EFFICACY OF ELECTRICAL AND THERMOGENIC STIMULATION ON WEIGHT REDUCTION AMONG OBESE FEMALES

by

NICK MENTZ

Submitted in partial fulfillment of the requirements for the degree

Doctor Philosophiae

in the

DEPARTMENT BIOKINETICS, SPORT AND LEISURE SCIENCES
FACULTY OF ARTS
UNIVERSITY OF PRETORIA

PRETORIA
MAY 2003
The epidemic of obesity and inactivity is just as deadly – if not more so – than any virus, but it receives less attention because it acts slowly and because we have adjusted to its presence among us.

Like infectious disease epidemics, this epidemic can be stopped in its tracks – not with a vaccine, but with a formula of healthier eating and more activity that is well within our reach. (Koplan, 2000)
ACKNOWLEDGEMENTS

I wish to express my thanks and gratitude to the following persons and institutions for their guidance and assistance, in the completion of this study:

DR H.J. VAN HEERDEN: (Department of Biokinetics, Sport and Leisure Sciences, University of Pretoria). For the valuable time afforded to me as promotor of this study, and his unstinted guidance, support and advice at all times.

PROF G.J. VAN WYK: (Head of the Department of Biokinetics, Sport and Leisure Sciences, University of Pretoria). For his interest and motivation.

PROF P.E. KRÜGER: (Director, Institute of Sport Research, University of Pretoria). For the use of the laboratory in conducting the study and financial support.

DR ZANET OSCHMAN: For conducting the ultra-sound sonography measurements.

SUBJECTS THAT PARTICIPATED IN THE PROJECT: Their involvement and willingness made this study possible.

CHRISTINE SMIT: For the assistance in the statistical analysis of the data.

TILLA BOSHOFF: For her diligent typing and editing of this thesis.

HEINRICH NOLTE, BYRON MALGA AND STEVEN BALL: For their assistance in compiling and editing the tabular and graphic presentation of data.

FAMILY AND FRIENDS: For their prayers encouragement and support throughout.

MY WIFE, RIANA: For her encouragement and loving support.

THE ALMIGHTY: In Him everything is possible.
SYNOPSIS

The primary aim of this study was to evaluate the effect of an eight-week programme of electrical muscle stimulation (EMS) performed on Slimline Slimming Machines in conjunction with (Group EST), and without (Group ESP), a thermogenic agent (Thermo Lean) and following a standardized diet (Group TS). In order to achieve this goal a pre-test-post test experimental groups design, with three levels of the independent variable, was adopted for the study. A group of 69 females between the ages of 25 - 40 years (mean age = 35.26 ± 6.02 years), who were recruited through newspaper advertisements, served as subjects. To be included in the study, subjects were required to be physically suitable for the intervention programmes; pre-menopausal; obese (BMI > 30); sedentary; and amenable to being assigned to any of three study groups. The following categories of dependent variables were measured: Anthropometry; Morphology; Ultrasound Sonography; Respiratory Quotient; Pulmonary Function; Haematology; Cardiovascular Responses; and Musculoskeletal Function.

There was a statistically significant difference between groups (p≤0.05) in the reduction of abdominal body girths measured at three different body sites viz. abdominal (level of greatest anterior protrusion); abdominal AB-1 (midway between the xyphoid process and the umbilicus); and abdominal AB-2 (level of the umbilicus). Group EST (6.02%) had the greatest reduction in girth at the abdominal body site. This reduction was significantly (p≤0.05) better than the reduction found in group ESP (4.79%) and group TS (4.69%). The same tendency was found at the abdominal AB-1 body site. Group EST (6.42%) had the greatest reduction in girth which was significantly (p≤0.05) better than the reduction found in group TS (4.35%) and group ESP (4.28%). Group ESP had the greatest reduction in girth at...
the umbilicus level (7.39%). This reduction was significantly (p ≤ 0.05) better than the reduction found in group TS (4.85%).

