THE ECONOMIC IMPACT OF GENETICALLY MODIFIED (GM) CROPS IN SOUTH AFRICA

By

Marthinus Gouse

Submitted

in partial fulfilment of the requirements

for the degree

MSc Agric

Department of Agricultural Economics, Extension, and Rural Development
Faculty of Natural and Agricultural Sciences
University of Pretoria

February 2004
Acknowledgements

Firstly I would like to express my sincere appreciation to the maize and cotton farmers who invited me into their homes and shared their knowledge and information. Without their patience this study would not have been possible. My sincerest appreciation also goes to the Rockefeller Foundation who financed this study through a research grant.

To Prof. Johann Kirsten¹, Dr. David Schimmelpfennig², Prof. Carl Pray³, Ferdi Meyer¹ and Zuna Botha¹ my deepest gratitude for their guidance, ideas, insight, enthusiasm and their faith in me.

To my parents and sister who have taught me the qualities of hard work, self-discipline and compassion. I thank them for their love and support and I dedicate my MSc degree to them.

Finally to the Almighty who has provided me with an opportunity to, through this study, marvel at the wonder of His creation.

Marnus Gouse
Pretoria
February 2004

¹ Department Agricultural Economics, Extension and Rural Development, University of Pretoria
² Economic Research Service, United States Department of Agriculture
³ Department of Agricultural Economics, Rutgers University, USA
ABSTRACT

THE ECONOMIC IMPACT OF GENETICALLY MODIFIED (GM) CROPS IN SOUTH AFRICA

by

Marthinus Gouse

Degree: MSc Agric
Department: Agricultural Economics, Extension, and Rural Development
Study Leader: Prof. J.F. Kirsten
Co-Study leader: Dr. D. E. Schimmelpfennig

Agricultural biotechnology is not a new phenomenon. Man has been manipulating living organisms to solve problems and improve his way of living for millennia. Genetic engineering in agricultural biotechnology however brought a whole new dimension to the development of products and operations. It is these transgenic techniques and the crops they make possible that caused an international outcry amongst certain consumers and advocacy groups. Different groups support and oppose genetically modified crops for different reasons and are motivated by and acting according to different perceptions and ideologies.

South Africa has for approximately 25 years been involved with biotechnology research and development through governmental, parastatal and academic institutions. Due to this strong scientific background, role-players were able to competently and efficiently develop and implement regulatory guidelines when the biosafety process was kick-started in 1989. South Africa currently has a well-established and accredited regulatory system and is in a position to make informed decisions regarding genetically modified crops and their uses.

Agricultural biotechnology is the most rapidly adopted agricultural technology in history and it is said that the impressive adoption rates of these crops are evidence of
their perceived value to farmers. In the 2002/2003 cotton production season an estimated 82% of cotton seed sold in South Africa were genetically modified. Insect resistant yellow and white maize covered approximately 197 000 and 55 000 hectares respectively during that season.

South African large-scale cotton farmers, for whom cotton production is usually not the dominant farming activity, indicated better crop and risk management, pesticide saving and peace of mind as the main benefits. Small-scale resource poor cotton farmers in comparison indicated higher yield and saving on insecticides as the major benefits. Large-scale commercial yellow maize farmers indicated higher yields, better pest control, easier crop management and peace of mind as the main benefits, while small-scale farmers who depend on their harvest for food security, indicated higher yield and better quality as the major benefits. It is thus clear that different benefits appeal to different farmer groups and these benefits are the reasons why farmers adopt the new technology.

The direct costs and benefits associated with Bt crop adoption, as indicated by small- and large-scale maize and cotton farmers, were quantified and expressed in monetary terms. For both large- and small-scale cotton farmers as well as large-scale maize farmers, the increased seed cost (higher seed cost and / or an additional technology fee) were partly offset by a decrease in the need for chemical pesticide application, but mainly by a significant increase in yield due to better pest control. Bt adopting large-scale irrigation farmers enjoyed an 18.5% yield increase on average and large-scale dryland farmers a 13.8% yield increase. The impressive 46% yield increase of small-scale dryland farmers can partly be explained by the ineffective pesticide application practices of these small-scale farmers on their conventional cotton. Commercial yellow maize farmers who adopted Bt maize enjoyed yield increases of between 7 and 12 percent and 7 and 11 percent under irrigation and dryland conditions respectively. Bt adopting cotton and maize farmers enjoyed a higher income per hectare than farmers producing conventional varieties. Early indications suggest that small-scale maize farmers are also able to benefit from Bt technology – predominantly through an increased yield.
The additional economic rent, income or increase in welfare created by the introduction of Bt cotton in South Africa is distributed between four major role-players: The innovator or biotech company, the germplasm or seed supplier, the farmer as cotton producer and the cotton gins as primary consumer of seed cotton. Despite facing two monopolists and a dormant monopsonist, cotton farmers receive the lion’s share of the additional income created through the introduction of the new technology.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS (ii)
ABSTRACT (iii)
TABLE OF CONTENTS (vi)
LIST OF TABLES (ix)
LIST OF FIGURES (xi)
TABLE OF ACRONYMS AND DEFINITIONS (xii)

