Control of microbial proliferation on sorghum during malting

by

Mathoto Lydia Lefyedi

Submitted in partial fulfilment of the requirements for the
Degree

PhD Food Science

in the

Department of Food Science
Faculty of Natural and Agricultural Sciences
University of Pretoria
Pretoria
Republic of South Africa
November 2006
DECLARATION

I hereby declare that the thesis submitted at the University of Pretoria for the award of PhD degree is my work and has not been submitted by me for a degree at any other University or institution of higher education.

Mathoto Lydia Lefyedi
November 2006
ABSTRACT

Control of microbial proliferation on sorghum during malting

By

Mathoto Lydia Lefyedi

Supervisor: Prof J.R.N. Taylor
Co-Supervisor: Prof M.F. Dutton

In many African countries, including South Africa, sorghum is malted for the brewing of traditional beer. In South Africa, most sorghum malting is by traditional outdoor floor malting, whereby the sorghum grain is steeped for about 8 hours, left outdoors to germinate in an uncontrolled environment. These malting conditions (wet grain and more or less ambient temperature) encourage microbial proliferation. Microorganisms may themselves negatively impact on the safety of the malts. Of more concern is the proliferation of fungi which can potentially produce highly poisonous mycotoxins in the sorghum malt. Microbial proliferation can also affect the quality of malt, and thereby resulting in undesirable malts. Therefore there is a need for efficient and safe ways to control microbial growth during sorghum malting. The aim of this research was to determine processes to produce sorghum malt that is free of unwanted yeasts, coliforms, moulds and mycotoxins.

The first process investigated involved turning the grains during germination. The second process involved the addition of dilute sodium hydroxide (NaOH)/caustic soda and calcium hydroxide [(Ca(OH)₂)/lime during steeping and the third process was by the use of biological control methods which involved inoculation with microbial starter cultures. The effect of the three processes on the levels of moulds, coliforms, mycotoxins (aflatoxins, fumonisins, deoxynivalenol and zearalenone), cytotoxicity, expressed in terms of their IC₅₀ (Inhibitory concentration resulting in 50% inhibition of the cleavage activity) and quality in terms of diastatic power (DP) of sorghum malt were investigated.
Turning the sorghum grains during germination did not affect the microbial load of the malt. The total bacterial counts were at high levels of 10^7-10^9 cfu/g, fungi at 10^4-10^6 cfu/g and coliforms at 10^3-10^5 cfu/g. Turned and unturned grains produced malt which showed contamination by about 8 different mould species. Some of these moulds (*Fusarium verticillioides, Phoma sorghina, Aspergillus flavus, Alternaria alternata* and *Penicillium* spp.) are known to produce mycotoxins. Malt samples contained fumonisins, deoxynivalenol and zearalenone at levels of < 0.25-2 µg/g, 15-20 and 10-15 µg/kg, respectively. However, they all had very low cytotoxicity (IC$_{50}$ from 31.2 to > 500 mg/kg). Turning had the negative effect of decreasing the DP of the sorghum malt. The reason that turning did not reduce the microbial load is probably due to the fact that the blending of malt as a result of turning ensured that bacteria and moulds were evenly distributed throughout the malt bed.

Steeping sorghum grains in 0.2% NaOH reduced the level of microbial contamination in the malt. Coliforms and moulds were reduced from 10^4 and 10^5 cfu/g respectively, to levels of 10^2 cfu/g in the malt that do not pose health hazards. The high pH (10-13) that resulted from the addition of NaOH probably caused the inhibition of coliforms and moulds by distorting their cell membranes, destroying the proton gradient of the bacterium cell and thus leading to their death. Steeping in 0.2% NaOH resulted in malts with no detectable amounts of mycotoxins and no indication of cytotoxicity in the sorghum malt. A further advantage was that the DP of the 0.2% NaOH steeped malts was doubled.