The greatest reduction of skinfold measurements was found at the triceps skinfold. Group EST had the greatest reduction (12.75%). This reduction was significantly (p ≤ 0.05) better than the reduction found in both groups TS (9.27%) and ESP (6.63%). The second greatest reduction in skinfolds was found at the abdominal skinfold. Group EST had the greatest reduction (12.14%). This reduction was significantly (p ≤ 0.05) better than the reduction found in both groups TS (11.80%) and ESP (10.36%). The third greatest skinfold reduction was found at the subscapular skinfold. Group EST had the greatest reduction (9.70%). This reduction was significantly (p ≤ 0.05) better than the reduction found in both groups TS (8.64%) and ESP (3.93%). The observed significantly (p ≤ 0.05) greater reduction in skinfold measurement at the abdominal site in group EST corresponded with the same significantly (p ≤ 0.05) greater reduction in girth measurements at the abdominal body sites in the same group.

With respect to sagittal height measurements, at the umbilicus body site (sagittal umbi), group ESP (11.48%) had the greatest reduction. This reduction was similar to the reduction found in group EST (11.02%). At the sagittal ½ umbi body site, group EST (13.52%) had the greatest reduction in sagittal height. This reduction was significantly (p ≤ 0.05) greater than that found in both groups ESP (10.61%) and TS (10.60%). This significantly (p ≤ 0.05) greater reduction in sagittal height at the sagittal ½ umbi body site in group EST, corresponds with the significant (p ≤ 0.05) decreases found in body girths and skinfolds in the same group.

A significantly reduced (p ≤ 0.05) waist-to-hip ratio (WHR) was observed within two of the three experimental groups. The greatest reduction was found in group EST (2.53%) and this reduction was significantly (p ≤ 0.05) better than the reduction found in group TS (1.27%) and group ESP (1.27%). The largest (3.03%) reduction in body surface area (BSA) was seen in group EST and this reduction was significantly greater (p ≤ 0.05) than in group ESP (1.96%).

The ultrasound sonographic subcutaneous fat layer in group EST (21.22%) showed the greatest reduction. This reduction was significantly (p ≤ 0.05) greater than the reduction in subcutaneous fat found in both groups TS (18.04%) and ESP (12.11%). The visceral fat layer
in group EST (27.74%) also showed the greatest reduction. This reduction was significantly (p<0.05) greater than that found in both groups ESP (22.82%) and TS (21.87%). This significantly (p<0.05) greater reduction in subcutaneous and visceral fat found in group EST, corresponds with the significant (p<0.05) decreases found in body girths, skinfolds and sagittal height in the abdominal area in the same group.

In conclusion, obese females participating in a program of dietary restriction, thermogenic or electrical muscle stimulation with the aim of achieving weight-loss should note that: diet with or without electrical muscle stimulation (EMS) proved effective, but these modalities in conjunction with thermogenic stimulation proved the most effective intervention program after eight weeks.

KEY WORDS: ELECTRICAL MUSCLE STIMULATION; THERMOGENIC STIMULATION; CALORIE RESTRICTION; OBESE FEMALES; ABDOMINAL; SUBCUTANEOUS; VISCERAL; WEIGHT-LOSS.
Die primêre doel van hierdie studie was om die effek te evalueer van ‘n agt-weke program van elektriese spierstimulasie (ESS), uitgevoer op Slimline Verslankingsapparate, tesame met (Groep EST), en sonder (Groep ESP), ‘n termogenetiese middel (Thermo Lean) asook ‘n gestandaardiseerde dieet (Groep TS). ‘n Voortoets-natoets eksperimentele groepsontwerp, met drie vlakke van die onafhaniklike veranderlike, is gebruik vir die studie. ‘n Totaal van 69 vroulike proefpersone tussen die ouderdom van 25 – 40 jaar (gemiddelde ouderdom 35.26 ± 6.02 jaar), wie deur koerantadvertensies ge werf is, het as proefpersone gedien. Insluitingskriteria vir die studie het vereis dat proefpersone fisies geskik was vir die intervensieprogramme, en premenoposaal; obees (L MI > 30); sedentêr en bereid moes wees om by enige van die drie studiegroepe ingedeel te word. Die volgende afhanklike veranderlikes is gemeet: Antropometrie; Morfologie; Ultraklank Sonografie; Respiratoriese Kwosiënt; Pulmonêre Funksie; Hematologie; Kardiovaskulêre Respons; en Muskuloskeletale Funksie.

