COETSER, S E

MICROBIAL SULPHATE REDUCTION USING DEFINED CARBON SOURCES AND ARTIFICIAL ACID MINE DRAINAGE

MSc UP 1997
MICROBIAL SULPHATE REDUCTION USING DEFINED CARBON SOURCES
AND ARTIFICIAL ACID MINE DRAINAGE

By

SUSANNA ELIZABETH COETSER

Submitted in partial fulfilment of
the requirements for the degree

MASTER OF SCIENCE

In the Faculty of Biological and Agricultural Sciences

Department of Microbiology and Plant Pathology

University of Pretoria

Pretoria

South Africa

December 1997
DECLARATION

I, the undersigned, certify the thesis hereby submitted to the University of Pretoria for the degree of M.Sc. and the work contained herein is my own original work and has not previously, in its entirety or in part, been submitted at any university for a degree.

Signature: 

Date: 27/11/1998
MICROBIAL SULPHATE REDUCTION USING DEFINED CARBON SOURCES AND ARTIFICIAL ACID MINE DRAINAGE

by

SUSANNA ELIZABETH COETSER

Promoter: Prof. T.E. Cloete
Department: Microbiology and Plant Pathology
Degree: M.Sc. (Microbiology)

SUMMARY

The production of acid mine drainage (AMD) containing high amounts of sulphate, heavy metals and low pH is of increasing concern. Due to the fact that it is highly corrosive, it results in environmental and economic problems.

The potential use of different defined carbon sources to drive sulphate reduction in artificial AMD was studied. This was done in a process for developing a standard laboratory procedure for the evaluation of carbon sources for potential use in passive treatment systems of AMD.

The conceptual model for the passive treatment of AMD accounts for major events of interest occurring within the passive treatment system. This model will assist in identifying the parameters that significantly influence the system response as well as possible causes for malfunction.
MIKROBIOLOGIESE SULFAAT REDUKSIE DEUR GEBRUIK TE MAAK VAN GEDEFINIEERDE KOOLSTOF BRONNE EN KUNSMATIGE SUURMYNAFLOOP

SUSANNA ELIZABETH COETSER

Promotor: Prof. T.E. Cloete
Departement: Mikrobiologie en Plantpatologie
Graad: M.Sc. (Mikrobiologie)

OPSOMMING

Die toenemende produksie van suurmynafloop is kommerwekend. Suurmynafloop bevat groot hoeveelhede sulfaat, swaar metale en ’n lae pH. As gevolg van die feit dat dit hoog korrosief is, veroorsaak dit omgewing en ekonomiese probleme.

Die potensiaal om verschillende gedefinieerde koolstof bronne te gebruik vir die reduksie van sulfaat in suurmynafloop is bestudeer. Dit is gedoen deur ’n standaard laboratorium prosedure te ontwikkel vir die evaluasie van koolstof bronne vir potensiaal gebruik in passiewe behandeling stelsels van suurmynafloop.

Die konseptuele model vir passiewe behandeling stelsels van suurmynafloop beskryf die belangrikste gebeure in hierdie passiewe behandeling stelsels. Die konseptuele model identifiseer die belangrikste parameters wat stelsels negatief kan beïnvloed.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the following persons and institutions who contributed towards the completion of this study:

Prof. T.E. Cloete of the Department of Microbiology and Plant Pathology, University of Pretoria for his advice, able guidance, continual patience and constructive critique and also the opportunities he created to further broaden my knowledge and perceptions throughout the course of this study.

Mr. Stephan Dill for his advice and assistance.

The Water Research Commission, Pretoria, for their financial support.

The members of the Steering Committee of the Water Research Commission for their constructive criticism and guidance during the course of the study.

Pulles, Howard and de Lange Inc. Johannesburg, for their constant advice and help.

My colleagues for their moral support, advice, help and criticism.

My parents for all the opportunities that they have given me which enabled me to get this far and their support throughout my career.
INDEX

Summary III

Opsomming IV

Acknowledgements V

Index VI

CHAPTER 1: Introduction 1

CHAPTER 2: Literature study 5

2.1 Introduction 5

2.2 Acid mine drainage 8

2.2.1 Sources and problems associated with acid mine drainage 8

2.2.2 The microbiology of acid mine drainage 10

2.2.3 Treatment of acid mine drainage 12

2.3 The microbiology of the sulphur cycle 19

2.3.1 The sulphur cycle 19

2.3.1.1 Mineralization of organic sulphur 20

2.3.1.2 Sulphur assimilation 21

2.3.1.3 Sulphur oxidation reactions 21

2.3.1.4 Sulphate reduction 23

2.4 Substrate utilisation of SRB 29

2.4.1 Utilisation of acetate 31

2.4.2 Utilisation of lactate 32

2.4.3 Utilisation of pyruvate 35

2.4.4 Utilisation of hydrogen and formate 35

2.4.5 Utilisation of propionate, butyrate and higher fatty-acids 36

2.5 Competition between sulphate reducing bacteria and methanogens 40

2.6 References 43
CHAPTER 3: A novel anaerobic bioreactor for laboratory scale experiments 50

CHAPTER 4: Biological sulphate reduction in artificial acid mine drainage using different defined carbon sources 61

CHAPTER 5: A conceptual model for the passive treatment of acid mine drainage 82

CHAPTER 6: Conclusion 108