

Electrochemical properties of self-assembled films of single-walled carbon nanotubes, monolayer-protected clusters of gold nanoparticles and iron (II) phthalocyanines at gold electrodes

by

Jeseelan Pillay

Dissertation submitted in fulfilment of the requirements for the degree

of

Doctor of Philosophy

University of Pretoria

Chemistry Department November 2009

Supervisor: Dr. K. I. Ozoemena

© University of Pretoria

DECLARATION

I declare that the dissertation, which I hereby submit for the degree of Doctor of Philosophy in the Faculty of Natural and Agricultural Sciences at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

JESEELAN PILLAY

s26518504

DEDICATION

To my dear friend and mentor Dr. Kenneth Ozoemena "thank you for believing in me from Hons to PhD"

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my inspirational supervisor Dr. Kenneth Ozoemena for his uncompromising guidance that has helped me to improve in all aspects of my life. For his encouragement when I failed to get any results for almost a year, for his compassion whenever I had difficulties in my personal life but most of all for his confidence in me. It has been an honour and privilege to work alongside the best electrochemist in South Africa who has inspired me to continue research in this field.

I would like to thank my dad and Nitasha for their encouragement and support during this challenging period. I would also like to express my gratitude to every person I have met during my journey from undergraduate to PhD. I am extremely grateful to all the PhD (Solomon, Adekunle, Dudu and Wendy) and MSc (Alfred, Nsovu and Joel) students in Dr. Ken's group (07-09) as well as Dr. Bolade for their continuous advice, constructive criticism and suggestions. I also sincerely appreciate all the Naomi Steenkamp's administrative assistance.

National Research Foundation (NRF) and Mintek (AuTEK Project) for their financial assistance. Finally, I wish to acknowledge several colleagues for constructive criticism as well as the concerns raised by referees of the published works from this dissertation.

ABSTRACT

Electrochemical properties of self-assembled films of singlewalled carbon nanotubes, monolayer-protected clusters of gold nanoparticles and iron (II) phthalocyanines at gold electrodes

by

Jeseelan Pillay

Supervisor: Dr. K. I. Ozoemena

Submitted in fulfilment of the requirements for the degree Doctor of Philosophy, University of Pretoria, Department of Chemistry

This dissertation investigates the heterogeneous electron transfer dynamics and electrocatalytic behaviour of the following molecules immobilized on gold electrode: (a) 2-dimethylaminoethanethiol (DMAET), without integration with and with poly(maminobenzenesulfonic acid) functionalised single-walled carbon (SWCNT-PABS); (b) SWCNT-PABS nanotubes and iron (II)phthalocyanine nanoparticles (nanoFePc); (c) Colloidal gold / Gold (AuNP) and *nano*FePc (d); water-soluble iron (II) nanoparticles tetrasulfophtalocyanine (FeTSPc) and SWCNT-PABS, and (e) novel monolayer protected gold nanoparticles (MPCAuNPs) by means of either (i) layer-by-layer (LBL) self-assembly or (ii) self-assembled monolayer (SAM) fabrication strategy.

Atomic force microscopy and electrochemical studies (cyclic voltammetry, and electrochemical impedance spectroscopic) were used to monitor the substrate build-up, via strong electrostatic interaction. The surface pK_a of DMAET was estimated at 7.6, smaller than its solution pK_a of 10.8. It is also shown that SWCNT-PABS is irreversibly attached to the DMAET SAM. For layered films involving SWCNT-PABS and *nano*FePc (Au-DMAET- SWCNT-PABS-*nano*FePc)_n (n=1-5 layers) as the number of bilayers increase, the electron transfer kinetics of the $[Fe(CN)_6]^{3-/4}$ redox probe decreases. On the contrary, LBL assembly involving AuNP and nanoFePc (Au-DMAET-AuNP-nanoFePc)_n (n=1-4 layers) shows an increase followed by a decrease in electron transfer kinetics subsequent to the adsorption of nanoFePc and AuNP layers, respectively. For SAMs involving FeTSPc and SWCNT-PABS, the mixed hybrid (Au-DMAET-SWCNT-PABS/FeTSPc) exhibited fastest charge transport compared to other electrodes. For the novel MPCAuNPs, the ligands investigated protecting or stabilizing were the (1sulfanylundec-11-yl) tetraethylene glycol (PEG-OH) and the (1sulfanylundec-11-yl) polyethylene glycolic acid (PEG-COOH). Three different mass percent ratios (PEG-COOH : PEG-OH), viz. 1:99 (MPCAuNP-COOH_{1%}), 50:50 (MPCAuNP-COOH_{50%}) and 99:1 (MPCAuNP-COOH_{99%}) were used to protect the gold nanoparticles. The impact of these different ratios on the electron transfer dynamics in