Daar was ‘n statisties beduidende verskil tussen groepe (p≤0,05) met die afname in abdominale liggaamsomtrekke by drie verskillende anatomiese liggings naamlik; abdominaal (vlak van grootste anterior uitsetting; abdominaal AB-1 (halfpad tussen die xiphoid proses en die umbilicus); en abdominaal AB-2 (vlak van die umbilicus). Groep EST (6.02%) het die grootste afname getoon by die abdominale ligging. Hierdie afname was beduidend (p≤0,05) beter as die afname in groep ESP (4.79%) en groep TS (4.69%). Dieselfde tendens is gevind by die abdominale AB-1 ligging. Groep EST (6.42%) het die grootste afname in omtrekke getoon wat beduidend (p≤0,05) beter was as die afnames in groep TS (4.35%) en groep ESP.
Die grootste afname in velvoumetings is gevind by die trisepvelvou. Groep EST het die grootste afname getoon (12.75%). Hierdie afname was beduidend (p ≤ 0,05) beter as die afnames in beide groep TS (9.27%) en groep ESP (6.63%). Die tweede grootste afname is gevind by die abdominale-velvou. Groep EST het die grootste afname getoon (12.14%). Hierdie afname was beduidend (p ≤ 0,05) beter as die afnames in beide groepe TS (11.80%) en ESP (10.36%). Die derde grootste velvou afname was by die subscapula-velvou. Groep EST het die grootste afname getoon (9.70%). Hierdie afname was beduidend (p ≤ 0,05) beter as die afnames in beide groepe TS (8.64%) en ESP (3.93%). Die waargenome beduidend (p ≤ 0,05) groter afname in velvoumetinge by die abdominale ligging in groep EST stem ooreen met dienooreenkomstige beduidend (p ≤ 0,05) groter afnames in omtrekmetinge by die abdominale liggings in dieselfde groep.

Met betrekking tot saggitalehoogte metinge, by die umbilicus ligging (saggitaal umbi), het groep ESP (11.48%) die grootste afname getoon. Hierdie afname was soortgelyk aan die afnames gevind in groep EST (11.02%). By die saggitaal ½ umbi ligging het groep EST (13.52%) die grootste afname in saggitale hoogte getoon. Hierdie afname was beduidend (p ≤ 0,05) beter as in beide groepe ESP (10.61%) en TS (10.60%). Die beduidend (p ≤ 0,05) groter afname in saggitale hoogte by die saggitaal ½ umbi ligging in groep EST, stem ooreen met die beduidende (p ≤ 0,05) afnames gevind in liggaamsomtrekke en velvouemetinge in dieselfde groep.

Beduidende afnames (p ≤ 0,05) in middel-tot-heup omtrekverhouding (MHV) is waargeneem in twee van die drie eksperimentele groepe. Die grootste afname is gevind in groep EST (2.53%) en hierdie afname was beduidend (p ≤ 0,05) beter as die afnames in groep TS (1.27%) en groep ESP (1.27%). Die grootste (3.03%) afname in liggaamsoppervlakte meting (LOM) is waargeneem in groep EST en hierdie afname was beduidend beter (p ≤ 0,05) as groep ESP (1.96%).

(4.28%). Groep ESP het by die umbilicus die grootste afname in omtrekke getoon (7.39%). Hierdie afname was beduidend (p ≤ 0,05) beter as die afname in groep TS (4.85%).
Die ultraklank sonografiese onderhuidse vetlaagmeting in groep EST (21.22%) het die grootste afname getoon. Hierdie afname was beduidend (p≤0,05) beter as die afnames in onderhuidse vet in beide groepe TS (18.04%) en ESP (12.11%). Die viserale vetlaag in groep EST (27.74%) het ook die grootste verlaging getoon. Hierdie verlaging was beduidend (p≤0,05) beter as in beide groepe ESP (22.82%) en TS (21.87%). Hierdie beduidende (p≤0,05) groter afname in onderhuidse en viserale vet in groep EST, stem ooreen met die beduidende (p≤0,05) afnames gevind in liggaamsomtrekke, velvoue en saggitale hoogte in die abdominale gebied binne dieselfde groep.