The addition of about 10^7-10^8 cfu/ml of *Saccharomyces* spp. and *Pediococcus. pentosaceus* cultures to steep water reduced moulds in the malt from 10^4 cfu/g to 10^2 cfu/g and coliforms from 10^4 cfu/g to 10^2 and $<10^1$ cfu/g, respectively. The antimicrobial activity of the *Saccharomyces* spp. appears to be mainly due to the competition with the other microorganisms. The antimicrobial activity of *P. pentosaceus* is mainly attributed to the low pH. In addition to the low pH, production of CO$_2$, competition for nutrients and the production of antimicrobial activity could have been responsible for the overall antimicrobial activity of *P. pentosaceus*. Steeping with microbial cultures resulted in malts that contained no traces of mycotoxins and cytotoxicity. The DPs of the sorghum malts were not affected by steeping with microbial cultures.

Turning of grains during germination is not a good method to control microbial load during sorghum malting. The addition of dilute NaOH in steeping water is proposed as a chemical
method for the control of bacterial and fungal contamination during sorghum malting whereas the use of the *Saccharomyces* spp. and *P. pentosaceus* cultures offers a potential alternative as natural, biocontrol agents. However, dilute alkaline steeping is a more favoured method because it is an easier and practical method to put into operation.
ACKNOWLEDGEMENTS

I would like to thank the Lord God Almighty. Without His grace I would not have been able to through my studies. Thank you Lord.

I am sincerely grateful to my mentor and advisor Professor John Taylor, for his unconditional supervision during my studies. His commitment, insightful criticism and guidance were instrumental in the completion of this thesis.

I am grateful to Professor Amanda Minnaar, the Head of Department of the Department of Food Science, for her understanding and continuous motivation throughout my studies.

I wish to express my sincere gratitude to Professor Mike Dutton, Director, Food, Environmental and Health Research Group, University of Johannesburg, for his relentless scientific advice and valuable comments.

I am also indebted to Dr. Gert Marais and Ms Annelie Lübben of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Professor J.A. Verschoor and Ms Sandra van Wyngaardt of the Department of Biochemistry, University of Pretoria and Professor Mike Dutton for their valuable technical advice, provision of technical support and research facilities. I also thank them for their cooperation in carrying out this study.

I thank Dr. M.J. Va der Linde and Professor G.J.J. Van Zyl of the Statistics Department, University of Pretoria for their assistance with the statistical analysis of the research data.

Special thanks to fellow colleagues and students of the Department of Food Science for their support and the friendly research and working environment they created.

I would like to express my deepest gratitude to my husband, Serame, for his support, encouragement, understanding, love and sacrifices he made so that I could finish my studies.
I am also grateful to my parents Elizabeth and Rufus Thaoge, sisters Naomi and Rethakgetse and brother Isaac for their untiring support throughout the years.
TABLE OF CONTENTS

1. INTRODUCTION .. 1
 1.1. Statement of the problem ... 1
 1.2. Literature review .. 3
 1.2.1. Sorghum malting .. 3
 1.2.2. Sorghum malting process .. 5
 1.2.2.1. Steeping .. 5
 1.2.2.2. Germination .. 6
 1.2.2.3. Drying/kilning and milling ... 7
 1.2.3. Sorghum malting technologies in South Africa ... 9
 1.2.3.1. Floor malting ... 9
 1.2.3.2. Pneumatic malting ... 9
 1.2.4. Sorghum malt quality ... 10
 1.2.5. Microbial proliferation during sorghum malting ... 11
 1.2.5.1. Coliforms ... 12
 1.2.5.2. Moulds .. 12
 1.2.6. Effect of a high microbial load on the quality of sorghum malt .. 14
 1.2.7. Occurrence of Mycotoxins .. 15
 1.2.7.1. Commonly occurring mycotoxins .. 17
 1.2.7.1.1. Aflatoxins ... 17
 1.2.7.1.2. Ochratoxin A (OTA or OA) ... 18
 1.2.7.1.3. Fumonisins ... 18
 1.2.7.1.4. Deoxynivalenol (DON) .. 19
 1.2.7.1.5. Zearalenone (ZEA) .. 20
 1.2.7.2. Occurrence of mycotoxins in sorghum malt ... 21
 1.2.8. Legislation ... 21
 1.2.9. Techniques for analysis of mycotoxins .. 21
 1.2.9.1. Thin Layer Chromatography (TLC) .. 22
 1.2.9.2. High Performance Liquid Chromatography (HPLC) ... 23
 1.2.9.3. Immunoassays ... 23
 1.2.9.4. Cytotoxicity assays ... 25
 1.2.10. Prevention and decontamination/ detoxification of mycotoxins 26
1.2.10.1. Physical treatment………………………………………………………….26
1.2.10.2. Chemical treatments…………………………………………………….26
1.2.10.3. Addition of microbial cultures……………………………………….27
1.2.10.4. Thermal treatment……………………………………………………….28
1.3. Conclusions……………………………………………………………………….29
1.4. Hypotheses……………………………………………………………………….30
1.5. Objectives……………………………………………………………………….31