organic and aqueous media was explored. The average electron transfer rate constants (k_{et} / s^{-1}) in organic medium decreased as the concentration of the surface-exposed –COOH group in the protecting monolayer ligand increased: MPCAuNP-COOH_{1%} (~ 10 s^{-1}) > MPCAuNP-COOH_{50%} (~ 9 s^{-1}) > MPCAuNP-COOH_{99%} (~ 1 s^{-1}). In aqueous medium, the trend is reversed. This behaviour has been interpreted in terms of the hydrophobicity (quasi-solid nature) and hydrophilicity (quasi-liquid nature) of the terminal –OH and –COOH head groups, respectively. The ionization constants of the terminal groups (i.e., surface pK_a) was estimated as ~ 8.2 for the MPCAuNP-COOH_{1%}, while both MPCAuNP-COOH_{50%} and MPCAuNP-COOH_{99%} showed two pK_a values of about 5.0 and ~ 8.0, further confirming the hydrophilicity / hydrophobicity of these surface functional groups.

Hydrogen peroxide (H_2O_2), epinephrine (EP) and ascorbic acid (AA) were used as model analytes to examine electrocatalytic ability of these nanostructured assemblies. The electrochemical reduction of H_2O_2 at a constant concentration was amplified upon increasing bilayer formation of SWCNT-PABS and *nano*FePc, while SWCNT-PABS/FeTSPc showed the best response towards the detection of epinephrine. MPCAuNP-COOH_{99%} showed an excellent suppression of the voltammetric response of the AA and an enhanced electrocatalytic activity towards the detection of EP compared to the other MPCAuNPs.

Table of Contents Pag					
Dedication					
Acknowledgements					
Abstract		V			
Table of Cor	ntents	viii			
List of Abbro	eviations	xiv			
List of Figur	es	xvii			
List of Sche	mes	xxvi			
List of Table	25	xxvii			
Chapter (er One : Introduction 1				
1.1 Gener	.1 General Overview 2				
1.2 Electrochemistry : An Overview					
1.2.1 Basic	Concepts	5			
1.2.1.1	Electrochemical Equilibrium: Introduction	6			
1.2.1.2	Electrochemical Equilibrium: Electron Transfer at t	he			
Ele	ctrode – Solution Interface	7			
1.2.1.3	Classification of Electrochemical Techniques	9			
1.2.1.4	Faradaic and Non-Faradaic Processes	10			
1.2.1.5	The Electrochemical Cell	11			
1.2.1.6	Mass Transport Processes	13			
1.2.2 Voltammetry 1					

Page | ix

1.2	2.2.1	Types of Voltammetry	15
1.2	2.2.1.1	Cyclic Voltammetry	15
1.2	2.2.1.2	Square Wave Voltammetry	22
1.2	2.2.1.3	Chronoamperometry	23
1.2	2.2.1.4	Rotating Disk Electrode	25
1.2	2.2.1.5	Linear Sweep Voltammetry	27
1.2	2.2.2	Electrocatalysis Using Voltammetry	28
1.2.3	Electro	chemical Impedance Spectroscopy	29
1.3	Modifie	ed Electrodes	37
1.3.1	Genera	al Methods of Modifying Electrode Surfaces	37
1.3.2	Self As	sembly	40
1.3	3.2.1	Self-Assembled Monolayer-Modified Electrodes	40
1.3	3.2.2	Layer-by-Layer Self Assembly	44
1.3.3	Carbor	n Nanotube Modified Electrodes	51
1.3.4	Metallo	ophthalocyanine Modified Electrodes	62
1.3.5	Monola	ayer-Protected Clusters of Gold Nanoparticles	
	Electro	odes	68
1.4	Specie	s Investigated as Probe Analytes	76
1.4.1	Epinep	hrine	76
1.4.2	Hydrog	gen Peroxide	78
1.5	Micros	copic Techniques	80
1.5.1	Scanni	ng Electron Microscopy	80

