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ABSTRACT 

Electrochemical properties of self-assembled films of single-

walled carbon nanotubes, monolayer-protected clusters of gold 

nanoparticles and iron (II) phthalocyanines at gold electrodes 

by 

Jeseelan Pillay 

 

Supervisor: Dr. K. I. Ozoemena 

 

Submitted in fulfilment of the requirements for the degree Doctor of 

Philosophy, University of Pretoria, Department of Chemistry 

 

This dissertation investigates the heterogeneous electron transfer 

dynamics and electrocatalytic behaviour of the following molecules 

immobilized on gold electrode: (a) 2-dimethylaminoethanethiol 

(DMAET), with and without integration with poly(m-

aminobenzenesulfonic acid) functionalised single-walled carbon 

nanotubes (SWCNT-PABS); (b) SWCNT-PABS and iron (II) 

phthalocyanine nanoparticles (nanoFePc); (c) Colloidal gold / Gold 

nanoparticles  (AuNP) and nanoFePc (d); water-soluble iron (II) 

tetrasulfophtalocyanine (FeTSPc) and  SWCNT-PABS, and (e) novel 

monolayer protected gold nanoparticles (MPCAuNPs) by means of 

either (i) layer-by-layer (LBL) self-assembly or (ii) self-assembled 

monolayer (SAM) fabrication strategy. 
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Atomic force microscopy and electrochemical studies (cyclic 

voltammetry, and electrochemical impedance spectroscopic) were used 

to monitor the substrate build-up, via strong electrostatic interaction. 

The surface pKa of DMAET was estimated at 7.6, smaller than its 

solution pKa of 10.8. It is also shown that SWCNT-PABS is irreversibly 

attached to the DMAET SAM. For layered films involving SWCNT-PABS 

and nanoFePc (Au-DMAET- SWCNT-PABS-nanoFePc)n (n=1-5 layers) 

as the number of bilayers increase, the electron transfer kinetics of the 

[Fe(CN)6]3-/4 redox probe decreases. On the contrary, LBL assembly 

involving AuNP and nanoFePc (Au-DMAET-AuNP-nanoFePc)n (n=1-4 

layers) shows an increase followed by a decrease in electron transfer 

kinetics subsequent to the adsorption of nanoFePc and AuNP layers, 

respectively. For SAMs involving FeTSPc and SWCNT-PABS, the mixed 

hybrid (Au-DMAET-SWCNT-PABS/FeTSPc) exhibited fastest charge 

transport compared to other electrodes. For the novel MPCAuNPs, the 

protecting or stabilizing ligands investigated were the (1-

sulfanylundec-11-yl) tetraethylene glycol (PEG-OH) and the (1-

sulfanylundec-11-yl) polyethylene glycolic acid (PEG-COOH). Three 

different mass percent ratios (PEG-COOH : PEG-OH), viz. 1:99 

(MPCAuNP-COOH1%), 50:50 (MPCAuNP-COOH50%) and 99:1 

(MPCAuNP-COOH99%) were used to protect the gold nanoparticles. The 

impact of these different ratios on the electron transfer dynamics in 
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organic and aqueous media was explored. The average electron 

transfer rate constants (ket / s-1) in organic medium decreased as the 

concentration of the surface-exposed –COOH group in the protecting 

monolayer ligand increased: MPCAuNP-COOH1% (~ 10 s-1) > 

MPCAuNP-COOH50% (~ 9 s-1) > MPCAuNP-COOH99% (~ 1 s-1). In 

aqueous medium, the trend is reversed. This behaviour has been 

interpreted in terms of the hydrophobicity (quasi-solid nature) and 

hydrophilicity (quasi-liquid nature) of the terminal –OH and –COOH 

head groups, respectively. The ionization constants of the terminal 

groups (i.e., surface pKa) was estimated as ~ 8.2 for the MPCAuNP-

COOH1%, while both MPCAuNP-COOH50% and MPCAuNP-COOH99% 

showed two pKa values of about 5.0 and ~ 8.0, further confirming the 

hydrophilicity / hydrophobicity of these surface functional groups.  

Hydrogen peroxide (H2O2), epinephrine (EP) and ascorbic acid 

(AA) were used as model analytes to examine electrocatalytic ability of 

these nanostructured assemblies. The electrochemical reduction of 

H2O2 at a constant concentration was amplified upon increasing bilayer 

formation of SWCNT-PABS and nanoFePc, while SWCNT-PABS/FeTSPc 

showed the best response towards the detection of epinephrine. 

MPCAuNP-COOH99% showed an excellent suppression of the 

voltammetric response of the AA and an enhanced electrocatalytic 

activity towards the detection of EP compared to the other MPCAuNPs.  
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