Aspects of solid-state chemistry of fly ash and ultramarine pigments

by

Andreas Adriaan Landman

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor

in the Faculty of Natural and Agricultural Sciences, University of Pretoria

December 2003

ACKNOWLEDGEMENTS

My sincerest thanks go to the following people, who will now have far less to keep themselves busy:

- Prof Danita de Waal, my supervisor, for giving me free reign to develop the concepts reported in this thesis.
- Maggi Loubser and Dr Sabine Verryne, for assistance with the X-ray fluorescence and diffraction results, and more importantly for valuable discussions on the value and interpretation of the results.
- Linda Prinsloo for teaching me the technical details of Raman and infrared spectroscopy.
- Leon (electrical technician), Robin (glass blower), Juan (instrument maker), Gerhard (instrument maker), Errol (chemical stores) and Jan (chemical stores), without whose assistance scientific research at the University of Pretoria would come to a standstill. I still think I can break what they can't fix.
- I am grateful to André Botha, Alan Hall and Chris van der Merwe for showing me the beauty and power of the electron microscope, as well as help with most of the photos displayed in this work.
- Prof Jan Boeyens and Prof Peet van Rooyen for inspirational discussions on modelling of chemical systems.
- Prof Egmont Rohwer who shared his thoughts on the value of scientific results with me.
- My loving wife, Edith Landman, who read, and commented on this work as it progressed. Thank you for your patience, understanding and care. I wonder whether another pair of chemists will be able to outdo our 256 infrared spectra in less than 5 days?
- My parents, Adolph and Hanlie Landman, who lent a listening ear while I struggled with the concepts discussed in this work.
- My friends, Maria, Alexander, Isabel, Eddie, Ljiljana and Malebogo, who discussed the scientific merit of my work and also gave me some valuable social activities. All work and no play make Andreas a tyred boy. (I do work for Bridgestone South Africa Brits Plant after all.)

- Family members, especially Pieter and Alida Herbst, Phyllis Landman (grandmother) and Adolph Landman (grandfather), who interrogated me as to the real worth of my research. After all what is the worth of my research if I cannot explain it to my grandmother.
- Spherefill for financial assistance. Dr Richard A Kruger and Dr Johan van Schalkwyk representing Spherefill showed interest in the project.
- The National Research Foundation for financial assistance.
- This work was supported by a grant from the Technology and Human Resources for Industry Programme (THRIP); a partnership programme funded by the Department of Trade and Industry (DTI) and managed by the National Research Foundation (NRF).
- The financial assistance of the Department of Labour (DoL) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the Department of Labour.
- God Almighty, who through the grace of my Saviour Jesus Christ, carried me through this research.

ABSTRACT

Ultramarine pigments are aluminosilicate-based and contain sulphur-based chromophores. Several samples from two batches of fine fly ash, a predominantly aluminosilicate waste product of coal combustion, were used successfully to synthesise ultramarine blue. This was confirmed by infrared, Raman and X-ray diffraction results. Fly ash had the advantage of being amorphous, whereas the traditional starting reagent, kaolin, needed to be heat-treated before the ultramarine synthesis to weaken its structure. A comparison of the scanning electron micrographs of fly ash, fly ash treated at 1 000 °C, fly ash reacted with sodium carbonate at 860 °C and the ultramarine products showed that sulphur had a structure-directing effect.

The sulphur clusters found in ultramarine pigments were studied by Self-Consistent-Field Hartree-Fock theory extended by Møller-Plesset second order perturbation theory at the minimum energy with the 6-311G^{**} basis set to determine the relative stability of S₂, S₂^{-,}, S₂²⁻, and S₃, S₃^{-,}, S₃²⁻. The singly charged species were the most stable in both sets, supporting the hypothesis that the exothermic transition from green to blue ultramarine was the transformation of the doubly charged species to the singly charged species. The open, C_{2v}, isomer was most stable for the S₃^{-,} molecule - the blue ultramarine chromophore. The S₄ molecule was a likely chromophore in ultramarine red. A Woodward-Hoffmann analysis supported the concerted formation of the puckered square S₄, pyramidal S₄, and gauche S₄ chain isomers. Other possible species for the red chromophore were S₄^{-,}, S₃, S₃Cl, S₃Cl^{-,}, S₂Cl, S₂O, and S₂O⁻. On the basis of their calculated vibrational spectra most of the species could be discounted as possible red chromophores. The best candidate chromophore was the *cis* S₄ chain based on the computed electronic spectrum.