1.5.2	1.5.2 Energy Dispersive X-Ray83				
1.5.3	1.5.3 Atomic Force Mircoscopy 8				
1.5.4	Transmission Electron Microscopy	84			
Refer	ence	85			
Chaj	pter Two : Experimental	112			
2.1	Materials and Reagents	113			
2.2	Apparatus and Procedure	115			
2.3	Electrode Modification and Pre-treatment	117			
2.3.1	SWCNT-PABS and AuNP Based Electrodes	118			
2.3.2	FeTSPc Based Electrodes	119			
2.3.3	MPCAuNP Based Electrodes	119			
Refer	rence	122			
Chaj	pter Three : Results and Discussion	123			
3.1	2-Dimethylaminoethanethiol (DMAET) Self Assembled				
	Monolayer	124			
3.1.1	Electrode Fabrication and AFM characterization	124			
3.1.2	Protonation/ Deprotonation Effect or Cyclic voltammetric				
	Behaviour in Various Electrolytes	126			
3.1.3	Surface Coverage	131			
3.1.4	Electron transfer dynamics: Estimation of surface pK_a of				

	DMAI	ET	132		
3.2	Singl	e Walled Carbon Nanotubes and nanosized Iron (II)			
	Phtha	alocyanine modified Gold Electrodes	136		
3.2	.1 LBL S	Self-Assembly	136		
3.2	.2 Char	acterization	138		
	3.2.2.1	Atomic Force Microscopy	138		
	3.2.2.2	Surface Coverage	141		
	3.2.2.3	Cyclic Voltammetry	142		
	3.2.2.4	Electrochemical Impedance Spectroscopy	143		
3.2	.3 Ampl	ification of H_2O_2 Electrochemical Response	150		
	3.2.3.1	Chronoamperometric Analysis	153		
3.2	.4 Com	parative Electrocatalytic Responses at Electrodes towa	rds		
	Epine	phrine	157		
	3.2.4.1	Passivation Studies	159		
	3.2.4.2	Rotating Disk Electrode Studies	160		
	3.2.4.3	Chronoamperometric Analysis	162		
3.3	Collo	idal Gold Nanoparticles and Iron (II) Phthalocyanine			
	Modi	fied Gold Electrodes	167		
3.3	3.3.1 Layer-by-Layer Self Assembly Process 167				
3.3	3.3.2 Atomic Force Microscopy 167				
3.3	3.3.3 Cyclic Voltammetry 169				
3.3	3.3.4 Electrochemical Impedance Spectroscopy 171				

3.3.5	5 Electi	rochemical Response towards H ₂ O ₂	173		
3.4	3.4 Single Walled Carbon Nanotubes and Iron (II) Tetrasulpho-				
	Phtha	alocyanine Modified Gold Electrodes	175		
3.4.1	L Electi	rode Self Assembly Process	175		
3.4.2	2 Chara	acterization	176		
3.	4.2.1	Atomic Force Microscopy	176		
3.	4.2.2	Cyclic Voltammetry in Aqueous Conditions	178		
3.	4.2.3	Surface Coverage	183		
3.	4.2.4	Stability Studies	183		
3.	4.2.5	Cyclic Voltammetric Evolutions in			
		[Fe(CN) ₆] ^{3-/4-}	185		
3.	4.2.6	Impedimetric studies in [Fe(CN) ₆] ^{3-/4-}	186		
3.4.3	3 Electi	rocatalytic Detection of Epinephrine	193		
3.5	Mono	layer-Protected Clusters of Gold Nanoparticles Modified			
	Gold	Electrodes	196		
3.5.1	L Spect	croscopic and Microscopic Characterization	197		
3.5.2	2 Cyclio	voltammetric Evolution and Electron Transfer in			
	Non-a	aqueous Solution	200		
3.5.3	3 Electi	ron Transfer Kinetics in an Aqueous Solution of			
	[Fe(C	CN) ₆] ^{3-/4-}	213		
3.5.4	l Surfa	ce pK_a of the MPCAuNPs	219		
3.5.5	5 Volta	mmetric Detection of Ascorbic Acid and Epinephrine	223		