Ter afsluiting, obese dames wat deelneem aan ‘n program van kalorie-inperking, termogenetiese of elektriese spierstimulasie met die oog op gewingsverlies moet kennis dra dat: dieet met of sonder elektriese spierstimulasie (ESS) effektief is, maar dat hierdie modaliteite in samewerking met termogenetiese stimulasie bewys is as die mees effektiewe intervensieprogram na agt-weke.

SLEUTELWOORDE: ELEKTRIESE SPIERSTIMULASIE; TERMOGENETIESE STIMULASIE; KALORIEBEPERKING; OBESE DAMES; ABDOMINALE-; ONDERHUIDSE-; VISERALE-; GEWIGSVERLIES.
TABLE OF CONTENTS

Page No.

TITLE PAGE ... i
PROLOGUE .. ii
DEDICATION .. iii
ACKNOWLEDGEMENTS ... iv
SYNOPSIS ... v
SINOPSIS .. viii
TABLE OF CONTENTS ... xi
LIST OF TABLES .. xix
LIST OF FIGURES ... xxi

CHAPTER 1 : THE PROBLEM

1.1 Introduction ... 1
1.2 Obesity Defined ... 2
1.3 Electrical Muscle Stimulation Defined ... 3
1.4 Thermogenic Stimulation Defined .. 4
1.5 Statement of the Problem .. 5
1.6 Motivation for the Study .. 6
1.7 Purpose and Aim of the Study ... 6
1.8 Hypotheses .. 7
1.9 Delimitation .. 7

CHAPTER 2 : LITERATURE REVIEW

2.1 Definition of Obesity ... 8
2.2 Epidemiology of Obesity .. 9
2.2.1 Obesity, economics and the industrial food system ... 12
2.2.2 Fast food as a fat delivery system .. 13
2.2.3 Automobile dependence and inactivity ... 15
2.2.4 Behaviour patterns, television and obesity ... 16
2.2.5 The ideology of fat versus thin ... 17
2.3 **Prevalence of Obesity** ... 19

