Learning difficulties involving volumes of solids of revolution: A comparative study of engineering students at two colleges of Further Education and Training in South Africa

by

Batseba Letty Kedibone
Mofolo-Mbokane

Submitted in partial fulfilment for the Degree
Philosophiae Doctor

in the Department of Mathematics and Applied Mathematics in the Faculty of Natural and Agricultural Sciences

University of Pretoria
Pretoria

September 2011

© University of Pretoria
DECLARATION

I, the undersigned, declare that the thesis which I hereby submit for the degree Philosophiae Doctor to the University of Pretoria contains my own, independent work and has not previously been submitted by me for any degree at this or any other tertiary institution.

Signature:

Name: Batseba Letty Kedibone Mofolo-Mbokane

Date:
This study investigates learning difficulties involving volumes of solids of revolution (VSOR) at two FET colleges in Gauteng province, in South Africa. The research question for this study was: **Why do students have difficulty when learning about volumes of solids of revolution?** In order to answer the research question five skill factors were identified as the conceptual framework, subdivided into 11 elements. The five skill factors are: I. Graphing skills and translating between visual graphs and algebraic equations/expressions, II. Three-dimensional thinking, III. Moving between discrete and continuous representations, IV. General manipulation skills and V. Consolidation and general level of cognitive development.

Before collecting the main data for this study, a preliminary study and a pilot study were conducted. The data for the main study were then collected in six different investigations. The investigations consisted of two runs of a questionnaire, classroom observations, examination analysis; detailed examination responses and an interview with one student.

The results from the questionnaire runs as well as the pilot study reveal that students performed poorly in tasks involving three-dimensional thinking (Skill factor II), moving between discrete and continuous representations (Skill factor III), and consolidation and general level of cognitive development (Skill factor V). Students’ performance was satisfactory in tasks involving graphing skills and translating between visual graphs and algebraic equations/expressions (Skill factor I) and general manipulation skills (Skill factor IV). Students were also more competent in solving problems that involved procedural skills than those that required conceptual skills. The challenges that students were faced with in class, evident from the classroom observations allude to the fact that the topic of VSOR is difficult to teach and to learn.

It is recommended that VSOR be taught and assessed more conceptually in line with the five skill factors; that curriculum developers must communicate with other stakeholders like industries and other institutions of higher learning and that the Department of Education must provide adequate training for these teachers and liaise with industry in this regard. It is also recommended that the suitability of this topic for the particular cohort of students be reconsidered as it appears to be of too high cognitive demand.
DEDICATION

This study is dedicated to my family for walking this long path with me. I dedicate this study to my husband Majagaodwa Mbokane, my daughter Mmamonkwe, my son Umalusi, my mother Mmamonkwe Mofolo and in soul my father Malebye Mofolo who inspired me throughout this journey. Perseverance is what kept me going. I can now sing and praise GOD, who lifted me up when I was tripping.

“Praise the LORD with the harp; make melody to Him with an instrument of ten strings. Sing to Him a new song; play skilfully with a shout of joy”.

PSALM 33: 2-3
ACKNOWLEDGEMENTS

I wish to thank my supervisor Prof Johann Engelbrecht and my co-supervisor Prof Ansie Harding for their hard work in continuously guiding and supporting me in the writing of this thesis. Their constructive criticism and feedback led to the improved versions of this report. Thank you for your patience, your encouragement and your motivation when I felt that the road was difficult.

I wish to thank the following people and organisations for their support during my research journey.

- All the lecturers and the students at the three FET colleges who were participants in this study for the time they spent to make this report possible.
- Many thanks to the national department of education for allowing me to analyse the examination scripts.
- I wish to thank my SMTE HODs Prof Onwu, Prof Braun and all my colleagues in the mathematics department for encouraging me to carry on with my studies and sharing my work load. Thank you Dr Gaigher and Mrs Randall for your sweet words of motivation when I was downcast. I wish to thank Mr Mnguni also for helping me with technical aspects when I got stuck, my colleague Mrs Kazeni for her words of encouragement and Mrs Alison Kitto for sharing my working load.
- Thank you Dr Lizelle Fletcher for the statistical analysis and interpretation of the data in this thesis.
- I wish to thank the language editor A.K. Welman for ensuring that the correct standards are maintained.
- I appreciate the financial support I received from the University of Pretoria and the NRF in terms of funding my research fully.
- Many thanks to the Almighty for making this possible.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>Table of contents</td>
<td>v</td>
</tr>
<tr>
<td>Appendices</td>
<td>xi</td>
</tr>
<tr>
<td>Index of tables</td>
<td>xii</td>
</tr>
<tr>
<td>Index of figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of acronyms</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER 1: CONCEPTUALISATION OF THE STUDY