Reference	227
Conclusion	236
Recommendations	240
Appendix A: Peer-Reviewed Articles related directly and indirectly	/
to this Dissertation	241
Appendix B: List of Conference Presentations from this	
Dissertation	244

LIST OF ABBREVIATIONS

AA	=	Ascorbic acid
AFM	=	Atomic Force Microscopy
Ag AgCl	=	Silver silver Chloride Reference Electrode
CA	=	Chronoamperometry
CE	=	Counter Electrode
СМЕ	=	Chemically Modified Electrode
CNT	=	Carbon Nanotube
CPE	=	Constant Phase Angle Element
CV	=	Cyclic Voltammetry / Cyclic Voltammetric
CVD	=	Chemical Vapour Decomposition
DMAET	=	Dimethylaminoethanethiol
DMF	=	N,N-Dimethylformamide
EDX	=	Energy-Dispersive X-Ray
EIS	=	Electrochemical Impedance Spectroscopy
EP	=	Epinephrine
FeTSPc	=	Iron (II) Tetrasulphonated Phthalocyanine
GCE	=	Glassy Carbon Electrode
H_2O_2	=	Hydrogen peroxide
IHP	=	Inner Helmholtz Plane
IR	=	Infra-Red
IUPAC	=	International Union of Pure and Applied

$K_3Fe(CN)_6$	=	Potassium hexacyanoferrate(III)
K ₄ Fe(CN) ₆	=	Potassium hexacyanoferrate(II)
KCI	=	Potassium Chloride
LBL	=	Layer-by-layer
LoD	=	Limit of Detection
LSV	=	Linear Sweep Voltammetry
MES	=	Sodium 2-Mercaptoethanesulphonate
MPc	=	Metallophthalocyanine
MPCAuNPs	=	Monolayer-Protected Clusters of Gold
MPCs	=	Monolayer-protected Clusters
MTAPc	=	Metallotetraamino-phthalocyanine
MWCNT	=	Multi-Walled Carbon Nanotube
NaCl	=	Sodium Chloride
<i>nano</i> FePc	=	nano Iron (II) Phthalocyanine
		nanoparticles
OHP	=	Outer Helmholtz Planes
PBS	=	Phosphate Buffer Solutions
Pc	=	Phthalocyanine
PEG	=	Polyethylene Glycol
R _{ct}	=	Charge Transfer Resistance
RDE	=	Rotating Disc Electrode
RE	=	Reference Electrode

R _s	=	Solution Resistance
SAM	=	Self-Assembled Monolayer
SEM	=	Scanning Electron Microscopy
SWCNT	=	Single-Walled Carbon Nanotube
SWCNT-PABS	=	Single-Walled Carbon Nanotubes
		poly (<i>m</i> - aminobenzene sulfonic acid)
SWV	=	Square Wave Voltammetry
TBABF ₄	=	Tetrabutylammonium Tetrafluoroborate
TEM	=	Transmission Electron Microscopy
UV-vis	=	Ultraviolet-visible
WE	=	Working Electrode
Zw	=	Warburg Impedance

LIST OF FIGURES

- Figure 1.1: Model of the electrode solution double layer region. 7
- Figure 1.2: Flowchart representing electrochemical techniques. 9
- Figure 1.3: Graphical representation of a conventional three-electrode cell. **11**
- Figure 1.4: Schematic representation of the three mass transport modes. 14
- Figure 1.5: Typical cyclic voltammogram for a reversible process. 16
- Figure 1.6: Simple potential wave form of chronoamperometry. 24
- Figure 1.7: (a) Applied sinusoidal voltage and resulting sinusoidal current response. (b) Vector representation of real Z' and imaginary Z'' parts of impedance.
 31
- Figure 1.8: Modified Randles equivalent circuit representing the electrochemical system in (a) Ideal situation and (b) Real, practical situation. **34**
- Figure 1.9: (a) Nyquist plot and (b) Corresponding bode plot for the randles equivalent circuit. **35**
- Figure 1.10: Representation of a thiolate on gold SAM. **43**
- Figure 1.11: Experimental arrangement for synthesizing carbon nanotubes via. (a) Arc-discharge (b) Laser-vaporation and (c) Catalytic growth by decomposition of hydrocarbon gas.

