

Multimeric Protein Structures of African Horsesickness Virus and their use as Antigen Delivery Systems

By

Francois Frederick Maree

A thesis submitted to the University of Pretoria in the Faculty of Biological and Agricultural Sciences (Department of Genetics) in fulfilment of the requirements for the degree of

PHILOSOPHY DOCTORALES

Pretoria

August 2000

© University of Pretoria

Ek gee nuwe krag aan dié wat moeg is, Ek maak die moedelose weer vol moed. Jer. 31:25

Hy gee die vermoeides krag, Hy versterk dié wat nie meer kan nie. Selfs jongmanne word moeg en raak afgemat, selfs manne in hulle fleur struikel en val, maar dié wat op die Here vertrou, kry nuwe krag. Hulle vlieg met arendsvlerke, hulle hardloop en word nie moeg nie, hulle loop en raak nie afgemat nie. Jes. 40:29-31

Die Here my God gee vir my krag. Hy maak my voete soos dié van 'n ribbok op hoë plekke laat Hy my veilig loop. Hab. 3:19

I wish to express my sincere appreciation to the following people:

Prof H. Huismans for his guidance, support and criticism throughout this study.

Dr A.A. van Dijk and Mrs S. Maree for their support, advice and assistance in the collaboration on the particle project.

Dr Wade-Evans for her idea on the use of VP7 crystals as peptide delivery systems.

The staff and students in the Department Genetics, especially Mrs **P. de Waal** and Mrs **M. van Niekerk**, for their useful discussions and encouragement.

Dr **J. Theron** and Dr **F. Joubert** for their interest and useful advice. Dr **F. Joubert** also assists with software regarding computer modelling.

Mr A.N. Hall and Mr C. van der Merwe for their assistance with electron microscopy.

The Foundation of Research and Development (FRD) for providing the necessary funding.

My wife, **Sonja Maree**, also a molecular biologist, for her valuable input in this study and continuing support and encouragement as well as proof reading of this document.

My family who supported me on so many levels throughout this study.

Acknowledgements	iii
Contents	iv
List of figures	xi
Summary	xvii
Abbreviations	xiii

CHAPTER 1: LITERATURE OVERVIEW

General introduction 1			1
Classification of the genus Orbivirus			2
Epide	miology, trans	mission and pathogenesis of AHSV	5
Molec	ular biology a	nd structure of orbiviruses	6
1.4.1 1.4.2 1.4.3	The virion The viral ger The viral pro	nome teins	7 8 11
	1.4.3.1 1.4.3.2 1.4.3.3	The outer capsid polypeptides The core polypeptides The non-structural proteins	11 12 14
Orbivi	rus morphoge	enesis and viral replication	16
Orbivi	rus assembly		18
1.6.1	Three dimen	sional structure of orbivirus cores and core-like particles	18
1.6.2	Three dimen	sional atomic structure of core particles	21
1.6.3	X-ray crystal	lographic structure of VP7 trimers	23
1.6.4	Incorporation	n of the three minor proteins within CLPs	24
1.6.5	Three dimen	sional structure of virions and virus-like particles	25
Disea	se prevention	and control: vaccination for protection against viral infection	26
1.7.1	Conventiona	Il live attenuated and inactivated virus vaccines	27
1.7.2	Recombinan	t subunit and peptide vaccines	28
	Gener Classi Epide Molec 1.4.1 1.4.2 1.4.3 Orbivi 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 Disea 1.7.1 1.7.2	General introduction Classification of the Epidemiology, trans Molecular biology a 1.4.1 The virion 1.4.2 The viral gen 1.4.3 The viral pro 1.4.3.1 1.4.3.2 1.4.3.3 Orbivirus morphoge Orbivirus assembly 1.6.1 Three dimen 1.6.2 Three dimen 1.6.2 Three dimen 1.6.3 X-ray crystal 1.6.4 Incorporation 1.6.5 Three dimen Disease prevention 1.7.1 Conventiona 1.7.2 Recombinan	General introduction Classification of the genus <i>Orbivirus</i> Epidemiology, transmission and pathogenesis of AHSV Molecular biology and structure of orbiviruses 1.4.1 The virion 1.4.2 The viral genome 1.4.3 The viral proteins 1.4.3.1 The outer capsid polypeptides 1.4.3.2 The core polypeptides 1.4.3.3 The non-structural proteins Orbivirus morphogenesis and viral replication Orbivirus assembly 1.6.1 Three dimensional structure of orbivirus cores and core-like particles 1.6.2 Three dimensional atomic structure of core particles 1.6.3 X-ray crystallographic structure of VP7 trimers 1.6.4 Incorporation of the three minor proteins within CLPs 1.6.5 Three dimensional structure of virions and virus-like particles Disease prevention and control: vaccination for protection against viral infection 1.7.1 Conventional live attenuated and inactivated virus vaccines 1.7.2 Recombinant subunit and peptide vaccines