SAMEVATTING

Ultramarine pigmente is aluminosilikaat gebaseer en bevat swael-gebaseerde chromofore. Verskeie monsters, geneem uit twee lotte fyn stofas, 'n hoofsaaklik aluminosilikaat afvalproduk van steenkoolverbranding, is suksesvol gebruik om ultramarine blou te sintetiseer. Die resultaat is deur infrarooi, Raman en X-straal diffraksie resultate bevestig. Die tradisionele uitgangstof, kaolin, moet eers hittebehandeling ondergaan voordat die kaolin in die sintese van ultramarine gebruik kan word. Stofas is egter reeds amorf en het dus nie vooraf hittebehandeling nodig nie. 'n Vergelyking tussen die mikrofoto van stofas, stofas behandel teen 1 000 °C, stofas gereageer met natrium karbonaat teen 860 °C en die ultramarine produkte het getoon dat swael 'n struktuurrigtende effek het.

Self-Konsistente-Veld Hartree-Fock teorie en Møller-Plesset tweede orde steuringsteorie met die 6-311G** basisstel is gebruik om die relatiewe stabiliteite van S_2 , S_2^{-1} , S_2^{2-1} , en S_3 , S_3^{-1} , S_3^{2-1} , wat in ultramarine pigmente voorkom, te bepaal. Die enkelgelaaide spesies was die stabielste in beide stelle, ter ondersteuning van die hipotese dat die eksotermiese oorgang vanaf die groen tot die blou ultramarine spesies die omskakeling vanaf die dubbelgelaaide spesie na die enkelgelaaide spesie is. Die oop, C_{2v} , isomeer, is die stabielste S_3^{-} molekuul - die blou chromofoor in ultramarine. Die geslote, D_{3h}, geometrie word as 'n oorgangsfase beskou. 'n Woodward-Hoffmann-ontleding het die meervoudige vorming van die gebuigde vierkantige S₄, piramidale S₄, en gauche S₄ ketting isomere ondersteun. Ander moontlike rooi chromofore S₄⁻. was S₃, S₃Cl, S_3Cl^2 , S_2Cl , S_2O , en S_2O^2 . Op grond van hul berekende vibrasie spektra kan meeste van die spesies as moontlike rooi chromofore uitgeskakel word. Op grond van die berekende elektroniese spektrum was die *cis* S₄ ketting die beste kandidaat.

Psalm 37:3-5:

Trust in the LORD and do good; dwell in the land and enjoy safe pasture. Delight yourself in the LORD and he will give you the desires of your heart.

Commit your way to the LORD; trust in him and he will do this.¹

¹ *The Youthwalk Devotional Bible*, New International Version, Zondervan Publishing House, Grand Rapids, Michigan, p. 568, 1992.

Table of Contents

	ACKNOWLEDGEMENTS	ii
	ABSTRACT	iv
	SAMEVATTING	v
	PSALM	vi
	LIST OF FIGURES	xi
	LIST OF TABLES	xiii
	LIST OF EQUATIONS	xiv
	NOMENCLATURE AS USED BY THE AUTHOR	xv
	PREFACE	xvii
	PUBLICATIONS AND CONFERENCE PROCEEDINGS	xviii
0.	INTRODUCTION: THE EVOLUTION OF THIS RESEARCH	1
	PROJECT	
0.1.	The Original Objectives	2
0.2.	Limitations of Current Techniques and the Development of New	5
	Techniques	
0.3.	Synthetic Methods	6
0.3.1.	Mass Measurements during Synthesis	6
0.3.2.	Temperature for Synthesis	6
0.3.3.	Time for Synthesis	7
0.3.4.	Crucibles for Synthesis	7
0.3.4.1.	Metal Crucibles	7
0.3.4.2.	Ceramic Crucibles	8
0.3.5.	Furnace Technology	8
0.3.5.1.	Muffle Furnaces	8
0.3.5.2.	Tube Furnaces	10
0.3.6.	Scrubbers	10
0.3.7.	Thermocouples	10
0.4.	Aims of this Research	10
0.5.	Format of the Thesis	11

