The detail listing of each model discussed in Chapter 2 is included in this Appendix. The purpose is to present the GAMS programming environment to the reader who has not had experience with GAMS. Due to the length of the Chapter 3 and Chapter 4 models, the listing of these models will not be included.
Sets
 p set of time points
 /p1*p18/
 i set of mines
 /m1*m3/
 j set of stockpiles
 /sp1*sp3/

Alias
 (i,ii)
 (j,jj):

Parameters
 Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/
 rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/
 rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/
 cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/;

Table
 ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

 Scalars
 H Time horizon (hr)
 /12/
 Demand The demand at the end of the time horizon (kt)
 /20/
 Income Payment for coal delivered to the factory (R per kt)
 /10/
Delta size of the time intervals;

\[\text{Delta} = \frac{H}{\text{card}(p)}; \]

Binary variables

- \(w(i,j,p) \) Indicates coal transported from mine \(i \) to stockpile \(j \)
- \(x(j,p) \) Indicates coal supplied to the factory from stockpile \(j \)

Positive variables

- \(q_b(i,j,p) \) Quantity from mine \(i \) to stockpile \(j \) (kt)
- \(q_r(i,j,p) \) Quantity from mine \(i \) on stockpile \(j \) to the factory (kt)
- \(ST_s(i,j,p) \) Amount of coal from mine \(i \) stored in stockpile \(j \) (kt)

Variables

- \(z \) Objective function;

Equations

- **Objective** Objective function to maximise profit
- **Allocate_1** Only one mine \(i \) supplying a stockpile \(j \) at a time
- **Allocate_2** A mine \(i \) can supply to only one stockpile \(j \) at a time
- **Allocate_5** Stacking and reclaiming cannot happen simultaneously
- **Storage_1** Starting levels of coal on stockpiles
- **Storage_2** The stockpile material balance
- **Storage_3** The maximum capacity limit for the stockpile
- **Storage_4** Ensure an equal portion of each mine's coal is reclaimed
- **Storage_5** Set upper limit for coal supplied to factory
- **Demand_1** Ensure the factory's demand is met
- **Bunker_3** Calculate quantity conveyed from mine \(i \) to stockpile \(j \)
- **Stock_3** Calculate quantity conveyed from stockpile \(j \) to factory

Objective..

\[z = (\sum(i,j,p,q_r(i,j,p))*\text{Income}) - \sum(i,j,p,q_b(i,j,p)*\text{cost}(i)); \]

**Allocate_1(j,p)..

\[\sum(i,w(i,j,p)) \leq 1; \]

**Allocate_2(i,p)..

\[\sum(j,w(i,j,p)) \leq 1; \]

**Allocate_5(j,p)..

\[\sum(i,w(i,j,p)) + x(j,p) \leq 1; \]

**Storage_1(i,j,p)($(ord(p)=1)$).

\[ST_s(i,j,p) = ST0_s(i,j); \]

**Storage_2(i,j,p)($(ord(p)>1)$).

\[ST_s(i,j,p) = ST_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]
\textbf{Model} eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 10000000;
Option reslim = 300000;

\textbf{Solve} eventbased using minlp maximizing z;
Sets
 \(p \) set of slots
 \(/p1*p6/ \)
 \(i \) set of mines
 \(/m1*m3/ \)
 \(j \) set of stockpiles
 \(/sp1*sp3/ \)

Alias
 \((i,ii)\)
 \((j,jj)\):

Parameters
 \(\text{Cap}_s(j) \) The capacity per stockpile (kt)
 \(/sp1 50\)
 \(sp2 40\)
 \(sp3 45/ \)
 \(\text{rate}_b(i) \) The rate at which mine coal is supplied (kt per hr)
 \(/m1 2\)
 \(m2 1.8\)
 \(m3 1.5/ \)
 \(\text{rate}_r(j) \) The rate at which stockpile coal can be supplied (kt per hr)
 \(/sp1 2\)
 \(sp2 2.2\)
 \(sp3 2/ \)
 \(\text{cost}(i) \) The cost of transporting coal from a mine (R per kt)
 \(/m1 2\)
 \(m2 1.8\)
 \(m3 1.5/; \)

Table
 \(\text{ST0}_s(i,j) \) Starting levels of mine coal on each stockpile (kt)
 \(sp1 sp2 sp3 \)
 \(m1 0 0 0\)
 \(m2 0 0 0\)
 \(m3 0 0 0; \)

Scalars
 \(H \) Time horizon (hr)
 \(/12/ \)
 \(\text{Demand} \) The demand at the end of the time horizon (kt)
 \(/20/ \)
 \(\text{Income} \) Payment for coal delivered to the factory (R per kt)
 \(/10/; \)
Binary variables

\[w(i,j,p) \quad \text{Indicates coal transported from mine i to stockpile j} \]
\[x(j,p) \quad \text{Indicates coal supplied to the factory from stockpile j} \]

Positive variables

\[q_{_b}(i,j,p) \quad \text{Quantity from mine i to stockpile j (kt)} \]
\[q_{_r}(i,j,p) \quad \text{Quantity from mine i on stockpile j to the factory (kt)} \]
\[ST_s(i,j,p) \quad \text{Amount of coal from mine i stored in stockpile j (kt)} \]
\[Ts_b(i,j,p) \quad \text{Starting time for transporting coal from mine i to stockpile j (hr)} \]
\[Tf_b(i,j,p) \quad \text{Finish time for transporting coal from mine i to stockpile j (hr)} \]
\[Dur_b(i,j,p) \quad \text{Duration of transporting coal from mine i to stockpile j (hr)} \]
\[Ts_r(j,p) \quad \text{Starting time for supplying coal from stockpile j to the factory (hr)} \]
\[Tf_r(j,p) \quad \text{Finish time for supplying coal from stockpile j to the factory (hr)} \]
\[Dur_r(j,p) \quad \text{Duration of transporting coal from stockpile j to the factory (hr)} \]

Variables

\[z \quad \text{Objective function;} \]

Equations

Objective

\[\text{Objective function to maximise profit} \]

Allocate_1

\[\text{Only one mine i supplying a stockpile j at a time} \]

Allocate_2

\[\text{A mine i can supply to only one stockpile j at a time} \]

Allocate_5

\[\text{Stacking and reclaiming cannot happen simultaneously} \]

Storage_1

\[\text{Starting levels of coal on stockpiles} \]

Storage_2

\[\text{The stockpile material balance} \]

Storage_3

\[\text{The maximum capacity limit for the stockpile} \]