2.4 **Consequences of Obesity** .. 20

2.4.1 Psychosocial aspects of overweight and obesity 21

2.4.1.1 Psychopathology and obesity ... 21

2.4.1.2 Binge eating disorder ... 22

2.4.1.3 Body image .. 23

2.4.1.4 Social stigmatisation ... 25

2.4.2 Health risks associated with being overweight or obese. 25

2.4.2.1 Hypertension ... 27

2.4.2.2 Coronary heart disease .. 28

2.4.2.3 Congestive heart failure .. 29

2.4.2.4 Stroke .. 30

2.4.2.5 Sleep apnea ... 31

2.4.2.6 Dyslipidemia ... 31

2.4.2.7 Diabetes mellitus ... 33

2.4.2.8 Gall-bladder disease and hypercholesterolemia 34

2.4.2.9 Gallstones .. 35

2.4.2.10 Pulmonary abnormalities ... 35

2.4.2.11 Osteoarthritis .. 35

2.4.2.12 Cancer .. 36

2.4.2.13 Musculoskeletal injury ... 38

2.4.2.14 Increased surgical risk .. 38

2.4.2.15 Menstrual irregularities and infertility 38

2.4.2.16 Pregnancy complications ... 38

2.4.3 Mortality and obesity ... 40

2.4.3.1 Association of body mass index with mortality 41

2.4.3.2 Weight loss and mortality ... 41

2.5 **Etiology of Obesity** .. 42

2.5.1 Genetic factors .. 44

2.5.2 Environmental factors .. 45

2.5.3 Nutritional factors ... 47

2.5.4 Physiological factors ... 47

2.5.5 Psychological factors ... 47

2.5.6 Cultural, economic and social factors 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathophysiological Factors Underlying Obesity</td>
<td>49</td>
</tr>
<tr>
<td>2.6.1 Energy balance equation</td>
<td>49</td>
</tr>
<tr>
<td>2.6.2 Energy intake regulation in obesity</td>
<td>49</td>
</tr>
<tr>
<td>2.6.2.1 Neuropeptide Y</td>
<td>50</td>
</tr>
<tr>
<td>2.6.2.2 Melanin concentrating hormone</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2.3 Serotonin</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2.4 Lipoprotein lipase</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2.5 Leptin</td>
<td>52</td>
</tr>
<tr>
<td>2.6.2.6 Ghrelin-growth hormone releasing peptide</td>
<td>54</td>
</tr>
<tr>
<td>2.6.3 Energy expenditure regulation in obesity</td>
<td>55</td>
</tr>
<tr>
<td>Bio-energetics of Metabolism</td>
<td>55</td>
</tr>
<tr>
<td>2.7.1 Fat metabolism</td>
<td>56</td>
</tr>
<tr>
<td>2.7.1.1 Beta oxidation</td>
<td>58</td>
</tr>
<tr>
<td>2.7.1.2 ATP production from fatty acids</td>
<td>60</td>
</tr>
<tr>
<td>2.7.1.3 Ketone bodies and ketosis</td>
<td>61</td>
</tr>
<tr>
<td>2.7.1.4 Respiratory quotient and low rates of fat oxidation</td>
<td>62</td>
</tr>
<tr>
<td>2.7.1.5 De novo lipogenesis</td>
<td>62</td>
</tr>
<tr>
<td>Cellular Basis of Obesity</td>
<td>63</td>
</tr>
<tr>
<td>Basal or Resting Metabolic Rate</td>
<td>67</td>
</tr>
<tr>
<td>2.9.1 Diet and resting metabolic rate</td>
<td>68</td>
</tr>
<tr>
<td>2.9.2 Exercise and resting metabolic rate</td>
<td>69</td>
</tr>
<tr>
<td>2.9.3 Weight cycling and resting metabolic rate</td>
<td>70</td>
</tr>
<tr>
<td>Thermogenesis</td>
<td>71</td>
</tr>
<tr>
<td>2.10.1 Impact of diet on the thermic effect of a meal</td>
<td>72</td>
</tr>
<tr>
<td>2.10.2 Impact of exercise on the thermic effect of a meal</td>
<td>72</td>
</tr>
<tr>
<td>2.10.3 Physical activity</td>
<td>73</td>
</tr>
<tr>
<td>2.10.4 Impact of exercise on food intake</td>
<td>73</td>
</tr>
<tr>
<td>2.10.5 Energy expenditure</td>
<td>74</td>
</tr>
<tr>
<td>Weight Control – Caloric Balance Equation</td>
<td>75</td>
</tr>
<tr>
<td>Basal Weight Regulation</td>
<td>78</td>
</tr>
<tr>
<td>2.12.1 The “setpoint” hypothesis</td>
<td>79</td>
</tr>
<tr>
<td>2.12.2 The “settling-point” hypothesis</td>
<td>80</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>2.13</td>
<td>Metabolic Adaptation</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Metabolic adaptation to overfeeding</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Metabolic adaptation to underfeeding</td>
</tr>
<tr>
<td>2.14</td>
<td>Regional Fat Distribution</td>
</tr>
<tr>
<td>2.15</td>
<td>Prevention of Overweight and Obesity</td>
</tr>
<tr>
<td>2.15.1</td>
<td>Additional research needs in obesity prevention</td>
</tr>
<tr>
<td>2.16</td>
<td>Obesity Treatment Strategies</td>
</tr>
<tr>
<td>2.16.1</td>
<td>Pharmacotherapy</td>
</tr>
<tr>
<td>2.16.1.1</td>
<td>History of pharmacotherapy</td>
</tr>
<tr>
<td>2.16.1.2</td>
<td>Herbal preparation</td>
</tr>
<tr>
<td>2.16.1.3</td>
<td>Thermogenic agents</td>
</tr>
<tr>
<td>2.16.1.4</td>
<td>Lipase inhibitors</td>
</tr>
<tr>
<td>2.16.1.5</td>
<td>Noradrenergic agents</td>
</tr>
<tr>
<td>2.16.1.6</td>
<td>Serotonergic agents</td>
</tr>
<tr>
<td>2.16.1.7</td>
<td>Selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td>2.16.1.8</td>
<td>Other agents</td>
</tr>
<tr>
<td>2.17</td>
<td>Physical Activity and the Obesity Epidemic</td>
</tr>
<tr>
<td>2.17.1</td>
<td>Justification for inclusion of exercise for weight-loss</td>
</tr>
<tr>
<td>2.17.2</td>
<td>Exercise prescription considerations for weight-loss</td>
</tr>
<tr>
<td>2.17.3</td>
<td>Exercise duration and weight-loss</td>
</tr>
<tr>
<td>2.17.4</td>
<td>Exercise intensity and weight-loss</td>
</tr>
<tr>
<td>2.17.5</td>
<td>Lifestyle activity and weight loss</td>
</tr>
<tr>
<td>2.17.6</td>
<td>Intermittent exercise and weight-loss</td>
</tr>
<tr>
<td>2.17.7</td>
<td>Resistance exercise and weight-loss</td>
</tr>
<tr>
<td>2.17.8</td>
<td>Effectiveness of exercise in weight control</td>
</tr>
<tr>
<td>2.18</td>
<td>Behaviour Modification for Weight-Loss</td>
</tr>
<tr>
<td>2.18.1</td>
<td>What behaviour therapy can do</td>
</tr>
<tr>
<td>2.19</td>
<td>Dieting as a Weight-Loss Strategy</td>
</tr>
<tr>
<td>2.19.1</td>
<td>Popular diets for weight loss</td>
</tr>
<tr>
<td>2.19.2</td>
<td>Cost and consumer appeal of diet programs</td>
</tr>
<tr>
<td>2.19.3</td>
<td>Effectiveness of dieting in weight control</td>
</tr>
<tr>
<td>2.20</td>
<td>Surgery in Weight Control</td>
</tr>
<tr>
<td>2.20.1</td>
<td>Gastric surgery</td>
</tr>
<tr>
<td>2.20.2</td>
<td>Plastic surgery</td>
</tr>
</tbody>
</table>
2.21 **Alternative Treatments for Weight Loss** 138
2.21.1 Acupuncture and acupressure ... 139
2.21.2 Aromatherapy ... 140
2.21.3 Hypnosis ... 140
2.21.4 Electro-muscular stimulation .. 141
2.22 **Recommendations for Weight Loss Treatments** 144

