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South Africa, as one of the world’s largest gold producing countries, also generates 

large amounts of tailings. These tailings are disposed in tailings dams, which pose 

great threat to the environment in the case of failure, in particular, liquefaction. In 

order to evaluate the potential of liquefaction, the void ratio of the tailings is required 

and is often impossible to obtain. Seismic methods allow an indirect method to 

estimate void ratio of in situ deposits of which tailings are examples of.  

 

Currently, the use of seismic methods to estimate void ratio of tailings rely on shear 

wave velocity – void ratio relationships derived for sands. It is thus uncertain whether 

this relationship holds for gold tailings, which is classified as a sandy silt or silt.  

 

The measurement of shear wave velocity of tailings is done in the laboratory using a 

triaxial apparatus modified to accommodate bender element. Shear wave velocities 
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are measured using wide square pulses and continuous sinusoidal waves.  

 

The results show that there is a near linear relationship between void ratio and shear 

wave velocity normalized against effective stress. The position of this relationship lies 

below the previously published results for sands. Shear wave velocity of gold tailings 

is more sensitive to changes in effective stress than changes in void ratio or 

over-consolidation ratio. Furthermore, using phase sensitive detection of continuous 

waves, we can conclude that shear wave velocity of gold tailings is also frequency 

dependent.  

 

Key words: Shear wave velocity; void ratio; bender elements; gold tailings; seismic 

methods; liquefaction; silts. 
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