Storage_4

\[\text{Ensure an equal portion of each mine's coal is reclaimed} \]

Storage_5

\[\text{Set upper limit for coal supplied to factory} \]

Demand_1

\[\text{Ensure the factory's demand is met} \]

Bunker_1

\[\text{Calculate finish time based on starting time and duration} \]

Bunker_2

\[\text{Set upper limit for duration based on } w(ijp) \]

Bunker_3

\[\text{Calculate quantity conveyed from mine i to stockpile j} \]

Bunker_4a

\[\text{Ensure time sequence of events at a mine} \]

Bunker_4b

\[\text{Ensure time sequence of events at a stockpile} \]

Bunker_5

\[\text{Set upper limit for finish time} \]

Bunker_6

\[\text{Sequencing starting times} \]

Bunker_7

\[\text{Sequencing finishing times} \]

Stock_1

\[\text{Calculate finish time based on starting time and duration} \]

Stock_2

\[\text{Set upper limit for duration based on } x(jp) \]

Stock_3

\[\text{Calculate quantity conveyed from stockpile j to factory} \]

Stock_4

\[\text{Ensure time sequence of events} \]

Stock_5

\[\text{Set upper limit for finish time} \]

Stock_6

\[\text{Sequencing starting times} \]

Stock_7

\[\text{Sequencing finishing times} \]

Sequence_1

\[\text{Ensure sequence between stacking and reclaiming} \]
Objective..
\[z = (\text{sum}((i,j,p), q_r(i,j,p)) \times \text{Income}) - \text{sum}((i,j,p), q_b(i,j,p) \times \text{cost}(i)); \]

Allocate_1(j,p).
\[\text{sum}(i, w(i,j,p)) = 1; \]

Allocate_2(i,p).
\[\text{sum}(j, w(i,j,p)) = 1; \]

Allocate_5(j,p).
\[\text{sum}(i, w(i,j,p)) + x(j,p) = 1; \]

Storage_1(i,j,p)$(ord(p)=1).
\[\text{ST}_s(i,j,p) = \text{ST}_0_s(i,j); \]

Storage_2(i,j,p)$(ord(p)>1).
\[\text{ST}_s(i,j,p) = \text{ST}_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]

Storage_3(j,p).
\[\text{sum}(i, \text{ST}_s(i,j,p)) = \text{Cap}_s(j); \]

Storage_4(i,ii,j,p)$(ord(i)<=ord(ii)).
\[q_r(i,j,p) \times \text{ST}_s(ii,j,p) = q_r(ii,j,p) \times \text{ST}_s(i,j,p); \]

Storage_5(i,j,p).
\[q_r(i,j,p) \leq \text{ST}_s(i,j,p); \]

Demand_1..
\[\text{sum}((i,j,p), q_r(i,j,p)) \geq \text{Demand}; \]

Bunker_1(i,j,p).
\[\text{Tf}_b(i,j,p) = \text{Ts}_b(i,j,p) + \text{Dur}_b(i,j,p); \]

Bunker_2(i,j,p).
\[\text{Dur}_b(i,j,p) \leq H \times w(i,j,p); \]

Bunker_3(i,j,p).
\[q_b(i,j,p) = \text{rate}_b(i) \times \text{Dur}_b(i,j,p); \]

Bunker_4a(i,j,ii,jj,p)$(ord(p)>1).
\[\text{Ts}_b(i,j,p) = \text{Tf}_b(i,jj,p-1) - H \times (1 - w(i,j,p)); \]

Bunker_4b(i,ii,j,jj,p)$(ord(p)>1).
\[\text{Ts}_b(ii,j,p) = \text{Tf}_b(ii,j,p-1) - H \times (1 - w(i,j,p)); \]

Bunker_5(i,j,p).
\[\text{Tf}_b(i,j,p) = H; \]

Bunker_6(i,j,p)$(ord(p)>1).
\[\text{Ts}_b(i,j,p) = \text{Ts}_b(i,j,p-1); \]

Bunker_7(i,j,p)$(ord(p)>1).
\[\text{Tf}_b(i,j,p) = \text{Tf}_b(i,j,p-1); \]

Stock_1(j,p).
\[\text{Tf}_r(j,p) = \text{Ts}_r(j,p) + \text{Dur}_r(j,p); \]
Stock_2(j,p)..
 Dur_r(j,p) =l= H*x(j,p);

Stock_3(j,p)..
 sum(i,q_r(i,j,p)) =e= rate_r(j)*Dur_r(j,p);

Stock_4(j,p)$\text{(ord}(p)\text{)}$>1)..
 Ts_r(j,p) =g= Tf_r(j,p-1) - H*(1 - x(j,p));

Stock_5(j,p)..
 Tf_r(j,p) =l= H;

Stock_6(j,p)$\text{(ord}(p)\text{)}$>1)..
 Ts_r(j,p) =g= Ts_r(j,p-1);

Stock_7(j,p)$\text{(ord}(p)\text{)}$>1)..
 Tf_r(j,p) =g= Tf_r(j,p-1);

Sequence_1(i,j,p)$\text{(ord}(p)\text{)}$>1)..
 Ts_r(j,p) =g= Tf_b(i,j,p-1) - H*(1 - x(j,p));

Model eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 100000000;
Option reslim = 3000000;

Solve eventbased using minlp maximizing z;
Sets

- p set of time points
 /p1*p6/
- i set of mines
 /m1*m3/
- j set of stockpiles
 /sp1*sp3/

Alias

- (i,ii)
- (j,jj):

Parameters

- Cap_s(j): The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/
- rate_b(i): The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/
- rate_r(j): The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/
- cost(i): The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/;

Table

- ST0_s(i,j): Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

Scalars

- H Time horizon (hr)
 /12/
- Demand The demand at the end of the time horizon (kt)
 /20/
- Income Payment for coal delivered to the factory (R per kt)
 /10/;
Binary variables

\(w(i,j,p) \) Indicates coal transported from mine \(i \) to stockpile \(j \)
\(x(j,p) \) Indicates coal supplied to the factory from stockpile \(j \)

Positive variables

\(q_{\text{b}}(i,j,p) \) Quantity from mine \(i \) to stockpile \(j \) (kt)
\(q_{\text{r}}(i,j,p) \) Quantity from mine \(i \) on stockpile \(j \) to the factory (kt)
\(ST_s(i,j,p) \) Amount of coal from mine \(i \) stored in stockpile \(j \) (kt)
\(Du_{\text{r}}(i,j,p) \) Duration of transporting coal from mine \(i \) to stockpile \(j \) (hr)
\(Du_{\text{r}}(j,p) \) Duration of transporting coal from stockpile \(j \) to the factory (hr)
\(T(p) \) Indicate the time of an event point (hr)