CHAPTER 3 : METHODS AND PROCEDURES

3.1 **Subjects** ... 146
3.2 **Study Design** ... 147
3.3 **Dependent Variables (Measurements)** 148
3.3.1 Anthropometry ... 149
3.3.1.1 Stature .. 149
3.3.1.2 Body mass ... 149
3.3.1.3 Skeletal widths ... 150
3.3.1.4 Sagittal height .. 150
3.3.1.5 Skinfolds ... 152
3.3.1.6 Girth measures .. 153
3.3.2 Morphology ... 155
3.3.2.1 Percentage body fat ... 155
3.3.2.2 Lean body mass ... 156
3.3.2.3 Body mass index ... 156
3.3.2.4 Body surface area .. 156
3.3.2.5 Waist-to-hip ratio ... 157
3.3.2.6 Somatotype ... 157
3.3.2.7 Somatogram .. 158
3.3.3 Ultrasound sonography .. 160
3.3.4 Respiratory quotient .. 161
3.3.5 Pulmonary function .. 162
3.3.6 Haematology ... 163
3.3.7 Cardiovascular responses ... 163
3.3.7.1 Heart rate ... 163
CHAPTER 4: RESULTS AND DISCUSSION

4.1 Anthropometry ... 174
4.1.1 Body girths ... 174
4.1.2 Skinfolds ... 181
4.1.3 Sagittal height ... 187
4.2 Morphology ... 190
4.2.1 Body mass ... 190
4.2.2 Percentage body fat ... 193
4.2.3 Percentage muscle ... 193
4.2.4 Lean body mass ... 194
4.2.5 Body mass index ... 194
4.2.6 Waist-to-hip ratio ... 194
4.2.7 Body surface area ... 198
4.2.8 Somatotype ... 198
4.2.8.1 Endomorphy (Somatotype I) ... 198
4.2.8.2 Mesomorphy (Somatotype II) ... 199
4.2.8.3 Ectomorphy (Somatotype III) ... 199
4.2.8.4 Somatogram ... 202
4.2.8.4a Somatogram (x-axis) ... 202
4.2.8.4b Somatogram (y-axis) ... 203
4.3 Ultrasound Sonography ... 203
4.4 Respiratory Quotient ... 207
4.5 Pulmonary Function ... 207
CHAPTER 5 : SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 General Considerations Regarding Weight ... 227
5.1.1 Evaluation of a weight-loss program ... 227
5.1.2 Recommendations for weight-loss programs 228
5.1.3 Pro-active steps for weight-loss .. 228
5.2 Specific Weight-loss Considerations Based on this Study 229
5.2.1 Relative efficacy of the interventions .. 230
5.2.2 Implication for weight-loss practice ... 234
5.2.3 Limitations of the study ... 235
5.3 Future Research Directions ... 235
5.3.1 Assessment methods ... 235
5.3.2 Intervention approaches ... 236
5.3.3 Causes and mechanisms of overweight and obesity 237
5.3.4 Abdominal fat, body weight and disease risk 237

