Antimicrobial activity of compounds isolated from *Lippia javanica* (Burm.f.) Spreng and *Hoslundia opposita* against *Mycobacterium tuberculosis* and HIV-1 Reverse transcriptase

BY

SILVA FABIÃO MUJOVO

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHIAE: PLANT SCIENCE

Department of Plant Science

Faculty of Natural and Agricultural Sciences

University of Pretoria,

Pretoria, South Africa

PROMOTER: Prof. Namrita Lall

August 2009
DECLARATION

The experimental work described in this thesis was conducted in the Department of Plant Science, University of Pretoria and Medical Research Council (MRC) South Africa, Pretoria, from February 2002 to December 2005, under the supervision of Prof. Namrita Lall.

These studies are the result of my own investigation and have not been submitted in any other form to another University.

I declare the above statement to be true

Silva Fabião Mujovo
ACKNOWLEDGMENTS

I would like to express special thanks to Professor Namrital Lall for supervising this research and critical comments during the write up of this thesis.

Special thanks to the Head of Department of Plant Science (Prof Marion Meyer) for his valuable advice and encouragement.

A special thanks to Dr Ahmed Hussein from National Research Centre, Egypt, for his assistance during the phytochemical studies of selected plants.

My sincere thanks and gratitude goes to Professor Van Wyk and his staff at the HGWJ Schweickerdt Herbarium of the University of Pretoria for identification of plant species.

My sincere thanks to Dr Maryana van de Venter, to Dr Vaughan Oosthuizen (University Metropolitan Nelson Mandela) to Dr Debra Meyer and Adriaan Basson (Rand University) for their guidance and assistance with antiviral tests.

I offer my sincere thanks to extremely supportive staff of Medical Research Council (Pretoria), in particular Dr Tshilidzi Muthivhi and Ms Mphahlele, for guidance and assistance during antimycobacterial screening of plants and isolated compounds.

I am extremely grateful to all my colleagues at the Department of Plant Science, especially Dr Emmanuel Tshikalange for his kind co-operation and his endless
encouragement and unstinting belief in me through many difficult times. To all of them I express my sincere gratitude.

I am very grateful to Dr Quenton Kritzinger who read through some chapters of this thesis and made valuable corrections and suggestions.

Grant support by the National Research Foundation of South Africa (NRF) is gratefully acknowledged.

My thanks to the Ministry of Health of Mozambique for bursaries and to the Association of Traditional Healers of Mozambique (AMETAMO) from Maputo, Chokwe, Massingir, Manica and Zambezia for providing valuable information about the medicinal use of the plant species collected for this study.

I am greatly indebted to my wife Serafina, for keeping the family happy at home, my daughter Marinela Edite and my son Wilson for their support, patience and understanding throughout the period of the study.

For God giving me the strength and determination to accomplish this study.
LITERATURE REVIEW AND OBJECTIVES

1.1 Introduction

1.2 The value of plants used in ethnomedicine for drug discovery

1.3 Antiviral compounds from plants

1.4 Mozambican traditional medical practice

1.5 Hypothesis and motivation of study

1.6 Objectives of the study

1.7 Scope of this thesis

1.8 References

CHAPTER 2

ANTITUBERCULOSIS AND ANTIBACTERIAL ACTIVITY OF MEDICINAL PLANTS COLLECTED IN MOZAMBIQUE

Abstract
CHAPTER 3
ANTIVIRAL ACTIVITY OF MOZAMBIAN MEDICINAL PLANTS AGAINST HUMAN IMMUNODEFICIENCY VIRUS

Abstract---41

3.1 Introduction--42

3.2 Materials and methods---45

3.2.1 Plant material---45

3.2.2 Preparation of plant extracts----------------------------------45

3.2.3 Glycohydrolase enzyme assays-----------------------------------46

3.2.4 HIV-1 Reverse transcriptase (RT) assay activity-----------------47

3.3 Results and discussion---48
4.3.7 Compound 7: Cirsimaritin

4.3.8 Compound 8: 6-Methoxyluteolin 4'-methyl ether

4.3.9 Compound 9: 6-Methoxyluteolin 3',4',7-trimethyl ether

4.4 Conclusion

4.5 References

CHAPTER 5

ISOLATION AND IDENTIFICATION OF COMPOUNDS FROM *HOSLUNDIA OPPOSITA* VAHL.

