An endoscopic and immunopathological study of respiratory tract disorders in Thoroughbred racehorses

By

Montague Newton Saulez

Submitted in fulfillment of the requirements for the degree Doctor of Philosophy in the Faculty of Veterinary Science, University of Pretoria, South Africa

December 2007
Acknowledgements

Newton and Jo Saulez, my parents, who have installed throughout my life a passion for learning in both my personal and professional life.

Jacques Godfroid, my supervisor, a talented Belgian researcher and immunologist, who always was available for assistance. His mentorship and kindness was unfailing.

Kenneth W. Hinchcliff, a board-certified large animal internist, who has pioneered research in EIPH worldwide, his comments were appreciated.

David W. Horohov, a renowned equine immunologist, who provided laboratory space, time and support at the Maxwell H. Gluck Equine Research Center, University of Kentucky, USA.

Andrew L. Leisewitz, a board-certified small animal internist, who provided guidance and support throughout.

Bruce Gummow, a board-certified epidemiologist, who provided statistical input.

Further statistical advice was provided by Peter Thompson, a board-certified large animal internist.
Annemarie Bosman, a laboratory technician, who was always available for assistance at the Department of Veterinary Tropical Diseases, Faculty of Veterinary Science.

Ampie Vijoen and Ennete van Dyk who tirelessly assisted in the endoscopic grading of respiratory disorders in racehorses.

Johan van Deemter and Harry Kleinman, both general practitioners, who always encourage and help direct me in the veterinary profession.

The Veterinary Library at Onderstepoort, which provided access to countless articles and assisted in the ordering of locally unavailable publications. My thanks to Antoinette Lourens, Sanah Mphaga, and Erica van der Westhuizen.

My advisory committee consisting of Jacques Godfroid, Kenneth W. Hinchcliff, Andrew L. Leisewitz, Piet Stadler, and David Sutton, are gratefully acknowledged for their support.

Ian Jamieson (Surgitrade, Pty. Ltd., Australia), who supplied the videoendoscopic equipment used during this study.

All participating trainers and owners of Thoroughbred racehorses in South Africa, The National Horse Racing Authority of South Africa, Phumelela Gaming & Leisure Ltd and Gold Circle Horseracing and Betting.
Local funding for this research was provided by the Postgraduate Study Abroad Bursary Program of the International Affairs Office and the Equine Research Center, Faculty of Veterinary Science, University of Pretoria, South Africa. The Albert and Loraine Clay Endowment Fund for Support of Inter-Institutional Research Collaborations, Maxwell H. Gluck Equine Research Center, University of Kentucky, USA, provided international funding.
Table of Contents

Acknowledgements ... ii

Table of contents ... v

List of figures .. ix

List of tables .. xiv

Thesis summary ... xv

Chapter 1 Exercise-induced pulmonary haemorrhage: An introduction 1

1.1 EPIDEMIOLOGY ... 1

1.2 ETIOLOGY ... 3

1.3 PATHOLOGY ... 11

1.4 CLINICAL SIGNS ... 11

1.5 DIAGNOSIS .. 12

1.6 THERAPEUTIC OPTIONS .. 15

1.7 RISK FACTORS .. 18

1.8 EFFECT ON PERFORMANCE .. 19

1.9 FIGURES AND TABLES .. 21

1.10 REFERENCES ... 34

Research focus of this thesis .. 43
Chapter 2 Altitude affects the prevalence and severity of exercise-induced pulmonary haemorrhage in South African Thoroughbred racehorses44

2.1 ABSTRACT ...44
2.2 INTRODUCTION ..46
2.3 MATERIALS AND METHODS ..47
2.4 RESULTS ...53
2.5 DISCUSSION ...58
2.6 CONCLUSIONS ..64
2.7 FIGURES AND TABLES ...65
2.8 REFERENCES ...77

Chapter 3 Pharyngeal, laryngeal and tracheal disorders in South African Thoroughbred racehorses: prevalence and relationship with performance80

3.1 ABSTRACT ..80
3.2 INTRODUCTION ..83
3.3 MATERIALS AND METHODS ..84
3.4 RESULTS ...89
3.5 DISCUSSION ...95
3.6 CONCLUSIONS ..103
3.7 FIGURES AND TABLES ...104
3.8 REFERENCES ...121
Chapter 4 Reproducibility of endoscopic grading using tracheobronchoscopy in racehorses

