OCCURRENCE OF HELMINTH INFECTIONS IN DOGS IN FIVE
RESOURCE-LIMITED COMMUNITIES IN SOUTH AFRICA

by

Willem Nicolaas Minnaar

Submitted in partial fulfilment of the requirements for the degree of

Magister Scientiae (Veterinary Science)

in the

Department of Veterinary Tropical Diseases
Faculty of Veterinary Science
University of Pretoria
Pretoria
South Africa

2000
My son, if thou wilt receive my words, and bide my commandments with thee;
So that thou incline thine ear unto wisdom, and apply thine heart to understanding;
Yea, if thou criest after knowledge, and liftest up thy voice for understanding;
If thou seekest her as silver, and searchest for her as for hid treasures;
Then shalt thou understand the fear of the Lord, and find the knowledge of God.
For the Lord giveth wisdom: out of his mouth cometh knowledge and understanding.

Proverbs 2: 1 - 10
ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Ms. M James from the National Council of the Society for the Prevention of Cruelty to Animals (NSPCA), Ms. Y Berridge and Mr. R Mathebela from Boksburg SPCA for their valuable assistance in the Boksburg area. I thank Prof. L Fourie and Mr. E Williams from the University of the Orange Free State for their contribution during the collection of samples and data from Bloemfontein.

Prof. C M E McCrindle from the Department of Paraveterinary Sciences, Faculty of Veterinary Science is thanked for organising the three Veterinary Needs Appraisals (VNAs) and inviting the author to participate.

The technical assistance of Mr. H M Boshoff, Ms. S Mangera, Mr. T Matjila, Ms. S A Milne and Ms. R Morobane from the University of Pretoria is greatly appreciated. Proff. I G Horak, B L Penzhorn and R C Tustin are thanked for their constructive comments during the writing up of this project.

Prof. H T Groeneveld and Dr. M van der Linde are thanked for the processing and assistance with the interpretation of the statistical information.

A special word of thanks to Prof. R C Krecek, my promotor, for her patience and guidance throughout this project.
Ms. E Mayhew is thanked for the maps, Ms. C Seegers for the illustrations of the Body Condition Score System and Ms. H Smit for assistance with the photography during the project.

The financial support from the Faculty of Veterinary Science of the University of Pretoria, the National Research Foundation and Bayer Animal Health is gratefully acknowledged.
DECLARATION

During the course of the project, Mr. H M Boshoff, Mr. T P Matjila, Ms. S.A. Milne, Dr. J.I. Rajput and Mr. E. Williams assisted with the collection of samples in some of the study areas. Ms. S. Mangera, Ms. S.A. Milne and Ms. R. Morobane supported the project by mounting some of the specimens for identification. Ms. E. Mayhew and Ms. C. Seegers made the drawings of body condition scoring and the maps used in this document.

With the exception of the assistance mentioned above, this dissertation is the candidate's own original work. It has not been previously submitted and is not currently being submitted in candidature for any other degree.

Candidate

W.N. Minnaar
OCCURRENCE OF HELMINTH INFECTIONS IN DOGS IN FIVE RESOURCE-LIMITED COMMUNITIES IN SOUTH AFRICA

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>General introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aims</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Literature review</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Common helminth parasites of dogs in South Africa</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Study areas</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Biological samples from live animals and at necropsy</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Blood samples</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Faecal samples</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Adhesive tape swabs</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Organ samples</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Estimation of body condition</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Criteria for estimation of dog age</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Statistical analyses</td>
<td>27</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Helminth occurrence in dogs from resource-limited communities in Boksburg, Gauteng Province</td>
<td>28</td>
</tr>
<tr>
<td>3.1</td>
<td>Background</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials and methods</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>31</td>
</tr>
</tbody>
</table>
Chapter 4 Helminth occurrence in dogs from resource-limited communities in Bloemfontein, Free State Province

4.1 Background 45
4.2 Materials and methods 47
4.3 Results 48
4.4 Discussion 54

Chapter 5 Helminth occurrence in dogs from resource-limited communities in Jericho, North-West Province, and Zuurbekom and Mamelodi, Gauteng Province

5.1 Background 58
5.2 Materials and methods 65
5.3 Results 67
5.4 Discussion 68

Chapter 6 Socio-economic questionnaires completed with the assistance of dog-owners in Boksburg, Jericho, Zuurbekom and Mamelodi

6.1 Introduction 75
6.2 Materials and methods 75
6.3 Results 78
6.4 Discussion 82
Chapter 7 Conclusions 85

References 93

Appendix A Socio-economic questionnaire used during semi-structured interviews with dog-owners of Boksburg, Jericho, Zuurbekom and Mamelodi 96
List of figures