2. RESEARCH
2.1. The microbial contamination, toxicity and quality of turned and unturned
outdoor floor malted sorghum……………………………………………………….33
2.1.1. Abstract………………………………………………………………………..33
2.1.2. Introduction………………………………………………………………….34
2.1.3. Materials and Methods……………………………………………………..35
2.1.3.1. Sorghum grain……………………………………………………………..35
2.1.3.2. Malting……………………………………………………………………..35
2.1.3.3. Microbiological analysis………………………………………………..36
2.1.3.3.1. Microbial population………………………………………………..36
2.1.3.3.2. Mould isolation and identification…………………………………36
2.1.3.4. Diastatic Power (DP)………………………………………………….36
2.1.3.5. Cytotoxicity assays……………………………………………………..37
2.1.3.5.1. Sample extraction…………………………………………………..37
2.1.3.5.2. Cells and Mycotoxin standards…………………………………….37
2.1.3.5.3. MTT Cell-culture test……………………………………………….37
2.1.3.6. Assays of aflatoxins, fumonisins, deoxynivalenol (DON) and
zearalenone (ZEA)………………………………………………………………..38
2.1.3.7. Statistical analysis………………………………………………………..39
2.1.4. Results and discussion……………………………………………………..38
2.1.4.1. Microbial population……………………………………………………38
2.1.4.2. Mould isolation and identification……………………………………40
2.1.4.3. Diastatic Power (DP)…………………………………………………...43
2.1.4.4. Cytotoxicity and Mycotoxin analyses…………………………………44
2.1.5. Conclusions ………………………………………………………………….47
2.2. Effect of dilute alkaline steeping on the microbial contamination and toxicity of sorghum malt

2.2.1. Abstract...53
2.2.2. Introduction..54
2.2.3. Materials and methods...55
 2.2.3.1. Sorghum grain...55
 2.2.3.2. Malting...55
 2.2.3.3. Analysis..56
 2.2.3.3.1. pH...56
 2.2.3.3.2. Moisture content ..56
 2.2.3.3.3. Other analyses...56
 2.2.3.4. Statistical analysis..56
2.2.4. Results and discussion...57
 2.2.4.1. Microbial population...57
 2.2.4.2. Mould isolation and identification..........................60
 2.2.4.3. Diastatic Power (DP)..64
 2.2.4.4. Mycotoxins and Cytotoxicity................................70
2.2.5. Conclusions ...70
2.2.6. References..72

2.3. Antimicrobial activities of bacterial and yeast cultures in sorghum malting

2.3.1. Abstract..74
2.3.2. Introduction..75
2.3.3. Materials and methods...76
 2.3.3.1. Sorghum grain...76
 2.3.3.2. Microorganisms used..76
 2.3.3.3. Maintenance of microorganisms.............................76
 2.3.3.4. Disc diffusion assay..77
 2.3.3.5. Laboratory scale malting.....................................79
 2.3.3.6. Analyses..79
2.3.3.6.1. pH………………………………………………………………………………..79
2.3.3.7. Other analyses ……………………………………………………………………79
2.3.3.8. Statistical analysis………………………………………………………………..79
2.3.4. Results and discussion……………………………………………………………..80
 2.3.4.1. Microbial growth inhibition……………………………………………………80
 2.3.4.1.1. Disc diffusion assay…………………………………………………………80
 2.3.4.2. Laboratory scale malting………………………………………………………82
 2.3.4.3. Diastatic Power (DP)……………………………………………………………91
 2.3.4.4. Combined cultures…………………………………………………………….91
 2.3.4.5. Cytotoxicity and mycotoxins………………………………………………….95
 2.3.5. Conclusions……………………………………………………………………….95
 2.3.6. References……………………………………………………………………..97