Abstract

5.1 Introduction

5.1.1 *Hoslundia opposita*: biological activity and chemical constituents

5.2 Materials and methods

5.2.1 Plant material

5.2.2 Extraction and isolation

5.2.3 Identification of isolated compounds

5.3 Results and discussion

5.3.1 Compound 1: 5, 7- dimethoxy-6-methylflavone

5.3.2 Compound 2: Hoslunddiol

5.3.3 Compound 3: Jacarandic acid or Euscaphic acid

5.4 Conclusion

5.5 References
CHAPTER 6
ANTIBACTERIAL ACTIVITY OF THE COMPOUNDS ISOLATED FROM
LIPIA JAVANICA AND HOSLUNDIA OPPOSITA

Abstract

6.1 Introduction

6.2 Material and methods

6.2.1 Bioautographic bioassay

6.2.2 Microdilution assay

6.3 Results

6.3.1 Bioautography results

6.3.2 Bioassay results

6.4 Conclusion

6.5 References

CHAPTER 7
ANTIMYCOBACTERAL ACTIVITY OF ISOLATED COMPOUNDS FROM
LIPIA JAVANICA AND HOSLUNDIA OPPOSITA

Abstract

7.1 Introduction

7.2 Materials and Methods
Compounds isolated from higher plants with antiviral activity against animal or human viruses.

CHAPTER 2

Table 2.1

Selected Mozambican medicinal plant investigated for antibacterial, antitubercular and Anti-HIV activities.

Table 2.2

Activity of selected Mozambican medicinal plants against Gram-positive and Gram-negative bacterial species.

Table 2.3

Effect of plant extracts on the growth of the sensitive strain (H37Rv) of *Mycobacterium tuberculosis*.

CHAPTER 3

Table 3.1

Table 3.2

Inhibition of α- glucosidase and β- glucuronidase by plant extracts.

CHAPTER 4

Table 4.1

1H and 13C NMR data of 1-(3, 3-dimethoxiranyl)-3-methyl- (2E) in CDCl$_3$.
Table 4.2 1H and 13C NMR data of myrcenone (CDCl3).

Table 4.3 1H and 13C NMR data of piperitenone (CDCl3).

CHAPTER 7

Table 7.1 Anti-tuberculosis activity of compounds isolated from L. javanica and H. opposita.

Table 8.1 Anti- HIV RT activity of compounds L. javanica and H. opposita

LIST OF FIGURES

CHAPTER 2

Figure 2.1 Distribution Map of collected medicinal plants for the present study

Figure 2.2 Antibacterial assay procedure

CHAPTER 3

Figure 3.1 Human Immunodeficiency Virus

Figure 3.2 HIV- Reverse transcriptase (RT) inhibition by plant extracts

CHAPTER 4
Lippia javanica

Fractions from silica column A tested for antibacterial activity (Sa) Staphylococcus aureus (ATCC 12600). Zones of inhibition (arrows a-d)

Electronic impact mass spectra (EI-MS) of 4-ethyl-nonacosane

HMBC correlations of 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Structure of 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Structure of myrcenone

Structure of piperitenone

Structure of β-sitosterol

Structure of apeginin

Structure of cirsimaritin
Figure 4.11
Structure of 6-Methoxyluteolin 4’-methyl ether

Figure 4.12
Structure of 6-methoxyluteolin 3’,4’,7-trimethyl ether

CHAPTER 5

Figure 5.1 *Hoslundia opposita*
Figure 5.2
Structure of 5,7- dimethoxy-6-methylflavone

Figure 5.3
Structure of hoslunddiol

Figure 5.4
Structure of jacarandic acid

CHAPTER 6

Figure 6.1
Inhibition of *Staphylococcus aureus* (ATCC 12600) by 4-ethyl-nonacosane.

Figure 6.2
Antibacterial activity test of isolated compounds against *Escherichia coli* (ATCC 11775). Dark coloured wells indicate bacteria growth

Figure 6.3
Antibacteria test of isolated compounds against *S. aureus*. Dark coloured wells (arrow) indicate normal bacteria growth
CHAPTER 9

Figure 9.1 (a)--103
Assay in 96-well (a) Sample plate

Figure 9.1 (b)--104
Assay in 96-well (b) Reference plate

Figure 9.2---105
Cytotoxicity effect of acetone extract of *Lippia javanica* on Vero cell lines

Figure 9.3---106
Cytotoxicity effect of acetone extract of *Hoslundia opposita* on Vero cell lines.