1.1 Setting

1.1.1 The country
1.1.2 The education system
1.1.3 Structure of FET colleges
1.1.4 FET colleges and entry requirements

1.2 Motivation for the study

1.2.1 My involvement
1.2.2 Teaching experience
1.2.3 Criteria for selecting this topic
1.2.4 Calculating the area bounded by the graphs
1.2.5 Generating the volume of a solid of revolution
1.2.5.1 The disc method
1.2.5.2 The washer method
1.2.5.3 The shell method

1.3 The problem description

1.4 Research question

1.5 Significance of the study

1.6 Conclusion

1.7 Overview of the chapters

CHAPTER 2: LITERATURE REVIEW

2.1 Graphing skills and translation between visual graphs and algebraic/expressions

2.1.1 Visual learning and symbols
2.1.2 Transferring between mathematics and applications
CHAPTER 3: CONCEPTUAL FRAMEWORK

3.1 The three modes of representations 66
3.2 My conceptual framework involving the five skill factors 67
 3.2.1 Skills factor I: Graphing skills and translating between visual graphs and algebraic equations/expressions 68
 3.2.2 Skills factor II: Three dimensional thinking 70
 3.2.3 Skills factor III: Moving between continuous and discrete representation 71
 3.2.4 Skill factor IV: General manipulation skills 73
 3.2.5 Skills factor V: Level of cognitive development 73
3.3 The three modes of representations and the level of cognitive development 75
3.4 Procedural and conceptual knowledge 76
3.5 Procedural and conceptual knowledge within the five skill factors 77
 3.5.1 The VSOR model 77
3.6 Related frameworks 79
 3.6.1 Bernstein’s framework 79
 3.6.2 Kilpatrick’s et al framework 80
3.7 Conclusion 84

CHAPTER 4: RESEARCH DESIGN AND METHODOLOGY

4.1 Research strategy 85
 4.1.1 Research methods 85
 4.1.2 The research sample 94
4.2 Data collection and analysis 96
 4.2.1 Phase I: Data collection process and analysis 96
 4.2.1.1 Part 1: The preliminary study (July 2005) 96
 4.2.1.2 Part 2: The pilot study (October 2006) 98
4.2.2 Phase II: The main study

4.2.2.1 Investigation 1: April 2007 as the Questionnaire 1st run

4.2.2.2 Investigation 2: October 2007 and April 2008 as the Questionnaire 2nd run

4.2.2.3 Investigation 3: Analysis of 151 examination scripts for August 2007 Examinations

4.2.2.4 Investigation 4: Detailed examination analysis

4.2.2.5 Correlating the elements

4.2.3 Phase III

4.2.3.1 Investigation 5: Classroom observations

4.2.3.2 Investigation 6: Student interview

4.2.4 Final remarks

4.3 Validity

4.3.1 Validity in tests

4.3.2 Validity in observations and interviews

4.3.3 Threats of validity

4.3.4 Validity for the claims made

4.4 Reliability

4.5 Generalisation

4.6 Ethical consideration

4.7 Delineation of the study

4.8 Limitations of the study

4.9 Summary

CHAPTER 5: PRELIMINARY AND PILOT STUDIES

5.1 Part 1: Preliminary study in July 2005

5.1.1 The results from the seven students

5.1.1.1 Overall responses

5.1.1.2 Individual responses

5.1.1.3 The graphing skills

5.1.2 Discussion of the results

5.1.3 Conclusions

5.2 Part 2: The pilots study in October 2006

5.2.1 Lessons observations at College C

5.2.2 The results for the 21-item questionnaire

5.2.2.1 Responses for Element 1: Translation from algebraic to visual (2D)

5.2.2.2 Responses for Element 2: Translation from visual to algebraic (2D)

5.2.2.3 Responses for Element 3: Translation from algebraic to visual (3D)
5.2.2.4 Responses for Element 4: Translation from visual to algebraic (3D)