53

- Figure 1.12: Illustration of (a) Single-walled carbon nanotube and (b)Multi-walled carbon nanotube.53
- Figure 1.13: Illustration of possible carbon nanotubes structures: (a) Armchair, (b) Zigzag and (c) Chiral forms. **55**

Figure 1.14: Representation of the helical arrangement of an unrolled graphite sheet that can be used to explain carbon tube structures. **56**

- Figure 1.15: 3-D histogram depicting the number of publications concerning carbon nanotubes from 1991-2005. **58**
- Figure 1.16: The geometric structure of (a) Metallophthalocyanine and (b) Metallo-tetraaminophthalocyanine complex. **64**
- Figure 1.17: 3-D histogram depicting the number of publications concerning phthalocyanines from 1936-2005. **66**

Figure 1.18: Molecular Structure of Epinephrine.76

Figure 1.19: A simple representation of the first three shells showing,

- (a) the formation of energy dispersive X-ray resulting in
- (b) a unique spectrum. 82
- Figure 2.1: Molecular structure of (a) Single-walled carbon nanotube-poly (m-amino benzene sulfonic acid) and (b) Iron (II)tetrasulfo-phtalocyanine.114
- Figure 3.1: Topographic AFM images of (a) bare-Au, (b) Au-MAET and (c) Au-DMAET–SWCNT-PABS. **125**

Page | xix

and Au-	gure 3.2: Typical CV evolutions of bare-Au, Au-DMAET	Figure 3.2:
127	DMAET-SWCNT-PABS electrodes in PBS.	
AET in 50	gure 3.3: Typical cyclic voltammetric evolutions of Au-DM	Figure 3.3:
ws the CV	mM PBS (pH7.4), NaF, KCl and K_2SO_4 ; Inset sho	
129	of the MES SAM in 50 mM PBS.	
\u-DMAET	gure 3.4: CV evolutions depicting the repetitive cycling of	Figure 3.4:
130	in 50 mM NaF.	
ons at	gure 3.5: Typical CV evolutions of Au-DMAET in PBS solution	Figure 3.5:
130	different pH levels.	
WCNT-	gure 3.6: CV reductive desorption of DMAET and DMAET-S	Figure 3.6:
131	PABS in 0.5 M KOH.	
MAET at	gure 3.7: Examples of the impedimetric responses of Au-D	Figure 3.7:
134	different pH values in 1 mM Fe(CN) $_6^{3-/4-}$.	
from the	gure 3.8: Plot of charge transfer resistance vs. solution pH	Figure 3.8:
[:] erent pH	impedimetric responses of Au-DMAET at dif	
134	values of 1 mM Fe(CN) $_6^{3-/4-}$.	
Iron (II)	gure 3.9: Scanning electron microscopy images of (a)	Figure 3.9:
. (c) EDX	phthalocyanine microcrystals and (b) nanoFePc	
137	profile of nanoFePc.	
and (b-d)	gure 3.10: 3-D AFM images of (a) Au-DMAET-SWCNT-PABS	Figure 3.10
139	Au-DMAET-(SWCNT-PABS- <i>nano</i> FePc) _{1,3,5} .	