Variables

\(z \) Objective function;

Equations

Objective function to maximise profit

- **Allocate_1** Only one mine \(i \) supplying a stockpile \(j \) at a time
- **Allocate_2** A mine \(i \) can supply to only one stockpile \(j \) at a time
- **Allocate_3** No conveying on the last time point
- **Allocate_4** No supplying on the last time point
- **Allocate_5** Stacking and reclaiming cannot happen simultaneously

- **Storage_1** Starting levels of coal on stockpiles
- **Storage_2** The stockpile material balance
- **Storage_3** The maximum capacity limit for the stockpile
- **Storage_4** Ensure an equal portion of each mine's coal is reclaimed
- **Storage_5** Set upper limit for coal supplied to factory

- **Demand_1** Ensure the factory's demand is met

- **Bunker_2** Set upper limit for duration based on \(w(i,j,p) \)
- **Bunker_3** Calculate quantity conveyed from mine \(i \) to stockpile \(j \)
- **Stock_2** Set upper limit for duration based on \(x(j,p) \)
- **Stock_3** Calculate quantity conveyed from stockpile \(j \) to factory

- **Time_1a** Calculate duration of coal conveyed from mine \(i \) to stockpile \(j \)
- **Time_1b**
- **Time_2a** Calculate duration of coal conveyed from stockpile \(j \) to factory
- **Time_2b**
- **Time_3** Set upper limit on \(T(p) \)
- **Time_4** Sequencing

\[
\text{Objective..} \quad z = e = (\text{sum}(i,j,p), q_{\text{r}}(i,j,p)) e^{\text{Income}} - \text{sum}(i,j,p), q_{\text{b}}(i,j,p) e^{\text{cost}(i)};
\]

\[
\text{Allocate_1}(j,p) .. \quad \text{sum}(i,w(i,j,p)) = l = 1;
\]
Allocate_2(i,p)..
\[\sum_{j} w(i,j,p) \leq 1; \]

Allocate_3(i,j,p)$(ord(p)=\text{card}(p))$..
\[w(i,j,p) = 0; \]

Allocate_4(j,p)$(ord(p)=\text{card}(p))$..
\[x(j,p) = 0; \]

Allocate_5(j,p)..
\[\sum_{i} w(i,j,p) + x(j,p) \leq 1; \]

Storage_1(i,j,p)$(ord(p)=1)$..
\[\text{ST}_s(i,j,p) = \text{ST0}_s(i,j); \]

Storage_2(i,j,p)$(ord(p)>1)$..
\[\text{ST}_s(i,j,p) = \text{ST}_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]

Storage_3(j,p)..
\[\sum_{i} \text{ST}_s(i,j,p) \leq \text{Cap}_s(j); \]

Storage_4(i,ii,j,p)$(ord(i)<=ord(ii))$..
\[q_r(i,j,p) \cdot \text{ST}_s(ii,j,p) = q_r(ii,j,p) \cdot \text{ST}_s(i,j,p); \]

Storage_5(i,j,p)..
\[q_r(i,j,p) \leq \text{ST}_s(i,j,p); \]

Demand_1..
\[\sum_{(i,j,p)} q_r(i,j,p) \geq \text{Demand}; \]

Bunker_2(i,j,p)..
\[\text{Dur}_b(i,j,p) \leq H \cdot w(i,j,p); \]

Bunker_3(i,j,p)..
\[q_b(i,j,p) = \text{rate}_b(i) \cdot \text{Dur}_b(i,j,p); \]

Stock_2(j,p)..
\[\text{Dur}_r(j,p) \leq H \cdot x(j,p); \]

Stock_3(j,p)..
\[\sum_{i} q_r(i,j,p) = \text{rate}_r(j) \cdot \text{Dur}_r(j,p); \]

Time_1a(i,j,p)$(ord(p)>1)$..
\[T(p) = T(p-1) + \text{Dur}_b(i,j,p-1) - H \cdot (1 - w(i,j,p-1)); \]

Time_1b(i,j,p)$(ord(p)>1)$..
\[T(p) = T(p-1) + \text{Dur}_b(i,j,p-1) + H \cdot (1 - w(i,j,p-1)); \]

Time_2a(j,p)$(ord(p)>1)$..
\[T(p) = T(p-1) + \text{Dur}_r(j,p-1) - H \cdot (1 - x(j,p-1)); \]

Time_2b(j,p)$(ord(p)>1)$..
\[T(p) = T(p-1) + \text{Dur}_r(j,p-1) + H \cdot (1 - x(j,p-1)); \]

Time_3(p)..
\[T(p) = H; \]
\[
T_4(p) \text{if } \text{ord}(p) > 1.
\]

\[
T(p) \geq T(p-1);
\]

Model eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 10000000;
Option reslim = 300000;

Solve eventbased using minlp maximizing;
Sets
p set of time points
 /p1*p6/
i set of mines
 /m1*m3/
j set of stockpiles
 /sp1*sp3/

Alias
(i,ii)
 (j,jj):

Parameters
Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/
rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/
rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/
cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/;

Table
ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

Scalars
H Time horizon (hr)
 /12/
Demand The demand at the end of the time horizon (kt)
 /20/
Income Payment for coal delivered to the factory (R per kt)
 /10/;
Binary variables
- \(w(i,j,p) \) Indicates coal transported from mine \(i \) to stockpile \(j \)
- \(x(j,p) \) Indicates coal supplied to the factory from stockpile \(j \)

Positive variables
- \(q_{b}(i,j,p) \) Quantity from mine \(i \) to stockpile \(j \) (kt)
- \(q_{r}(i,j,p) \) Quantity from mine \(i \) on stockpile \(j \) to the factory (kt)
- \(ST_{s}(i,j,p) \) Amount of coal from mine \(i \) stored in stockpile \(j \) (kt)
- \(Ts_b(i,j,p) \) Starting time for transporting coal from mine \(i \) to stockpile \(j \) (hr)
- \(Tf_b(i,j,p) \) Finish time for transporting coal from mine \(i \) to stockpile \(j \) (hr)
- \(Dur_b(i,j,p) \) Duration of transporting coal from mine \(i \) to stockpile \(j \) (hr)
- \(Ts_r(j,p) \) Starting time for supplying coal from stockpile \(j \) to the factory (hr)
- \(Tf_r(j,p) \) Finish time for transporting coal from stockpile \(j \) to the factory (hr)
- \(Dur_r(j,p) \) Duration of transporting coal from stockpile \(j \) to the factory (hr)

