Investigation of factors governing the stability of stope panels in hard rock mines in order to define a suitable design methodology for shallow mining operations

Abraham Hendrik Swart

A dissertation submitted to the Faculty of Engineering, Built Environment and Information Technology of the University of Pretoria, in partial fulfilment of the requirements for the degree of Master of Engineering (Mining)

2004
Ondersoek van faktore wat die stabiliteit bepaal van afboupanele in harderots myne om sodoende ‘n gepaste ontwerp metodologie te definieër vir vlak mynbou operasies

Abraham Hendrik Swart

‘n Verhandeling voorgelê aan die Fakulteit Ingenieurswese, Bou-omgewing en Inligtingstegnologie van die Universiteit van Pretoria, tot gedeeltelike vervulling van die vereistes vir die graad Magister in Ingenieurswese (Mynbou)

2004
Dissertation summary

Investigation of factors governing the stability of stope panels in hard rock mines in order to define a suitable design methodology for shallow mining operations

A.H. Swart

Supervisor: Professor M.F. Handley (University of Pretoria)
Department: Mining Engineering
University: University of Pretoria
Degree: Master of Engineering (Mining)

Key words: stability, stope panels, design methodology, hard rock mines, shallow mining operations
Instability in stope panels in shallow mines manifests itself as rockfalls from the hangingwall. Rockfalls from unstable stope panels vary in size from rockfalls between support units, to rockfalls spanning between pillars or solid abutments, to rockfalls bridging several panels and pillars. A suitable and reliable design methodology for stable stope panels at shallow depths is therefore required. This methodology must consider all manifestations of instability in stope panels and take account of the factors governing the stability.

Very few mines design stope panels according to a systematic design procedure or methodology. Rock mass characterisation, estimation of rock mass properties, identification of potential failure modes, appropriate stability analyses and other elements of the rock engineering design process are often neglected. Instead, panel lengths are often dictated by the equipment in use and by previous experience under similar conditions. Consequently, unplanned stope panel collapses occur on most near-surface and shallow mines. Although these incidents often occur during blasting, they pose a major threat to the safety of underground workers and the economic extraction of orebodies. Hence, a rock engineering design methodology for the design of stable stope panels between pillars is of vital importance for optimum safety and production in shallow mining operations.

Using the proposed design methodology, rock mechanics practitioners and mine planners should be able to identify and quantify the critical factors influencing the stability of stope panels. The critical factors should then be used as input to the design of stable stope panels that will provide the necessary safe environment for underground personnel working in stopes.

It is concluded that the design of stable stope panels should be a process of defining the means of creating stable stope panels for the safety of underground workers and optimum extraction of the orebody. Therefore, a method is required whereby all rock properties, their variability, and an understanding of all rock mechanisms affecting the stability of stope spans are used as a fundamental base. A procedure for identifying the mechanisms and rock properties relevant to the
specific problem is then required. In this way, existing knowledge should be used in an optimal way to design site specific stable stope spans.

Hence, it is proposed that the design methodology for stable stope panels is a process consisting of the following steps:

1. Define objective.
2. Rock mass characterisation.
3. Estimation of in situ rock mass properties.
4. Consider an "ideal" stope panel.
5. Identification of potential failure modes.
7. Identify all significant hazards and assess the significant risks.
9. Determination of support requirements.
10. Design of support.
12. Recommendation and implementation.
13. Monitoring of excavation and support behaviour to validate design and permit modifications.
Samevatting van verhandeling

Ondersoek van faktore wat die stabiliteit/onstabiliteit bepaal van aboupanele in harderots myne om sodoende ‘n gepaste ontwerp metodologie te definieër vir vlak mynbou operasies

A.H. Swart

Promotor: Professor M.F. Handley (Universiteit van Pretoria)
Departement: Mynbou Ingenieurswese
Universiteit: Universiteit van Pretoria
Graad: Magister in Ingenieurswese (Mynbou)

Sleuteltermes: stabiliteit, afboupanele, ontwerp metodologie, harderots myne, vlak mynbou operasies
Onstabiliteit in afboupanele in vlak myne manifesteer as rotsstoring vanaf die hangwal. Rotsstortings weens onstabiele afboupanele varieër in grote vanaf rotsstortings tussen bestettings eenhede, tot rotsstortings tussen pilare, tot rotsstortings oor verskeie panele en pilare. ’n Geskikte en betroubare ontwerpmetodologie vir stabiele afboupanele op vlak dieptes word dus benodig. Sodanige metodologie moet alle manifestasies van onstabiliteit in afboupanele oorweeg en moet ook oorweging skenk aan die faktore wat stabiliteit/onstabiliteit beheer.