University of Pretoria etd – Landman, A A (2003) Aspects of solid-state chemistry of fly ash and ultramarine pigments

1.	LITERATURE REVIEW OF FLY ASH	13
1.1.	Introduction	14
1.2.	Need for Research into Fly Ash	16
1.3.	Characteristics of Fly Ash	17
1.4.	Past Applications of Fly Ash	24
1.5.	Potential Uses of Fly Ash	29
1.6.	Conclusion	29
2.	EXPERIMENTAL METHODS	38
2.1.	Chemicals	39
2.2.	Infrared Spectroscopy	39
2.3.	Raman Spectroscopy	39
2.4.	X-Ray Diffraction	40
2.5.	X-Ray Fluorescence	40
2.6.	Scanning Electron Microscopy	41
2.7.	pH Measurement	41
2.8.	Drawdown Test	41
2.9.	Molecular Modelling	41
2.9.1.	Semi-empirical ZINDO/1 Modelling Scheme	42
2.9.2.	Ab Initio - 6-311G** Modelling Scheme	43
2.9.3.	Vibrational Analyses	44
2.9.4.	Configuration Interaction and Electronic Transitions	44
3.	SYNTHESIS OF ULTRAMARINE BLUE FROM FLY ASH	47
3.1.	Introduction	48
3.2.	Experimental	49
3.2.1.	Synthesis	49
3.2.2.	Kinetic Experiment	50
3.3.	Results and Discussion	54
3.4.	Conclusions	62

4.	THE ROLE SULPHUR PLAYS IN THE FORMATION OF	64
	ULTRAMARINE BLUE	
4.1.	Introduction	65
4.2.	Synthesis	68
4.3.	Results	68
4.4.	Discussion	72
4.5.	Conclusion	74
5.	MODELLING SULPHUR CLUSTERS IN ULTRAMARINE	77
5.1.	Introduction	78
5.2.	Experimental Data	80
5.3.	Molecular Modelling	82
5.4.	Results	83
5.5.	Discussion	88
5.6.	Conclusion	90
6.	AN AB INITIO STUDY OF THE RED CHROMOPHORE IN	93
	ULTRAMARINE	
6.1.	Introduction	94
6.2.	Experimental Data	95
6.3.	Molecular Modelling	97
6.4.	Results	97
6.4.1.	Modelling the Cavities in the Ultramarine Structure	111
6.5.	Discussion	112
6.6.	Conclusion	115

University of Pretoria etd – Landman, A A (2003) Aspects of solid-state chemistry of fly ash and ultramarine pigments

7.	SUGGESTIONS FOR FURTHER INVESTIGATION	118
7.1.	The Spectroscopy of Silicates	119
7.2.	Ultramarine Blue	119
7.2.1.	Industrial Process for the Synthesis of Ultramarine Blue	119
7.2.1.1.	Laboratory Preparation and Optimisation	120
7.2.1.2.	Scaling Up	121
7.2.2.	Kinetics	121
7.2.3.	The Crystal Structure of Ultramarine Pigments	122
7.3.	Treating Fly Ash with Surfactants	123
7.3.1.	Anionic Surfactants	123
7.3.2.	Cationic Surfactant	123
7.4.	Adding Colour to Fly Ash	126
7.4.1.	Alkali Metals	126
7.4.2.	Alkaline-earth Metals	126
7.4.3.	Main Group Elements	127
7.4.4.	Transition Metals	127
7.5.	Artificial Neural Networks	128
7.6.	Molecular Mechanics	129
7.7.	Density Functional Theory	130
	APPENDIX	
A.	Programs	A2
A.1.	Spectral Manipulations Program	A2
A.2.	Volume Calculation Program	A11
В.	Raw Data	A15
B.1.	Ultramarine Blue Kinetic Peak Fitting Data	A15
C.	Raw Data for the Calculation of the Truncated Octahedron Volume	A16
	in Sodalite Crystals	
D.	Posters	A17
E.	Beneficiaries	A26
F.	Published Articles	A27