1.7.2.1 AHSV antigenic outer capsid proteins and neutralisation

	1.7.2.2	domains Protection afforded by biosynthetic particulate structures	29 30
1.8	Expression system	ns for recombinant proteins	32
	1.8.1 Baculovirus	expression vector system	33
1.9	Summary and Aim	S	36

CHAPTER 2

CHARACTERISATION OF TUBULAR STRUCTURES COMPOSED OF NONSTRUCTURAL PROTEIN NS1 OF AHSV-6 EXPRESSED IN INSECT CELLS

2.1	Introd	uction		38	
2.2	Mater	als and methods		40	
	2.2.1	Materials			
	2.2.2	Cells and viruses			
	2.2.3	Partial characteriza	tion of AHSV serotype 9 NS1 gene	40	
	2.2.4	Cloning of AHSV-6	segment 5 cDNA	41	
		2.2.4.1 2.2.4.2	Preparation of <i>E.coli</i> competent cells Transformation of competent cells	41 41	
	2.2.5	Plasmid DNA extrac	ction and purification	42	
		2.2.5.1 2.2.5.2 2.2.5.3	Phenol-chloroform purification RNase-PEG precipitation CsCl density gradient centrifugation	42 42 43	
	2.2.6	Characterization of	recombinant plasmids	43	
		2.2.6.1 2.2.6.2	Preparation of radiolabelled dsDNA probes by nick translation Dot-blot hybridization for identification of recombinan	43 t	
			clones	44	
	2.2.7	7 Restriction endonuclease mapping of AHSV-6 segment 5 cDNA		44	
	2.2.8	Subcloning of AHS	V-6 NS1 gene	44	
		2.2.8.1 2.2.8.2	Vector dephosphorylation Purification of restricted DNA fragments	45 45	

		2.2.8.3	Ligation of DNA fragments and transformation	45
	2.2.9	DNA sequenc	cing of the cloned AHSV-6 NS1 gene	45
		2.2.9.1 2.2.9.2 2.2.9.3	Denaturation of template DNA The sequencing reactions Polyacrylamide gel electrophoresis	46 46 46
	2.2.10	Preparation chain react	of AHSV-6 NS1-encoding tailored cDNA by polymerase	47
	2.2.11	<i>In vitro</i> exp	ression of the cloned NS1 gene	48
		2.2.11 2.2.11 2.2.11	 In vitro transcription In vitro translation SDS-polyacrylamide gel electrophoresis (PAGE) 	48 48 48
	2.2.11	Expression expression	of NS1 in insect cells with the BAC-TO-BAC baculovirus system	49
		2.2.12 2.2.12	.1 Construction of a recombinant bacmid transfer vector .2 Transposition of recombinant bacmid DNA	49 49
		2.2.12	 Baculovirus shuttle vector Virus titration and plaque purification 	50 50
	2.2.13	Radiolabel	ling and SDS-PAGE analysis of recombinant viral proteins	50
	2.2.14	Purification	n of NS1 tubules	51
	2.2.15	Electron m	icroscopy and biophysical analysis of tubule morphology	51
2.3	Result	s		52
	2.3.1	Cloning and	characterisation of AHSV-6 NS1 gene	53
	2.3.2	Restriction e	nzyme mapping and subcloning of AHSV-6 NS1 gene	55
	2.3.3	Characterisa sequence	tion of the AHSV-6 NS1 gene and deduced amino acid	57
		2.3.3.1	Nucleotide sequence of the AHSV-6 NS1 gene and	
			comparison to cognate genes of other orbiviruses	57
		2.3.3.2	Amino acid sequence of the AHSV-6 NS1 protein and comparison to the gene products of other orbiviruses	60
	2.3.4	Modification	and in vitro expression of the NS1 gene of AHSV-6	67

	2.3.4.1 2.3.4.2	Modification of the NS1 gene for expression <i>In vitro</i> expression of the NS1 gene	67 68
2.3.5	Expression recombinan	of the NS1 gene of AHSV-6 in insect cells using a t baculovirus	71
	2.3.5.1 2.3.5.2	Construction of a recombinant baculovirus Expression and purification of AHSV-6 NS1 protein	71 72
2.3.6	Electron mic	croscopic analysis of the NS1 protein complex	75
2.3.7	Electron mic	croscopy of thin sections of recombinant baculovirus- ls	77
2.3.8	The effect o NS1 tubules	f biophysical conditions on the morphology of AHSV	77
Discussion			80