5.2.2.5 Responses for Element 5: Translation from 2D to 3D

5.2.2.6 Responses for Element 6: Translation from 3D to 2D

5.2.2.7 Responses for Element 7: Translation from continuous to discrete (visual 2D)

5.2.2.8 Responses for Element 8: Translation from continuous to discrete (visual 3D)

5.2.2.9 Responses for Element 9: Translation from discrete to continuous and continuous to discrete (algebraic) in 2D to 3D

5.2.2.10 Responses for Element 10: General manipulation skills

5.2.2.11 Responses for Element 11: Consolidation and general level of cognitive development

5.3 Conclusion from the results

CHAPTER 6: QUESTIONNAIRE AND EXAMINATIONS

6.1 Presentation and analysis of the results from the 23-item instrument (questionnaire)

6.1.1 Skill factor I: Graphing skills and translating between visual graphs and algebraic equations/expressions

6.1.2 Skill factor II: Three-dimensional thinking

6.1.3 Skill factor III: Moving between discrete and continuous

6.1.4 Skill factor IV: General manipulation skills

6.1.5 Skill factor V: Consolidation and general level of cognitive development

6.1.6 Overall responses per question, per element and per skill factor for the questionnaire runs

6.1.7 Total responses for all categories

6.1.8 Performance in the five skill factors classified in terms of procedural and/or conceptual knowledge

6.1.9 General observations from the five skill factors for the questionnaire runs

6.1.10 Discussion and conclusion

6.2 Examination analysis and the detailed written examinations responses

6.2.1 Examination analysis

6.2.1.1 Analysis of the examination scripts for 151 students

6.2.1.2 Quantitative analysis of five elements that were tested directly from the question paper

6.2.2 Detailed written examination responses

6.2.2.1 Actual written responses from the seven students

6.2.2.2 Summary for the detailed written examination responses

6.2.3 Discussion and conclusion

6.3 Summary of the examination analysis

6.4 A model question paper
CHAPTER 7: CORRELATING THE ELEMENTS

7.1 Non-parametric tests: Kendall tau (τ)

7.1.1 Correlations for the questionnaire 1st run

7.1.1.1 Correlating the skill factor consolidation and general level of cognitive development and the other elements

7.1.1.2 Correlating general manipulation skills to other elements

7.1.1.3 Correlating translation from discrete to continuous and from continuous to discrete algebraically to other elements

7.1.1.4 Correlating translation from continuous to discrete (visually) to other elements

7.1.1.5 Correlating translation from 3D to 2D to other elements

7.1.1.6 Correlating translation from 2D to 3D to other elements

7.1.1.7 Correlating translation from visual to algebraic in 3D to other elements

7.1.1.8 Correlating translation from algebraic to visual in 3D to other elements

7.1.1.9 Correlating translation from visual to algebraic in 2D to other elements

7.1.1.10 Correlating translation from algebraic to visual in 2D to other elements

7.1.1.11 Summary for the Questionnaire 1st run

7.1.2 Correlations for the Questionnaire 2nd run

7.1.2.1 Summary for the Questionnaire 2nd run

7.1.3 Conclusion for the correlations from the questionnaires

7.1.4 Correlations for the examinations analysis

7.1.5 Summary for the examination correlations

7.2 Parametric tests: Pearson (r)

7.2.1 The histogram for students’ performance

7.2.2 The scatter plot for students’ performance

7.3 The Pearson’s correlation and the level of significance for the 151 students

7.3.1 Conclusion on the parametric tests

CHAPTER 8: OBSERVATIONS AND AN INTERVIEW

8.1 Classroom observations

8.1.1 The first lesson

8.1.1.1 Observing the lecturer and the students in Lesson 1

8.1.1.2 The five skill factors for the first lesson

8.1.2 Observing the second lesson

8.1.2.1 Observing the students in Lesson 2

8.1.2.2 Observing the lecturer in Lesson 2

8.1.2.3 The five skill factors for the second lesson
CHAPTER 9: INTERPRETATIONS AND CONCLUSIONS

9.1 Overview of this research

9.2 Addressing the research questions for this study

9.2.1 Skill factor I: How competent are students in graphing skill?

9.2.2 Skill factor II: How competent are students in translating between 2D and 3D diagrams?

9.2.3 Skill factor III: How competent are students in translating between continuous and discrete representations visually and algebraically in 2D and in 3D?