LIST OF FIGURES

0-1.	Samples of fly ash and fly ash treated at 1 000 °C, indicating the colour of fly ash and heat treated fly ash	2
0-2. 0-3.	The original objectives and information relating to the research project in 1999 The spherical microscopic structure of fly ash as observed by scanning electron	3 3
	microscopy	
0-4.	The results of the project as in 2000	4
0-5.	Objectives resulting from previous work as in 2001	5
0-6.	Damage to a nickel crucible due to reaction with oxygen (top two) and sulphur dioxide (bottom)	9
0-7.	Damage to a zirconia crucible due to phase changes	9
0-8.	Coloration of alumina crucibles due to cobalt (blue), vanadium (yellow) and iron (red) salts	9
0-9.	Cracking of alumina crucibles due to acid washing	9
0-10.	Muffle furnace	9
1-1.	The predominantly spherical microscopic structure of fly ash	19
1-2.	The mineralogy of fly ash	21
1-3.	Infrared spectrum of fly ash	23
3-1.	Flow diagram of the production of ultramarine blue	52
3-2.	X-ray diffraction patterns of washed (bottom) and unwashed (top) ultramarine products	53
	identified as ultramarine blue, ultramarine red and Lazurite, and Na ₂ SO ₄	
3-3.	Agglomerated layered pigment cake formed during the synthesis of ultramarine blue, using fly ash as a starting reagent	55
3-4.	Infrared spectrum of the ultramarine blue product obtained from this process between 400 cm^{-1} and 2 500 cm ⁻¹ , the band at 583 cm ⁻¹ was assigned to v_2 of S_2^{-1} .	56
3-5.	Raman spectra of the ultramarine species obtained (bottom) and an industrial ultramarine blue sample (top)	57
3-6.	Plot of the ratio, R, between the concentration of the S_2^- species and the concentration of the S_3^- species, against time and plot of the second-order rate law for the	60
3-7.	Drawdowns of two sets of ultramarine products from this research and a commercial	61
3-8.	standard Plastic samples prepared with ultramarine products from this research and a	61
	commercial standard as pigments	
4-1.	POV-Ray images of AM1 force field generated β -cages	66
4-2.	X-ray diffraction patterns of a) fly ash, b) fly ash treated at 1 000 °C, c) fly ash treated with sodium carbonate at 860 °C, d) ultramarine product	69
4-3.	The predominantly spherical microscopic structure of fly ash was intact after treatment at 1 000 °C	70
4-4.	The microscopic structure of fly ash treated with sodium carbonate at 860 °C was	71
	characterised by needle shapes crystals growing from the spherically shaped particles	
4-5.	The microscopic structure of the ultramarine product showing that the spherical shape of the fly ash particles was lost and that the regular shape of zeolite-type material was	72
	formed	
5-1.	S ₃ , S ₂ O and SOS species	78
5-2.	Possible S ₄ isomers	81
5-3.	Highest occupied and lowest unoccupied molecular orbitals of S ₂	86
5-4.	Molecular orbital diagram of S ⁺⁺ (ZINDO/1 and 6-311G ⁺⁺ LUMO) and S ₃ ⁺⁺ (ZINDO/1 and 6-311G ⁺⁺ α and β HOMO)	87
5-5.	Charge distribution in S_3^{-1} and branched chain S_4 at thrice (3d), twice (2d) and at its normal distance (1d)	88
6-1.	S ₃ Cl and S ₂ Cl isomers	96
6-2.	Total charge density plot of the double triangle S₄ isomer	102
7-1.	Broken alumina crucible used for the synthesis of ultramarine blue	121
7-2.	Ultramarine blue crystal structure	122
7-3.	Synperonic A9, Tamol NN 8906, stearic acid/NaOH, and sulphonated naphthalene formaldehyde used to suspend fly ash in water, after 5 minutes of settling time	124