Fig. 2.1 *Ancylostoma caninum* showing two pairs of three-pronged teeth

Fig. 2.2 *Ancylostoma braziliense* showing ventral cutting plates

Fig. 2.3 The geographic locality of the five study areas in South Africa. These included Jericho, Mamelodi, Zuurbekom, Boksburg and Bloemfontein

Fig. 2.4 Collection of a blood sample from a dog after euthanasia

Fig. 2.5 Equipment used for the collection and processing of blood samples

Fig. 2.6 Equipment used for the collection and processing of faecal samples

Fig. 2.7 Equipment used for collecting adhesive tape swabs

Fig. 2.8 Collecting an adhesive tape swab from a dog in Mamelodi

Fig. 2.9 *Toxocara canis* head and tail, terminal appendage on the male tail and oesophageal bulb

Fig. 2.10 *Toxascaris leonina* head and tail. Note there is no oesophageal bulb, nor is there a terminal appendage on the tail of male

Fig. 2.11 Dog condition score 1

Fig. 2.12 Dog condition score 2

Fig. 2.13 Dog condition score 3

Fig. 2.14 Dog condition score 4

Fig. 2.15 Dog condition score 5

Fig. 3.1 The geographic locality of Boksburg in Gauteng Province

Fig. 3.2 Area map of Boksburg
Fig. 3.3 Interviewing dog-owners in Holomisa, outside Boksburg 30
Fig. 3.4 Helminth parasite species identified in faecal flotations of dogs (n=164) from Boksburg 35
Fig. 3.5 Mean number of nematodes recovered from dogs (n=69) necropsied in Boksburg 35
Fig. 3.6 Nematode species identified and number of dogs infected (n=69) in Boksburg 36
Fig. 3.7 Mean number of cestodes recovered from dogs (n=69) necropsied in Boksburg 36
Fig. 3.8 Number of dogs from which cestodes were recovered (n=69) in Boksburg 37
Fig. 3.9 Trichuris vulpis, male prepuce 41
Fig. 4.1 The geographic locality of Bloemfontein in Free State Province 45
Fig. 4.2 Area map of Bloemfontein 46
Fig. 4.3 A dog being necropsied in Bloemfontein by Mr. Eddie Williams 47
Fig. 4.4 Helminth parasite species identified in faecal flotations of dogs (n=63) from Bloemfontein 52
Fig. 4.5 Mean number of nematodes recovered from dogs (n=63) necropsied in Bloemfontein 52
Fig. 4.6 Nematode species identified and number of dogs infected (n=63) in Bloemfontein 53
Fig. 4.7 Mean number of cestodes recovered from dogs (n=63) necropsied in Bloemfontein 53
Fig. 4.8 Number of dogs from which cestodes were recovered (n=63) in Bloemfontein 54
Fig. 4.9 *Spirocerca lupi* in the oesophagus of a dog from Bloemfontein
55

Fig. 5.1 The geographic locality of Jericho in North-West Province
58

Fig. 5.2 Area map of Jericho
59

Fig. 5.3 The geographic locality of Zuurbekom and Mamelodi in Gauteng Province
61

Fig. 5.4 Area map of Zuurbekom
62

Fig. 5.5 Area map of Mamelodi
64

Fig. 5.6 Collecting a blood sample from a dog in Jericho
66

Fig. 5.7 Helminth parasites identified in faecal flotations of dogs from Jericho, Zuurbekom and Mamelodi
68

Fig. 6.1 The author completing a questionnaire with a dog-owner in Jericho, North-West Province
76

Fig. 6.2 Reasons for owning dogs in the resource-limited communities of Boksburg, Jericho, Zuurbekom and Mamelodi
78

Fig. 6.3 Basic diet of dogs in the resource-limited communities of Boksburg, Jericho, Zuurbekom and Mamelodi
79

Fig. 6.4 Deworming remedies reported used for dogs by owners in the resource-limited communities of Boksburg, Jericho, Zuurbekom and Mamelodi
79

Fig. 6.5 Veterinary procedures in addition to deworming remedies carried out on dogs in the resource-limited communities of Boksburg, Jericho, Zuurbekom and Mamelodi
80

Fig. 6.6 Veterinary actions in case of illness of dogs in the resource-limited communities of Boksburg, Jericho, Zuurbekom and Mamelodi
81

Fig. 6.7 Economic Situation Scores (ESS) of dog-owners in Mamelodi
82
List of tables

Table 2.1 Village, province and categories of samples collected from dogs as well as questionnaires in five resource-limited study areas in South Africa 9