Variables
- \(z \) Objective function;

Equations
- **Objective**
 - Objective function to maximise profit
- **Allocate_1**
 - Only one mine \(i \) supplying a stockpile \(j \) at a time
- **Allocate_2**
 - A mine \(i \) can supply to only one stockpile \(j \) at a time
- **Allocate_3**
 - No conveying on the last time point
- **Allocate_4**
 - No supplying on the last time point
- **Allocate_5**
 - Stacking and reclaiming cannot happen simultaneously
- **Storage_1**
 - Starting levels of coal on stockpiles
- **Storage_2**
 - The stockpile material balance
- **Storage_3**
 - The maximum capacity limit for the stockpile
- **Storage_4**
 - Ensure an equal portion of each mine's coal is reclaimed
- **Storage_5**
 - Set upper limit for coal supplied to factory
- **Demand_1**
 - Ensure the factory's demand is met
- **Bunker_1**
 - Calculate finish time based on starting time and duration
- **Bunker_2**
 - Set upper limit for duration based on \(w(ijp) \)
- **Bunker_3**
 - Calculate quantity conveyed from mine \(i \) to stockpile \(j \)
- **Bunker_4a**
 - Ensure time sequence of events at a mine
- **Bunker_4b**
 - Ensure time sequence of events at a stockpile
- **Bunker_5**
 - Set upper limit for finish time
- **Bunker_6**
 - Sequencing starting times
- **Bunker_7**
 - Sequencing finishing times
- **Stock_1**
 - Calculate finish time based on starting time and duration
- **Stock_2**
 - Set upper limit for duration based on \(x(jp) \)
- **Stock_3**
 - Calculate quantity conveyed from stockpile \(j \) to factory
- **Stock_4**
 - Ensure time sequence of events
- **Stock_5**
 - Set upper limit for finish time
- **Stock_6**
 - Sequencing starting times
- **Stock_7**
 - Sequencing finishing times
- **Sequence_1**
 - Ensure sequence between stacking and reclaiming;
Objective..
\[z = e = \text{sum}((i,j,p), q_r(i,j,p) \times \text{Income}) - \text{sum}((i,j,p), q_b(i,j,p) \times \text{cost}(i)) \]

Allocate_1(j,p)..
\[\text{sum}(i, w(i,j,p)) = l = 1 \]

Allocate_2(i,p)..
\[\text{sum}(j, w(i,j,p)) = l = 1 \]

Allocate_3(i,j,p)$\text{ord}(p)=\text{card}(p)$..
\[w(i,j,p) = e = 0 \]

Allocate_4(j,p)$\text{ord}(p)=\text{card}(p)$..
\[x(j,p) = e = 0 \]

Allocate_5(j,p)..
\[\text{sum}(i, w(i,j,p)) + x(j,p) = l = 1 \]

Storage_1(i,j,p)$\text{ord}(p)=1$..
\[ST_s(i,j,p) = e = ST_0_s(i,j) \]

Storage_2(i,j,p)$\text{ord}(p)>1$..
\[ST_s(i,j,p) = e = ST_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1) \]

Storage_3(j,p)..
\[\text{sum}(i, ST_s(i,j,p)) = l = \text{Cap}_s(j) \]

Storage_4(i,ii,j,p)$\text{ord}(i)<>\text{ord}(ii)$..
\[q_r(i,j,p) \times ST_s(ii,j,p) = e = q_r(ii,j,p) \times ST_s(i,j,p) \]

Storage_5(i,j,p)..
\[q_r(i,j,p) = l = ST_s(i,j,p) \]

Demand_1..
\[\text{sum}((i,j,p), q_r(i,j,p)) = g = \text{Demand} \]

Bunker_1(i,j,p)$\text{ord}(p)>1$..
\[Tf_b(i,j,p) = e = T_s_b(i,j,p-1) + Dur_b(i,j,p-1) \]

Bunker_2(i,j,p)..
\[Dur_b(i,j,p) = l = H \times w(i,j,p) \]

Bunker_3(i,j,p)..
\[q_b(i,j,p) = e = \text{rate}_b(i) \times Dur_b(i,j,p) \]

Bunker_4a(i,j,ii,jj,p)..
\[T_s_b(i,j,p) = g = Tf_b(i,jj,p) - H \times (1 - w(i,j,p)) \]

Bunker_4b(i,ii,j,jj,p)..
\[T_s_b(i,j,p) = g = Tf_b(ii,j,p) - H \times (1 - w(i,j,p)) \]

Bunker_5(i,j,p)..
\[Tf_b(i,j,p) = l = H \]

Bunker_6(i,j,p)$\text{ord}(p)>1$..
\[T_s_b(i,j,p) = g = T_s_b(i,j,p-1) \]
Bunker_7(i,j,p)$(ord(p)>1).
 Tf_b(i,j,p) =g= Tf_b(i,j,p-1);

Stock_1(j,p)$(ord(p)>1).
 Tf_r(j,p) =e= Ts_r(j,p-1) + Dur_r(j,p-1);

Stock_2(j,p).
 Dur_r(j,p) =l= H*x(j,p);

Stock_3(j,p).
 sum(i,q_r(i,j,p)) =e= rate_r(j)*Dur_r(j,p);

Stock_4(j,p).
 Ts_r(j,p) =g= Tf_r(j,p) - H*(1 - x(j,p));

Stock_5(j,p).
 Tf_r(j,p) =l= H;

Stock_6(j,p)$(ord(p)>1).
 Ts_r(j,p) =g= Ts_r(j,p-1);

Stock_7(j,p)$(ord(p)>1).
 Tf_r(j,p) =g= Tf_r(j,p-1);

Sequence_1(i,j,p)$(ord(p)>1).
 Ts_r(j,p) =g= Tf_b(i,j,p) - H*(1 - x(j,p));

Model eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 10000000;
Option reslim = 300000;

Solve eventbased using minlp maximizing z;
An example of the user input interface in MS Excel is presented.
SETS
p set of time points
 /p1*p18/

i set of mines
 /m1*m3/

j set of stockpiles
 /sp1*sp3/

Alias
 (i,ii)
 (j,jj):

Parameters
Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/

rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/

rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/

cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/

Table
ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

Scalars
H Time horizon (hr)
 /12/

Demand The demand at the end of the time horizon (kt)
 /20/

Income Payment for coal delivered to the factory (R per kt)
 /10/
Delta size of the time intervals;

\[\Delta = \frac{H}{\text{card}(p)}; \]

