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Figure 1.2: (A) A representation of the secondary structural elements of the BTV
VP3(T2)B molecule. (B) The architecture of the VP3 layer of the BTV core
particle. (C) A trimer and a monomer of orbivirus VP7 (T13). (D) The
architecture of the VP7 (T13) layer of BTV.

Figure 2.1: Autoradiograph of the 35S-methionine labelled in vitro translation
product of AHSV-9 NS1 gene separated by SDS-PAGE.

Figure 2.2: Cloning strategy for expression of NS1. A full-length cDNA copy of
AHSV-6 NS1 gene was cloned by dG/dC-tailing into pBR322.

Figure 2.3: (A) An autoradiograph representing dot blot hybridisation of a 32P-
labelled AHSV-9 segment 5-specific probe to the recombinant pBR322
plasm ids to confirm the identity of the inserts. (B) Agarose gel
electrophoretic analysis of recombinant plasm ids, derived by cloning the
cDNA copy of AHSV-6 segment 5 by means of dG/dC-tailing into the Pstl
site of pBR322.

Figure 2.4: NS1 subclones prepared from NS1-specific cDNA clones p5.1 and
p5.2 for sequencing, positioned relative to the full-length gene.

Figure 2.5: The complete nucleotide sequence of the NS1-encoding segment
5 cDNA of AHSV-6.

Figure 2.6: Alignment of the predicted amino acid sequences of the NS1 protein
of AHSV serotypes 6, 4 and 9.

Figure 2.7: Alignment of the predicted amino acid sequences of the NS1 protein
of AHSV-6, -9, BTV-10, -13, -17 and EHDV-1 and -2.

Figure 2.9: Comparisons of the hydropathicity profiles (Kyte & Doolittle, 1982)
of NS1 of AHSV-6 (A), BTV-10 (B) and EHDV-2 (C).

Figure 2.10: (A) Comparisons of the location of hydrophobic regions of NS1 of
AHSV-6 and BTV-10. (B) Schematic representation of the secondary
structure prediction of the NS1 protein of the three orbiviruses (AHSV, BTV
and EHDV).

 
 
 



Figure 2.11: Comparisons of the hydrophilicity profile (A) (Hopp & Woods, 1982)
and antigenicity profile (B)(Welling et aI., 1988) of AHSV-6 NS1.

Figure 2.12: (A) Agarose gel analysis of PCR amplified fragments of AHSV-6 NS1
specific cDNA. (B) Agarose gel analysis of the recombinant plasmid pBS-
S5.2PCR, constructed by cloning the PCR-tailored NS1 gene into the Barn
H1 site of pBS.

Figure 2.13: (A) An Agarose gel analysis of a partial Hind III digestion of the
plasmid pBS-5.2PCR, through serial dilution. (B) Complete Hind III and Sty
I digestions of pUC-5.2cDNA. (C) Agarose gel analysis of the recombinant
plasmid pBS-S5.2Hybr.

Figure 2.14: Autoradiograph of the 35S-methionine labelled in vitro translation
products directed by mRNA synthesised from AHSV-6 NS1 chimeric gene.

Figure 2.15: Agarose gel electrophoretic analysis of the recombinant plasmid
pFB-S5.2Hybr, constructed by cloning the PCRlcDNA chimeric NS1 gene
into the Barn H1 site of pFastbacl.

Figure 2.16: (A) An autoradiograph representing dot-blot hybridisation of a 32P-
labelled NS1-specific probe (pBR-S5.2) to recombinant bacmid DNA. (B)
Agarose gel analysis of PCR amplified fragments from composite bacmids.

Figure 2.17: SDS-PAGE analysis of the expression of the NS1 protein in insect
cells infected with a recombinant baculovirus containing the NS1 gene.

Figure 2.18: Autoradiograph of SDS-PAGE separated celllysates of insect cells
infected with recombinant and wild-type baculoviruses. (B) Multimeric NS1
protein complexes were recovered by centrifugation through a 40% sucrose
cushion.

Figure 2.19: Negative contrast electron micrographs. The recombinant
baculovirus-expressed NS1 tubules were purified by sucrose gradient
centrifugation and stained with 2% uranyl acetate.

Figure 2.20: Negative contrast electron micrographs of thin sections of insect
cells infected with the recombinant baculovirus Bac-AH6NS1.

Figure 2.21: Electron micrographs of negatively stained tubules, treated with 1
M NaCI (A), buffer of pH > 8.0 (B) and buffer with pH 5.0 - 5.5 (C).

