http://www.go-opensource.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 85

4.5 University of Pretoria Intellectual Property

The University of Pretoria (UP)18, like most universities, retains ownership of any Intel-

lectual Property (IP) submitted by students for degree purposes19. This means that any

decision to license the source code pertaining to this work, which is material covered by

UP copyrights, to third parties legally rests with the university’s IP authorities. There-

fore, permission to publish the CILib source code under the GPL needed to be granted

officially. A draft of the letter granting this permission is included as Appendix D. The

following reasons were offered as motivation for obtaining this permission:

• Collaboration, reputation and peer review: The CIRG@UP would like to

solicit the collaboration of third parties to accelerate the development of CILib

through a mutually beneficial sharing of development resources. By releasing the

source code under the GPL, the group hopes to benefit from the OSS peer review

process, with a goal of producing a reliable and error free software platform capable

of engendering a community’s trust in its code base. Further, the copyleft nature

of the GPL should encourage those who find the software useful to contribute any

improvements they may make back to the community. If successful, the University

of Pretoria, as initial contributor and founder of the community, will benefit from

the reputation associated with such a project.

• Use of other GPL software: Distributing software under the GPL enables it to

incorporate other GPL software. For example, CILib makes use of simulation qual-

ity random number generators ported from the GNU Scientific Library (GSL)20,

which is only licensed to the university under the GPL. This also means that CILib

may not be distributed under any license terms besides the GPL. At that time,

the university could have chosen not to distribute the software at all, keeping it

secret and losing out on all the other benefits mentioned here. Since the university

currently owns the rest of the copyrights pertaining to CILib, it may choose to

distribute those components which it owns under its own terms at any point in

the future. That is, provided the GSL components are removed, that version of

CILib may be licensed under other terms, however, the quality of any simulations

18http://www.up.ac.za
19According to the contract signed by students upon application for a degree.
20http://www.gnu.org/software/gsl/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 86

performed using the software would be severely diminished, reducing the value of

the software as a product. Note that nothing can retroactively revoke any rights

that the university has granted to any third party who has already received a copy

of CILib under the GPL.

• Social Responsibility in a South African context: Given the discussion in

the previous section, it is important for the university to be a good citizen of

the open source community. In fact, the UP is actively pursuing open source

research through initiatives such as digital@SERA [111], a division of the Southern

Education and Research Alliance (SERA)21 which is a joint venture between the UP

and the CSIR (Council for Scientific and Industrial Research)22 focused on fostering

collaborative and sustainable research. CILib is simply another opportunity to

develop local skills while researching the applicability of the OSS development

model with respect to collaborative research.

• Business opportunities: Building a community around a freely available soft-

ware product creates the potential to exploit secondary markets, due to increased

visibility of the product in the market place.

In the case of CILib (refer to Chapter 6), it is conceivable that a future third party

might like to utilise the software in a commercial product offering. As discussed

previously, the university may license the software on its own terms to such a third

party for a fee, provided it satisfies its GPL obligations, by excluding any GPL

material not covered by university copyrights. Further, the university may be able

to co-operate in some kind of profit sharing scheme with other copyright holders

to offer a product of increased value to commercial third parties. Policies requiring

potential contributors to sign over their copyrights or grant permission for their

work to be included commercial offerings should be avoided, since such policies

may discourage contributions.

For CiClops (refer to Chapter 7), the CIRG@UP is still undecided as to an appro-

priate course of action. The university may choose to keep it proprietary, following

a “loss leader/market positioner” business model. Under this model, CiClops is

used to maintain a central repository of CILib simulation data while selling the

21http://www.seralliance.com/
22http://www.csir.co.za

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 87

services of the software and the use of the data repository. The difficulty will be

gaining the trust of third parties, if they cannot access the source code, they can-

not verify the correctness of the software or the integrity of the data repository.

On the other hand, a “free the software, sell the content” model which does not

have this problem could be pursued. In this model, only the data repository and

university computing resources are sold as a service. The danger with this is that

it opens the door to competing repositories, discouraging collaboration on a single

data repository.

4.6 Credits

Table 4.2: Instrumental Open Source Software

Package License Web Site

Apache Ant ASL http://ant.apache.org

CVS GNU GPL http://www.cvshome.org

Dia GNU GPL http://www.gnome.org/projects/dia/

Eclipse EPL http://www.eclipse.org

Emacs GNU GPL http://www.gnu.org/software/emacs/emacs.html

GNU/Linux GNU GPL http://www.fsf.org/gnu/linux-and-gnu.html

http://www.gentoo.org

JBoss GNU LGPL http://www.jboss.org

JUnit CPL http://www.junit.org

Mozilla MPL http://www.mozilla.org

MySQL GNU GPL http://www.mysql.com

NetBeans SPL http://www.netbeans.org

teTeX Various OSS http://www.tug.org/teTeX/

XDoclet BSD (revised) http://xdoclet.sourceforge.net/xdoclet/index.html

Xfig Xfig custom http://www.xfig.org

Table 4.2 presents a list of free software titles which can be credited for making this work

possible. The distribution license and web site where futher information can be obtained

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

CHAPTER 4. OPEN SOURCE SOFTWARE (OSS) 88

are also listed alongside each title.

On the software implementation front, Eclipse, distributed under the Eclipse Public

License (EPL), and NetBeans, distributed under the Sun Public License (SPL), have

both been used as development environments. Software version control is maintained

using the CVS (Concurrent Versioning System), since it is the only version control system

currently supported by SourceForge. A recent SourceForge circular announced plans to

support the more modern Subversion23 system in the near future. The Apache project’s

Ant is the tool used to script the build process for all the software developed for this

work. Software unit testing is performed using the JUnit framework. Components of

the software are deployed on a JBoss application server using XDoclet to generate the

necessary deployment descriptors and ancillary interfaces. MySQL has been used to

provide the relational database back-end used by the application server.

This dissertation has been composed using the Emacs text editor and typeset with

the teTeX LATEX processor. All UML diagrams were composed using Dia, while the

remaining figures have been drawn using Xfig. The Mozilla browser has been used for

researching resources on the web. Finally, underlying all this excellent software has been

the GNU/Linux operating system. This work would not have been possible, at least not

within budget constraints, without the aid of free software.

23http://subversion.tigris.org/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPeeeerr,, EE SS ((22000055))

	Front
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4 - Open Source Software (OSS)
	4.1 Licenses
	4.2 The Open Source Ecosystem
	4.3 Business Models
	4.4 Open Source in a South African Context
	4.5 University of Pretoria Intellectual Property
	4.6 Credits

	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Bibliography