Binary variables
- \(w(i,j,p) \) Indicates coal transported from mine \(i \) to stockpile \(j \)
- \(x(j,p) \) Indicates coal supplied to the factory from stockpile \(j \)

Positive variables
- \(q_b(i,j,p) \) Quantity from mine \(i \) to stockpile \(j \) (kt)
- \(q_r(i,j,p) \) Quantity from mine \(i \) on stockpile \(j \) to the factory (kt)
- \(ST_s(i,j,p) \) Amount of coal from mine \(i \) stored in stockpile \(j \) (kt)

Variables
- \(z \) Objective function;

Equations
- **Objective** Objective function to maximise profit
- **Allocate_1** Only one mine \(i \) supplying a stockpile \(j \) at a time
- **Allocate_2** A mine \(i \) can supply to only one stockpile \(j \) at a time
- **Allocate_5** Stacking and reclaiming cannot happen simultaneously
- **Storage_1** Starting levels of coal on stockpiles
- **Storage_2** The stockpile material balance
- **Storage_3** The maximum capacity limit for the stockpile
- **Storage_4** Ensure an equal portion of each mine's coal is reclaimed
- **Storage_5** Set upper limit for coal supplied to factory
- **Demand_1** Ensure the factory's demand is met
- **Bunker_3** Calculate quantity conveyed from mine \(i \) to stockpile \(j \)
- **Stock_3** Calculate quantity conveyed from stockpile \(j \) to factory

Objective..
\[z = e^k (\sum((i,j,p), q_r(i,j,p)) \cdot \text{Income}) - \sum((i,j,p), q_b(i,j,p) \cdot \text{cost}(i)); \]

Allocate_1(j,p)..
\[\sum(i,w(i,j,p)) = l= 1; \]

Allocate_2(i,p)..
\[\sum(j,w(i,j,p)) = l= 1; \]

Allocate_5(j,p)..
\[\sum(i,w(i,j,p)) + x(j,p) = l= 1; \]

Storage_1(i,j,p)$(ord(p)=1)...
\[ST_s(i,j,p) = e^k ST0_s(i,j); \]

Storage_2(i,j,p)$(ord(p)>1)...
\[ST_s(i,j,p) = e^k ST_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]
Storage_3(j,p)..
 sum(i, ST_s(i,j,p)) =i= Cap_s(j);

Storage_4(i,ii,j,p)$(ord(i)<>>ord(ii))..
 q_r(i,j,p)*ST_s(ii,j,p) =e= q_r(ii,j,p)*ST_s(i,j,p);

Storage_5(i,j,p)..
 q_r(i,j,p) =l= ST_s(i,j,p);

Demand_1..
 sum((i,j,p), q_r(i,j,p)) =g= Demand;

Bunker_3(i,j,p)..
 q_b(i,j,p) =e= rate_b(i)*Delta*w(i,j,p);

Stock_3(j,p)..
 sum(i, q_r(i,j,p)) =e= rate_r(j)*Delta*x(j,p);

Model eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 10000000;
Option reslim = 300000;

Solve eventbased **using minlp maximizing z**;
Sets
p set of slots
 /p1*p6/
i set of mines
 /m1*m3/
j set of stockpiles
 /sp1*sp3/

Alias
(i,ii)
(j,jj):

Parameters
Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/
rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/
rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/
cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/

Table
ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

Scalars
H Time horizon (hr)
 /12/
Demand The demand at the end of the time horizon (kt)
 /20/
Income Payment for coal delivered to the factory (R per kt)
 /10/;
<table>
<thead>
<tr>
<th>Binary variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w(i,j,p))</td>
<td>Indicates coal transported from mine (i) to stockpile (j)</td>
</tr>
<tr>
<td>(x(j,p))</td>
<td>Indicates coal supplied to the factory from stockpile (j)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_{b}(i,j,p))</td>
<td>Quantity from mine (i) to stockpile (j) (kt)</td>
</tr>
<tr>
<td>(q_{r}(i,j,p))</td>
<td>Quantity from mine (i) on stockpile (j) to the factory (kt)</td>
</tr>
<tr>
<td>(ST_{s}(i,j,p))</td>
<td>Amount of coal from mine (i) stored in stockpile (j) (kt)</td>
</tr>
<tr>
<td>(Ts_{b}(i,j,p))</td>
<td>Starting time for transporting coal from mine (i) to stockpile (j) (hr)</td>
</tr>
<tr>
<td>(Tf_{b}(i,j,p))</td>
<td>Finish time for transporting coal from mine (i) to stockpile (j) (hr)</td>
</tr>
<tr>
<td>(Dur_{b}(i,j,p))</td>
<td>Duration of transporting coal from mine (i) to stockpile (j) (hr)</td>
</tr>
<tr>
<td>(Ts_{r}(j,p))</td>
<td>Starting time for supplying coal from stockpile (j) to the factory (hr)</td>
</tr>
<tr>
<td>(Tf_{r}(j,p))</td>
<td>Finish time for transporting coal from stockpile (j) to the factory (hr)</td>
</tr>
<tr>
<td>(Dur_{r}(j,p))</td>
<td>Duration of transporting coal from stockpile (j) to the factory (hr)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z)</td>
<td>Objective function;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Objective function to maximise profit</td>
</tr>
<tr>
<td>(Allocate_1)</td>
<td>Only one mine (i) supplying a stockpile (j) at a time</td>
</tr>
<tr>
<td>(Allocate_2)</td>
<td>A mine (i) can supply to only one stockpile (j) at a time</td>
</tr>
<tr>
<td>(Allocate_5)</td>
<td>Stacking and reclaiming cannot happen simultaneously</td>
</tr>
<tr>
<td>(Storage_1)</td>
<td>Starting levels of coal on stockpiles</td>
</tr>
<tr>
<td>(Storage_2)</td>
<td>The stockpile material balance</td>
</tr>
<tr>
<td>(Storage_3)</td>
<td>The maximum capacity limit for the stockpile</td>
</tr>
<tr>
<td>(Storage_4)</td>
<td>Ensure an equal portion of each mine's coal is reclaimed</td>
</tr>
<tr>
<td>(Storage_5)</td>
<td>Set upper limit for coal supplied to factory</td>
</tr>
<tr>
<td>(Demand_1)</td>
<td>Ensure the factory's demand is met</td>
</tr>
<tr>
<td>(Bunker_1)</td>
<td>Calculate finish time based on starting time and duration</td>
</tr>
<tr>
<td>(Bunker_2)</td>
<td>Set upper limit for duration based on (w(ijp))</td>
</tr>
<tr>
<td>(Bunker_3)</td>
<td>Calculate quantity conveyed from mine (i) to stockpile (j)</td>
</tr>
<tr>
<td>(Bunker_4a)</td>
<td>Ensure time sequence of events at a mine</td>
</tr>
<tr>
<td>(Bunker_4b)</td>
<td>Ensure time sequence of events at a stockpile</td>
</tr>
<tr>
<td>(Bunker_5)</td>
<td>Set upper limit for finish time</td>
</tr>
<tr>
<td>(Bunker_6)</td>
<td>Sequencing starting times</td>
</tr>
<tr>
<td>(Bunker_7)</td>
<td>Sequencing finishing times</td>
</tr>
<tr>
<td>(Stock_1)</td>
<td>Calculate finish time based on starting time and duration</td>
</tr>
<tr>
<td>(Stock_2)</td>
<td>Set upper limit for duration based on (x(jp))</td>
</tr>
<tr>
<td>(Stock_3)</td>
<td>Calculate quantity conveyed from stockpile (j) to factory</td>
</tr>
<tr>
<td>(Stock_4)</td>
<td>Ensure time sequence of events</td>
</tr>
<tr>
<td>(Stock_5)</td>
<td>Set upper limit for finish time</td>
</tr>
<tr>
<td>(Stock_6)</td>
<td>Sequencing starting times</td>
</tr>
<tr>
<td>(Stock_7)</td>
<td>Sequencing finishing times</td>
</tr>
<tr>
<td>(Sequence_1)</td>
<td>Ensure sequence between stacking and reclaiming</td>
</tr>
</tbody>
</table>
Objective..
\[z = e = (\text{sum}(i,j,p), q_r(i,j,p)) \text{Income} - \text{sum}(i,j,p), q_b(i,j,p) \text{cost}(i); \]