9.2.4 Skill factor IV: How competent are students in general manipulation skills?

9.2.5 Skill factor V: How competent are the students in dealing with the general cognitive demands of the tasks?

9.2.6 Teaching and assessment

9.2.7 Correlations

9.3 Answering the research question for this study

9.4 Recommendations of the study

9.4.1 Teaching the VSOR content

9.4.2 Assessing the VSOR content

9.4.3 The role of curriculum developers

9.4.4 Duties of the Department of Education and the industry

9.5 Limitations of the study and directions for further research

REFERENCES
APPENDICES

Appendix 1A Syllabus on application of the definite integral 313
Appendix 1B Preliminary study 2005 314
Appendix 2A Pilot (2006) before reshuffled 318
Appendix 2B Pilot administered 2006 320
Appendix 3A Changed instrument 324
Appendix 3B Main instrument administered 328
Appendix 4A Main results for the Questionnaire 1st run 334
Appendix 4B Overall response percentage per skill factor 335
Appendix 4C Average scores per element from the Questionnaire 1st run 336
Appendix 4D Skill factors percentage of responses and procedural and conceptual classification 337
Appendix 5A Main results for the Questionnaire 2nd run (Test 1 & 2) 338
Appendix 5B Average scores per element from the Questionnaire 2nd run 341
Appendix 5C Main results for the Questionnaire 2nd run (Test 3) 343
Appendix 6A Detailed memorandum of the examination questions 344
Appendix 6B Examination analysis for 151 responses 346
Appendix 6C Average scores per element from the examination analysis 349
Appendix 6D Responses from the seven students 354
Appendix 7A Consent form for students 353
Appendix 7B Consent form for classroom observations 355
Appendix 7C Consent form for institutions 356
Appendix 7D Consent form for the national examination 357
INDEX OF TABLES

