

Efficiency and equity considerations in modeling inter-sectoral water

demand in South Africa

By

James Sharka Juana

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy: Environmental Economics

in the Department of

Agricultural Economics, Extension and Rural Development, Faculty of

Natural and Agricultural Sciences

University of Pretoria

Pretoria

February, 2008

DECLARATION

I declare that this thesis which I submitted for the degree of Doctor of Philosophy (PhD) in Environmental Economics at the Department of Agricultural Economics, Extension and Rural Development, Faculty of Natural and Agricultural Sciences, University of Pretoria is original and has not been submitted by me for a degree at another university.

Signed:.....Date:....

James Sharka Juana

ACKNOWLEDGEMENTS

I am grateful to my supervisors; Prof. Johann Kirsten, Head, Department of Agricultural Economics, Extension and Rural Development, University of Pretoria, and Prof. Kenneth Strzepek, Associate Chair and professor in Water Resource Engineering and Economics, Department of Civil, Environmental and Architectural Engineering, University of Colorado in Boulder, for their invaluable guidance and interest in this rigorous academic exercise.

My special gratitude to Professor Strzepek and his family and Mr. Brent Butzin and the Butzin family of Colorado Springs for providing me with the necessary support and guidance whenever I visited the United States of America for my PhD research.

I acknowledge, with gratitude, the generous financial support from the United States Agency for International Development (USAID), International Food Policy Research Institute (IFPRI) through the University of Colorado, Boulder, and the African Economic Research Consortium (AERC). Similar gratitude is extended to the International Water Management Institute (IWMI) and the Center for Environmental Economics and Policy in Africa (CEEPA) for offering me part-time research assistantship which financially helped me during the coursework.

I am greatly indebted to Professor Patrick J. Squire, Dr. Abdul B. Kamara and Dr. Abdul P. Lamin, and their respective families for their moral, academic and financial assistance and brotherly advice that kept me going in difficult times. In the same way, I would like to

thank my colleagues for helping me in diverse ways. These include Dr Teddie Nakhumwa, Dr. Patrick Birungi, Dr. Moses Sichei, Dr. Charles Abuka, Jethro Zuwarimwe, and Dr. Chilot. Tizale. I would also like to thank my colleagues in the Department of Economics and Economic History, Rhodes University, and Dr. Albert Domson Lindsay for their inspirational support in the mist of domestic crisis.

I would also like to acknowledge the patience and love from my children Thomas, Nyakeh, Khormahun and Ndemogbe, who remembered me in their prayers although they dearly missed me.

Finally, I would like to thank my dear wife Zainab for her support and love, and Messrs Moses Bangura, Alusain Kallon, L.A.M Jah, Mohamed Koroma and Milton Ndaloma for their moral support. There are numerous individuals whose contributions to the success of this academic exercise are highly appreciated.

DEDICATION

This work is dedicated to the Strzepek family of Boulder, Colorado and to the loving memory of my late sister Sombo Miatta and my late parents Mr. and Mrs. Koroma Juana.

Efficiency and equity considerations in modeling sectoral water use in South Africa

By

James Sharka Juana

Degree: Ph.D. (Environmental Economics)

Department: Agricultural Economics, Extension and Rural Development

Supervisor: Professor Johann Kirsten

Co-promoter: Professor Kenneth Strzepek

ABSTRACT

Empirical studies have shown that while global per capita freshwater availability is declining, competition among production sectors for the withdrawal of this resource is rapidly increasing. This situation is exacerbated by the rapid population growth especially in developing countries, urbanization, industrialization, externality problems, environmental sustainability and the need to increase food production. At country specific levels, policies have been designed to institute water use efficiency, equity and sustainability. The need to promote sectoral water use efficiency from the demand-side management requires a study to investigate the responsiveness of different production sectors and sub-sectors to variations in water prices. In most instances however, efficient water allocation compromises social equity, especially in a country where there is widespread poverty and where the gap between the rich and the poor is so wide that policies aimed at promoting economic growth should be carefully investigated to find whether efficient water allocation can also address the issue of equity among the different population groups.

Review of empirical literature on the econometric approaches to sectoral water demand analysis shows that the agriculture sector has the least marginal value of water compared with the manufacturing, mining and services sectors. Based on this evidence it can be hypothesized that water reallocation from the agriculture to the nonagriculture sectors in South Africa can lead to growth in sectoral output.