- 7-4. Hypermer CG6 (successful), Empicol LZ/D, Morez, and stearic acid used to suspend 124 fly ash in water, after 5 minutes of settling time
- 7-5. Octadecyltrimethylammoniumbromide (successful), Synperonic A4 (successful), 125 Synperonic A7, sulphonated naphthalene formaldehyde sodium salt used to suspend fly ash in water, after 5 minutes of settling time
- 7-6. Synperonic A4 (successful), Hypermer CG6 (successful), and sulphonated 125 naphthalene formaldehyde sodium salt used to suspend fly ash in water, after 5 minutes of settling time
- 7-7. Periodic table of experiments and colours obtained. Grey indicates elements that were 126 not tested, and the coloured cells indicates the colour obtained with the aid of the element
- 7-8. Fly ash reacted with cobalt salt and 15 mass % NH₄VO₃

University of Pretoria etd – Landman, A A (2003) Aspects of solid-state chemistry of fly ash and ultramarine pigments

LIST OF TABLES

1-1.	Eskom statistics regarding coal consumption and ash production	15
1-2.	Environmental implications of using 1 kW of power	15
1-3.	X-ray diffraction mineralogy of fly ash	20
1-4.	XRF determined composition of fly ash and kaolin	22
1-5.	Applications in which fly ash acts as an additive	26
1-6.	Applications in which fly ash acts as a metal and metal oxide source	27
1-7.	Applications in which fly ash acts as an adsorbent	27
1-8.	Applications in which fly ash acts as starting material for zeolite synthesis	28
3-1.	Raw mix compositions for ultramarine production	53
3-2.	Assignments of Raman bands for ultramarine products	57
4-1.	EDX-Data for the samples in the step-wise study of the formation of ultramarine blue	69
5-1.	Experimental characteristics of S_3 , S_3^{-1} , and S_3^{-2}	82
5-2.	Bond lengths (Å) and angles (°) for S_2 and S_3 species	84
5-3.	Relative energy (kJ/mol) results for S_2	84
5-4.	Relative Energy (kJ/mol) for S_3	85
5-5.	Vibrational frequencies in cm ⁻¹ of S ₂ σ stretching vibration	85
5-6.	Vibrational frequencies in cm^{-1} of open S ₂	85
5-7	Vibrational frequencies in cm^{-1} of closed S_2	86
5-8.	Vibrational frequencies in cm^{-1} of negatively charged open S ₂	86
6-1.	Experimental characteristics of S ₄	97
6-2.	Bond lengths (Å) and bond angles (°) for the geometry of open and closed S_2	98
6-3.	Vibrational frequencies in cm^{-1} of open S ₂	99
6-4	Vibrational frequencies in cm^{-1} of closed S_2	99
6-5.	Electronic spectrum of several suspected chromophores in ultramarine red	100
6-6.	Bond lengths (Å) and bond angles (°) for S ₄	101
6-7.	Relative energy (kJ/mol) results of modelling S_4	102
6-8.	Vibrational frequencies in cm^{-1} of puckered ring S ₄	103
6-9.	Vibrational frequencies in cm ⁻¹ of singlet cis S_4	104
6-10.	Vibrational frequencies in cm ⁻¹ of singlet branched chain S_4	104
6-11.	Vibrational frequencies in cm ⁻¹ of trans S_4	104
6-12.	Vibrational frequencies in cm^{-1} of bent exocyclic S ₄	104
6-13.	Vibrational frequencies in cm ⁻¹ of triplet gauche S_4	105
6-14.	Relative energy results of modelling the triplet state of S₄	106
6-15.	Bond lengths (Å) and bond angles (°) of S_4	106
6-16.	Relative energy results of modelling S_4	107
6-17.	Bond lengths (Å) and bond angles (°) of SOS, S ₂ O, S ₃ Cl, and S ₂ Cl	108
6-18.	Relative energy results of modelling S_2O , SOS, S_3CI , and S_3CI	109
6-19.	Vibrational frequencies in cm ⁻¹ of branched S ₃ Cl	109
6-20.	Vibrational frequencies in cm ⁻¹ of singlet gauche S ₃ Cl	110
6-21.	Vibrational frequencies in cm ⁻¹ of S ₂ Cl	110
6-22.	Vibrational frequencies in cm^{-1} of S ₂ O	110
6-23.	Vibrational frequencies in cm ⁻¹ of singlet SOS	111
6-24.	Volume (Å ³) of the modelled species	112
6-25.	Approximations of the volume (Å ³) of the cavities in sodalite structures	113
7-1.	Ranges for the parameters describing standard peaks to be found in the infrared	129