Allocate_1(j,p)..
\[\text{sum}(i, w(i,j,p)) \leq 1; \]

Allocate_2(i,p)..
\[\text{sum}(j, w(i,j,p)) \leq 1; \]

Allocate_5(j,p)..
\[\text{sum}(i, w(i,j,p)) + x(j,p) \leq 1; \]

Storage_1(i,j,p)$\text{(ord}(p)=1)$..
\[\text{ST}_s(i,j,p) = e = \text{ST}0_s(i,j); \]

Storage_2(i,j,p)$\text{(ord}(p)>1)$..
\[\text{ST}_s(i,j,p) = e = \text{ST}_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]

Storage_3(j,p)..
\[\text{sum}(i, \text{ST}_s(i,j,p)) \leq \text{Cap}_s(j); \]

Storage_4(i,ii,j,p)$\text{(ord}(i)<=\text{ord}(ii))$..
\[q_r(i,j,p) \times \text{ST}_s(ii,j,p) = e = q_r(ii,j,p) \times \text{ST}_s(i,j,p); \]

Storage_5(i,j,p)..
\[q_r(i,j,p) \leq \text{ST}_s(i,j,p); \]

Demand_1..
\[\text{sum}(i,j,p), q_r(i,j,p) \geq \text{Demand}; \]

Bunker_1(i,j,p)..
\[\text{Tf}_b(i,j,p) = e = \text{Ts}_b(i,j,p) + \text{Dur}_b(i,j,p); \]

Bunker_2(i,j,p)..
\[\text{Dur}_b(i,j,p) \leq H \times w(i,j,p); \]

Bunker_3(i,j,p)..
\[q_b(i,j,p) = e = \text{rate}_b(i) \times \text{Dur}_b(i,j,p); \]

Bunker_4a(i,ij,ii,j,p)$\text{(ord}(p)>1)$..
\[\text{Tf}_b(i,j,p) = g = \text{Tf}_b(i,ij,p-1) - H \times (1 - w(i,j,p)); \]

Bunker_4b(i,ii,j,p)$\text{(ord}(p)>1)$..
\[\text{Tf}_b(i,j,p) = g = \text{Tf}_b(ii,j,p-1) - H \times (1 - w(i,j,p)); \]

Bunker_5(i,j,p)..
\[\text{Tf}_b(i,j,p) \leq H; \]

Bunker_6(i,j,p)$\text{(ord}(p)>1)$..
\[\text{Tf}_b(i,j,p) = g = \text{Tf}_b(i,j,p-1); \]

Bunker_7(i,j,p)$\text{(ord}(p)>1)$..
\[\text{Tf}_b(i,j,p) = g = \text{Tf}_b(i,j,p-1); \]

Stock_1(j,p)..
\[\text{Tf}_r(j,p) = e = \text{Tf}_r(j,p) + \text{Dur}_r(j,p); \]
\[\text{Stock}_2(j,p). \quad \text{Dur}_r(j,p) = l = H \times x(j,p); \]
\[\text{Stock}_3(j,p). \quad \text{sum}(i, q_r(i,j,p)) = \text{rate}_r(j) \times \text{Dur}_r(j,p); \]
\[\text{Stock}_4(j,p) \text{($)$(ord(p)>1)$.} \quad \text{T}_s_r(j,p) = \text{g} \geq \text{Tf}_r(j,p-1) - H \times (1 - x(j,p)); \]
\[\text{Stock}_5(j,p). \quad \text{Tf}_r(j,p) = l \leq H; \]
\[\text{Stock}_6(j,p) \text{($)$(ord(p)>1)$.} \quad \text{T}_s_r(j,p) = \text{g} \geq \text{T}_s_r(j,p-1); \]
\[\text{Stock}_7(j,p) \text{($)$(ord(p)>1)$.} \quad \text{Tf}_r(j,p) = \text{g} \geq \text{Tf}_r(j,p-1); \]
\[\text{Sequence}_1(i,j,p) \text{($)$(ord(p)>1)$.} \quad \text{T}_s_r(j,p) = \text{g} \geq \text{Tf}_b(i,j,p-1) - H \times (1 - x(j,p)); \]

Model eventbased /all/;

```
eventbased.optfile = 1;
Option limrow = 0;
Option limcol = 0;
Option iterlim = 100000000;
Option reslim = 3000000;
```

Solve eventbased using minlp maximizing z;
Sets
 p set of time points
 /p1*p6/
 i set of mines
 /m1*m3/
 j set of stockpiles
 /sp1*sp3/

Alias
 (i,ii)
 (j,jj):

Parameters
 Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/

 rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/

 rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/

 cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/;