However, in a country where there is a wide gap between the rich and the poor, equity issues are high on the development agenda. Therefore, the benefits derived from efficient water reallocation should be equitably distributed to improve the standard of living of the critical population. Hence, the second hypothesis is that water reallocation from the agriculture to the non-agriculture sector can lead to an increase in the income of the critical population. To investigate these hypotheses the study:

- i) estimated the sectoral water demand functions and marginal values,
- ii) used both social accounting matrix multiplier and computable general equilibrium analysis to investigate the impact of water reallocation from the agriculture to the non-agriculture sectors on output, factor payments on households' welfare and
- iii) analyzed the households' welfare of the impact of global change on water resources in South Africa.

The study used the Global Trade Analysis Project (GTAP) and United Nations Industrial Development Organization (UNIDO) data, and adopted the marginal productivity

vii

approach, and the two-stage model to estimate the global sectoral water demand functions and marginal values for thirteen sectors.

This model is extended to the sectoral water demand analysis in South Africa. Thus, to validate the results of the global model, the study estimated sectoral water demand functions in South Africa by extracting data from STATSSA's census of manufacturing and agricultural and services activities, published for each of the nine provinces in South Africa and the 2002 water supply and use accounts published by the same institution. The study tests the policy relevance of the computed marginal values for South Africa by using these values to investigate the impact of reallocating water from the agriculture to the nonagriculture sectors on output growth, value added, employment and households' income generation.. To accomplish this objective, the study updates the 1999 social accounting matrix (SAM) for South Africa to reflect 2003 entries, computes the required multipliers and uses these to find how water reallocation on the basis of efficiency impacts sectoral output, households income generation and distribution. However, SAM multiplier analyses assume linearity, factor immobility and constant prices. The study therefore uses the computable general equilibrium analysis to investigate the households' welfare implications of sectoral water reallocation and reduction due to global change.

The SAM multiplier analysis shows that reallocation of water from the agriculture to the non-agriculture sectors leads to decrease in the output of the agriculture and the highly inter-dependent sectors. Specifically, output declines in the agriculture, food, beverages and tobacco and the services sectors, while it increases in the other sectors. However, if more than ten percent of the agriculture sector's water is reallocated to the non-agriculture

sector, net output declines, implying that the decline in output in the agriculture, food, beverages and tobacco and services sectors is more than the increase in output in the other sectors. This has consequences for factor remuneration, employment and households' income.

The above decline in the agriculture sector's output leads to net job losses. Specifically the jobs lost in the agriculture sector are not countered by jobs created in the other sectors that benefit from the water reallocation. This is due to the fact that there are differences in skills requirements by the sectors. While the agriculture sector employs most of the unskilled workers, the other sectors require more medium and highly skilled individuals. This is reflected by changes in the wages paid to labourers. While the wages of unskilled labourers decline, there is an increase in the wages of medium and highly skilled labourers.

The simulation results of the computable general equilibrium analysis show that sectoral water reallocation and reduction adversely impact the least and low-income households' welfare, while improving the welfare of the high-income households. The interpretation is that with water reallocation or reduction, capital is substituted for water in the non-agriculture sectors and this increases the interest paid on capital, which goes to high-income households who are the owners of the capital. The adverse consequence can be reduced if food consumption by the poor households is maintained. To do this, some welfare measures are necessary. One such measure is the distribution of food stamps to the poor households.

TABLE OF CONTENTSI

DECLARATION	ii
ACKNOWLEDGEMENTS	iii
DEDICATION	vvi
ABSTRACT	vi
TABLE OF CONTENTS	x
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ACRONYMS	XV

CHAPTER ONE1
INTRODUCTION1
1.1 BACKGROUND
1.2 ALTERNATIVE WATER ALLOCATION MECHANISMS
1.2.1 Efficient water allocation4
1.2.2 Equity
1.2.3 Sustainability
1.3 WATER ALLOCATION REFORM IN SOUTH AFRICA7
1.3.1 Guide lines for water allocation reforms in South Africa7
1.4 PROBLEM STATEMENT
1.5 THE OBJECTIVES OF THE STUDY14
1.6 HYPOTHESES TO BE INVESTIGATED15
1.7 OUTLINE OF THE STUDY16
1.9 LIMITATIONS OF THE STUDY17
CHAPTER TWO
ECONOMIC VALUATION OF WATER RESOURCES: AN OVERVIEW OF
METHODS AND APPLICATIONS
2.1 INTRODUCTION