spectra of fly ash and its derivatives

LIST OF EQUATIONS

3-1	Reaction for the formation of ultramarine blue	58
3-2	Reaction for the formation of ultramarine blue	58
3-3	Reaction for the formation of ultramarine blue	58
3-4	Second order rate law	60
5-1	Formation of S ⁺	90
6-1	Crystal cavity volume calculation	111

NOMENCLATURE AS USED BY THE AUTHOR

Compute	Perform a calculation to obtain information on a molecular system.
Calculate	Mathematically determine a descriptive value.
Calcine	Heat a substance to an elevated temperature to facilitate a reaction,
	for example decomposition reaction.
Sinter	Heat a chemical species in order to facilitate crystallisation or particle
	growth.
Filler	Substance used to make up volume in a polymeric product.
Pigment	Non-soluble substance that imparts colour to its matrix.
Chromophore	Chemical species responsible for colour.
Ceramic	Inorganic non-metallic compounds that can withstand high
	temperatures.
Band	Theoretically predicted or experimentally observed absorption in a
	spectrum.
Peak	Mathematically assigned band, which is described by its position,
	intensity, width and shape.
ν	Stretch
δ	Deformation
as (subscript)	Antisymmetric
s (subscript)	Symmetric
(IR)	Infrared active
(R)	Raman active
(IR/R)	Infrared and Raman active
(0)	Infrared and Raman inactive
Fa	Fly ash
Fa1000	Fly ash reacted at 1 000 °C
Fa860	Fly ash reacted at 860 °C
FaNa	Fly ash reacted with sodium carbonate

Aluminosilicate	A chemical species in which silica and alumina tetrahedra are linked
	together to form species similar to those found in silicates.
	Aluminium silicate is sometimes substituted for aluminosilicate but is
	not used by the current author.
Crystalline	Used to indicate that a chemical species has long-range structure.
Amorphous	Used to indicate that a chemical species does not have long-range
	structure. This does, however, not preclude the existence of short-
	range structure.
Ring size	The ring size in aluminosilicates is the number of tetrahedra that
	make up the ring, not the number of atoms in the ring.
Microscopic	The shape of a particle as observed with a microscope, using either
structure	an optical or an electron microscope.
Structure	The sub microscopic structure, that is the relative positions of atoms
	within chemical species.

PREFACE

To most young researchers the thought of embarking on a research project with the aim of getting a PhD is daunting. This is, however, all too often based on unreliable data as to what is expected of a PhD graduate. Phillips and Pugh² feel that a PhD graduate should become a fully professional researcher, described as follows (quoted from ref 2):

- First, at the most basic level it means that you have something to say that your peers want to listen to.
- Second, in order to do this you must have a command of what is happening in your subject so that you can evaluate the worth of what others are doing.
- Third, you must have the astuteness to discover where you can make a useful contribution.
- Fourth, you must have mastery of appropriate techniques that are currently being used, and also be aware of their limitations.
- Fifth, you must be able to communicate your results effectively in the professional arena.
- Sixth, all this must be carried out in an international context; your professional peer group is worldwide. (It always was, of course, but the rate of diffusion is infinitely faster than it used to be.) You must be aware of what is being discovered, argued about, written and published by your academic community across the world.²

The acceptance of this thesis signifies that the above-mentioned criteria were met.

Several style and format references^{3,4} are available to aid the young researcher. Literature review articles are of great help in starting to map one's path through a research topic. Patent literature is available and opens new avenues of thought. Computer searches of the available literature often yield overwhelming amounts of hits, possibly all important. Searching *The Chemical Abstracts* hard copies seems tedious, but is worth the effort.

² E.M. Phillips, D.S. Pugh, *How to get a PhD,* Second edition, Open University Press, Buckingham, 1994.