4.1 ABSTRACT

4.2 INTRODUCTION

4.3 MATERIALS AND METHODS

4.4 RESULTS

4.5 DISCUSSIONS

4.6 CONCLUSIONS

4.7 FIGURES AND TABLES

4.8 REFERENCES

Chapter 5 Proinflammatory mRNA response in racehorses with exercise-induced pulmonary haemorrhage

5.1 ABSTRACT

5.2 INTRODUCTION

5.3 MATERIALS AND METHODS

5.4 RESULTS

5.5 DISCUSSIONS

5.6 CONCLUSIONS

5.7 FIGURES AND TABLES

5.8 REFERENCES
Chapter 6 General discussion

6.1 EIPH: A SOUTH AFRICAN PERSPECTIVE

6.2 RESPIRATORY TRACT DISORDERS: PREVALENCE AND ASSOCIATION WITH RACING PERFORMANCE

6.3 DETECTION AND GRADING OF RESPIRATORY TRACT DISORDERS

6.4 SYSTEMIC INFLAMMATION AND THERAPEUTIC INTERVENTIONS

6.5 CONCLUSIONS

6.6 REFERENCES

Scientific proceedings, publications or book chapters associated with this thesis

...............................

...............................

...............................

...............................

...............................

...............................

.............................
List of Figures

Figure 1.1 Epistaxis in a Thoroughbred racehorse……………………………………22
Figure 1.2 Tracheobronchoscopy in a Thoroughbred racehorse…………………..23
Figure 1.3 Schematic of the proposed mechanism of exercise-induced pulmonary
haemorrhage with varying exercise intensity…………………………………………..24
Figure 1.4 Collection of bronchoalveolar lavage fluid from a racehorse…………25
Figure 1.5 Red-tinged bronchoalveolar lavage fluid collected from a racehorse with
exercise-induced pulmonary haemorrhage……………………………………………26
Figure 1.6 Cytological analysis of bronchoalveolar lavage fluid from a racehorse with
exercise-induced pulmonary haemorrhage reveals numerous haemosiderophages……27
Figure 1.7 A three-year old Thoroughbred filly with a history of epistaxis after
strenuous exercise. There is a mixed interstitial and alveolar infiltrate in the caudodorsal
lung lobe suggestive of pulmonary haemorrhage……………………………………28
Figure 1.8 Dorsocaudal view of the thorax of a seven year-old Standardbred pacer with
a history of poor performance, frequent coughing and pyrexia. Note the well demarcated,
round hyperechoic mass consistent with a pulmonary abscess in the dorsocaudal lung
lobe. ……………………………………………………………………………………29
Figure 1.9 Sonogram of the right, dorsocaudal hemithorax in the 17th intercostal space obtained from a three-year old Thoroughbred filly with a history of epistaxis after strenuous exercise. Note the dimpling of the visceral pleural surface and comet-tail artifacts originating from the lung. ... 30

Figure 1.10 Acute death due to exercise-induced pulmonary haemorrhage in a Thoroughbred racehorse: note the mucous and blood present at both nares. 31

Figure 1.11 Acute death due to exercise-induced pulmonary haemorrhage in a Thoroughbred racehorse: note the massive pulmonary haemorrhage and blood pooling in the trachea ... 32

Figure 2.1 A racehorse with grade 1 exercise-induced pulmonary haemorrhage as detected by tracheobronchoscopy ... 66

Figure 2.2 A racehorse with grade 2 exercise-induced pulmonary haemorrhage as detected by tracheobronchoscopy ... 67

Figure 2.3 A racehorse with grade 3 exercise-induced pulmonary haemorrhage as detected by tracheobronchoscopy ... 68

Figure 2.4 A racehorse with grade 4 exercise-induced pulmonary haemorrhage as detected by tracheobronchoscopy ... 69

Figure 2.5 Exercise-induced pulmonary haemorrhage (EIPH) in South African Thoroughbred racehorses (n=1005) examined from August 4 to November 19, 2005 post-race: overall tracheobronchoscopic assessment of the severity of EIPH using a 0 to 4 EIPH grade scale ... 70
Figure 2.6 Exercise-induced pulmonary haemorrhage (EIPH) in South African thoroughbred racehorses (n=1005) examined from August 4 to November 19, 2005 post-race: tracheobronchoscopic assessment of the severity of EIPH using a 0 to 4 EIPH grade scale at high altitude (> 1,400 meters above sea level) and at sea level.