Baie min myne ontwerp afboupanele volgens ’n sistematiese ontwerp prosedure of metodologie. Rotsmassa karakteriseering, skatting van rotsmassa eienskappe, identifikasie van potensiële swigtingsmeganismes, toepaslike stabiliteits analises en ander elemente van die rots ingenieurswese ontwerp proses word dikwels nagelaat. Instedel daarvan word paneellengtes dikwels dikteer deur die toerusting ingebruik en deur vorige ondervinding onder soortgelyke omstandighede. Gevolglik vind onbeplande ineenstorting van afboupanele plaas in meeste vlak myne en myne naby die oppervlakte. Alhoewel hierdie insidente dikwels plaasvind gedurende skiettyd, hou dit groot gevaar in vir die veiligheid van ondergrondse werkers en die ekonomiese ekstraksie van ertsliggame. ’n Rots ingenieurs ontwerp metodologie vir die ontwerp van stabiele afboupanele tussen pilare is dus van uiterste belang vir optimum veiligheid en produksie in vlak mynbou operasies.

Rotsmeganika praktiseerders en mynbeplanners behoort die kritiese faktore wat die stabiliteit van afboupanele beïnvloed te kan identifiseer en kwantifiseer deur die voorgestelde ontwerp metodologie te gebruik. Die kritiese faktore moet dan gebruik word as inset tot die ontwerp van stabiele afboupanele wat die nodige veilige omgewing vir ondergrondse personeel sal skep.

Die gevolgtrekking word gemaak dat die ontwerp van stabiele afboupanele behoort ’n proses te wees wat die middele definitie om stabiele afboupanele te skep vir die veiligheid van ondergrondse werkers en optimum ekstraksie van die ertsliggaam. ’n Metode word dus benodig waardeur alle rotseienskappe en hulle veranderlikheid, en verstaan van alle rots mekanismes wat die stabiliteit van afboupanele affekteer
gebruik word as ‘n fundamentele basis. ‘n Prosedure vir die identifiseering van relevante meganismes en rots eienskappe word dan benodig. Bestaande kennis behoort op hierdie manier optimaal gebruik te word vir die ontwerp van plek spesifieke stabiele afboupanele.

Die volgende proses word voorgestel as ontwerp metodologie vir stabiele afboupanele:

1. Definieer die doelwit van die ontwerp.
2. Rotsmassa karakterisering.
3. Skatting van die in situ rotsmassa eienskappe.
5. Identifikasie van potensiële swigtings modes.
7. Identifikasie van belangrike gevare en beskouing van belangrike risiko’s.
8. Geometriese optimeering.
10. Ontwerp van bestutting.
11. Evaluering.
Acknowledgements

I wish to express my appreciation to the following organisations and persons who made this dissertation possible:

- This dissertation is based on the Safety in Mines Research Advisory Committee (SIMRAC) research project OTH 501. The funding provided by SIMRAC and their permission to use the material is gratefully acknowledged.

- My employer, SRK Consulting, for their financial assistance and the opportunity to be the project leader of the SIMRAC project OTH 501.

- Professor Dick Stacey, who reviewed the SIMRAC research project OTH 501, for his encouragement to complete the dissertation.

- Professor Matthew Handley, my supervisor for his guidance and support.

- My colleague, Mr Johan Wesseloo, for his assistance with the interpretation of the elastic and Voussoir beam analyses.

- My colleagues, Messrs William Joughin and Richard Butcher, for their assistance with the collation of field data and relevant literature during the initial stages of SIMRAC project OTH 501.

- My colleagues, Me Kim le Roux and Me Diane Walker, for their assistance with the rock mass classification of several underground stopes.

- The management and rock engineering practitioners of the mines visited for the information provided regarding the stability of stope panels, and for useful discussions on design considerations for stable stope panels in near-surface and shallow mining operations.