Figure 9.4---106
Cytotoxicity effect of compound pipertinone

Figure 9.5---107
Cytotoxicity effect of compound 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Figure 9.6---107
Cytotoxicity effect of compound jacarandic acid or euscaphic acid

Figure 9.7---108
Cytotoxicity effect of compound 5, 7-dimethoxy-6-methylflavone

APPENDIX- 1 : NMR SPECTRA OF SOME ISOLATED COMPOUNDS

11.1 NMR spectra of some isolated compounds from *Lippia javanica* and *Hoslundia opposita*

Figure 11.1---115
\(^1\)H-NMR spectrum of compound 2: 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Figure 11.2---116

NOESY spectrum of compound 2: 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Figure 11.3---117

HMBC spectrum of compound 2: 1-(3, 3-dimethoxiranyl)-3-methyl- (2E)

Figure 11.4---118

\(^1\)H-NMR spectrum of compound 4: piperitenone

Figure 11.5---119

\(^1\)H-NMR spectrum of compound 1: 5, 7- dimethoxy-6-methylflavone

Figure 11.6---120

\(^1\)H-NMR spectrum of compound 2: 6-C-\(\beta\)-digitoxopyranosyltectochrysin or hoslunddiol

Figure 11.7---121

\(^1\)H-NMR spectrum of compound 3: jacarandic acid or euscaphic acid

APPENDIX- 2: MANUSCRPTS RESULTING FROM THIS THESIS--------122

LIST OF ABBREVIATIONS

ABTS: 2, 2′-azino-bis (3-ethylbenzthialzoline-6-sulfonic acid)

AIDS: Acquired immune deficiency syndrome

CFU: Colony forming units

CD: Circular dichroism

Cosy: Correlated spectroscopy

\(^{13}\)C-NMR: Carbon-nuclear magnetic resonance

DEPT: Distortionless enhancement by polarization transfer

DIG-POD: anti-digoxigenine-peroxidase

DIG-dUTP: digoxigenine-deoxyuridine triphosphate
dTT: deoxothymidine triphosphate

DMEM: Dulbecco-modified Eagle’s Medium

DMSO: Dimethyl sulphoxide

ds: double-stranded

EDTA: Ethylenediaminetetra acetic acid

ELISA: Enzyme-Linked Immunosorbent Assay

GC: Gas chromatography

GC/MS: Gas chromatography/ Mass spectra

GP: Glycoprotein

HIV: Human immunodeficiency virus

HMBC: Heteronuclear multiple bond correlation

HMQC: Heteronuclear multiple quantum correlation

1H-NMR: Nuclear magnetic resonance

IN: Integrase

IR: Infra red

MIC: Minimal inhibitory concentration

MRC: Medical Research Council

NOESY: Nuclear overhauser effect spectroscopy

RNA: Ribonuclease

RT: Reverse transcriptase

TLC: Thin layer chromatography

UV: Ultra violet

WHO: World Health Organization
SUMMARY

Antimicrobial activity of compounds isolated from *Lippia javanica* (Burm.f.) Spreng and *Hoslundia opposita* against *Mycobacterium tuberculosis* and HIV-1 Reverse transcriptase

by

Silva Fabião Mujovo

Promoter: Prof. Namrita Lall

Degree: PhD Plant Science

For centuries medicinal plants have been used all over the world for the treatment and prevention of various ailments, particularly in developing countries where infectious diseases are endemic and modern health facilities and services are inadequate. In recent years the use of and search for drugs derived from plants have been accelerated. Ethnopharmacologists, botanists, microbiologists, and natural-product chemists are trying to discover phytochemicals and “leads” which could be developed for the treatment of infectious diseases. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found *in vitro* to have antimicrobial properties. The evaluation of these plants for biological activity is
necessary, both to substantiate their use by communities, and also to discover possible new drug or herbal preparations.

Twenty five plants selected through ethno-botanical surveys in Mozambique which are used to treat respiratory diseases, wounds, viruses, stomach ailments and etc., were collected and investigated for antimicrobial activity. Acetone extracts of selected plants were tested for antibacterial, antimycobacterial and anti-HIV-1 activity. Antibacterial activity was evaluated using the agar diffusion method. Five Gram-positive (*Bacillus cereus, Bacillus pumilus, Bacillus subtilis, Staphylococcus aureus, Enterococcus faecalis*) and five Gram-negative (*Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Serratia marcescens*) bacterial species were used in this study.