Figure 2.7 Exercise-induced pulmonary haemorrhage (EIPH) in South African thoroughbred racehorses (n=1005) examined from August 4 to November 19, 2005 post-race: finishing position as a function of severity of EIPH using a 0 to 4 EIPH grade scale.

Figure 3.1 Symmetrical abduction of the arytenoid cartilages in a thoroughbred racehorse.

Figure 3.2 Idiopathic laryngeal hemiplegia in a thoroughbred racehorse.

Figure 3.3 A thoroughbred racehorse with grade 1 pharyngeal lymphoid hyperplasia.

Figure 3.4 A thoroughbred racehorse with grade 2 pharyngeal lymphoid hyperplasia.

Figure 3.5 A thoroughbred racehorse with grade 3 pharyngeal lymphoid hyperplasia.

Figure 3.6 A thoroughbred racehorse with grade 4 pharyngeal lymphoid hyperplasia.

Figure 3.7 A thoroughbred racehorse with dorsal displacement of the soft palate.

Figure 3.8 A thoroughbred racehorse with grade 1 tracheal mucous detected by tracheobronchoscopy.
Figure 3.9 A Thoroughbred racehorse with grade 2 tracheal mucous detected by tracheobronchoscopy………………………………………………………………………………113

Figure 3.10 A Thoroughbred racehorse with grade 3 tracheal mucous detected by tracheobronchoscopy………………………………………………………………………………114

Figure 3.11 A Thoroughbred racehorse with grade 4 tracheal mucous detected by tracheobronchoscopy………………………………………………………………………………115

Figure 3.12 A Thoroughbred racehorse with grade 5 tracheal mucous detected by tracheobronchoscopy………………………………………………………………………………116

Figure 3.13 A Thoroughbred racehorse with epiglottic entrapment………………117

Figure 3.14 A Thoroughbred racehorse with epiglottic entrapment and a sub-epiglottic cyst…………………………………………………………………………………118

Figure 3.15 A Thoroughbred racehorse with epiglottic deformity………………119

Figure 3.16 A Thoroughbred racehorse with a tracheal cartilage ring spike………120

Figure 4.1 The portable flexible videoendoscopy system used in the grading of respiratory tract disorders in South African Thoroughbred racehorses………………135

Figure 5.1 A PAXgene® Blood RNA Tube containing venous blood………………152

Figure 5.2 Pipetting the sample onto the PAXgene® RNA spin column during the RNA extraction procedure………………………………………………………………………………153

Figure 5.3 Preparing to perform RNA elution following centrifugation of the PAXgene® RNA spin column………………………………………………………………………………154

Figure 5.4 Preparing to perform real-time polymerase chain detection on the Applied Biosystems 7500 sequence detection system machine……………………………………155

Figure 5.5 The epMotion 5070 robotic pipetting machine…………………………156
Figure 5.6 Primers and probes ready to be added to each cDNA sample by the epMotion 5070 robotic pipetting machine

Figure 5.7 Expression of IL-1 mRNA in Thoroughbred racehorses with grade 0 to 4 exercise-induced pulmonary haemorrhage after racing at high altitude and at sea level

Figure 5.8 Expression of IL-6 mRNA in Thoroughbred racehorses with grade 0 to 4 exercise-induced pulmonary haemorrhage after racing at high altitude and at sea level

Figure 5.9 Expression of IL-10 mRNA in Thoroughbred racehorses with grade 0 to 4 exercise-induced pulmonary haemorrhage after racing at high altitude and at sea level

Figure 5.10 Expression of IFN-γ mRNA in Thoroughbred racehorses with grade 0 to 4 exercise-induced pulmonary haemorrhage after racing at high altitude and at sea level

Figure 5.11 Expression of TNF-α mRNA in Thoroughbred racehorses with grade 0 to 4 exercise-induced pulmonary haemorrhage after racing at high altitude and at sea level
List of Tables

