Baseline Criteria
How we go about it
Baseline Criteria

This work will set out the criteria for the design. It will attempt to ensure a quality product that will fulfill the needs of the client as well as the larger community. It will take into account the social, economic and environmental aspects of buildings and attempt to meet all of these.

The criteria in the report make use of the Sustainable Building Assessment Tool (SBAT) as promoted by Jeremy Gibbert, and refer to the work of, among others, Christopher Day and Tony Buzan.

All design decisions can contribute to the impact on the physical, ecological and social condition. Gibbert offers three broad categories of consideration from the criteria set out by Gibbert. While the sequence of the discussion follows the form as set out by Gibbert, cross referencing and referral is used throughout to link aspects that are related.

Some aspects dealt with are not criteria as such, but rather commitments to explore particular aspects of the design problem.

1. Occupant Comfort

This criteria from the literature surveyed above can be considered an important aspect of an effective building. In every aspect of our daily life we are affected by a range of factors from physical to the social and psychological environments.

Comfort addresses a broad spectrum of criteria, from the building on the mind in the design.

1.1. Lighting

Lighting is of particular importance in a building. Lighted spaces enhance the atmosphere of a space. It provides the wrong way, people have to drain their eyes to see or have to adapt against the glare. Even blind people can enjoy the touch of the sun on their skin, or experience discomfort from their food.

1.1.1. Natural light

Natural light has many benefits over artificial lighting. It is supplied free of charge, reducing the capital and running costs of the building. Glare, flicker, and the effluvium of fluorescent lighting often poses a problem. Colours appear natural and ultra-violet radiation has a disinfecting radiation should be kept in mind.

The purpose of the space should be considered when selecting lighting. Compact fluorescent lights are energy efficient when their effectiveness is reduced by regular switching it on and off.

In some cases, it will be appropriate to use other forms of lighting. Artificial lighting contributes significantly amount of heat to the building. Ways should be explored in which this can be dispersed.

1.2. Ventilation

We need to breathe, as does most living organisms. Air is needed for growth, health, metabolism, and thinking. The quality of the air we breathe impacts greatly on us. Too little oxygen makes us dizzy while too much acts as a euphoric drug. Excessive concentration of CO2 (carbon dioxide) is toxic; we are vulnerable to disease and to chemical attack through our breathing.

Artificial lighting will be required for areas where adequate daylight is not available as well as at night. The nature and placing of these sources can be misleading, sometimes in a care that is not only necessary but also not mainly driven from the cost of lighting and service areas.

Ways should be explored to accommodate wherever possible.(Fig 2.11) Air conditioning should be used in winter, to move warm air upwards rather than below.

1.2.2. Water features and gardens

These should be used to cool down, humidify and increase the negative ion content of the air (Fig. 2.12). See planting and landscaping section 1.4. below.

1.3. Sense of smell

The sense of smell is connected directly to the brain. It has to do with the brain receiving an influence and can be seen as a force (Fig. 2.13). Air inlets and windows should pick up the smell of jasmine in the center. Other smells should also be used to heighten the sensual experience of the building.

1.4. Noise

Noise has conscious and unconscious influences on mental state. The power of music to influence the brain wave patterns has been scientifically shown.

A complete absence of sound is not possible in the presence of life. When the environment is very quiet, the ears adjust and one starts to hear things like one’s heartbeat and blood circulation, the human brain seems to be hardwired to tune in to verbal sounds, drawing attention away from other activities. Different
activities have different thresholds for noise, and noise at different frequency and volume has different effects. The elimination of sound is not the answer.

1.3.1) Visual emission.
Noise emitted by the building has to be limited. Noisy plant should be placed in such a way as not to affect the functions in the particular area of the building or that of neighbouring buildings. Sound insulation for the particular noisy functions should be used.

1.3.2) Background sounds. These should be suited to the environment. Reading rooms and libraries require quiet of an acceptable level to mask the sound of activity (Fig. 2.15). Quiet, meditative spaces can benefit from the sound of running water. Social areas like the cafeteria benefit from the buzz of people, while open plan offices should be designed to facilitate damping of potentially noisier sound.

1.3.3) tourists
Social areas should accommodate the habitation and movement of animal life as appropriate to the environment. Also, changes in level should make accommodation for wheelchair users.

1.4.1) plants
Some areas are available in the vicinity. A greater range of automatic Teller Machines could be provided in the area.

1.4.2) Plants, greening and water features
Plants use carbon dioxide, give off oxygen, have a cooling effect (mentally and physically), and increase the negative ion content in the air (particularly腾飞). Day (1993:55 and 52) and Horn (1994) refer to the beneficial effects of negative ion content in the air for human functioning. Further benefits have the same benefits, as well as providing soothing background noise. Further benefit of plants is that they absorb water and slow down surface run-off.