Table
 ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)
 sp1 sp2 sp3
 m1 0 0 0
 m2 0 0 0
 m3 0 0 0;

Scalars
 H Time horizon (hr)
 /12/

 Demand The demand at the end of the time horizon (kt)
 /20/

 Income Payment for coal delivered to the factory (R per kt)
 /10/;
Binary variables
\[w(i,j,p) \] Indicates coal transported from mine i to stockpile j
\[x(j,p) \] Indicates coal supplied to the factory from stockpile j

Positive variables
\[q_{b}(i,j,p) \] Quantity from mine i to stockpile j (kt)
\[q_{r}(i,j,p) \] Quantity from mine i on stockpile j to the factory (kt)
\[ST_s(i,j,p) \] Amount of coal from mine i stored in stockpile j (kt)
\[Dur_b(i,j,p) \] Duration of transporting coal from mine i to stockpile j (hr)
\[Dur_r(j,p) \] Duration of transporting coal from stockpile j to the factory (hr)
\[T(p) \] Indicate the time of an event point (hr)

Variables
\[z \] Objective function;

Equations
Objective
Objective function to maximise profit
Allocate_1
Only one mine i supplying a stockpile j at a time
Allocate_2
A mine i can supply to only one stockpile j at a time
Allocate_3
No conveying on the last time point
Allocate_4
No supplying on the last time point
Allocate_5
Stacking and reclaiming cannot happen simultaneously
Storage_1
Starting levels of coal on stockpiles
Storage_2
The stockpile material balance
Storage_3
The maximum capacity limit for the stockpile
Storage_4
Ensure an equal portion of each mine's coal is reclaimed
Storage_5
Set upper limit for coal supplied to factory
Demand_1
Ensure the factory's demand is met
Bunker_2
Set upper limit for duration based on w(ijp)
Bunker_3
Calculate quantity conveyed from mine i to stockpile j
Stock_2
Set upper limit for duration based on x(jp)
Stock_3
Calculate quantity conveyed from stockpile j to factory
Time_1a
Calculate duration of coal conveyed from mine i to stockpile j
Time_1b
Calculate duration of coal conveyed from stockpile j to factory
Time_2a
Set upper limit on T(p)
Time_2b
Sequencing

Objective..
\[z = \text{maximize} \sum (i,j,p, q_{r}(i,j,p)) \times \text{Income} - \sum (i,j,p, q_{b}(i,j,p)) \times \text{cost(i)}; \]

Allocate_1(j,p)..
\[\sum(i,w(i,j,p)) \leq 1; \]
Allocate_2(i,p).
\[\sum_{j} w(i,j,p) = 1; \]

Allocate_3(i,j,p)$(ord(p) = \text{card}(p))$.
\[w(i,j,p) = 0; \]

Allocate_4(j,p)$(ord(p) = \text{card}(p))$.
\[x(j,p) = 0; \]

Allocate_5(j,p).
\[\sum_{i} w(i,j,p) + x(j,p) = 1; \]

Storage_1(i,j,p)$(ord(p) = 1)$.
\[ST_s(i,j,p) = ST0_s(i,j); \]

Storage_2(i,j,p)$(ord(p) > 1)$.
\[ST_s(i,j,p) = ST_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]

Storage_3(j,p).
\[\sum_{i} ST_s(i,j,p) = \text{Cap}_s(j); \]

Storage_4(ii,i,j,p)$$(ord(i) < ord(ii))$.
\[q_r(i,j,p) \times ST_s(ii,j,p) = q_r(ii,j,p) \times ST_s(i,j,p); \]

Storage_5(i,j,p).
\[q_r(i,j,p) \leq ST_s(i,j,p); \]

Demand_1.
\[\sum((i,j,p), q_r(i,j,p)) \geq \text{Demand}; \]

Bunker_2(i,j,p).
\[\text{Dur}_b(i,j,p) \leq H \times w(i,j,p); \]

Bunker_3(i,j,p).
\[q_b(i,j,p) = \text{rate}_b(i) \times \text{Dur}_b(i,j,p); \]

Stock_2(j,p).
\[\text{Dur}_r(j,p) \leq H \times x(j,p); \]

Stock_3(j,p).
\[\sum(i, q_r(i,j,p)) = \text{rate}_r(j) \times \text{Dur}_r(j,p); \]

Time_1a(i,j,p)$$(ord(p) > 1)$.
\[T(p) = T(p-1) + \text{Dur}_b(i,j,p-1) - H \times (1 - w(i,j,p-1)); \]

Time_1b(i,j,p)$$(ord(p) > 1)$.
\[T(p) = T(p-1) + \text{Dur}_b(i,j,p-1) + H \times (1 - w(i,j,p-1)); \]

Time_2a(j,p)$$(ord(p) > 1)$.
\[T(p) = T(p-1) + \text{Dur}_r(j,p-1) - H \times (1 - x(j,p-1)); \]

Time_2b(j,p)$$(ord(p) > 1)$.
\[T(p) = T(p-1) + \text{Dur}_r(j,p-1) + H \times (1 - x(j,p-1)); \]

Time_3(p).
\[T(p) = \leq H; \]
Time_4(p)$\,(\text{ord}(p)>1)\,$.

T(p) \geq T(p-1);

\textbf{Model} eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 100000000;
Option reslim = 300000;

\textbf{Solve} eventbased using minlp maximizing;
Sets

p set of time points
 /p1*p6/

i set of mines
 /m1*m3/

j set of stockpiles
 /sp1*sp3/

Alias

(i,ii)
(j,jj);

Parameters

Cap_s(j) The capacity per stockpile (kt)
 /sp1 50
 sp2 40
 sp3 45/

rate_b(i) The rate at which mine coal is supplied (kt per hr)
 /m1 2
 m2 1.8
 m3 1.5/

rate_r(j) The rate at which stockpile coal can be supplied (kt per hr)
 /sp1 2
 sp2 2.2
 sp3 2/

cost(i) The cost of transporting coal from a mine (R per kt)
 /m1 2
 m2 1.8
 m3 1.5/;

Table

ST0_s(i,j) Starting levels of mine coal on each stockpile (kt)

sp1 sp2 sp3
m1 0 0 0
m2 0 0 0
m3 0 0 0;

Scalars

H Time horizon (hr)
 /12/

Demand The demand at the end of the time horizon (kt)
 /20/

Income Payment for coal delivered to the factory (R per kt)
 /10/;
Binary variables
\[w(i,j,p) \] Indicates coal transported from mine i to stockpile j
\[x(j,p) \] Indicates coal supplied to the factory from stockpile j