- My wife, Zelda, for her encouragement and support during this study.
Table of contents

Dissertation summary .. i
Samevatting van verhandeling ... iv
Acknowledgements .. vii
Table of contents .. viii
List of figures .. xiii
List of tables .. xv
Glossary of abbreviations, symbols and terms xvii

1 Introduction ... 1

1.1 Problem statement .. 2

1.2 Objectives of this study 3

1.2.1 Main objectives .. 3

1.2.2 Secondary objectives 3

1.3 Research methodology 4

1.3.1 Research context 4

1.3.2 Research approach 4

2 Literature review and evaluation of rock engineering design methods .. 7

2.1 Literature review and evaluation of empirical design methods .. 8
3.3.1 Bieniawski’s Rock Mass Rating System (RMR) 88
3.3.2 Barton’s rock mass quality index (Q) 89
3.3.3 Laubscher’s Mining Rock Mass Rating (MRMR) 90
3.4 Estimation of rock mass properties 91
3.4.1 Estimation of joint properties 94
3.4.2 Talcose and Serpentinised Joints 96
3.5 Statistical analysis of geotechnical parameters 97
3.5.1 Statistical analysis of the RMR for chromitite 97
3.5.2 Statistical analysis of the UCS of chromitite and pyroxenite 98
3.5.3 Statistical analysis of the mi values for chromitite 100
3.5.4 Statistical analysis of the JRC values for chromitite and pyroxenite 101
4 Risk assessment 102
4.1 Literature review 102
4.2 Discussion 104
4.3 Fault-event tree analysis approach to risk assessment 105
4.4 Conclusions 109
5 Stability analyses 111
5.1 Stability analyses based on rock mass classification 111
5.2 Analysis of stope panel stability using Laubscher’s (2001) MRMR system 115
5.2.1 Stability of stopes at Mine A 116
5.2.2 Stability of stopes at Mine B 118
5.2.3 Influence of geological structures on stope stability 118
6 Proposed design methodology for stable stope spans 120
6.1 Rock mass characterisation
 6.1.1 Collection of geotechnical data
 6.1.2 Evaluation or estimation of boundary conditions
 6.1.3 Rock mass classification
 6.1.4 Recording and presentation of geotechnical data

6.2 Estimation of rock mass properties

6.3 Consider “ideal” excavation

6.4 Identification of potential failure modes
 6.4.1 Structurally controlled, gravity driven failures
 6.4.2 Stress induced, gravity assisted failures.

6.5 Stability analyses

6.6 Identification of significant hazards and assessment of significant risks

6.7 Geometrical optimisation

6.8 Evaluation of support requirements

6.9 Evaluation of ideas and solutions

6.10 Optimisation

6.11 Conclusions and Recommendations

6.12 Monitoring

7 Conclusions and recommendations

7.1 Conclusions
 7.1.1 Main objective
 7.1.2 Secondary objectives

7.2 Recommendations

8 References
List of appendices

Appendix A Pro forma rock mass and hazard rating system
Appendix B Questionnaire
Appendix C Summary of mapping data at Mines A, B and C
Appendix D Fault-Event Tree methodology approach to risk assessment
Appendix E Fault-Event Tree Analysis – Risk of panel instability
List of figures

Figure 2.1	Flowchart showing the development of rock mass classification/rating systems and their application to mining from 1946 to 1993 (after Stewart and Forsyth, 1995)	11
Figure 2.2	Relationship between unsupported span, stand-up time and RMR (after Bieniawski, 1989 and 1993)	18
Figure 2.3	Relationship between maximum unsupported span and Q value	21
Figure 2.4	Stability diagram illustrating the relationship between MRM and HR (after Laubscher, 2001)	25
Figure 2.5	Stability Graph (after Potvin, 1988 and Nickson, 1992)	29
Figure 2.6	Rock slabling by axial splitting and buckling	42
Figure 2.7	Relationship between column thickness, d2, column height, L, Young’s Modulus, E, and buckling stress, sb	43
Figure 2.8	The compression arch forming inside the rock beam	44
Figure 2.9	Flow chart for the determination of stability and deflection of a Voussoir beam	45
Figure 2.10	Flow chart for the iterative solution scheme proposed by Diederichs and Kaiser (1999)	46
Figure 2.11	Illustration of the total loading on the beam	48
Figure 2.12	Comparison of the horizontal stress variation assumed by Brady and Brown (1985), and Diederichs and Kaiser (1999)	49
Figure 3.1	Contour plots of joint orientation data from Sections D and S	67
Figure 3.2	Plan of Section D 27-7, showing mapping locations	70
Figure 3.3	Section D 27-7: Section through pillar – scanline	171
Figure 3.4	Section D 27-7: Plan view of scanline	172
Figure 3.5 Section D 27-7: Plan view and section of pillar scanline 2 (below large dome) 73
Figure 3.6 Section D 27-7: Plan view of hangingwall scanline 374
Figure 3.7 Section D 27-7: Plan view of hangingwall scanline 475
Figure 3.8 Section S 33-16S: Section through pillar in double seam mining area 79
Figure 3.9 Section S 33-16S: Plan view of pillar scanline survey 80
Figure 3.10 Section S 33-16S: Plan view of hangingwall dip and strike surveys 81
Figure 3.11 Section S: Plan view of scanline through dyke 82
Figure 3.12 Frequency distributions of the RMR values for the chromitite of Sections D, N and S 98
Figure 3.13 Frequency distributions of the UCS values for the chromitite of Sections D, S and N 99
Figure 3.14 Frequency distribution of the UCS values for pyroxenite. 100
Figure 3.15 Frequency distribution of mi values for chromitite. 100
Figure 3.16 Histograms of JRC data for the chromitite and pyroxenite. 101