2.2.2 Assumed price elasticity approach	23
2.2.3 Econometric approach to estimating water demand functions	24
2.2.4 Mathematical programming approach	27
2.3 THE RESIDUAL IMPUTATION METHOD	
2.4 VALUE ADDED APPROACH	
2.5 ALTRERNATIVE COST APPROACH	32
2.6 OUTLINE OF THE APPLIED METHODS USED IN THIS STUDY	33
2.7 SUMMARY AND CONCLUSION	35
CHAPTER THREE	38
MARGINAL PRODCUTIVITY ANALYSIS OF GLOBAL SECTORAL	WATER
DEMAND	
3.1 INTRODUCTION	
3.2 THE EMPIRICAL MODEL AND ESTIMATION PROCEDURE	41
3.3 DATA SOURCES AND DESCRIPTION OF EXTRACTED DATA	45
3.4 PRESENTATION AND DISCUSSION OF ESTIMATED RESULTS	47
3.4.1 Regression Results	47
3.4.2 The computed output and price elasticities of water	50
3.4.3 Estimated sectoral marginal values of water	52
3.8 SUMMARY AND CONCLUSIONS	55
CHAPTER FOUR	57
MARGINAL PRODUCTIVIVTY ANALYSIS OF SECTORAL WATER	
DEMAND IN SOUTH AFRICA	57
4.1 INTRODUCTION	57
4.2 MODEL SPECIFICATION, ESTIMATION AND DATA SOURCES	60
4.2.1 Model specification and estimation procedure	60

4.2 MODEL SPECIFICATION, ESTIMATION AND DATA SOURCES	60
4.2.1 Model specification and estimation procedure	60
4.2.2 Description and sources of data	61
4.3 PRESENTATION AND DISCUSSION OF ESTIMATED RESULTS	63
4.3.1 Presentation of the estimated coefficients	63
4.3.2 Computed output elasticities	66

4.3.3 Computed sectoral price elasticities of the demand for water
4.3.4 Presentation of the computed sectoral marginal values of water71
4.3.5 Provincial sectoral marginal values of water73
4.5 SUMMARY AND CONCLUSIONS
CHAPTER FIVE77
SECTORAL WATER USE IN SOUTH AFRICA: EQUITY VERSUS
EFFICIENCY77
5.1 INTRODUCTION
5.2 THE FEATURES OF THE SOUTH AFRICAN SAM
5.3 THE THEORETICAL FRAMEWORK AND MODELING PROCEDURE82
5.3.1 The theoretical framework
5.3.2 The simulation techniques
5.4 PRESENTATION AND DISCUSSION OF SIMULATION RESULTS90
5.4.1 Contribution of water to economic activities in South Africa
5.4.2 Reallocating water among the production sectors on the basis of efficiency .91
5.5 SUMMARY AND CONCLUSIONS
CHAPTER SIX107
A COMPUTABLE GENERAL EQUILIBRIUM APPROACH TO ANALYSE
THE HOUSEHOLDS' WELFARE EFFECTS OF CHANGES IN SECTORAL
WATER USE IN SOUTH AFRICA107
6.1 INTRODUCTION107
6.2 DATA, THEORETICAL FRAMEWORK AND SIMULATIONS109
6.2.1 Description and sources of data109
6.2.2 Treatment of water and SAM aggregations110
6.2.3 The theoretical framework and the empirical modeling procedure113
6.2.3.1 The theoretical framework
6.2.4 Household welfare analysis116
6.2.5 The experimental simulations117

6.3 PRESENTATION OF SIMULATION RESULTS120
6.3.1 Sectoral water use under different global change scenarios120
_ 6.3.2 Sectoral water use under different water reallocation scenarios122
6.3.3 Changes in sectoral output under the different global change scenarios123
6.3.4 Changes in factor payments under the different global change scenarios126
6.3.5 Households' welfare analysis under the different global change scenarios127
6.3.6 Changes in sectoral output under the different water reallocation scenarios 130
6.3.7 Changes in value added under the different water reallocation scenarios132
6.3.8 Households, welfare analysis under the different water reallocation
scenarios134
6.3.9 Changes in agricultural imports and exports under the different water
reallocation scenarios135
6.3.10 The impact of a welfare program on changes households' consumption136
6.4: DISCUSSION OF MAIN RESEARCH FINDINGS
6.5 SUMMARY AND CONCLUSIONS142