The extracts of each plant were tested at concentrations ranging from 0.125 to 5.0 mg/ml. Most of the plant extracts inhibited the growth of the Gram-positive microorganisms. The minimum inhibitory concentration of eight plants (*Cassia abbreviata, Elephantorrhiza elephantina, Hemizygia bracteosa, Hoslundia opposita, Momordica balsamina, Rhoicissus tomentosa and Salvadora australis*) against Gram-positive bacteria was found to be 0.5 mg/ml. Gram-positive bacteria were found to be susceptible to extracts of *Lippia javanica* at concentration of 0.125 mg/ml. Among the 22 acetone extracts tested, two were found to have activity against Gram-negative bacteria at a concentration of 5.0 mg/ml (*Adenia gummiifera* and *Momordica balsamina*). *Rhoicissus revoilli* inhibited *E. cloacae*, a Gram-negative strain, at a concentration of 2.5 mg/ml.
To evaluate antimycobacterium activity ten plants species were tested against H37Rv, a drug-sensitive strain of *Mycobacterium tuberculosis* at concentrations ranging from 0.5 to 5.0 mg/ml using BACTEC radiometric method. Four of the plant species tested (*Cassia abbreviata*, *Hemizigya bracteosa*, *Lippia javanica* and *Melia azedarach*) were observed to be active against the H37Rv. (ATCC 27294) strain of TB at a concentration of 0.5 mg/ml which was the lowest concentration used in this study.

Seventeen plant species, were screened for anti-HIV bioactivity in order to identify their ability to inhibit the enzymes glycohydrolase (\(\alpha\)-glucosidase and \(\beta\)-glucuronidase) and eleven species were further tested against Reverse transcriptase. It was found that 8 plant species (*Cassia abbreviata*, *Elephantorrhiza elephantina*, *Rhoicissus tomentosa*, *Pseudolachnostyis maprouneifolia*, *Lippia javanica*, *Litogyne gariepina*, *Maerua juncea* and *Momordica balsamina*) showed inhibitory effects against \(\alpha\)-glucosidase and \(\beta\)-glucuronidase at a concentration of 200 \(\mu\)g/ml. The results of the tests revealed that the plant extracts of *Melia azedarach* and *Rhoicissus tomentosa* appeared to be active, showing 49 and 40% inhibition of the enzyme activity respectively.

Lippia javanica was found to have the best activity exhibiting a minimum inhibitory concentration of 0.125 mg/ml. The extracts also showed positive activity against *Mycobacterium tuberculosis* at concentration of 0.5 mg/ml and HIV-enzyme glycohydrolase was (\(\alpha\)-glucosidase and \(\beta\)-glucuronidase) inhibited by 62 % and 73 % respectively. Considering its medicinal use local for HIV and various infections, it was therefore, selected for identifying its bioactive constituents. In the initial screening of
plants used in Mozambique *Hoslundia opposita* demonstrated good antitubercular activity. It was therefore, selected to identify its bioactive constituents.

A Phytochemical investigation of *L. javanica* led to the isolation of eight compounds, 4-ethyl-nonacosane (1), \((E)-2(3)\)-tagetenone epoxide (2), myrcenone (3), piperitenone (4), apigenin (5), cirsimaritin (6), 6-methoxyluteolin 4’-methyl ether (7), 6-methoxyluteolin and 3’,4’,7-trimethyl ether (8). Three known compounds, 5,7-dimethoxy-6-methylflavone (9), hoslunddiol (10) and euscaphic acid (11) were isolated from *H. opposita*. This is the first report of compounds (1), (2), (5-8) from *L. javanica* and of compound (9) from *H. opposita*. The compounds were tested against *Mycobacterium tuberculosis* and HIV-1 reverse transcriptase for bioactivity. It was found that compounds (2), (4) and (9) inhibited the HIV-1 Reverse transcriptase enzyme by 91%, 53% and 52% respectively at 100 µg/ml. Of all the compounds tested against a drug-sensitive strain of *Mycobacterium tuberculosis*, euscaphic acid (11) was found to exhibit a minimum inhibitory concentration of 50 µg/ml against this strain.

The present study has validated scientifically the traditional use of *L. javanica* and *H. opposita* and a few other Mozambican medicinal plants to some extent.