Table 1.1 Epidemiological studies of exercise-induced pulmonary haemorrhage……33
Table 2.1 Tracheobronchoscopic scoring of horses with exercise-induced pulmonary
haemorrhage………………………………………………………………………………73
Table 2.2 Correlation matrix: Pearson correlations for variables in the exercise-induced
pulmonary haemorrhage study…………………………………………………………74
Table 2.3 Least squares multicollinearity: variance inflation factors, Rx² and tolerance
for variables in the exercise-induced pulmonary haemorrhage study………………75
Table 2.4 Eigenvalues of the correlation matrix for variables in the exercise-induced
pulmonary haemorrhage study…………………………………………………………76
Table 5.1 Accession name and order number of target gene studied………………...163
Much of the impetus for this research can be attributed to Kenneth W. Hinchcliff, who has studied exercise-induced pulmonary haemorrhage (EIPH) extensively. This thesis focused on EIPH in Thoroughbred racehorses competing in South Africa. Using tracheobronchoscopy, the prevalence and severity of EIPH and the association with racing performance was determined. Thereafter, the prevalence of other respiratory tract disorders and their association with racing performance is reported. This is followed by a
study assessing interobserver variability using grading systems in the detection of respiratory tract disorders. Finally, there is a report on the immunopathogenesis of EIPH.

Using tracheobronchoscopy after racing, the prevalence and severity of EIPH was assessed in 1,005 racehorses competing at high altitude (> 1,400 meters above sea level) and at sea level in a racing jurisdiction that does not allow the use of furosemide and nasal dilator strips. The prevalence and severity of EIPH was affected by altitude as racing at sea level was associated with a higher prevalence and greater severity of EIPH. Results also suggested that EIPH was associated with superior performance in South African Thoroughbred racehorses.

Upper and lower respiratory tract disorders identified following tracheobronchoscopic examination included left arytenoid asymmetry, left laryngeal hemiplegia, epiglottic deformity, epiglottic entrapment, subepiglottic cysts, dorsal displacement of the soft palate, pharyngeal lymphoid hyperplasia (PLH), laryngeal and tracheal dirt, tracheal mucous (TM), tracheal stenosis and tracheal cartilage ring spikes in Thoroughbred racehorses after racing. Overall, there was a low prevalence of grade 2 and 3 arytenoid cartilage asymmetry, left laryngeal hemiplegia, epiglottic entrapment, subepiglottic cysts and epiglottic deformity, while more severe grades of PLH, laryngeal debris, tracheal debris, TM and tracheal cartilage ring spikes had a higher prevalence. An association with sex was identified as tracheal cartilage ring spikes occurred more often in male racehorses. Superior racing performance was identified in racehorses with grade 3 tracheal mucous and tracheal cartilage ring spikes.
Endoscopic grading of EIPH, PLH, arytenoid cartilage movement (ACM), and TM was performed by 3 observers that were blinded to each racehorse’s identity and race day performance using previously established grading criteria. Excellent interobserver reliability was seen using the EIPH grading system, while the weighted kappa for PLH, ACM and TM was lower. The study demonstrated sufficient reliability for the use of the EIPH, PLH, ACM and TM grading systems in racehorses competing in South Africa. The study concluded that tracheobronchoscopy seemed to be a practical screening technique that may have prognosticative validity and clinical dependability and that would allow safe and quick assessment of the respiratory tract of a large number of racehorses in field conditions.

Venous blood was collected from 10 horses in each EIPH grade classification (grade 0 to 4) following tracheobronchoscopic examinations for the determination of the presence and severity of EIPH. Following RNA isolation and cDNA synthesis, real-time PCR was used to detect equine cytokine-specific mRNA for interleukin (IL) -1, -6, -10, interferon (INF) -γ, and tumor necrosis factor (TNF) -α. Results of this study indicated that increased IL-6, and -10 mRNA production was associated with more severe forms of EIPH. Also, there was greater expression of IL-6 mRNA at sea level and TNF-α mRNA at high altitude. This study concluded that although it was unclear whether the inflammatory response observed in the study was due to pre-existing pulmonary inflammation or as a direct consequence of pulmonary bleeding, the study demonstrated a systemic correlation to pulmonary inflammation.
The research reported in this thesis has contributed substantially to the determination of the prevalence, severity and affect on racing performance of respiratory tract disorders in Thoroughbred racehorses competing in South Africa. Also, determination of an association between EIPH and inflammation at a molecular level may assist future researchers in anti-cytokine therapies which may help reduce the prevalence and severity of EIPH.

Key words: altitude, arytenoid cartilage asymmetry, epiglottic deformity, epiglottic entrapment, exercise-induced pulmonary haemorrhage, grade scale, interleukin (IL)-1, IL-6, IL-10, interferon-γ, interobserver reliability, laryngeal debris, mRNA, pharyngeal lymphoid hyperplasia, race performance, real-time polymerase chain reaction, sea level, subepiglottic cysts, tracheal cartilage ring spikes, tracheal debris, tracheal mucous, tracheobronchoscopy, tumor necrosis factor-α.