CHAPTER 1: INTRODUCTION
1.1 BACKGROUND 1
1.2 PROBLEM STATEMENT 2
1.3 OBJECTIVE 3
1.4 HYPOTHESIS 3
1.5 SURVEYS, FARMERS, METHODOLOGY AND DATA 3
1.6 OUTLINE OF THE STUDY 4

CHAPTER 2: AGRICULTURAL BIOTECHNOLOGY:
A LITERATURE REVIEW
2.1 INTRODUCTION 6
2.2 BACKGROUND AND BRIEF HISTORY OF BIOTECHNOLOGY 7
2.3 THE ADOPTION OF GENETICALLY MODIFIED CROPS 8
2.4 THE AGRICULTURAL BIOTECHNOLOGY DEBATE 11
 2.4.1 THE ISSUES THAT DRIVE THE DEBATE 11
 2.4.2 DIFFERENT IDEOLOGIES 13
2.5 AGRICULTURAL BIOTECHNOLOGY IN SOUTH AFRICA 18
 2.5.1 POLICY AND LEGISLATION 19
 2.5.2 BIOTECHNOLOGY RESEARCH IN SOUTH AFRICA 22
 2.5.3 GENETICALLY MODIFIED CROPS IN SOUTH AFRICA 26
2.6 CONCLUSION 26
CHAPTER 3: ADOPTION AND REASONS FOR ADOPTION OF
GENETICALLY MODIFIED CROPS BY SOUTH AFRICAN
FARMERS

3.1 INTRODUCTION 27
3.2 ADOPTION OF TRANSGENIC CROPS IN SOUTH AFRICA 28
3.3 BRIEF INDUSTRY OVERVIEW AND PROFILES OF ADOPTING
FARMERS 30
 3.3.1 COTTON INDUSTRY OVERVIEW 30
 3.3.2 LARGE-SCALE COTTON FARMERS 31
 3.3.3 SMALL-SCALE COTTON FARMERS 33
 3.3.4 MAIZE INDUSTRY OVERVIEW 34
 3.3.5 LARGE-SCALE COMMERCIAL MAIZE FARMERS 36
 3.3.6 SMALL-SCALE MAIZE FARMERS 37
3.4 REASONS FOR ADOPTION OF INSECT RESISTANT CROPS 38
 3.4.1 LARGE-SCALE COTTON FARMERS 39
 3.4.2 SMALL-SCALE COTTON FARMERS 41
 3.4.3 DIFFERENCE IN ADOPTION BEHAVIOUR OF LARGE-
AND SMALL-SCALE COTTON FARMERS 41
 3.4.4 LARGE-SCALE COMMERCIAL MAIZE FARMERS 43
 3.4.5 SMALL-SCALE MAIZE FARMERS 44
3.5 CONCLUSION 47

CHAPTER 4: FARM-LEVEL EFFECTS

4.1 INTRODUCTION 48
4.2 FARM-LEVEL IMPACT OF INSECT RESISTANT CROP ADOPTION 49
4.3 FARM-LEVEL IMPACT OF Bt COTTON IN SOUTH AFRICA 50
 4.3.1 YIELD 52
 4.3.2 PESTICIDE USE 54
 4.3.3 COST OF SEED AND THE ADDITIONAL
 TECHNOLOGY FEE 55
 4.3.4 THE INCOME EFFECT 58
4.4 FARM-LEVEL IMPACT OF Bt MAIZE IN SOUTH AFRICA:
 LARGE-SCALE MAIZE FARMERS 59
 4.4.1 YIELD 60
LIST OF TABLES