1.4.3) Open-air spaces.
Open-air spaces should be created and extensive planting used

1.4.4) water feature
Provision should be made for water dissection by environmentally responsible technology (see dilution, Fig. 2.17).

1.4.5) Accessibility and inclusivity
The site is located close to Church Square, which is the contrast bus terminus for the city. Taxi ranks and the train station are available within walking distance. (See context study). The centre is easily accessible by motorcar, with ample provision for parking in the vicinity. Provision currently provided on the site should be replaced in the design.

1.4.6) Purification
A nursery school/childcare centre is available close by (see fig. 2.18). Some banks are available in the vicinity. A greater range of automatic Teller Machines could be provided in the area.

1.5.1) general areas
The building should allow for use by all persons, regardless of physical ability.

1.5.2) (Dis)ability considerations
The building and exhibits should avoid features that might give offence to some user groups. Effort should be made to ensure that content of display is suitable for users from different fields.

1.5.3) Multi-Culturality
The function of the building implies a multi-disciplinary nature, necessitating interaction between people from different fields. The research conducted in the centre is of a multi-disciplinary nature, necessitating interaction between people from different fields.

1.5.4) Comfort experimentation
Standing for user ability to control and centre and centralised control. Accommodation should thus be made for user and centralised control. It is also recognised that users often will not go to the effort of exercising this control (Holm 1996: 87).

1.6.1) Security
The function of the building implies the need for a secure environment. The building and exhibits should avoid substances that might give offence to some user groups.

1.6.2) Incentives
Incentives should be provided for disabled persons and special consideration should be made for areas where the small child might be present.

1.6.3) Distributions
Care should be given to clean and window swipes and other citizen may obstruct circulation routes. The placing of switches, taps, window controls and similar devices should enhance the nature and atmosphere of the place.
1.7.1 Circulation process

These should be designed in ways that encourage social meeting and interaction. Functions and departments that would normally come into contact should be connected in a way that encourages interaction. Circulation space should be explored as multi-functional spaces and should serve a dentritic function.

2.1.2 Ground floor functions should look out onto the street in order to encourage interaction. Circulation space should be designed in a way that encourages interaction between people. It should also be done with shared facilities, like photocopying machines.

2.1.3 A central, controlled entrance should be provided to the street. In the light of the central city location, security in the building is important. Access control at neighbouring buildings should be provided. Good Neighbouring

In the light of the central city location, security in the building is important. This is verified by the access control of other buildings in the area (see fig. 2.19).

2.1.4 The building must comply with the National Building Regulations and other statutory standards in order to ensure the safety of the users and property. The dendrites are the arms that radiate from the neuron (brain cell) and facilitate the contact between different brain cells, creating the pathways along which thoughts pass. The better a cell is connected, the better able it is to contribute to the building's design and construction, and leave their stamp on their work.

3.1.3 Local Economy and Financial aspects

Buildings can benefit the local economy on the short and long term. Any advantage resulting from this should be maximised.

3.2.1 Materials

The design should allow for labour intensive construction to take place. This will not be taken to mean that people should be given jobs that a machine can do better, but rather the choice of techniques and technologies that require a human touch. Workers should feel free to make suggestions regarding the design and construction, and leave their stamp on their work.

3.2.2 Local Contractors

Contractors from the Tshwane area should be used for general construction work. Specialised work can be done further afield, but preferably within a 200km radius. A central, controlled entrance should be provided to the street. In the light of the central city location, security in the building is important. Access control at neighbouring buildings should be provided. Good Neighbouring

In the light of the central city location, security in the building is important. This is verified by the access control of other buildings in the area (see fig. 2.19).

3.2.3 Local Materials

Local materials should be sourced from further a-field, but preferably within a 100km radius and the use of these materials and expertise being readily available for repairs and maintenance. It also results in a more efficient use of materials and expertise being readily available for repairs and maintenance.

3.3.1 Use Time

Working in this way reduces the need for independent bathrooms for every function and decreases the amount of total land that needs to be built upon. The design should make use of materials that are available within a 100km radius and the use of these materials and expertise being readily available for repairs and maintenance. It also results in a more efficient use of materials and expertise being readily available for repairs and maintenance.

3.4.1 Unproductive Space

Spaced occupied by plant circulation and WC's should not exceed 20% of the floor area. The building must comply with the National Building Regulations and other statutory standards in order to ensure the safety of the users and property. The dendrites are the arms that radiate from the neuron (brain cell) and facilitate the contact between different brain cells, creating the pathways along which thoughts pass. The better a cell is connected, the better able it is to contribute to the building's design and construction, and leave their stamp on their work.

