THE RELATIONSHIP BETWEEN VOID RATIO AND SHEAR WAVE VELOCITY OF GOLD TAILINGS

HSIN-PEI NICOL CHANG

A dissertation submitted in partial fulfillment of the requirement for the degree of

MASTER OF ENGINEERING (GEOTECHNICAL ENGINEERING)

In the

FACULTY OF ENGINEERING, BUILD ENVIROMENT AND

INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

October 2004

DISSERTATION SUMMARY

THE RELATIONSHIP BETWEEN VOID RATIO AND SHEAR WAVE VELOCITY OF GOLD TAILINGS

HSIN-PEI NICOL CHANG

Supervisor:	Professor G. Heymann
Department:	Civil and Biosystems Engineering
University:	University of Pretoria
Degree:	Master of Engineering (Geotechnical Engineering)

South Africa, as one of the world's largest gold producing countries, also generates large amounts of tailings. These tailings are disposed in tailings dams, which pose great threat to the environment in the case of failure, in particular, liquefaction. In order to evaluate the potential of liquefaction, the void ratio of the tailings is required and is often impossible to obtain. Seismic methods allow an indirect method to estimate void ratio of in situ deposits of which tailings are examples of.

Currently, the use of seismic methods to estimate void ratio of tailings rely on shear wave velocity – void ratio relationships derived for sands. It is thus uncertain whether this relationship holds for gold tailings, which is classified as a sandy silt or silt.

The measurement of shear wave velocity of tailings is done in the laboratory using a triaxial apparatus modified to accommodate bender element. Shear wave velocities

are measured using wide square pulses and continuous sinusoidal waves.

The results show that there is a near linear relationship between void ratio and shear wave velocity normalized against effective stress. The position of this relationship lies below the previously published results for sands. Shear wave velocity of gold tailings is more sensitive to changes in effective stress than changes in void ratio or over-consolidation ratio. Furthermore, using phase sensitive detection of continuous waves, we can conclude that shear wave velocity of gold tailings is also frequency dependent.

Key words: Shear wave velocity; void ratio; bender elements; gold tailings; seismic methods; liquefaction; silts.

ACKNOWLEDGEMENT

I wish to express my appreciation to the following persons who made this dissertation possible:

- Professor G Heymann, my supervisor for his guidance and support.
- Mr. J van Staden for his help and support in the laboratory.
- Mr. H Booysens and Mr. J Peens for their assistance with instrumentation.
- Mr. F Windell for his help with downloading data.
- Professor J. Coetzee, Mr A.J. Botha and Mr A.N. Hall of Microscopy for their help with the electron micrographs and microanalysis.

TABLE OF CONTENTS

	Page
DISSERTATION SUMMARY	Ι
ACKNOWLEDGEMENT	III
TABLE OF CONTENTS	IV
LIST OF FIGURES	VIII
LIST OF TABLES	XI
LIST OF SYMBOLS	XII
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Objective of study	3
1.3 Scope of study	4
1.4 Methodology	4
1.5 Organization of report	5
CHAPTER 2 LITERATURE STUDY	7
2.1 Background	7
2.2 Liquefaction	8
2.3 Seismic methods	13
2.4 Shear wave velocity and void ratio	17

2.5 Bender element testing and shear wave velocity	
2.5.1 Time of flight techniques	24
2.5.2 Phase sensitive detection	27
2.6 Potential problems of bender element testing	29
2.6.1 Problems associated with time of flight techniques	29
2.6.2 Problems associated with phase sensitive detection	31
2.6.3 Problems associated with bender element testing in general	31
2.7 Fast Fourier Transform (FFT)	33
2.8 Gold tailings material properties	36
CHAPTER 3 TEST METHOD	38
3.1 Background	38
3.2 Testing strategy	38
3.3 Testing procedure	40
3.4 Experimental system setup	41
3.4.1 Signal generator	41
3.4.2 Charge amplifier	42
3.4.3 Bender elements	42
3.4.4 Data acquisition system	46
3.4.5 Pressure system	46
3.5 System calibration	47
3.6 Gold tailings	48
3.7 Sample preparation and triaxial testing	51

CHAPTER 4 ANALYSIS

4.1 Background	56
4.2 Void ratio analysis	56
4.3 Shear wave velocity analysis	58
4.3.1 Signal interpretation	58
4.3.2 Analysis method: first arrivals	59
4.3.3 Analysis method: phase sensitive detection	60
4.4 Void ratio analysis results	62
4.5 Shear wave velocity analysis results	65
4.5.1 Signal quality	65
4.5.2 Shear wave velocity from first arrivals method	66
4.5.3 Shear wave velocity from phase sensitive detection	70
4.6 Conclusion	73
CHAPTER 5 DISCUSSION	74
5.1 Background	74
5.2 Shear wave interpretation	74
5.3 Collapse behavior of gold tailings	77
5.4 Void ratio – Shear wave velocity relationship	79
5.5 Shear wave velocity with frequency	87

56

CHAPTER 6 CONCLUSIONS 89

6.1 Conclusions from the literature study	89
6.2 Conclusions made during the research program	89
6.3 Final conclusion	90

- CHAPTER 7 REFERENCE 92
- APPENDIX A SCANNING ELECTRON MICROSCOPE: MICROGRAPH AND MICROANALYSIS OF THE SOIL SPECIMENS
- APPENDIX B SCHEMATIC BENDER ELEMENT DEVELOPMENT PROCEDURE
- APPENCIX C WORKSHEETS AND SPREADSHEETS FOR VOID RATIO CALCULATION
- APPENCIX D SHEAR WAVE VELOCITY RESULTS USING FIRST ARRIVALS METHOD
- APPENCIX E SHEAR WAVE VELOCITY RESULTS USING PHASE SENSITIVE DETECTION
- APPENCIX F FULL PAGE SIZE OF GRAPHS SHOWN IN DISCUSSION CHAPTER