Table 1.1 NQF (www.saqa.org.za/show.asp?include =focus/ld.htm) 2
Table 3.1 The five skill factors 67
Table 4.1 The p-value table 90
Table 4.2 11 elements from the 21-item instrument 98
Table 4.3 The 11 elements 101
Table 4.4 Question 2A modified to be Question 3A 102
Table 4.5 Question 3A modified to be Question 4A 103
Table 4.6 Question 5A modified to be Question 1A 103
Table 4.7 Modified Question 11B 103
Table 4.8 Criteria for performance level 106
Table 4.9 Classification of skill factors 107
Table 5.1 The schematic process in the presentation and analysis of the results 119
Table 5.2 Classification of students’ written responses 122
Table 5.3 The graphs drawn 127
Table 5.4 Responses for Element 1 130
Table 5.5 Responses for Element 2 131
Table 5.6 Responses for Element 3 132
Table 5.7 Responses for Element 4 133
Table 5.8 Responses for Element 5 135
Table 5.9 Responses for Element 6 136
Table 5.10 Responses for Element 7 137
Table 5.11 Responses for Element 8 137
Table 5.12 Responses for Element 9 139
Table 5.13 Responses for Element 10 141
Table 5.14 Responses for Element 11 142
Table 6.1 Element 1 for the Questionnaire 1st run as Question 1 146
Table 6.2 Element 1 questions 146
Table 6.3 Element 2 and 3 questions 150
Table 6.4 Element 2 and 3 for the Questionnaire 1st run as Question 2 and Question 3 151
Table 6.5 Element 2 and 3 for the Questionnaire 2nd run as Question 2A and Question 3A 151
Table 6.6 Element 2 and 3 for the Questionnaire 2nd run as Question 2B and Question 3B 152
Table 6.7 Element 4 and 5 questions 158
Table 6.8 Element 4 and 5 for the Questionnaire 1st run as Question 4 and Question 5 158
Table 6.9 Element 4 for the Questionnaire 2nd run as Question 4 159
Table 6.10 Element 5 for the Questionnaire 2nd run as Question 5A 159
Table 6.11 Element 5 for the Questionnaire 2nd run as Question 5B 160
Table 6.12 Element 6 and 7 questions 167
Table 6.13 Element 6 and 7 for the Questionnaire 1st run as Question 6 and Question 7 168
Table 6.14 Element 6 for the Questionnaire 2nd run as Question 6A 168
Table 6.15 Element 6 for the Questionnaire 2nd run as Question 6B 169
Table 6.16 Element 7 for the Questionnaire 2nd run as Question 7 169
Table 6.17 Element 8 and 9 questions 175
Table 6.18 Element 8 and 9 for the Questionnaire 1st run as Question 8 and Question 9 176
Table 6.19 Element 8 and 9 for the Questionnaire 2nd run as Question 8B and Question 9A 176
Table 6.20 Element 8 and 9 for the Questionnaire 2nd run as Question 8A and Question 9B 177
Table 6.21 Element 10 for Questionnaire 1st run as Questions 10 181
Table 6.22 Element 10 for Questionnaire 2nd run as Questions 10 182
Table 6.23 Element 11 for the Questionnaire 1st run as Question 11 185
Table 6.24 Element 11 for the Questionnaire 2nd run as Question 11A 186
Table 6.25 Element 11 for the Questionnaire 2nd run as Question 11B 186
Table 6.26 All 11 elements for the Questionnaire 1st run 190
Table 6.27 All 4 elements for the Test 1 and 2; and other questions from the Questionnaire 2nd run 195
Table 6.28 Responses for Test 3 from the Questionnaire 2nd run 195
Table 6.29 The responses for all questions 197
Table 6.30 Procedural and conceptual skills from the Questionnaire 1st run 198
Table 6.31 Students’ responses in five elements 208
Table 6.32 The composition of the paper 220
Table 7.1 Kendall tau for the Questionnaire 1st run 222
Table 7.2 Kendall tau for overall 122 responses 227
Table 7.3 Correlations from Kendall’s tau 229
Table 7.4 Displaying performance in the four quadrants 233
INDEX OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Population density in South African provinces (Statistics South Africa, 2006)</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>South African Map (www.southafrica.to/provinces/provinces.htm)</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Approximating the area</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>The disc method</td>
<td>13</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>The washer method</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>The shell method</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Students’ visualisation of an integral (Rösken and Rolhka, 2006, p. 459)</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Potter Wheel construction (adapted from Christou et al., 2008, p. 6)</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Discrete approximation of velocity (Gravemeijer & Doorman, 1999, p. 125)</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Questions on evaluating an integral (Mahir 2009, p. 203)</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The Riemann sum</td>