Figure 5.1 Stability diagram (after Laubscher 1990) 117

Figure 6.1 Proposed design methodology for stable stope panels 122
List of tables

Table 2-1 Advantages and disadvantages of Bieniawski’s RMR system (‘89) 19
Table 2-2 Advantages and disadvantages of the Q-system 22
Table 2-3 Different weighting on the input parameters in Bieniawski’s (1989 and 1993) and Laubscher’s RMR (1990) 23
Table 2-4 Advantages and disadvantages of the Mining Rock Mass Classification system 26
Table 3-1 Rock engineering practices followed by mines to ensure stability of stope spans 62
Table 3-2 Summary of measured geotechnical and mining parameters 65
Table 3-3 Summary of dip and dip directions of major joint sets in Sections D and S 68
Table 3-4 Summary of average RMR, MRMR, RMS and DRMS for the hangingwall in Section D 76
Table 3-5 Summary of average RMR, MRMR, RMS and DRMS for the hangingwall in Section S 77
Table 3-6 Weak planes as seen in borehole core 86
Table 3-7 Comparison of MRMR values obtained from boreholes logged and from underground mapping 87
Table 3-8 Summary of representative RMR and GSI ratings of geotechnical zones at three chrome mines 89
Table 3-9 Summary of representative Q values for identified geotechnical zones 89
Table 3-10 Summary of representative MRMR values of identified geotechnical zones 90
Table 3-11 Elastic properties for the different materials 92
Table 3-12 Hoek-Brown properties of the pyroxenite parting and host rock

Table 3-13 Summary of the distributions of chromitite properties

Table 3-14 Summary of joint properties (Barton-Bandis)

Table 3-15 Summary of joint properties (Mohr-Coulomb)

Table 3-16 Joint properties for talcose/serpentinised joints

Table 4-1 Factors governing the stability of stope spans

Table 4-2 Sensitivity analysis to illustrate the effect of the root causes on the risk of loss of life

Table 5-1 Mine A – Estimation of stable stope spans based on RMR, Q and MRMR ratings

Table 5-2 Mine B– Estimation of stable stope spans based on RMR, Q and MRMR ratings

Table 5-3 Mine C– Estimation of stable stope spans based on RMR, Q and MRMR ratings
Glossary of abbreviations, symbols and terms

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGS</td>
<td>Australian Geomechanics Society</td>
</tr>
<tr>
<td>BL</td>
<td>buckling limit</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>DRMS</td>
<td>design rock mass strength</td>
</tr>
<tr>
<td>ESR</td>
<td>excavation support ratio</td>
</tr>
<tr>
<td>ECPD</td>
<td>Engineers’ Council for Professional Development</td>
</tr>
<tr>
<td>FF</td>
<td>fracture frequency</td>
</tr>
<tr>
<td>FOG</td>
<td>fall of ground</td>
</tr>
<tr>
<td>FOS</td>
<td>factor of safety</td>
</tr>
<tr>
<td>FTA</td>
<td>fault tree analysis</td>
</tr>
<tr>
<td>GSI</td>
<td>Geological Strength Index</td>
</tr>
<tr>
<td>HR</td>
<td>hydraulic radius</td>
</tr>
<tr>
<td>IRS</td>
<td>intact rock strength</td>
</tr>
<tr>
<td>JC</td>
<td>joint condition</td>
</tr>
<tr>
<td>JRC</td>
<td>joint roughness coefficient</td>
</tr>
<tr>
<td>L</td>
<td>length</td>
</tr>
<tr>
<td>LGA</td>
<td>local geotechnical area</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MBR</td>
<td>Modified Basic RMR system</td>
</tr>
<tr>
<td>MN</td>
<td>meganewton</td>
</tr>
<tr>
<td>MPa</td>
<td>megapascal</td>
</tr>
<tr>
<td>MRMR</td>
<td>Mining Rock Mass Rating</td>
</tr>
<tr>
<td>NATM</td>
<td>New Austrian Tunnelling Method</td>
</tr>
<tr>
<td>NGI</td>
<td>Norwegian Geotechnical Institute</td>
</tr>
<tr>
<td>RCR</td>
<td>rock condition rating</td>
</tr>
<tr>
<td>RGA</td>
<td>regional geotechnical area</td>
</tr>
</tbody>
</table>
RMR rock mass rating