3.4.2 Unskilled Labour:

The selection of materials and construction should be based on a value for money approach. A high quality and standard should be required, while costing is not economically feasible to construct the entire building in this way. Having the building occupied for longer times also reduces the security of the building and increases the risk of fire. Smoke传播 in this way reduces the need for independent bathrooms for every function and decreases the amount of total land that needs to be built upon. The design should make use of materials that are available within a 100km radius and the use of these materials and expertise being readily available for repairs and maintenance. It also results in a more efficient use of materials and expertise being readily available for repairs and maintenance.

3.4.3 Adaptability and flexibility

Buildings often have to be adapted during their lifetime.
It is also true that very good adaptations have been done on buildings that have not been designed with flexibility in mind.

Rogers draws a relationship between the flexibility of a building and the thinking that can happen there. "Inflexible buildings hinder the evolution of buildings by inhibiting new ideas." (1997:79)

The centre has a very particular function and might lose its effectiveness if it was not possible for the public to use it now or in the future. Its central location makes it more accessible and public transport can be better applied than on building water supply; flushing toilets and washing cars using potable water for flushing toilets and washing cars wastes enormous when others are dying and getting through life for the sake of fresh air.

The building should be designed in such a way as to anticipate and prepare for it. The design should also keep in mind the effect of construction on organisation and its effectiveness if too much focus is placed on future alteration in mind.

Vertical Dimensioning: Within the constraints imposed by the non-professional and affects the maintenance cycles, suppliers and maintenance workers, these should only be used where they will be effectiveReducing, Re-cycle and Re-use

3.6.2. Cleaning

The building should be designed to allow for cleaning functions to be subcontracted, and accommodation should be provided for this in maintenance.

Water is a major on-going cost of a building, and has a continuous measurement of running costs. These should generally be selected to be low energy, but efficiency should be kept in mind on the supply network, reducing the cost.

Light fittings should be low energy as discussed in section 3.6.1)

The centre has a very particular function and might lose its effectiveness if too much focus is placed on future alteration in mind.

4.2. Water

Inflexible buildings hinder the evolution of buildings by inhibiting new ideas. (1997:79)

The centre has a very particular function and might lose its effectiveness if too much focus is placed on future alteration in mind.

4.1. Site

The assumptions made that the building will be flanked by taller buildings in future. The detailing of the flanks behind the site range from six to thirty-three storeys. Other buildings in this part of Church Street and several low-density buildings outside the city. There is a potential to contribute to the revitalisation of a rather
dense, urban area. The building could also incorporate functional pigeon area, thereby limiting pigeons to predetermined

The building is a Brownfield site. Virgin land does not conform to the cohesion of the area.

The building is a Brownfield site. Virgin land does not allow the components to be re-used when the building is demolished. The contractors should endorse ‘considerate contractor’ policies, which include: waste, pollution, and during accidents (e.g. fire) should be kept in mind on the supply network, reducing the cost.

Light fittings should be low energy as discussed in section 3.6.1)

The centre has a very particular function and might lose its effectiveness if too much focus is placed on future alteration in mind.

4.1. Site

The location of a building has certain benefits and restrictions on it and control the pigeon population. See section 4.2.

Grey Water

Grey water is to be collected and re-used, particularly for flushing toilets and cleaning facilities. Filling should be provided wherever necessary.

Grey Water

Grey Water
5.3 Phasing
The construction should allow subsequent processes to start as soon as possible.

5.4 Participating and Control
Functions that operate semi-independently from the ends of the building, for instance the parking garage, should be completed as soon as possible. This will allow these areas to go into operation as soon as possible, earning revenue for the project. It also reduces the disruption to those currently using the site for parking.

6.1 Information
As the brain works on links, it is important for a building of this nature to be provided with good communication, internally and externally.

6.2 Neighbouring
The building should be well linked up via internet, internet, fax, telephone, even radio and television. “New technologies are enabling us to expand the use of all our most valuable and most particularly human resources: creative imagination, or brain power. The increase in even prolific consumptions of this resource is subject to no limiting factors and has no downside. It is people- and environment-friendly.” (Rogers 1997:147)

Table quantifying priorities for baseline issues

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

As the brain works on links, it is important for a building of this nature to be provided with good communication, internally and externally.

The building should be well linked up via internet, internet, fax, telephone, even radio and television. “New technologies are enabling us to expand the use of all our most valuable and most particularly human resources: creative imagination, or brain power. The increase in even prolific consumptions of this resource is subject to no limiting factors and has no downside. It is people- and environment-friendly.” (Rogers 1997:147)

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.