CHAPTER 3

2.4

ASSEMBLY OF EMPTY CORE-LIKE PARTICLES AND DOUBLE-SHELLED, VIRUS-LIKE PARTICLES OF AFRICAN HORSESICKNESS VIRUS BY CO-EXPRESSION OF FOUR MAJOR STRUCTURAL PROTEINS

3.1	Introd	uction		87
3.2	Mater	ials and methe	ods	89
	3.2.1	Materials		89
	3.2.2	DNA manipu	lations and construction of dual transfer vectors	89
		3.2.2.1	Insertion of AHSV-9 VP3 and VP7 genes into pFBDual	89
		3.2.2.2	9 VP3 into the dual transfer vector	90
		3.2.2.3	Cloning of AHSV-9 VP5 and VP7 genes into the dual transfer vector	91
	3.2.3	Generation a	and selection of recombinant baculoviruses	92
		3.2.3.1 3.2.3.2 3.2.3.3 3.2.3.4	Construction of composite bacmid DNA by transposition Isolation and selection of composite bacmid DNA Transfection of Sf9 cells with bacmid DNA <i>In vivo</i> mRNA hybridisation	92 93 93 94

3.2.4 Co-expression of AHSV capsid proteins in insect cells and

3.3

3.4

		TUNIBESTIAL TA PRETORIA			
	purification o of AHSV prot	purification of multimeric particles comprising different combinations of AHSV proteins			
	3.2.4.1	Analysis of polypeptides synthesised in infected insect cells	94		
	3.2.4.2	Co-expression of different combinations of AHSV capsid proteins in insect cells and purification of expressed	0.4		
	3.2.4.3	multimeric particles Stoichiometry of VP3 to VP7	94 95		
3.2.5	Electron mic	roscopy of purified particles	95		
Resul	ts		96		
3.3.1	Expression c AHSV-9 or 3	of the genes encoding the four major structural proteins of in insect cells using dual recombinant baculovirus vectors	96		
	3.3.1.1	Construction of an AHSV-9 VP3 and VP7 dual- recombinant baculovirus transfer vector	97		
	3.3.1.2	Construction of a dual-recombinant baculovirus transfer vector containing either AHSV-3 or AHSV-9 segment 2 and AHSV-9 VP3	100		
	3.3.1.3	Construction of recombinant baculovirus transfer plasmids containing either AHSV-3 or AHSV-9 VP5 and AHSV-9 VP7 genes	104		
	3.3.1.4	Production of dual recombinant shuttle vectors (bacmids)	107		
	3.3.1.5	Construction of dual-recombinant baculoviruses	107		
	3.3.1.0	baculovirus infected cells	108		
3.3.2	Investigatior	of heterologous gene expression in Sf9 cells	109		
3.3.3	Co-expression assembled p	on, purification and electron microscopic evaluation of particles	112		
	3.3.3.1	Particles formed by the assembly of VP3 and VP7 in in insect cells	112		
	3.3.3.2	Assembly of VP2 or VP5 proteins onto CLPs	115		
	3.3.3.3	Co-expression of four major structural proteins of AHSV in insect cells	118		
Discu	ssion		119		

CHAPTER 4

EFFECT OF SITE DIRECTED INSERTION MUTATION ON THE CRYSTAL FORMATION, SOLUBILITY AND CLP FORMATION OF AHSV-9 VP7

4.1	Introduction			124
4.2	Materi	erials and methods		
	4.2.1	Materials		126
	4.2.2	Site-directed recombinant	insertion mutagenesis of VP7 and the construction of transfer vectors	126
	4.2.3	Insertion of A construction	AHSV-9 VP2 epitopes into the VP7-encoding DNA and of recombinant baculovirus transfer vectors	128
	4.2.4	Construction AHSV-9 VP3	of recombinant pFastbacDual transfer vectors containing and recombinant VP7 genes	129
	4.2.5	Dye terminat	or cycle sequencing of the VP7 insertion mutants	129
		4.2.5.1 4.2.5.2 4.2.5.3 4.2.5.4	Template purification and quantitation Cycle sequencing reactions ABI PRISM [™] Sequencing Structural modelling	130 130 130 131
	4.2.6	Production o	f recombinant single and dual recombinant baculoviruses	131
	4.2.7	Synthesis an	nd purification of VP7 and recombinant protein complexes	131
	4.2.8	Solubility as	says and purification of recombinant VP7 proteins	132
	4.2.9	Analysis by s	scanning electron microscopy	132
	4.2.10	Purification a	and analysis of CLP formation	132
4.3	Resul	ts		133
	4.3.1	Molecular str	ructure modelling of the VP7 protein	133
	4.3.2	Construction containing th	of recombinant baculovirus transfer vectors ne mutagenised DNA copies of the VP7 gene	135
	4.3.3	Sequence ve VP7 proteins	erification and molecular modelling of the recombinant	140