CHAPTER SEVEN	144
GENERAL SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	144
7.1 INTRODUCTION	144
7.2 GENERAL RESEARCH FINDINGS	146
7.3 POLICY RECOMMENDATIONS	149
7.4 RESEARCH FINDINGS AND POLICY INSIGHTS	150
7.5 FUTURE RESEARCH ISSUES	151
REFERENCES	153
APPENDIX 1: DATA FOR THE GLOBAL SECTORAL WATER DEMAND	
ANALYSIS AND DETAILED ESTIMATION RESULTS	163
APPENDIX 2: DETAILED ESTIMATION RESULTS AND DATA FOR SOUT	Н
AFRICAN MODEL	180
APPENDIX 3: UPDATED SOCIAL ACCOUNTING MATRIX AND MULTIPL	JERS
FOR SOUTH AFRICA	187
APPENDIX 4: ADJUSTED 2003 SOUTH AFRICAN SAM	195

LIST OF TABLES

Table 3.1: The estimated coefficients of the global models
Table 3.2: The computed sectoral elasticities and marginal values of the global water
demand model
Table 4.1:Estimated coefficients of the South Africa water demand models 65
Table 4.2: Means of estimated variables
Table 4.3: Computed sectoral price elasticities and marginal values of water in South
Africa
Table 4.4: Provincial sectoral marginal values of water in South Africa 74
Table 5.1: Contribution of water to sectoral output under different allocation scenarios92
Table 5.2: Impact of water reallocation on sectoral output under different scenarios93
Table 5.3: Impact of water reallocation on factor remuneration under different scenarios.97
Table 5.4: Water reallocation and job creation under different scenarios 100
Table 5.5: Impact of water reallocation on households' income102
Table 6.1: Sectoral water use under different global change scenarios
Table 6.2: Sectoral water use under different water reallocation scenarios 122
Table 6.3: Sectoral output under the different global change scenarios 124
Table 6.4: Changes in factor remuneration under the different global change scenarios126
Table 6.5: Changes in sectoral output under the different water reallocation scenarios131
Table 6.6: Changes in factor remuneration under the water reallocation scenarios

LIST OF FIGURES

Figure 1: Global sectoral marginal values of water53
Figure 2: Computed sectoral output elasticities of water in South Africa68
Figure 3: Sectoral price elasticity of water in South Africa70
Figure 4: Sectoral marginal values of water in South Africa72
Figure 5: Households' welfare analysis under the global change scenarios129
Figure 6: Agricultural exports and imports under the global change scenarios130
Figure 7: Households' welfare analysis under the different water reallocation scenarios 134
Figure 8: Agricultural exports and imports under the water reallocation scenarios136
Figure 9: Welfare programmes and changes in households' consumption137
Figure 10: Implications of welfare policy to maintain consumption levels

LIST OF ACRONYMS

Acronym	Meaning
AGI	Food, Tobacco and Beverage Manufacturing sector
AGR	Agriculture, Fishing and Forestry sector
CHM	Basic Chemical Manufacturing sector
CON	Construction sector
DWAF	Department of Water Affairs and Forestry
ELE	Electricity sector
ENG	Energy sector
FAO	Food and Agricultural Organization
GTAP	Global Trade Analysis Project
HEV	Metal Manufacturing sector
ISIC	International Standard Industrial Classification
MAC	Machinery and Equipment Manufacturing sector
MIN	Mining Sector
OHM	Other Manufacturing sector
PEC	Petroleum Extraction sector
PPP	Paper, Pulp and Publishing sector
SAM	Social Accounting Matrix
SARB	South African Reserve Bank
STATSSA	Statistics South Africa
SUR	Seemingly Unrelated Regression
TIPS	Trade and Industrial Policy Strategies
TXT	Textile, Leather Products and Wearing Apparel
UNIDO	United Nations Industrial Development Organization
WMA	Water Management Area