Table 2.1: Areas planted to GM crops for 2000, 2001 and 2002 10
Table 2.2: Summary of some of the past and current agricultural biotechnology research projects conducted by academic and parastatal institutions in SA 24
Table 3.1: Most popular crops and genetically induced traits in 2001/2002 27
Table 3.2: Estimated area planted to transgenic crops 29
Table 3.3: Transgenic crops according to percentage of seed sold or as percentage of area planted 29
Table 3.4: Profile of surveyed large-scale cotton farmers 32
Table 3.5: Profile of small-scale farmers on the Makhathini Flats 34
Table 3.6: Maize areas planted by surveyed farmers 37
Table 3.7: Household and farm profile of subsistence maize farmers 38
Table 3.8: Reasons for adoption of Bt cotton by large-scale farmers 40
Table 3.9: Benefits of Bt-cotton as indicated by small-scale farmers 41
Table 3.10: Reasons for adoption of Bt maize by large-scale yellow maize farmers 43
Table 3.11: Harvest and use of maize by subsistence farmers 46
Table 4.1: A summary of some selected previous farm-level impact studies and their findings 49
Table 4.2: Budget comparison of Opal (conventional) and NuOpal (Bt) cotton 51
Table 4.3: Comparing the average yield per hectare of large and small-scale adopters and non-adopters in South Africa 53
Table 4.4: Cost of insecticides for adopters and non-adopters 55
Table 4.5: Comparing the total per hectare cost of seed and pesticides for non-adopters with adopters’ seed-, technology- and pesticides cost 56
Table 4.6: Technology fee per hectare comparison between small-scale and large-scale dryland farmers 57
Table 4.7: Income effect of adoption of Bt cotton 58
Table 4.8: Yield differences between Bt and conventional maize – average for 1999/2000 and 2000/2001 61
Table 4.9: Conventional vs. Bt maize – cost of applied pesticides comparison 63
Table 4.10: Income effect of adoption of Bt yellow maize – average for 1999/2000 and 2000/2001 64
Table 4.11: Yield comparison between own, conventional and Bt maize seed 66
Table 4.12: Percentage of farmers indicating yield differences between conventional and Bt maize 67
Table 5.1: Size of supply shift per hectare 74
Table 5.2: Income distribution based on income advantage indicated by surveyed farmers 82
Table 5.3: Monetary value of the total additional benefit according to farmer groups for the 2000/2001 season (in SA Rand) 83
Table 5.4: Distribution of benefits for small-scale farmers under different seeding rate scenarios and technology fees 84
LIST OF FIGURES

Figure 2.1: Global area under GM crops, 1996 to 2001 (mha) 9
Figure 2.2: Applications for GMO permits in South Africa (1990-1999) 20
Figure 3.1: Adoption of new cotton seed varieties 28
Figure 3.2: Main cotton production regions in South Africa 31
Figure 3.3: Maize yield estimation map of South Africa 35
Figure 3.4: Maize utilisation 36
Figure 3.5: Benefits of Bt maize as indicated by subsistence farmers 46
Figure 5.1: Monsanto’s share of additional income created by use of Bt cotton 71
Figure 5.2: Cotton seed market share 73
Figure 5.3: The South African seed cotton market (assuming a fixed seasonal area planted) 74
Figure 5.4: Monopsonistic cotton buyer 78
Figure 5.5: Seed cotton and cotton lint price trends 80
TABLE OF ACRONYMS AND DEFINITIONS

<table>
<thead>
<tr>
<th>Acronym or Term</th>
<th>Full name and / or definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMO</td>
<td>Genetically Modified Organism</td>
</tr>
<tr>
<td>GM Crop</td>
<td>Genetically Modified Crop</td>
</tr>
<tr>
<td>Bt Crops</td>
<td>Refers to the genetically modified crops (insect resistant) that carry the gene from the soil bacterium Bacillus thuringiensis.</td>
</tr>
<tr>
<td>Bt Cotton</td>
<td>Insect resistant cotton.</td>
</tr>
<tr>
<td>Bt Maize</td>
<td>Insect resistant maize.</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid. DNA molecules carry the genetic information necessary for the organization and functioning of most living cells and control the inheritance of characteristics (www.nti.org).</td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td>Recombinant DNA refers to DNA which has been altered by joining genetic material from two different sources. It usually involves putting a gene from one organism into the genome of a different organism, generally of a different species (www.nti.org).</td>
</tr>
<tr>
<td>ISAAA</td>
<td>International Service for the Acquisition of Agri-biotech Applications</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organisation</td>
</tr>
<tr>
<td>FARNRPAN</td>
<td>Food, Agriculture and Natural Resources Policy Analysis Network</td>
</tr>
<tr>
<td>IFPRI</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>SAGENE</td>
<td>South African Committee for Genetic Experimentation</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial Research</td>
</tr>
<tr>
<td>FABI</td>
<td>Forestry and Biotechnology Institute at the University of Pretoria</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>SAGIS</td>
<td>South African Grain Information Service</td>
</tr>
<tr>
<td>ICAC</td>
<td>International Cotton Advisory Committee</td>
</tr>
<tr>
<td>CIRAD</td>
<td>A French research institute – Agricultural Research for Developing Countries</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>D&PL</td>
<td>Delta and Pineland</td>
</tr>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>Vunisa</td>
<td>Clark Cotton ginning company's name in KZN and Swaziland</td>
</tr>
<tr>
<td>MCG</td>
<td>Makhathini Cotton (Pty) Ltd</td>
</tr>
</tbody>
</table>