RMR_{89} Bieniawski’s rock mass rating (1989)

RMS rock mass strength

RQD rock quality designation

RSR rock structure rating

SAMRASS South African Mines Reportable Accident Statistics System

SG specific gravity

SI stability index

SIMRAC Safety in Mines Research Advisory Committee

SRF stress reduction factor

TOL tolerance

UCS uniaxial compressive strength

UTS uniaxial tensile strength

WRAC workplace risk assessment and control

Symbols

A, B and C parameters used to describe RSR, RMS and N’

C cohesion

D_e equivalent dimension

d_2 thickness of foliated rock mass column

E Young’s modulus

E_M rock mass modulus

f_m the maximum horizontal stress in a Voussoir beam

f_m’ the smallest calculated value of f_m in a Voussoir beam

f_{av} the average horizontal stress in a Voussoir beam

f(x) the equation for the horizontal reaction force locus in a Voussoir beam

g gravitational acceleration (9.81 m/s^2)

I_y moment of inertia of the cross section of a rectangular beam of unit width
J_1 primary joint set
J_2 secondary joint set
J_a joint alteration number
J_n joint set number
J_r joint roughness number
J_v the volumetric joint count or the sum of the number of joints per unit length for all joint sets
J_w joint water reduction factor
k $\sigma_h : \sigma_v$
m Hoek-Brown material constant
m_i Hoek-Brown rock mass parameter for intact rock
m_b Hoek-Brown rock mass parameter m for rock mass
m_r Hoek-Brown rock mass parameter for residual strength
M the moment generated at the abutment due to the vertical loading on the beam
M_w the moment generated at the abutment
$M(x)$ the load on the beam at x
N rock mass number (Goel et al, 1996), or the ratio of true to effective beam thickness
N' modified stability number
N_{min} the lowest value of N for which solution possible is
N_{max} the highest value of N for which solution possible is
N' value of N associated with smallest calculated value of f_m
N_X size core = 54.7 mm diameter
Q Barton's rock quality index
Q' Modified rock quality index
q load per unit width of beam (N/m2)
s Hoek-Brown material constant
s_r Hoek-Brown rock mass parameter for residual strength
S span
S_1, S_2, S_3 mean joint spacings for major joint sets
T beam thickness
$V(x)$ the shear force acting on the beam at x

W total load acting on beam, or shear force

$W(x)$ load distribution on the beam

w_1, w_2 uniform loads on beam (force/unit length)

Z the moment lever arm after deflection

Z' value of Z associated with smallest calculated value of f_m

Z_0 the moment lever arm before deflection

Z_0' value of Z_0 associated with smallest calculated value of f_m

σ_h horizontal stress component

σ_v vertical stress component

σ_n normal stress

σ_1 major principal stress

σ_m maximum horizontal stress due to the vertical beam loading

σ_2 intermediate principal stress

σ_3 minor principal stress

σ_c uniaxial compressive strength of the intact rock

σ_T uniaxial tensile strength

σ_{cr} UCS for intact rock

σ_z vertical stress, or fibre stress, or axial stress

σ_y horizontal stress

σ_b buckling stress

ρ rock density

ν Poisson’s ratio

ε strain

γ unit or specific weight

δ midspan deflection

η deflection

η_{max} maximum deflection

ϕ angle of internal friction

ϕ_b basic friction angle of joint surface

μ coefficient of friction

τ shear stress acting on stope
τ_{xy} \quad \text{shear stress acting on transverse section through beam}

ϕ \quad \text{friction angle}

τ_{e \text{ top}} \quad \text{the shear stress acting on the top of the beam as a function of the position } x

τ_{e \text{ bottom}} \quad \text{the shear stress acting on the bottom of the beam as a function of the position } x

Terminology

anchor
The means by which a device is secured to the host rock.