REFERENCES ... 238
APPENDICES

Appendix A : Informed Consent Form ... 287
Appendix B : Result Sheet .. 288
Appendix C : Somatotype Responses Between Groups 290
Appendix D : EMS Pad Placement Chart ... 291
Appendix E : Metabolism Diet ... 292
Appendix F : Randomized Trial Synopsis .. 296
Appendix G : Nomographic Chart .. 297
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE 3.1</th>
<th>Subjects Characteristics ... 148</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 4.1a</td>
<td>Anthropometry: Body Girth Responses. Intra-Group Comparisons ... 176</td>
</tr>
<tr>
<td>TABLE 4.1b</td>
<td>Anthropometry: Body Girth Responses. Inter-Group Comparisons ... 177</td>
</tr>
<tr>
<td>TABLE 4.1c</td>
<td>Anthropometry: Sum of Body Girths Response. Intra-Group Comparisons ... 179</td>
</tr>
<tr>
<td>TABLE 4.1d</td>
<td>Anthropometry: Sum of Body Girths Response. Inter-Group Comparisons ... 179</td>
</tr>
<tr>
<td>TABLE 4.1e</td>
<td>Anthropometry: Skinfold Responses. Intra-Group Comparisons ... 182</td>
</tr>
<tr>
<td>TABLE 4.1f</td>
<td>Anthropometry: Skinfold Responses. Inter-Group Comparisons ... 183</td>
</tr>
<tr>
<td>TABLE 4.1g</td>
<td>Anthropometry: Sagittal Height Responses. Intra-Group Comparisons ... 188</td>
</tr>
<tr>
<td>TABLE 4.1h</td>
<td>Anthropometry: Sagittal Height Responses. Inter-Group Comparisons ... 188</td>
</tr>
<tr>
<td>TABLE 4.2a</td>
<td>Morphological Responses. Intra-Group Comparisons 191</td>
</tr>
<tr>
<td>TABLE 4.2b</td>
<td>Morphological Responses. Inter-Group Comparisons 191</td>
</tr>
<tr>
<td>TABLE 4.2c</td>
<td>Waist-to-Hip Ratio and Body Surface Area Responses. Intra-Group Comparisons 195</td>
</tr>
<tr>
<td>TABLE 4.2d</td>
<td>Waist-to-Hip Ratio and Body Surface Area Responses. Inter-Group Comparisons 195</td>
</tr>
<tr>
<td>TABLE 4.2e</td>
<td>Somatotype Responses. Intra-Group Comparisons 200</td>
</tr>
<tr>
<td>TABLE 4.2f</td>
<td>Somatotype Responses. Inter-Group Comparisons 200</td>
</tr>
<tr>
<td>TABLE 4.3a</td>
<td>Ultrasound Sonography Responses. Intra-Group Comparisons ... 204</td>
</tr>
<tr>
<td>TABLE 4.3b</td>
<td>Ultrasound Sonography Responses. Inter-Group Comparisons ... 206</td>
</tr>
</tbody>
</table>
TABLE 4.4a : Respiratory Quotient Response. Intra-Group Comparisons …… 208
TABLE 4.4b : Respiratory Quotient Response. Inter-Group Comparisons …… 208
TABLE 4.5a : Pulmonary Function Responses. Intra-Group Comparisons …… 210
TABLE 4.5b : Pulmonary Function Responses. Inter-Group Comparisons …… 210
TABLE 4.6a : Haematological Responses. Intra-Group Comparisons ……… 217
TABLE 4.6b : Haematological Responses. Inter-Group Comparisons ……… 217
TABLE 4.7a : Cardiovascular Responses. Intra-Group Comparisons ……… 222
TABLE 4.7b : Cardiovascular Responses. Inter-Group Comparisons ……… 220
TABLE 4.8a : Musculoskeletal Function Responses. Intra-Group Comparisons …………………………………………………………………………………….. 224
TABLE 4.8b : Musculoskeletal Function Responses. Inter-Group Comparisons …………………………………………………………………………………….. 224
TABLE 5.1 : Relative Efficacy of Interventions ……………………………….. 230
TABLE 5.2 : Variables Showing Differences between Groups …………….. 233
LIST OF FIGURES