³ Style Manual Committee, Council of Biology Editors, *Scientific Style and Format, The CBE Manual for Authors, Editors, and Publishers*, Sixth edition, Cambridge University Press, Cambridge, 1994.

⁴ M. O'Connor, Writing successfully in Science, First edition, HarperCollinsAcademic, London, 1991.

PUBLICATIONS AND CONFERENCE PROCEEDINGS

A. PUBLISHED ARTICLES

- 1. Landman AA, De Waal D, **Orbital Symmetry in Sulphur Pigments**, *Crystal Engineering*, 4, pp 159-169, 2001.
- Landman AA, De Waal D, Fly Ash as a Potential Starting Reagent for the Synthesis of Ultramarine Blue, *Materials Research Bulletin*, 39, pp 655-667, 2004.

B. RE-SUBMITTED ARTICLES

Landman AA, De Waal D, **Modelling Sulphur Clusters for an Understanding of Ultramarine**, *South African Journal of Chemistry*.

C. SUBMITTED ARTICLE

Landman AA, De Waal D, **The Nature of the Chromophore in Ultramarine Red: An** *Ab Initio* study, *Journal of Computational Materials*.

D. ARTICLES PREPARED FOR SUBMISSION

- 1. Landman AA, De Waal D, A quick reference to fly ash as a valuable resource with many applications, and many more to be developed, *South African Journal of Chemistry*.
- Landman AA, De Waal D, A Scanning Electron Microscope Study of Changes in the Microscopic Structure during the formation of Ultramarine Blue, and the Role Sulphur Plays, *Materials Research Bulletin*.

E. NATIONAL CONFERENCE CONTRIBUTIONS

E.1. INVITED PAPERS

- 1. Landman AA, De Waal D, **Skepping van pigmente met Vliegas**, *Akademie vir Wetenskap en Kuns Jong Chemikus*, Bloemfontein, 21 September 1999.
- Landman AA, De Waal D, Infrared investigation into the reactions of aluminosilicates, Young Spectroscopists Symposium of the South African Spectroscopic Society, Johannesburg, 26 September 2001.
- Landman AA, De Waal D, Modelling ultramarine sulphur chromophores, 4 July 2002, SACI2002, 36th Convention of the South African Chemical Institute, Port Elizabeth, 1-5 July 2002, p s30

E.2. POSTERS

- 1. Landman AA, De Waal D, Interpreting Infrared Spectra of Silicates, proc SACI2000, Potchefstroom, 26 September 2000, p 138.
- Landman AA, De Waal D, Using The Microscope To Elucidate Sub Microscopic Changes During The Formation Of Ultramarine Pigments, Johannesburg, December 2001, proc Microscopic Society of Southern Africa, 31, p 37, 2001.
- Landman AA, Boeyens JCA, De Waal D, The Nature of the Ultramarine Red Chromophore, 7th Annual Materials Modelling Meeting, University of the North, Polokwane, 2003.
- Landman AA, De Waal D, Vanadium in the Mullite Structure, SACI Inorganic '03, Roode Vallei Country Lodge, Pretoria, 2003.

F. INTERNATIONAL CONFERENCE CONTRIBUTIONS

F.1. POSTERS

1. Landman AA, De Waal D, **Symmetry in Pigmentary Chromophores**, *Proc INDABA III*, Skukuza, 8 August 2000.

- 2. Landman AA, De Waal D, Vanadium electrons in Pigmentary Chromophores, Proc INDABA III, Skukuza, 9 August 2000.
- 3. De Waal D, Landman AA, Kruger RA, van Schalkwyk J, **Using Raman Spectroscopy to verify pigment identity**, *Proc Seventeenth International Conference on Raman Spectroscopy (ICORS 2000)*, Beijing, China, August 2000.
- Landman AA, De Waal D, Vibrational Spectroscopy of Vanadia in Silicates, *Proc Colloquium Spectroscopicum Internationale (CSI) XXXII*, Pretoria, p P8-9, 10 July 2001.
- Landman AA, De Waal D, The Benefits of Deconvoluting Vibrational Spectra of Pigments Based on Aluminosilicates, The First International Conference on Advanced Vibrational Spectroscopy ICAVS-1, Turku, p P5.44, 19 - 24 August 2001.