 
 
 



Figure 3.1: (A) A schematic diagram showing the strategy for cloning both
AHSV-9 VP3 and VP7 genes into the dual expression transfer vector,
pFastbac-Oual. (B) A schematic representation of a partial restriction map
of the dual recombinant plasmid, pFBd-S3.9-S7.9. (C) Agarose gel
electrophoretic analysis of pFBd-S3.9-S7.9.

Figure 3.2: A schematic diagram of the strategy employed for the respective
cloning of AHSV-3 and AHSV-9 VP2 genes in combination with AHSV-9
VP3 into the transfer vector pFastbac-Oual.

Figure 3.3: (A) A schematic representation of a partial restriction map of the
plasmid pFBd-S2.9-S3.9, containing AHSV-9 VP2 and VP3 genes in the
correct transcriptional orientation for expression by the polyhedrin and p10
promoters, respectively. (B) A restriction analysis of pFBd-S2.9-S3.9.

Figure 3.4: (A) A schematic representation of a partial restriction map of the
plasmid pFBd-S2.3-S3.9, containing AHSV-3 VP2 and AHSV-9 VP3 genes
in the correct transcriptional orientation for expression by the polyhedrin and
p10 promoters, respectively. (B) A restriction analysis of pFBd-S2.3-S3.9.

Figure 3.5: (A) A schematic diagram showing the cloning strategy for inserting
both AHSV-9 VP5 and VP7 into the dual expression transfer vector,
pFastbac-Oual. (B) A schematic representation of a partial restriction map
of the recombinant dual transfer vector, pFBd-S6.9-S7.9. (C) An agarose
gel electrophoretic analysis of the dual recombinant plasmid, pFBd-S6.9-
S7.9.

Figure 3.6: In situ Northern blot analysis of Sf 9 cells infected with dual
recombinant baculoviruses.

Figure 3.7: (A) SOS-PAGE analysis of celllysates of insect cells infected with
recombinant and wild-type baculoviruses. (B) Autoradiograph of 35S-
methionine labelled proteins separated by SOS-PAGE.

Figure 3.8: Autoradiograph of SOS-PAGE analysis of 35S-methionine labelled
proteins from cell Iysates of insect cells infected with VP3IVP2 dual
recombinant and wild-type baculoviruses.

Figure 3.9: Autoradiograph of SOS-PAGE analysis of 35S-methionine labelled
proteins from cell Iysates of insect cells infected with VP5IVP7 dual
recombinant and wild-type baculoviruses.

 
 
 



Figure 3.10: (A) Electron micrographs of empty AHSV CLPs synthesised in insect
cells by a recombinant baculovirus expressing the two major AHSV core
proteins VP3 and VP7. (8) Negative contrast electron micrographs of the
purified CLPs bound to VP7 monoclonal antibodies.

Figure 3.11: (A) Electron micrograph of partial VLPs synthesised in insect cells
by co-infection of a dual VP3IVP7 recombinant baculovirus and a VP5
single recombinant baculovirus. (8) Negative contrast electron micrographs
of the purified partial VLPs (CLPs & VP5) decorated with VP5 monospecific
antisera and stained with uranyl acetate.

Figure 3.12: Electron micrograph of partial VLPs synthesised in insect cells by co-
infection of a dual VP3IVP7 recombinant baculovirus and a VP2 single
recombinant baculovirus.

Figure 3.13: Electron micrograph of VLPs synthesised in insect cells. In (A) the
particles were synthesised by co-infection of a VP2IVP3 and a VP5IVP7
dual recombinant baculoviruses. In (8) the empty AHSV double-shelled
VLPs were synthesised by the co-infection of a VP2IVP5 and a VP3IVP7
dual recombinant baculoviruses.

Figure 4.1: Hydrophilicity (a) and antigenicity profiles (b) of AHSV-9 VP7 in
comparison with the predicted solvent-accessiblity (c).

Figure 4.2: A schematic representation of the three-dimensional structure of
AHSV VP7 trimer, looking vertically into the top of the trimer.

Figure 4.3: Schematic representation of the first PCR method used to construct
the recombinant transfer vectors containing the mutagenised DNA copies
of the VP7 gene.

Figure 4.4: Agarose gel electrophoretic analysis of the DNA products obtained
by PCR amplification of the AHSV-9 VP7 gene (p8R-S7cDNA), using two
inverted tail-to-tail mutagenic primers in combination with VP7 5' and 3' end
specific primers.