FIGURE 2.1 : Conditions Associated with Obesity 21
FIGURE 2.2 : Body Weight-Associated Disease Risk 26
FIGURE 2.3 : Pathophysiological Model for the Risk of Developing Hypertension ... 27
FIGURE 2.4 : Pathophysiological Model for the Risk of Developing Congestive Heart Failure and Coronary Heart Disease 29
FIGURE 2.5 : Pathophysiological Model for the Development of Sleep Apnea ... 31
FIGURE 2.6 : Pathophysiological Model for the Development of Diabetes And Insulin Resistance .. 33
FIGURE 2.7 : Pathophysiological Model for the Metabolism of Cholesterol In the Development of Gall-Bladder Disease 34
FIGURE 2.8 : Relationship of Various Factors Associated with the Control of Obesity .. 42
FIGURE 2.9 : Illustrated Genotype – Etiological Basis of Obesity 43
FIGURE 2.10 : Genetic Factors Involved in the Development of Obesity 44
FIGURE 2.11 : Beta Oxidation .. 59
FIGURE 2.12 : Changes in Adipose Cell Size and Number with Growth 66
FIGURE 2.13 : White Adipose Cell ... 67
FIGURE 2.14 : Brown Adipose Cell .. 67
FIGURE 2.15 : The Energy Balance Equation (TEF Refers to the Thermic Effect of Food) ... 76
FIGURE 2.16 : Energy Expenditure .. 77
FIGURE 2.17 : Patterns of Fat Distribution 87
FIGURE 2.18 : Algorithmic Approach for Therapy Selection 94
FIGURE 2.19 : The First Law of Thermodynamics can be used to Identify the Place where Drug Treatment can be Effective 96
FIGURE 2.20 : The Relation of Physical Activity to the Energy Balance Equation ... 112
FIGURE 2.21 : Targets of Behavioral Therapy in the Energy Balance Diagram ... 121
FIGURE 2.22 : Identification of the Site at which Diet Works to Influence Energy Balance ... 125
FIGURE 2.23 : Energy Balance Diagram Showing where Surgical Treatment Has its Influence ... 133
FIGURE 3.1 : Sagittal Height $\frac{1}{2}$ umbi ... 151
FIGURE 3.2 : Sagittal Height umbi ... 151
FIGURE 3.3 : Abdominal Girth AB1 ... 154
FIGURE 3.4 : Abdominal Girth AB2 ... 155
FIGURE 3.5 : Somatogram .. 159
FIGURE 3.6 : Siemens (Sonoline Ellegra) Sonograph ... 160
FIGURE 3.7 : Sonographic Measurement of Subcutaneous and Intra-Abdominal Fat .. 161
FIGURE 3.8 : Slimline Electrical Muscle Stimulation (EMS) Machine 165
FIGURE 3.9 : Thermo Lean Label ... 167
FIGURE 3.10 : Composition of Thermogenic Agent and Placebo 168
FIGURE 4.1a : Anthropometry: Body Girth Responses between Groups 178
FIGURE 4.1b : Anthropometry: Sum of Body Girths Response between Groups .. 180
FIGURE 4.1c : Anthropometry: Skinfold Responses between Groups 184
FIGURE 4.1d : Anthropometry: Sagittal Height Responses between Groups 189
FIGURE 4.2a : Morphological Responses between Groups 192
FIGURE 4.2b : Waist-to-Hip Ratio and Body Surface Area Responses between Groups .. 196
FIGURE 4.2c : Somatotype Responses between Groups 201