<td>72</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The VSOR model</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Examples of scatter plots (Adapted from Willemse, 2004, p. 116)</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The interactive model of research design (Adapted from Maxwell, 2005, p. 11)</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The mixed method research design model</td>
<td>93</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Gowin’s knowledge Vee (Novak & Gowin, 1984)</td>
<td>93</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>S6 interpreting a Δx strip a Δy strip</td>
<td>125</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>S1 written response</td>
<td>126</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Straight lines as parabolas</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>A parabola without limits</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>A disc and a parabola</td>
<td>133</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>A shell and a parabola</td>
<td>133</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>A line representing a solid</td>
<td>135</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>An ellipsoid</td>
<td>135</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>A cross-section of a washer</td>
<td>138</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Misconceptions about the strips</td>
<td>138</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Errors with integration rules</td>
<td>141</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>Incorrect limits used</td>
<td>143</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>Incorrect region shaded</td>
<td>143</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Questionnaire 1st run for Question 1</td>
<td>146</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Questionnaire 2nd run for Question 1</td>
<td>147</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>A line passing through $y = 3$</td>
<td>148</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>A line with a negative gradient</td>
<td>148</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Half an ellipse below the x-axis</td>
<td>149</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Half an ellipse above the x-axis</td>
<td>149</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>Questionnaire 1st run for Question 2 and Question 3</td>
<td>151</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>Questionnaire 2nd run for Question 2A and Question 3A</td>
<td>151</td>
</tr>
<tr>
<td>Figure 6.9</td>
<td>Questionnaire 2nd run for Question 2B and Question 3B</td>
<td>152</td>
</tr>
<tr>
<td>Figure 6.10</td>
<td>A line with a negative slope</td>
<td>155</td>
</tr>
<tr>
<td>Figure 6.11</td>
<td>A parabola (y = x - x^2)</td>
<td>155</td>
</tr>
<tr>
<td>Figure 6.12</td>
<td>(\Delta x) with y limits</td>
<td>157</td>
</tr>
<tr>
<td>Figure 6.13</td>
<td>Formula for moment of inertia</td>
<td>157</td>
</tr>
<tr>
<td>Figure 6.14</td>
<td>A hyperbolic Equation</td>
<td>157</td>
</tr>
<tr>
<td>Figure 6.15</td>
<td>An exponential equation</td>
<td>157</td>
</tr>
<tr>
<td>Figure 6.16</td>
<td>Questionnaire 1st run for Question 4 and Question 5</td>
<td>159</td>
</tr>
<tr>
<td>Figure 6.17</td>
<td>Questionnaire 2nd run for Question 4</td>
<td>159</td>
</tr>
<tr>
<td>Figure 6.18</td>
<td>Questionnaire 2nd run for Question 5A</td>
<td>160</td>
</tr>
<tr>
<td>Figure 6.19</td>
<td>Questionnaire 2nd run for Question 5B</td>
<td>160</td>
</tr>
<tr>
<td>Figure 6.20</td>
<td>A positive parabola</td>
<td>163</td>
</tr>
<tr>
<td>Figure 6.21</td>
<td>A negative parabola</td>
<td>163</td>
</tr>
<tr>
<td>Figure 6.22</td>
<td>A complete parabola</td>
<td>164</td>
</tr>
<tr>
<td>Figure 6.23</td>
<td>Half a parabola</td>
<td>164</td>
</tr>
<tr>
<td>Figure 6.24</td>
<td>(\cos x) and a (\Delta y) strip</td>
<td>166</td>
</tr>
<tr>
<td>Figure 6.25</td>
<td>Integration by parts</td>
<td>166</td>
</tr>
<tr>
<td>Figure 6.26</td>
<td>Questionnaire 1st run for Question 6 and Question 7</td>
<td>168</td>
</tr>
<tr>
<td>Figure 6.27</td>
<td>Questionnaire 2nd run for Question 6A</td>
<td>168</td>
</tr>
<tr>
<td>Figure 6.28</td>
