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 ABSTRACT 
 

Ultramarine pigments are aluminosilicate-based and contain sulphur-based 

chromophores. Several samples from two batches of fine fly ash, a predominantly 

aluminosilicate waste product of coal combustion, were used successfully to 

synthesise ultramarine blue. This was confirmed by infrared, Raman and X-ray 

diffraction results. Fly ash had the advantage of being amorphous, whereas the 

traditional starting reagent, kaolin, needed to be heat-treated before the ultramarine 

synthesis to weaken its structure. A comparison of the scanning electron 

micrographs of fly ash, fly ash treated at 1 000 °C, fly ash reacted with sodium 

carbonate at 860 °C and the ultramarine products showed that sulphur had a 

structure-directing effect. 

 

The sulphur clusters found in ultramarine pigments were studied by Self-Consistent-

Field Hartree-Fock theory extended by Møller-Plesset second order perturbation 

theory at the minimum energy with the 6-311G** basis set to determine the relative 

stability of S2, S2
-•, S2

2-, and S3, S3
-•, S3

2-. The singly charged species were the most 

stable in both sets, supporting the hypothesis that the exothermic transition from 

green to blue ultramarine was the transformation of the doubly charged species to 

the singly charged species. The open, C2v, isomer was most stable for the S3
-• 

molecule - the blue ultramarine chromophore. The S4 molecule was a likely 

chromophore in ultramarine red. A Woodward-Hoffmann analysis supported the 

concerted formation of the puckered square S4, pyramidal S4, and gauche S4 chain 

isomers. Other possible species for the red chromophore were S4
-, S3, S3Cl, S3Cl-, 

S2Cl, S2O, and S2O-. On the basis of their calculated vibrational spectra most of the 

species could be discounted as possible red chromophores. The best candidate 

chromophore was the cis S4 chain based on the computed electronic spectrum. 
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SAMEVATTING 
 

Ultramarine pigmente is aluminosilikaat gebaseer en bevat swael-gebaseerde 

chromofore. Verskeie monsters, geneem uit twee lotte fyn stofas, 'n hoofsaaklik 

aluminosilikaat afvalproduk van steenkoolverbranding, is suksesvol gebruik om 

ultramarine blou te sintetiseer. Die resultaat is deur infrarooi, Raman en X-straal 

diffraksie resultate bevestig. Die tradisionele uitgangstof, kaolin, moet eers 

hittebehandeling ondergaan voordat die kaolin in die sintese van ultramarine gebruik 

kan word. Stofas is egter reeds amorf en het dus nie vooraf hittebehandeling nodig 

nie. 'n Vergelyking tussen die mikrofoto van stofas, stofas behandel teen 1 000 °C, 

stofas gereageer met natrium karbonaat teen 860 °C en die ultramarine produkte het 

getoon dat swael 'n struktuurrigtende effek het.  

 

Self-Konsistente-Veld Hartree-Fock teorie en Møller-Plesset tweede orde 

steuringsteorie met die 6-311G** basisstel is gebruik om die relatiewe stabiliteite van 

S2, S2
-•, S2

2-, en S3, S3
-•, S3

2-, wat in ultramarine pigmente voorkom, te bepaal. Die 

enkelgelaaide spesies was die stabielste in beide stelle, ter ondersteuning van die 

hipotese dat die eksotermiese oorgang vanaf die groen tot die blou ultramarine 

spesies die omskakeling vanaf die dubbelgelaaide spesie na die enkelgelaaide 

spesie is. Die oop, C2v, isomeer, is die stabielste S3
-• molekuul - die blou chromofoor 

in ultramarine. Die geslote, D3h, geometrie word as 'n oorgangsfase beskou. 'n 

Woodward-Hoffmann-ontleding het die meervoudige vorming van die gebuigde 

vierkantige S4, piramidale S4, en gauche S4 ketting isomere ondersteun. Ander 

moontlike rooi chromofore was S4
-, S3, S3Cl,  

S3Cl-, S2Cl, S2O, en S2O-. Op grond van hul berekende vibrasie spektra kan meeste 

van die spesies as moontlike rooi chromofore uitgeskakel word. Op grond van die 

berekende elektroniese spektrum was die cis S4 ketting die beste kandidaat. 
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Psalm 37:3-5: 
Trust in the LORD and do good; 

dwell in the land and enjoy safe 

pasture. 

Delight yourself in the LORD 

and he will give you the desires of  

your heart. 

 

Commit your way to the LORD; 

trust in him and he will do this.1 

 

                                                 

 

 vi 

1  The Youthwalk Devotional Bible, New International Version, Zondervan Publishing House, Grand 
Rapids, Michigan, p. 568, 1992. 
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 PREFACE 
 

To most young researchers the thought of embarking on a research project with the 

aim of getting a PhD is daunting. This is, however, all too often based on unreliable 

data as to what is expected of a PhD graduate. Phillips and Pugh2 feel that a PhD 

graduate should become a fully professional researcher, described as follows 

(quoted from ref 2): 

• First, at the most basic level it means that you have something to say that your 

peers want to listen to. 

• Second, in order to do this you must have a command of what is happening in 

your subject so that you can evaluate the worth of what others are doing. 

• Third, you must have the astuteness to discover where you can make a useful 

contribution. 

• Fourth, you must have mastery of appropriate techniques that are currently 

being used, and also be aware of their limitations. 

• Fifth, you must be able to communicate your results effectively in the 

professional arena. 

• Sixth, all this must be carried out in an international context; your professional 

peer group is worldwide. (It always was, of course, but the rate of diffusion is 

infinitely faster than it used to be.) You must be aware of what is being 

discovered, argued about, written and published by your academic community 

across the world.2 

The acceptance of this thesis signifies that the above-mentioned criteria were met.  
 

Several style and format references3,4 are available to aid the young researcher. 

Literature review articles are of great help in starting to map one's path through a 

research topic. Patent literature is available and opens new avenues of thought. 

Computer searches of the available literature often yield overwhelming amounts of 

hits, possibly all important. Searching The Chemical Abstracts hard copies seems 

tedious, but is worth the effort. 

                                                 
2  E.M. Phillips, D.S. Pugh, How to get a PhD, Second edition, Open University Press, Buckingham, 

1994. 
3  Style Manual Committee, Council of Biology Editors, Scientific Style and Format, The CBE Manual 

for Authors, Editors, and Publishers, Sixth edition, Cambridge University Press, Cambridge, 1994. 

 

 xvii 

4  M. O'Connor, Writing successfully in Science, First edition, HarperCollinsAcademic, London, 1991. 
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