Positive variables
\[q_b(i,j,p) \] Quantity from mine i to stockpile j (kt)
\[q_r(i,j,p) \] Quantity from mine i on stockpile j to the factory (kt)
\[ST_s(i,j,p) \] Amount of coal from mine i stored in stockpile j (kt)
\[Ts_b(i,j,p) \] Starting time for transporting coal from mine i to stockpile j (hr)
\[Tf_b(i,j,p) \] Finish time for transporting coal from mine i to stockpile j (hr)
\[Dur_b(i,j,p) \] Duration of transporting coal from mine i to stockpile j (hr)
\[Ts_r(j,p) \] Starting time for supplying coal from stockpile j to the factory (hr)
\[Tf_r(j,p) \] Finish time for transporting coal from stockpile j to the factory (hr)
\[Dur_r(j,p) \] Duration of transporting coal from stockpile j to the factory (hr)

Variables
\[z \] Objective function;

Equations
Objective function to maximise profit

Allocate_1 Only one mine i supplying a stockpile j at a time
Allocate_2 A mine i can supply to only one stockpile j at a time
Allocate_3 No conveying on the last time point
Allocate_4 No supplying on the last time point
Allocate_5 Stacking and reclaiming cannot happen simultaneously

Storage_1 Starting levels of coal on stockpiles
Storage_2 The stockpile material balance
Storage_3 The maximum capacity limit for the stockpile
Storage_4 Ensure an equal portion of each mine's coal is reclaimed
Storage_5 Set upper limit for coal supplied to factory

Demand_1 Ensure the factory's demand is met

Bunker_1 Calculate finish time based on starting time and duration
Bunker_2 Set upper limit for duration based on w(ijp)
Bunker_3 Calculate quantity conveyed from mine i to stockpile j
Bunker_4a Ensure time sequence of events at a mine
Bunker_4b Ensure time sequence of events at a stockpile
Bunker_5 Set upper limit for finish time
Bunker_6 Sequencing starting times
Bunker_7 Sequencing finishing times

Stock_1 Calculate finish time based on starting time and duration
Stock_2 Set upper limit for duration based on x(jp)
Stock_3 Calculate quantity conveyed from stockpile j to factory
Stock_4 Ensure time sequence of events
Stock_5 Set upper limit for finish time
Stock_6 Sequencing starting times
Stock_7 Sequencing finishing times

Sequence_1 Ensure sequence between stacking and reclaiming;
Objective..
\[z = \sum_{(i,j,p)} (q_r(i,j,p) \cdot \text{Income}) - \sum_{(i,j,p)} (q_b(i,j,p) \cdot \text{cost}(i)); \]

Allocate_1(j,p)..
\[\sum_{i} w(i,j,p) = 1; \]

Allocate_2(i,p)..
\[\sum_{j} w(i,j,p) = 1; \]

Allocate_3(i,j,p)$\text{ord}(p)/authentication(card(p))$..
\[w(i,j,p) = 0; \]

Allocate_4(j,p)$\text{ord}(p)/authentication(card(p))$..
\[x(j,p) = 0; \]

Allocate_5(j,p)..
\[\sum_{i} w(i,j,p) + x(j,p) = 1; \]

Storage_1(i,j,p)$\text{ord}(p)/authentication(1)$..
\[ST_s(i,j,p) = ST0_s(i,j); \]

Storage_2(i,j,p)$\text{ord}(p)>1$..
\[ST_s(i,j,p) = ST_s(i,j,p-1) + q_b(i,j,p-1) - q_r(i,j,p-1); \]

Storage_3(j,p)..
\[\sum_{i} ST_s(i,j,p) = \text{Cap}_s(j); \]

Storage_4(i,ii,j,p)$\text{ord}(i)<>\text{ord}((ii))$..
\[q_r(i,j,p) \cdot ST_s(ii,j,p) = q_r(ii,j,p) \cdot ST_s(i,j,p); \]

Storage_5(i,j,p)..
\[q_r(i,j,p) = ST_s(i,j,p); \]

Demand_1..
\[\sum_{(i,j,p)} (q_r(i,j,p)) \geq \text{Demand}; \]

Bunker_1(i,j,p)$\text{ord}(p)>1$..
\[Tf_b(i,j,p) = Ts_b(i,j,p-1) + Dur_b(i,j,p-1); \]

Bunker_2(i,j,p)..
\[Dur_b(i,j,p) = H \cdot w(i,j,p); \]

Bunker_3(i,j,p)..
\[q_b(i,j,p) = \text{rate}_b(i) \cdot Dur_b(i,j,p); \]

Bunker_4a(i,ii,j,jj,p)..
\[Ts_b(i,j,j) = g = Tf_b(i,ii,j,j) - H^*(1 - w(i,j,j)); \]

Bunker_4b(i,ii,j,jj,p)..
\[Ts_b(i,j,j) = g = Tf_b(ii,j,j) - H^*(1 - w(i,j,j)); \]

Bunker_5(i,j,p)..
\[Tf_b(i,j,p) = H; \]

Bunker_6(i,j,p)$\text{ord}(p)>1$..
\[Ts_b(i,j,p) = g = Ts_b(i,j,p-1); \]
Bunker_7(i,j,p)$(ord(p)>1)..
 Tf_b(i,j,p) =g= Tf_b(i,j,p-1);

Stock_1(j,p)$(ord(p)>1)..
 Tf_r(j,p) =e= Ts_r(j,p-1) + Dur_r(j,p-1);

Stock_2(j,p)..
 Dur_r(j,p) =l= H*x(j,p);

Stock_3(j,p)..
 sum(i,q_r(i,j,p)) =e= rate_r(j)*Dur_r(j,p);

Stock_4(j,p)..
 Ts_r(j,p) =g= Tf_r(j,p) - H*(1 - x(j,p));

Stock_5(j,p)..
 Tf_r(j,p) =l= H;

Stock_6(j,p)$(ord(p)>1)..
 Ts_r(j,p) =g= Ts_r(j,p-1);

Stock_7(j,p)$(ord(p)>1)..
 Tf_r(j,p) =g= Tf_r(j,p-1);

Sequence_1(i,j,p)$(ord(p)>1)..
 Ts_r(j,p) =g= Tf_b(i,j,p) - H*(1 - x(j,p));

Model eventbased /all/;

eventbased.optfile =1;

Option limrow = 0;
Option limcol = 0;
Option iterlim = 10000000;
Option reslim = 300000;

Solve eventbased using minlp maximizing z;