LIST OF FIGURES

Figure

1 Marble analogy for dilation and contraction. 8 2 Soil behavior under loading (Cubrinovski and Ishihara, 2000). 9 3 Various flow behavior in the e-p' plane (Cubrinovski and Ishihara, 11 2000). 4 Steady state diagram for Merriespruit gold tailings (Papageorgiou 12 et al., 1999) 5 Graph of shear wave velocity vs void ratio for sands of various 17 gradings at various stresses. (Hardin and Richart, 1963). 6 Graph of normalized shear wave velocity vs void ratio (Hardin and 18 Richart, 1963). 7 Void ratio against normalized shear wave velocity for various 19 sands (Robertson and Fear, 1995). 8 Schematic representation of the mechanism of a piezoceramic 20 bender element. 9 21 Propagation of signal through a system containing two harmonic oscillators (bender elements) and a Biot medium (soil specimen) (Blewett et al., 2000). 10 23 Simple bender element system. 11 Frequency component in driving waveforms. 24 12 Typical bender element signals. 25

Page

13	Variation of shear wave velocity with frequency (Blewett et al.	31
	2000).	
14	Interpretation of a co-sinusoidal wave (Randell, 1987).	33
15	Wave expressed in the frequency domain.	34
16	Phase angle expressed as a complex number.	35
17	Instrumentation setup.	41
18	Bender element encapsulation.	43
19	Layout of bender within top cap or base pedestal	43
20	Top view of base pedestal and enlarged plug design.	45
21	Pressure system layout.	47
22	Calibration result of pore pressure transducer against the	47
	Budenberg dead weight calibration system.	
23	Particle size distribution of gold tailings specimen.	48
24	A schematic illustration of the Wykeham Farrance triaxial	52
	apparatus	
25	Typical received signal with reversed polarity for square wave	58
	input.	
26	Typical continuous wave result.	61
27	Shear wave result of sample 14 at 100 kPa effective stress	75
	consolidation.	
28	Results from sample 08C at 200 kPa effective stress swelling.	76
	Reversibility of the shear wave clearly demonstrated.	
29	Volumetric strain due to collapse plotted against target void ratio.	78
30	Graph of shear wave velocity against void ratio for various	79
	samples.	

IX

- 31 Shear wave velocity vs void ratio plot for various effective 80 stresses.
- 32 Shear wave velocity vs void ratio graph for various effective stress 81increments, adding trend lines.
- 33 Shear wave velocity being normalized with a factor of 0.28. 82
 Including the 95% (solid line) and 80% (dotted line) confidence
 intervals.
- Results obtained in this research imposed on previous results from 83Robertson and Fear (1995).
- 35 Normalized shear wave velocity imposed on results of Hardin and 84Richart (1963).
- 36 Graph of shear wave velocity against effective stress. 87
- Graph of shear wave velocity and output signal amplitude against 88frequency.

LIST OF TABLES

Table

Page

1.	The constituent elements of each material fraction with its	
	proportion (by weight) in the sample.	50
2	Void ratio calculations for specimen 06.	62
3	Void ratio calculations for specimen 08.	63
4	Void ratio calculations for specimen 10.	63
5	Void ratio calculations for specimen 02.	64
6	Void ratio calculations for specimen 14.	64
7	Void ratio calculations for specimen 08C.	65
8	Shear wave velocity for specimen 06.	66
9	Shear wave velocity for specimen 08.	67
10	Shear wave velocity for specimen 10.	67
11	Shear wave velocity for specimen 12.	68
12	Shear wave velocity for specimen 14.	68
13	Shear wave velocity for specimen 08C.	69
14	Continuous shear wave analysis with ranging number of wave	71
	lengths.	
15	Continuous shear wave analysis with identified shear wave	72
	velocity.	

LIST OF SYMBOLS

9	Real number.
a	
b	Complex number.
В	Relative response of the Biot medium.
e	Void ratio.
f	Wave frequency.
F	Relative response of the forced harmonic oscillator.
FC _{th}	Threshold fines content.
G _{max}	Small strain shear stiffness.
Gs	Specific gravity of soil particles.
L	Distance between sender and receiver bender element.
L_E	Effective travel distance of shear wave.
М	Mass of sample.
M_{Solid}	Mass of solids in a sample.
n	Index number of the complex number set
Ν	Total number of data points taken.
q'	Effective deviatoric stress.
p'	Mean normal effective stress.
Ра	Atmospheric pressure.
S_B	Subsystem response of Biot medium.
\mathbf{S}_{F}	Subsystem response of forced harmonic oscillator.
t	Travel time of shear wave from sender to receiver bender.
Т	Period of the wave.

V	Volume of sample.
V_{Solid}	Volume of solids in the sample.
V_V	Volume of voids in the sample.
V_S	Shear wave velocity.
Vs(n)	Normalized shear wave velocity (against effective stress).
W	Moisture content.
3	Axial strain.
$\epsilon_x\epsilon_y\epsilon_z$	Axial strain in the x, y, and z direction.
θ	Phase angle.
γ	Unit weight of soil.
λ	Wave length.
$ ho_w$	Density of water.
σ'v	Effective vertical stress.
τ	Time shift of two signals used in cross correlation.