3. DISCUSSION……………………………………………………………………………..100
 3.1. Methodologies…………………………………………………………………….100
 3.2. Mechanisms of microbe inhibition………………………………………………109
 3.3. Relative merits of the technologies…………………………………………….112

4. CONCLUSIONS AND RECOMMENDATIONS……………………………………….118
5. REFERENCES………………………………………………………………………….119
6. APPENDIX: Published papers and oral presentations……………………………..139
LIST OF TABLES

Table 1.1. Benefits of sorghum malting and of the use of sorghum malt 4
Table 1.2. Incidence of the dominant mould spp. (% grain infected) in commercial and commercial sorghum malt .. 14
Table 1.3. Mycotoxins, moulds that produce them and the main effects observed in human and animals .. 16
Table 1.4. Summary of the advantages and disadvantages of the analytical techniques for mycotoxins .. 24
Table 1.5. Chemicals which could be used as antimicrobial agents and disadvantages in their use .. 27

Table 2.1. Effect of turning on the bacterial counts (cfu/g) of the unmalted sorghum and the top, middle and bottom layers of sorghum malt when germinated at 14-17°C and 18-20°C ... 39
Table 2.2. Incidence of fungal species (% grains infected) of the unmalted sorghum and the top, middle and bottom layers of sorghum malt when germinated at 14-17°C and 18-20°C ... 42
Table 2.3. Concentration of aflatoxins (B₁, B₂, G₁ and G₂) fumonisins (B₁ and B₂), deoxynivalenol (DON), zearalenone (ZEA) and the IC₅₀ levels of the unmalted sorghum and the top, middle and bottom layers of sorghum malt when germinated at 14-17°C and 18-20°C ... 46
Table 2.4. Concentration of aflatoxins (B₁, B₂, G₁ and G₂) fumonisins (B₁ and B₂), deoxynivalenol (DON), zearalenone (ZEA) and the IC₅₀ levels of malts steeped in different concentrations of NaOH and Ca(OH)₂ ... 71
Table 2.5. LAB, Bacillus spp. and Saccharomyces spp. cultures tested for antifungal activity with the disc diffusion assay ... 78
Table 2.6. Antimicrobial activity (inhibition zones in mm) of the LAB, yeast and Bacillus spp. cultures tested against different mould cultures using the disc diffusion assay ... 81

Table 2.7. Effect of steeping NK 283 and PAN 8546 sorghum grains in different microbial cultures on the growth of total aerobic plate count (APC) during the malting process ... 84
Table 2.8. Effect of steeping NK 283 and PAN 8546 sorghum grains in different microbial cultures on the growth of LAB during the malting process……85

Table 2.9. Effect of steeping NK 283 and PAN 8546 sorghum grains in different microbial cultures on the growth of yeasts during the malting process……86

Table 2.10. Effect of steeping NK 283 and PAN 8546 sorghum grains in different microbial cultures on the growth of moulds during the malting process……87

Table 2.11. Effect of steeping NK 283 and PAN 8546 sorghum grains in different microbial cultures on the growth of coliforms during the malting process…88

Table 2.12. Incidence of mould species (% grains infected) and the diastatic power, (SDU/g) of the NK 283 and PAN 8546 malt samples made with L5 and Y1 steeped grains…………………………………………………………………………………89

Table 2.13. Effect of steeping the NK 283 (a) and PAN 8546 (b) sorghum grains in the combined microbial cultures on the growth of moulds during the malting process…………………………………………………………………………93

Table 2.14. Effect of steeping the NK 283 (a) and PAN 8546 (b) sorghum grains in the combined microbial cultures on the growth of coliforms during the malting process…………………………………………………………………………94

Table 2.15. Concentration of aflatoxins (B$_1$, B$_2$, G$_1$ and G$_2$) fumonisins (B$_1$, and B$_2$), deoxynivalenol (DON), zearalenone (ZEA) and the IC$_{50}$ levels of the NK 283 and PAN 8546 malt samples made with L5 and Y1 steeped grains……96