Table 2.2 Body condition scoring (BCS) system for dogs 22

Table 3.1 Number and results of blood samples and adhesive tape swabs examined in dogs from Boksburg 32

Table 3.2 Helminth species recovered from 69 necropsy examinations of dogs in Boksburg 33

Table 4.1 Helminth species recovered from 63 necropsy examinations of dogs in Bloemfontein 50

Table 5.1 Number of blood smears, blood filters, adhesive tape swabs and faecal specimens examined from dogs in Jericho, Zuurbekom and Mamelodi 67

Table 6.1 Economic Situation Score (ESS) Method 77

Table 7.1 Faecal samples of dogs that contained eggs of *Ancylostoma caninum* in the five study areas 86

Table 7.2 Comparative summary of the percentage of helminths recovered from dogs from Boksburg (n=69) and Bloemfontein (n=63) during necropsies 89
ABSTRACT

Occurrence of helminth infections in dogs in five resource-limited communities in South Africa

by

Willem Nicolaas Minnaar

Promoter: Prof. R.C. Krecek
Department of Veterinary Tropical Diseases
Faculty of Veterinary Science
University of Pretoria
South Africa

Degree: Magister Scientiae (Veterinary Science)
SUMMARY

Our knowledge of helminth parasites of dogs in South Africa is limited. The current study describes the helminth status in dogs from five resource-limited areas, which included two cross-sectional surveys in Boksburg and Bloemfontein, and three Veterinary Needs Appraisals (VNAs) in Jericho, Zuurbekom and Mamelodi. The VNAs were supplemented with questionnaires that were completed with the assistance of the dog-owners, and provided information regarding veterinary care and preventive measures in terms of possible disease, the dog's home environment, diet, and the hygiene status. The prevalence of the various dog helminth species were recorded and compared with the current knowledge of these parasites in South Africa. Attempts were also made to find associations with environmental conditions and management strategies observed during the project. *Ancylostoma* spp. was the most important helminth in dogs due to a high overall occurrence (80%) as well as its importance as a zoonosis. Forty-two percent of dogs necropsied were infected with *Dipylidium caninum*, 21% with *Toxocara canis*, and 20% with *Toxascaris leonina*. Dog helminth parasites that were not well documented in the past such as *Spirocerca lupi* (14%), *Joyeuxiella* sp. (5%) and *Trichuris vulpis* (3%) were also found in this study. Recommendations for the control of helminth parasites in dogs in these areas were made. Although the main focus of helminth parasite control in practice is chemical deworming, additional measures such as regular removal of dog faeces from the environment and prevention of roaming of animals may be even more important. These offer effective worm control at affordable cost to the communities that need it most.
OPSOMMING

Ons kennis van wurmparasiete van honde in Suid-Afrika is beperk. Die huidige studie beskryf die wurmstatus in honde van vyf hulpbronbeperkte gebiede met inbegrip van twee opnames in Boksburg en Bloemfontein en drie Veterinêre Behoeftepeilings (VBP)s in Jericho, Zuurbekom en Mamelodi. Die VBP is aangevul met vraaeliste wat voltooi is met die hulp van die honde-eienaars, wat inligting verskaf het i.v.m. veterinerêe sorg en siektevoorkomingsmaatreëls, sowel as die omgewing, dieet en higiênestatus van die honde. Die voorkoms van die onderskeie wurmspesies is genoteer en vergelyk met die huidige kennis van die parasiete in Suid-Afrika. Daar is ook gepoog om 'n verband te vind met die omgewingstoestande en betuurspraktyke soos waargeneem tydens die projek. Ancylostoma spp. was die belangrikste wurm in honde vanweë twee redes: 'n hoë algemene voorkoms (80%), sowel as sy belangrikheid as 'n soõose. Van al die honde wat nadoods ondersoek is, was 42% besmet met Dipylidium caninum, 21% met Toxocara canis, en 20% met Toxascaris leonina. Wurmparasiete van honde wat in die verlede in die literatuur verwaarloos is, byvoorbeeld Spirocerca lupi (14% voorkoms), Joyeuxiella sp. (6%) en Trichuris vulpis (3%) was ook teenwoordig gedurende hierdie studie. Aanbevelings vir die beheer van wurmparasiete in honde in die betrokke areas is gemaak. Alhoewel die klem by wurmparasietbeheer in die praktyk hoofsaaklik val op chemiese ontwurming, is alternatiewe bestuursmaatreëls, bv. gereëlde verwydering van hondemis uit die omgewing en die inperking van honde, waarskynlik meer belangrik. Hierdie maatreëls bied doeltreffende, bekostigbare wurmbeheer aan die gemeenskappe wat dit die meeste nodig het.