Figure 4.5: In the second method used for insertion mutagenesis the insertion
was performed in a one step PCR process.

Figure 4.6: (Previous page) Alignment of the nucleotide sequences of the two
insertion mutants mt177 and mt200 with the VP7 gene.

Figure 4.7: Comparison of the deduced amino acid sequences of VP7 and
insertion mutants 177 and 200.

 
 
 



Figure 4.8: Comparison of the hydrophilicity profiles of AHSV-9 VP7 with that of
the two insertion mutants mt177 and mt200.

Figure 4.9: A schematic representation of the structure of the insertion mutants
mt177 and mt200 monomers as predicted by the MODELLER package.

Figure 4.10: Agarose electrophoretic analysis of pFBd-S3.9-mt177 and pFBd-
S3.9-mt200.

Figure 4.11: SDS-PAGE analysis of the recombinant VP7 protein expression in
insect cells.

Figure 4.12: Differential centrifugation of the cytoplasmic extracts from Bac-
AH9VP7, Bac-mt200 and Bac-mt177 infected cells.

Figure 4.13: Sedimentation analysis of the cytoplasmic extracts from Bac-
AH9VP7 (A) and Bac-mt177 (B) infected cells by sucrose density
centrifugation.

Figure 4.14: Sedimentation analysis of the cytoplasmic extracts from Bac-
AH9VP7 and Bac-mt177 infected cells by sucrose density centrifugation.

Figure 4.15: Scanning electron micrographs of sucrose gradient purified VP7 (A)
and mt200 (B1-3) crystals.

Figure 4.16: Scanning electron micrographs of purified VP7 crystals (A) and
mt177 ball-like structures (B1-3).

Figure 4.17: Autoradiograph of 35S-methionine labelled proteins resolved by
SDS-PAGE to evaluate co-expression of AHSV-9 VP3 and the VP7
insertion mutants in insect cells by dual recombinant baculoviruses.

Figure 4.18: Electron microscopy of purified CLPs obtained from the co-
expression of the two VP7 insertion mutants mt200 (A) and mt177 (B) with
AHSV-9 VP3 in insect cells.

Figure 4.19: (A) A schematic diagram of the cloning strategy for the construction
of two VP7/TrVP2 chimeric genes for expression in the Bac-to-Bac
baculovirus system. (B) Agarose gel electrophoretic analysis of the two
recombinant chimeric VP7 gene cloned into pFastbac transfer vector.

Figure 4.20: Comparison of the hydrophiJicity profiles of the two chimeric proteins
mt177/TrVP2 and mt200/TrVP2. Hydrophilicity was predicted according to

 
 
 



Figure 4.21: SOS-PAGE analysis of the recombinant VP7 protein expression.
Lane 1 contains rainbow molecular weight marker.

Figure 4.22: A graph representing the sedimentation analysis of the cytoplasmic
extracts from Bac-177/TrVP2 infected cells by sucrose density
centrifugation.

Figure 4.23: Scanning electron micrographs of purified chimeric VP7ITrVP2 ball-
like structures. (A) Represent structures from 177/TrVP2 and (B)
200/TrVP2.

 
 
 



African horsesickness virus (AHSV) , a member of the genus Orbivirus in the family Reo viridae , is the
aetiological agent of African horsesickness, a highly infectious non-contagious disease of equines. The
AHSV virion is composed of seven structural proteins organised into a double layered capsid, which
encloses ten double-stranded RNA segments. The double stranded (ds) RNA genome of AHSV encodes,
in addition to the seven structural proteins, at least three non-structural proteins (NS1 to NS3). The
assembly of viral proteins in AHSV-infected cells results in at least three characteristic particulate
structures. The first of these structures are the complete virions and viral cores. Empty virions or particles
that simulate the virion surface can be produced synthetically by the co-expression of various
combinations of AHSV structural genes in insect cells. Apart from the core particles and complete virions,
there are two additional structures observed in AHSV-infected cells. Unique virus-specified tubular
structures, composed of NS1, are observed in the cytoplasm of all orbivirus-infected cells. The second
structure, distinctive hexagonal crystals, is unique to AHSV and is composed entirely of VP7, the major
core protein. The assembly of all these particles can be produced synthetically when expressed
individually in an insect cell expression system. The aim of this investigation was first of all to investigate
the structure and assembly of these structures and secondly to evaluate their use as vehicles for foreign
immunogens.