Table 3.1. Inhibitory concentrations of aflatoxin B$_1$, DON and ZEA against the SP2/O, SK, MDCK and Hela cell lines……………………………………………………………..108

Table 3.2. Summary of the effects of alkaline steeping and steeping with microbial cultures on the microbiological quality and safety of sorghum malt……….113

Table 3.3. Estimation of the running costs in South African Rands (R 6.6 = 1 US$) incurred when alkaline steeping and steeping with microbial cultures are applied, when 10 tons of sorghum grain is malted per day………………116

Table 3.4. Relative merits of steeping with dilute (NaOH) and treating with microbial cultures…………………………………………………………………………………………..117
LIST OF FIGURES

Figure 1.1. Schematic presentation of sorghum malting..5
Figure 1.2. Pattern of endosperm modification during sorghum germination. Al –
aleurone layer, P – pericarp, HE - Horny endosperm, S – Scutellum,
Em – embryo, FE –Floury endosperm...8
Figure 1.3. Structure of aflatoxin B$_1$..17
Figure 1.4. Structure of ochratoxin A..18
Figure 1.5. Structure of fumonisin. The groups R1 and R3 are different fumonisins......19
Figure 1.6. Structure of deoxynivalenol...20
Figure 1.7. Structure of zearalenone...20
Figure 1.8. A general analytical method procedure for mycotoxin determination.........22
Figure 1.9. Chemical structure of the MTT and the formazan...25

Figure 2.1. Moisture content (%) of the top, middle and bottom layers of the sorghum
obtained at temperatures of 18-20 and 14-17°C. ..41
Figure 2.2. Moisture content (%) of the top, middle and bottom layers of the sorghum
obtained at temperatures of 14-17 and 18-20°C...44
Figure 2.3. Effect of steeping NK 283 sorghum grain in different concentrations of
Ca(OH)$_2$ on the microbial loads of the malt..58
Figure 2.4. Effect of steeping the NK 283 (a) and PAN 8546 (b) sorghum grains in
different concentrations of NaOH on the microbial loads of the malt.................59
Figure 2.5. Effect of NaOH and Ca(OH)$_2$ concentration on the pH of the NK 283 and
PAN 8546 steep waters at the end of the 6 hours steeping regime.61
Figure 2.6. Effect of steeping NK 283 sorghum grain in different concentrations
of Ca(OH)$_2$ on the different moulds spp. in the malt.................................62
Figure 2.7. Effect of steeping NK 283 (a) and PAN 8546 (b) sorghum grains in
different concentrations of NaOH on the different moulds spp. in the malt....63
Figure 2.8. Green malts made from the control (a) and the 0.2% NaOH (b) steeped
NK 283 sorghum grains...65
Figure 2.9. Green malts made from the control (a) and the 0.2% NaOH (b) steeped
PAN 8546 sorghum grains...66
Figure 2.10. Effect of NaOH and Ca(OH)$_2$ concentration on the DP of NK 283 and
PAN 8546 sorghum grains. ...67
Figure 2.11. Effect of steeping NK 283 sorghum grains in different concentrations (0.1,
0.3 and 0.5 %) of Ca(OH)$_2$ on the water absorption (WA%) by the grains during germination. ...68

Figure 2.12. Effect of steeping in different concentrations of NaOH (0.1, 0.2, 0.3%) the % water absorption (%WA) of the NK 283 (a) and PAN 8546 (b) sorghum grains during germination. ...69

Figure 2.13. Effect of steeping the NK 283 (a) and PAN 8546 (b) sorghum grains in different microbial cultures on the pH during the malting process.92

Figure 3.1. Basic structures of (a) benzoic acids and (b) cinnamic acids. Group R varies for different derivatives...104

Figure 3.2. Basic structures of flavonoids...104

Figure 3.3. Structure of aflatoxin B$_1$...105

Figure 3.4. Calculation of inhibitory concentration (IC$_{50}$) of the sorghum malt extracts on the SP2/0 cells...106