- Figure 3.11: Plot of Surface Coverage and Root mean square of *nano*FePc vs. bilayers. **140**
- Figure 3.12: Typical CV profiles of bare-Au, 1st, 3rd, and 5th bilayers at a scan rate of 30 mV s⁻¹ in PBS. **142**
- Figure 3.13: Typical CV profiles of the bare-Au, Au-DMAET, Au-DMAET-SWCNT-PABS and Au-DMAET-(SWCNT-PABS-*nano*FePc)₁₋₅ assemblies in 1 mM Fe(CN)₆^{3-/4-}. **143**
- Figure 3.14: Nyquist plots resulting from the bare-Au, Au-DMAET, Au-DMAET-SWCNTPABS and Au-DMAET-(SWCNT-PABSnanoFePc)₁₋₅ assemblies in 1 mM Fe(CN)₆^{3-/4-}. **144**
- Figure 3.15: Bode plots of (a) -Phase angle vs. log. f and (b) log |Z| vs. log. f for bare-Au, Au-DMAET, Au-DMAET-SWCNT-PABS Au-DMAET-(SWCNT-PABS-nanoFePc)₁₋₅ in 1 mM Fe(CN)₆^{3-/4-}. **149**
- Figure 3.16: Typical CV profiles showing the impact of increasing (a) Bilayer (*nano*FePc being the exposed layer) and (b) SWCNT-PABS layers (SWCNT-PABS as the exposed layer) on the current response of 1 mM H₂O₂ in PBS. **152**
- Figure 3.17: Chronoamperometric profile analysis of H_2O_2 in pH 7.4 PBS at a Au-DMAET-(SWCNT-*nano*FePc)₅ for a potential step of -300 mV vs Ag|AgCl. **153**

Figure 3.18: Plots of (a) I_{cat}/I_{L} vs. $t^{1/2}$ and (b) Slopes² vs. [H₂O₂]. **155**

Figure 3.19: Plots of (a) I_{cat} vs. $t^{-1/2}$ and (b) Slopes vs. $[H_2O_2]$. **156**

- Figure 3.20: CV profiles of Au-DMAET-(SWCNT-PABS-nanoFePc)₁₋₃
 - assemblies in 10 μ M EP in PBS. **157**
- Figure 3.21: CV evolutions in the presence of 10 μM EP in PBS at bare-Au, Au-DMAET, Au-DMAET-SWCNT-PABS and Au-DMAET-SWCNT-PABS-*nano*FePc. **158**

Figure 3.22: Plot of EP peak current vs. number of CV scans. **160**

- Figure 3.23: RDE voltammograms obtained at different rotating speed for 10^{-5} M EP electro-oxidation in PBS using Au-DMAET-SWCNT-PABS. Inset (a) Plot of I_{L}^{-1} vs. $\omega^{-1/2}$ and (b) Tafel Slope for the oxidation of EP. **161**
- Figure 3.24: Typical double potential step chronoamperometric transients at Au-DMAET-SWCNT-PABS in PBS solution with EP. **163**
- Figure 3.25: Topographic AFM images of (a) Au-DMAET and (b) Au-DMAET-AuNP, (c) Au-DMAET-(AuNP-*nano*FePc) and (d) Au-DMAET-(AuNP-*nano*FePc)₄. **168**
- Figure 3.26: Typical CV profiles of (a) bare-Au, Au-DMAET, Au-DMAET-AuNP and Au-DMAET-AuNP-*nano*FePc, (b-d) 2nd, 3rd and 4th Bilayer assemblies 1 mM Fe(CN)₆^{3-/4-}. **170**

Page | xxii

Figure 3.27: Nyquist plots for the bare-Au, Au-DMAET, Au-DMAET-AuNP, Au-DMAET-AuNP-*nano*FePc, Au-DMAET-(AuNP*nano*FePc)₁-AuNP and Au-DMAET-(AuNP-*nano*FePc)₂. 172
Figure 3.28: 3-D Bar graph representing the R_{ct} values of the bare-Au, Au-DMAET, Au-DMAET-AuNP and the underlying bilayers.