<td>Questionnaire 2nd run for Question 6B</td>
<td>169</td>
</tr>
<tr>
<td>Figure 6.29</td>
<td>Questionnaire 2nd run for Question 7</td>
<td>169</td>
</tr>
<tr>
<td>Figure 6.30</td>
<td>The graph of (y = x) and the (\Delta y) strip</td>
<td>171</td>
</tr>
<tr>
<td>Figure 6.31</td>
<td>The same graph and the (\Delta x) strip</td>
<td>171</td>
</tr>
<tr>
<td>Figure 6.32</td>
<td>A hemisphere about the x-axis</td>
<td>172</td>
</tr>
<tr>
<td>Figure 6.33</td>
<td>Rotation about the x-axis</td>
<td>172</td>
</tr>
<tr>
<td>Figure 6.34</td>
<td>An exponential function</td>
<td>173</td>
</tr>
<tr>
<td>Figure 6.35</td>
<td>The parabolic diagram</td>
<td>173</td>
</tr>
<tr>
<td>Figure 6.36</td>
<td>A circular shape</td>
<td>174</td>
</tr>
<tr>
<td>Figure 6.37</td>
<td>A circle and a rod</td>
<td>174</td>
</tr>
<tr>
<td>Figure 6.38</td>
<td>Questionnaire 1st run for Question 8 and Question 9</td>
<td>176</td>
</tr>
<tr>
<td>Figure 6.39</td>
<td>Questionnaire 2nd run for Question 8B and Question 9A</td>
<td>176</td>
</tr>
<tr>
<td>Figure 6.40</td>
<td>Questionnaire 2nd run for Question 8A and Question 9B</td>
<td>177</td>
</tr>
<tr>
<td>Figure 6.41</td>
<td>One rectangle</td>
<td>178</td>
</tr>
<tr>
<td>Figure 6.42</td>
<td>Four rectangle</td>
<td>178</td>
</tr>
<tr>
<td>Figure 6.43</td>
<td>The first ring</td>
<td>179</td>
</tr>
<tr>
<td>Figure 6.44</td>
<td>The second ring</td>
<td>179</td>
</tr>
</tbody>
</table>
Figure 6.45 Unequal rectangles 180
Figure 6.46 A rectangle of area 12 180
Figure 6.47 The thin circles 181
Figure 6.48 A circle of radius 1.5 181
Figure 6.49 Questionnaire 1st run for Questions 10 182
Figure 6.50 Questionnaire 2nd run for Questions 10 182
Figure 6.51 Incorrect solution 1 184
Figure 6.52 Incorrect solution 2 184
Figure 6.53 Questionnaire 1st run as Question 11 186
Figure 6.54 Questionnaire 2nd run for Question 11A 186
Figure 6.55 Questionnaire 2nd run for Question 11B 187
Figure 6.56 Correct graph with a Δy strip 189
Figure 6.57 Inverse function manipulation 189
Figure 6.58 Comparing the 11 elements for the Questionnaire 1st run 190
Figure 6.59 The five skill factors compared 193
Figure 6.60 All responses represented 197
Figure 6.61 Comparing the five elements 208
Figure 6.62 The performance from the seven students 211
Figure 6.63 The incorrect approximation with a Δx strip 212
Figure 6.64 Incorrect substitution in the equation for volume 213
Figure 6.65 A cosine graph without the strip 214
Figure 6.66 Incomplete manipulation 215
Figure 6.67 The proposed VSOR assessment model 217
Figure 7.1 Performance in Question 5 231
Figure 7.2 Performance in the whole paper 231
Figure 7.3 Scatterplot on Question 5 and the whole paper 232
Figure 8.1 Example 1 graphs 238
Figure 8.2 Transformation 239
Figure 8.3 The disc method for example 1 239
Figure 8.4 The shell method for example 2 240
Figure 8.5 The disc method for example 3 242
Figure 8.6 The washer method for example 4 243
Figure 8.7 The annulus 244
Figure 8.8 The parabola using a Δx strip 246
Figure 8.9 The exponential graph 251
Figure 8.10 Rotating anti-clockwise 252
Figure 8.11 Cross-section of a shell 252
Figure 8.12 The rectangular hyperbola 253
Figure 8.13 The first quadrant 253
Figure 8.14 The second quadrant 256
Figure 8.15 The cubic and straight line graphs 259
Figure 8.16 The intersection points 259
Figure 8.17 The two parabolas 259
Figure 8.18 The parabolas drawn 260
Figure 8.19 Locating the centroid 261
Figure 8.20 The 1st attempt 263
Figure 8.21 The 2nd attempt 263
Figure 8.22 The last attempt 263
Figure 8.23 The graphing skills 266
Figure 8.24 Straight line 267
Figure 8.25 The incorrect graphs 268
Figure 8.26 The correct graphs 268
Figure 8.27 The centroid 270
Figure 8.28 A decreasing exponential graph 271
LIST OF ACRONYMS

ABET - Adult Basic Education and Training
ACE - Advanced Certificate in Education
ARIRE - Average Ranking for Individual Responses per Element
CAS - Computer Algebra System
DoE - Department of Education
DoL - Department of Labour
FET - Further Education and Training
FTC - Fundamental Theorem of Calculus
GET - General Education and Training
HE - Higher Education
MMA - Mixed methods approach
NC(V) - National Certificate (Vocational)
NQF - National Qualification Framework
SAQA - South African Qualifications Authority
TIMSS - Third International Mathematics and Science Study
VSOR - Volumes of solids of revolution (VSOR)
ZPD - Zone of Proximal Development
2D - Two-dimensional
3D - Three-dimensional