The NS1 gene of AHSV-6 was cloned as a complete and full-length cDNA fragment from purified dsRNA
genome segment 5 and the complete nucleotide sequence determined. The gene was found to be 1749
bp in length with one major open reading frame (ORF) of 1645 bp, encoding a protein comprising 548
amino acids. The 5' and 3' termini of the gene were found to contain the conserved terminal
hexanucleotide sequences of AHSV RNA fragments, followed by inverted heptanucleotide repeats. The
deduced amino acid sequence was analysed and found to define a hydrophobic protein of 63 kDa.
Antigenic profile analysis indicated a hydrophilic domain with relative high antigenicity in the C-terminus
of the protein. This represents a possible insertion site for immunogenic epitopes. The cloned NS1 gene
of AHSV-6 was modified at the 5' and 3' terminal ends to facilitate expression of the gene. In vitro
expression yielded a protein corresponding to the predicted size of NS1. The gene was also expressed
in insect cells, using a recombinant baculovirus and yields of approximately 1.0mg NS1 protein/106 cells
were obtained. Expression of NS1 in insect cells resulted in the intracellular formation of tubular structures
with diameters of 23 ±2 nm. Biophysical analysis of the AHSV tubules suggests that they are more fragile
and unstable than BTV NS1 tubules.

To gain more insight into the structure, assembly and the biochemical characteristics of AHSV cores and
virions, a number of baculovirus multigene expression vectors have been developed and utilised to co-
express various combinations of AHSV genes. Cells infected with a dual-recombinant baculovirus,
expressing AHSV-9 VP3 and VP7 genes, contained high levels of VP7 and low levels of VP3. The
simultaneous expression of the two proteins resulted in the spontaneous intracellular assembly of empty
multimeric core-like particles (CLPs) with a diameter of approximately 72 nm. These particles structurally
resembled authentic AHSV cores in size and appearance. The yield of CLP production was low as a result
of the insolubility of VP7, which aggregates preferably into large hexagonal crystal as well as the low yield
of VP3. The interaction of CLPs with either VP2 or VP5 was investigated by co-infection of the VP3 and

 
 
 



VP7 dual recombinant baculovirus with a VP2 or VP5 single recombinant baculovirus. Each of the outer
capsid proteins interacted separately with CLPs. Co-expression of all four major structural proteins of
AHSV, using two dual recombinant baculoviruses one expressing VP2 and VP3, the other VP5 and VP7,
resulted in the spontaneous assembly of empty virus-like particles with a diameter of 82 nm. Although co-
expression of the different combinations of AHSV proteins was obtained, the levels of expression were
low. This low levels of the AHSV capsid proteins and the aggregation of VP7 downregulated the assembly
process.

In order to investigate the possibility of the use of CLPs and VP7 crystals as particulate delivery systems,
insertion analysis of VP7 was used to identify certain sequences in the VP7 protein that are not essential
for the assembly of CLPs or trimer-trimer interactions in the crystals. Two insertion mutants of VP7 (mt177
and mt200) were constructed. In each case three unique restriction enzyme sites were introduced that
coded for six amino acids. In mt177 these amino acids were added to the hydrophilic RGD loop at position
177 - 178 and for mt200 to amino acid 200 - 201. Both regions were located in the top domain of VP7.
Insertion mt177 increased the solubility of VP7, but did not abrogate trimerisation and CLP formation with
VP3. The yield of mutant CLPs was significantly higher than the normal CLPs, possibly due to the
increased solubility and availability of VP7 trimers. Evidence about the size of an insert that can be
accommodated by VP7 was provided by the insertion of a 101 amino acid region of VP2, containing a
previously identified immunodominant region of VP2. The two chimeric VP7/TrVP2 proteins were
investigated for their ability to form crystal structures and CLPs. The chimeric proteins did not produce the
typical hexagonal crystal structure, but rather small ball-like structures.

This investigation yielded valuable information regarding the structure and assembly of AHSV tubules,
CLPs and VLPs. These findings also have practical value, since the multimeric structures can be utilised
as delivery systems for immunogens, like the AHSV VP2 immunodominant epitopes.
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Transformation suspension buffer with glucose
Triton X-100

U
f.1Ci
f.1g

f.11

UV

units
microcurie
microgram
microlitre
ultraviolet

volts
volume
viral inclusion body
virus-like particle
viral protein
viral tubules

v
VIB
VLP
VP
VT

 
 
 



v/v
W
X-gal

volume per volume
watt
5-bromo-4-chloro-3-indolyl-f3-D-galactopyranoside
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