173

- Figure 3.29: Typical CV profiles showing the impact of increasing bilayers (*nano*FePc being the exposed layer) on the current response of 1 mM H₂O₂ in PBS. **174**
- Figure 3.30: Topographic AFM images of (a) Au-DMAET, (b) Au-DMAET-FeTSPc, (c) Au-DMAET-SWCNT-PABS, (d) Au-DMAET-SWCNT-PABS/FeTSPc. **177**
- Figure 3.31: Comparative CVs in PBS at Au-DMAET, Au-DMAET-SWCNT-PABS, Au-DMAET-FeTSPc and Au-DMAET-SWCNT-PABS/FeTSPc. **179**
- Figure 3.32: CVs at different scan rates (25 1000 mV s⁻¹ range) in PBS at (a) Au-DMAET-FeTSPc; (b) Au-DMAET-SWCNT-PABS/FeTSPc and (c) Plots of I_p vs. v for I_a for (i) SWCNT-PABS/FeTSPc, (ii) I_a for DMAET-FeTSPc, (iii) I_c for DMAET-FeTSPc and (iv) I_c for SWCNT-PABS/FeTSPc. **182**

- Figure 3.33: (a) Repetitive CVs obtained in PBS at Au-DMAET-FeTSPc and (b) CVs obtained at freshly prepared Au-DMAET-FeTSPc and a week later after use. **184**
- Figure 3.34: CVs obtained in 1 mM Fe(CN)₆^{3-/4-} in M KCl at bare-Au, Au-DMAET, Au-DMAET-SWCNT-PABS, Au-DMAET-FeTSPc and Au-DMAET-SWCNT-PABS/FeTSPc. **185**
- Figure 3.35: (a) Nyquist plots obtained in Fe(CN)₆^{3-/4-} 0.1 M KCl at (i) bare-Au, (ii) Au-DMAET, (iii) Au-DMAET-SWCNT-PABS, (iv) Au-DMAET-FeTSPc and (v) Au-DMAET- SWCNT-PABS/FeTSPc and (b) the equivalent circuits used for fitting (ii) (iv).
- Figure 3.36: Bode plots of (a) log |Z| vs. log f and (b) -Phase angle vs. log. f obtained in Fe(CN)₆^{3-/4-} 0.1 M KCl at bare-Au, Au-DMAET, Au-DMAET-SWCNT-PABS, Au-DMAET-FeTSPc and Au-DMAET-SWCNT-PABS/FeTSPc. 191
- Figure 3.37: CVs of bare-Au, Au-DMAET-FeTSPc and Au-DMAET-SWCNT-PABS/FeTSPc in 10⁻⁴ M Ep PBS solution. **193**
- Figure 3.38: Typical double potential step chronoamperometric transients obtained for EP electro-oxidation at Au-DMAET-SWCNT-PABS/FeTSPc. Inset shows the plot of I_p vs. [EP] and plot of chronoamperometric current vs. [EP]. 195
 Figure 3.39: Typical TEM image of Au-DMAET-MPCAuNP-COOH_{99%}. 198

Figure 3.40: Typical 3-D AFM images of (a) bare-Au, (b) Au-DMAET,

(c) Au-DMAET-MPCAuNP-COOH_{50%} and (d) Au-DMAET-MPCAuNP-COOH_{99%}. **199**

Figure 3.41: CVs of bare-Au, Au-DMAET, Au-DMAET-MPCAuNP-COOH_{1,50,99%}, in CH_2Cl_2 containing 0.1M TBAP. **201**

Figure 3.42: Scan rate studies at (a) Au-DMAET-MPCAuNP-COOH_{1%} and (b) Au-DMAET-MPCAuNP-COOH_{99%}. **203**

Figure 3.43: (a-c) Nyquist plots resulting from Au-DMAET-MPCAuNP-COOH_{1,50,99%}, in CH₂Cl₂ containing 0.1M TBAP (d) Typical bode plot showing -Phase angle vs. log. f of Au-DMAET-MPCAuNP-COOH_{99%} in in CH₂Cl₂ containing 0.1 M TBAP.

204

Figure 3.44: Modified Randles electrical equivalent circuit.**205**

Figure 3.45: (a) CV and (b) SWV plots of bare-Au, Au-DMAET, Au-

DMAET-MPCAuNP-COOH_{1%}, Au-DMAET-MPCAuNP-

COOH_{50%} and Au-DMAET-MPCAuNP-COOH_{99%} in 0.5M H_2SO_4 . **210**

Figure 3.46: Nyquist plots resulting from bare-Au, Au-DMAET, Au-DMAET-MPCAuNP-COOH_{1,50,99%}, in 0.5 M H₂SO₄. **211**