beam
Is a structure supported at one or more points and subjected to external forces.

capacity
Is the strength or resisting force of the structure.

coefficient of friction
A constant of proportionality, \(\mu \), relating the normal stress and the corresponding critical shear stress at which sliding starts between two surfaces.

cohesion
The shear resistance at zero normal stress, or intrinsic shear strength of the material.

compression failure
Normal forces exceeding the compressive strength of the material.

compressive stress
Normal stress tending to shorten the body in the direction in which it acts

consequence
The degree of harm, the potential severity of the injuries or ill health, and/or the number of people potentially affected.
convergence
The reduction of the distance between two parallel surfaces, usually the hangingwall and footwall. It is similar to closure, but technically referring to the elastic component of closure.

demand
Is the stress or disturbing force in a structure.

dowel
A full contact, non-pretensioned device. (This term is often reserved for non-steel tendons such as wood or fibreglass.)

empirical
Relying or based on practical experience without reference to scientific principles.

failure
The condition in which the maximum strength of the material is exceeded or when the stress or strain requirement of a specific design is exceeded.

fall of ground
Fall of a rock fragment or a portion of fractured rock mass without the simultaneous occurrence of a seismic event.

fault tree technique
Is a systematic method for acquiring information about a system. The information so gained can be used in decision making. It can also be defined as a deductive failure analysis which focuses on one particular undesired event and which provides a method for determining causes of this event. The undesired event constitutes the top event in a fault tree diagram and generally consists of a complete or catastrophic failure. Careful choice of the top event is important to the success of the analysis.

field stresses
The stresses which exist in a rock mass before an excavation is made. At a distance sufficiently far away from any underground excavation, the field stresses will be equal to the virgin stress.
geotechnical parameters
The parameters describing the technical response of geological materials.

hazard, cause, fault, threat
Something which has the potential to cause harm e.g. hangingwall, methods of work, etc.

instability
Rock can strain, yield, deteriorate and ultimately disintegrate under the influence of stress, gravity and vibration. Instability and failure can be defined as any limiting point in this progress.

keyblock
A block that can be removed from a rock face without breaking intact rock.

method
Special form of procedure, or the orderly arrangement of ideas.

methodology
The science of method, or a body of methods used in a particular branch of activity.

near-surface mining
Mining at depths less than 100 m below surface.

outcrop
The exposure of the bedrock at ground surface.

pillar workings
Underground excavations separated by rock left in situ during the mining process to support the local hangingwall, roof, or to provide regional stability to the mine or portion thereof.

plane stress
A triaxial stress field with one of the principal stresses, e.g. $\sigma_z = 0$ and $\tau_x = \tau_y = 0$ is defined as the condition of plane stress.
Poisson’s ratio
The ratio of shortening in the transverse direction to elongation in the direction of an applied tensile force in a body.

primary or top faults
The primary categories in which the hazards to safety and health will be considered.

principal stress
A unique set or sets of unique directions mutually perpendicular to each other in which all the shear stress components are zero. The normal components of stress acting along these directions are called the principal stresses.

probability
Is the objective measure of the likelihood of occurrence of random events (variable) and as such provides quantitative assessments of system adequacy. If an experiment can result in any one of N different equally likely outcomes, and if exactly n of these outcomes correspond to event A, then the probability (P) of event A is: $P(A)=n/N$. Also, $0 \leq P(A) \leq 1$.

risk
Is the product of the probability of occurrence of a hazard and the effect or magnitude of the damage that would be caused by the hazard.

rock mass
Rock as it occurs in situ, including its structural discontinuities.

rock structure
The nature and distribution of structural features within the rock mass.

rockbolt
A steel rod placed in a hole drilled in rock for the purpose of reinforcing rock in the periphery of an excavation. One end of the rod is firmly anchored in the hole by means of a mechanical device and/or grout, and the threaded projecting end is equipped with a nut and plate which bears against the rock surface. The rod can be pretensioned.
roofbolt
A general term encompassing rockbolts, dowels and friction rock stabilisers.

shallow mining
Mining at depths less than 1000 m below surface.

shear failure
Failure in shear when the forces parallel to a plane exceeds the strength of the material in that direction.

span
Diameter of largest circle which can be drawn between pillars and walls.

stability
See definition of instability.

topography
Natural or artificial surface features of a district.

virgin stress
Also known as the primary state of stress. It is the stress in the rock mass before it is disturbed by man-made works.

Young's modulus
Modulus of elasticity, E.