The table indicates the different issues given in the baseline document. To each aspect a value is accorded, indicating whether it is beneficial (>0 to 2), detrimental (<0 to -2) or neutral (0) to the economic, environmental or social aspects. These three aspects are totled up to provide a priority. The higher the priority, the more important the particular technique is

Each heading is allocated the average values for the item under it.
<table>
<thead>
<tr>
<th>3.1.3</th>
<th>Labour Intensive Design</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>4</th>
<th>Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.4</td>
<td>Unskilled Labour</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Materials</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>Local Materials</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2.2</td>
<td>Health Aspects (See 6.1.2)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Efficiency</td>
<td>2.00</td>
<td>1.00</td>
<td>0.50</td>
<td>3.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.1</td>
<td>Unproductive Spaces</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3.2</td>
<td>Use Time</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Capital Costs</td>
<td>1.40</td>
<td>0.60</td>
<td>0.40</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.1</td>
<td>Value for Money</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.2</td>
<td>Consultants</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.3</td>
<td>Adaptability and Flexibility</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.3.1</td>
<td>Partition Walls</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.3.2</td>
<td>Services</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4.3.3</td>
<td>Vertical Dimensioning</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>On-going Costs and Maintenance</td>
<td>1.40</td>
<td>1.20</td>
<td>0.60</td>
<td>3.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Materials and Building Techniques</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2</td>
<td>Energy</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.1</td>
<td>Light Fittings (See Section 1.1.2)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.2</td>
<td>Heat</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.3</td>
<td>Ventilation (See Section 1.2)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.4</td>
<td>Alternative Energy</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5.2.5</td>
<td>Water (See Section 4.1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Water</td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td>Rain</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6.2</td>
<td>Grey Water</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baseline Criteria

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site</td>
</tr>
<tr>
<td></td>
<td>Heritage</td>
</tr>
<tr>
<td></td>
<td>Location and Nature</td>
</tr>
<tr>
<td></td>
<td>Site Influences</td>
</tr>
<tr>
<td></td>
<td>Height and Density</td>
</tr>
<tr>
<td></td>
<td>Health Aspects (See 6.1.2)</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
</tr>
<tr>
<td></td>
<td>Unproductive Spaces</td>
</tr>
<tr>
<td></td>
<td>Use Time</td>
</tr>
<tr>
<td></td>
<td>Capital Costs</td>
</tr>
<tr>
<td></td>
<td>Value for Money</td>
</tr>
<tr>
<td></td>
<td>Consultants</td>
</tr>
<tr>
<td></td>
<td>Partition Walls</td>
</tr>
<tr>
<td></td>
<td>Services</td>
</tr>
<tr>
<td></td>
<td>Vertical Dimensioning</td>
</tr>
<tr>
<td></td>
<td>On-going Costs and Maintenance</td>
</tr>
<tr>
<td></td>
<td>Materials and Building Techniques</td>
</tr>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td></td>
<td>Light Fittings (See Section 1.1.2)</td>
</tr>
<tr>
<td></td>
<td>Heat</td>
</tr>
<tr>
<td></td>
<td>Ventilation (See Section 1.2)</td>
</tr>
<tr>
<td></td>
<td>Alternative Energy</td>
</tr>
<tr>
<td></td>
<td>Water (See Section 4.1)</td>
</tr>
<tr>
<td></td>
<td>Measurement of Costs</td>
</tr>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td>Rain</td>
</tr>
<tr>
<td></td>
<td>Grey Water</td>
</tr>
</tbody>
</table>

Calculations

<table>
<thead>
<tr>
<th></th>
<th>67.84</th>
<th>73.75</th>
<th>103.26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53.84%</td>
<td>58.53%</td>
<td>81.95%</td>
</tr>
</tbody>
</table>

Notes

- Heritage: 0.00, 2.00, 1.00, 3.00
- Location and Nature: 1.00, 2.00, 1.00, 4.00
- Site Influences: 0.33, 2.00, 1.33, 3.67
- Height and Density: 1, 2, 1, 4
- Health Aspects (See 6.1.2): 4.3.2, Roofscape: -1, 2, 1, 2
- Vermin: 1, 2, 2, 5
- Reduce, Recycle and Re-use: 0.00, 2.00, 0.50, 2.50
- Modular Systems: 0, 2, 0, 2
- Material Selection: -1, 2, 2, 3
- Partition Walls: -1, 2, 0, 1
- Considerate Contractors: 0.00, 0.00, 1.00, 1.00
- Phasing: 1.00, 0.00, 1.00, 2.00
- Information: 1.00, 1.00, 2.00, 4.00
- Neighbouring: 1.00, 0.00, 2.00, 3.00
- Art: -1.00, 0.00, 1.00, 0.00

Additional Notes

- The table includes criteria for materials, efficiency, capital costs, and on-going costs and maintenance.
- Each criterion includes sub-criteria with specific weights and values.
- The calculations at the bottom are percentages for certain criteria.