Figure 3.47: CV profiles showing bare-Au, Au-DMAET, Au-DMAET-MPCAuNP-COOH_{1,50,99%}, in 1 mM Fe(CN)₆^{3-/4-}. **213**

- Figure 3.48: Nyquist plots resulting from bare-Au, Au-DMAET, Au-
DMAET-MPCAuNP-COOH1%, Au-DMAET-MPCAuNP-
COOH50% and Au-DMAET-MPCAuNP-COOH99% in 1 mM
 $Fe(CN)_6^{3-/4-}$.215
- Figure 3.49: Bode plots showing -Phase angle vs. log. f for bare-Au,Au-DMAET, Au-DMAET-MPCAuNP-COOH_{1,50,99%}, in 1 mM $Fe(CN)_6^{3-/4-}$. **218**
- Figure 3.50: Typical impedance spectral profiles showing nyquist plots of (a) MPCAuNP-COOH_{1%}, (b) MPCAuNP-COOH_{99%} obtained in PBS solutions of $[Fe(CN)_6]^{4-}/[Fe(CN)_6]^{3-}$. **220**
- Figure 3.51: Plot of charge transfer resistance ($R_{ct} / k\Omega$) against pH for MPCAuNP-COOH_{1%} MPCAuNP-COOH_{50%} and MPCAuNP-COOH_{99%} obtained in PBS solutions of [Fe(CN)₆]⁴⁻ /[Fe(CN)₆]³⁻ 221
- Figure 3.52: CV evolutions in 10 μ M AA at Au-DMAET-MPCAuNP-COOH_{1,50,99%}.
- Figure 3.53: (a) and (c) shows comparative CV evolutions of Au-DMAET-MPCAuNP-COOH_{1%} and Au-DMAET-MPCAuNP-COOH_{99%} in 10 μ M EP pH7.4 and 9.68. (b) and (d) represent their corresponding CVs in their respective buffer solutions only. **225**

LIST OF SCHEMES

Scheme 1.1: Generalized schematic representation of electrocatalysis
at an electrode modified with a catalyst 29
Scheme 1.2: Reaction scheme illustrating the one-step stabilization
and functionalization of gold nanoparticles with -COOH
and –OH PEG Ligands. 71
Scheme 2.1: A cartoon representation showing the synthesis of nano-
structured Iron (II) phthalocyanine. 115
Scheme 3.1: Cartoon showing the schematic representation of the
SAM formation of DMAET and DMAET-SWCNT-PABS. 125
Scheme 3.2: Schematic representation depicting the layer-by-layer
assembly of nanoFePc and SWCNT-PABS on gold surface.
138
Scheme 3.3: Schematic representation showing the fabrication route
for Au-DMAET-FeTSPc, Au-DMAET-SWCNT-PABS and Au-
DMAET-SWCNT-PABS/FeTSPc. 176
Scheme 3.4: Schematic of the self-assembly process via. electrostatic
interaction between the positively-charged DMAET
monolayer and the negatively-charged monolayer-
protected clusters of gold nanoparticles. 197

LIST OF TABLES

- Table 1.1: The diagnostic criteria for reversible, irreversible andquasi-reversible cyclic voltammetric processes.**21**
- Table 3.1:Summary of the EIS evolutions of the electrodes (n = 5),percentage errors from fitting the raw EIS data are shownin bracket.148
- Table 3.2:Comparative analytical data for the detection of EP using
gold based electrodes165
- Table 3.3:ComparativeEISpaprameterdataobtainedforAu-DMAET, Au-DMAET-SWCNT-PABS, Au-DMAET-FeTSPcandAu-DMAET-SWCNT-PABS/FeTSPc.192
- Table 3.4:ComparativeEISdataobtainedforAu-DMAET-MPCAuNP1,50,99%in CH_2Cl_2 containing 0.1M TBAP.**206**
- Table 3.5:Comparative EIS data obtained for bare-Au, Au-DMAET-
MPCAuNP1,50,99% in H_2SO_4 .**211**
- Table 3.6:Comparative EIS data obtained for bare-Au, Au-DMAET-
MPCAuNP1,50,99% in 1 mM Fe(CN) $_6^{3-/4-}$.**217**