	4.3.4	The construction containing A	ction of dual recombinant baculovirus transfer vectors MSV-9 VP3 in combination with VP7mt177, VP7mt200	145
	4.3.5	Baculovirus	expression of the VP7 insertion mutants	146
		4.3.5.1 4.3.5.2	Construction and selection of recombinant baculoviruses Expression of the modified VP7 proteins in Sf9 cells	146 146
	4.3.6	Solubility ar	nd sedimentation analysis of the VP7 insertion mutants	146
	4.3.7	Purification	& electron microscopy analysis of modified VP7 complexes	151
	4.3.8	CLP formati	on using VP7 insertion mutants	154
	4.3.9	Construction VP7/TrVP2	n of recombinant baculovirus transfer vectors containing chimeric genes	156
	4.3.10) Expression	of the two VP7/TrVP2 chimeric genes in insect cells	159
	4 .3.1	1 Sedimentati TrVP2 chim	on analysis and electron microscopy of the two VP7/ eric proteins	161
4.4	Discu	ission		164
CHAI	PTER	5:	CONCLUDING REMARKS	171
PAPE	ERS PL	JBLISHED A	ND CONGRESS CONTRIBUTIONS	176
REFE	RENC	ES		178

Figure 1.1: AHSV coding assignments	S.
-------------------------------------	----

•	9	3
Figure	 (A) A representation of the secondary structural elements of the BTV VP3(T2)B molecule. (B) The architecture of the VP3 layer of the BTV core particle. (C) A trimer and a monomer of orbivirus VP7 (T13). (D) The architecture of the VP7 (T13) layer of BTV. 	20
Figure	2.1: Autoradiograph of the 35S-methionine labelled in vitro translation	
-	product of AHSV-9 NS1 gene separated by SDS-PAGE.	52
Figure	2.2: Cloning strategy for expression of NS1. A full-length cDNA copy of	
	AHSV-6 NS1 gene was cloned by dG/dC-tailing into pBR322.	54
Figure	2.3: (A) An autoradiograph representing dot blot hybridisation of a 32P- labelled AHSV-9 segment 5-specific probe to the recombinant pBR322 plasmids to confirm the identity of the inserts. (B) Agarose gel electrophoretic analysis of recombinant plasmids, derived by cloning the cDNA copy of AHSV-6 segment 5 by means of dG/dC-tailing into the Pstl site of nBP322	
		55
Figure	2.4: NS1 subclones prepared from NS1-specific cDNA clones p5.1 and p5.2 for sequencing, positioned relative to the full-length gene.	56
Figure	2.5: The complete nucleotide sequence of the NS1-encoding segment 5 cDNA of AHSV-6.	58
Figure	2.6: Alignment of the predicted amino acid sequences of the NS1 protein of AHSV serotypes 6, 4 and 9.	ô2
Figure	2.7: Alignment of the predicted amino acid sequences of the NS1 protein of AHSV-6, -9, BTV-10, -13, -17 and EHDV-1 and -2.	63
Figure	2.8: Percentage amino acid similarity in different NS1 proteins.	64
Figure	2.9: Comparisons of the hydropathicity profiles (Kyte & Doolittle, 1982) of NS1 of AHSV-6 (A), BTV-10 (B) and EHDV-2 (C).	65
Figure	2.10: (A) Comparisons of the location of hydrophobic regions of NS1 of AHSV-6 and BTV-10. (B) Schematic representation of the secondary structure prediction of the NS1 protein of the three orbiviruses (AHSV, BTV	
	and EHDV).	66

Figure	2.11: and ant	Comparisons of the hydrophilicity profile (A) (Hopp & Woods, 1982) igenicity profile (B)(Welling et al., 1988) of AHSV-6 NS1.	66
Figure	2.12: specific S5.2PC H1 site	(A) Agarose gel analysis of PCR amplified fragments of AHSV-6 NS1 cDNA. (B) Agarose gel analysis of the recombinant plasmid pBS- R, constructed by cloning the PCR-tailored NS1 gene into the Bam of pBS.	68
Figure	2.13: plasmid l digesti plasmid	(A) An Agarose gel analysis of a partial Hind III digestion of the pBS-5.2PCR, through serial dilution. (B) Complete Hind III and Sty ons of pUC-5.2cDNA. (C) Agarose gel analysis of the recombinant pBS-S5.2Hybr.	69
Figure	2.14:	Autoradiograph of the 35S-methionine labelled in vitro translation s directed by mRNA synthesised from AHSV-6 NS1 chimeric gene.	70
Figure	2.15: pFB-S5 into the	Agarose gel electrophoretic analysis of the recombinant plasmid .2Hybr, constructed by cloning the PCR/cDNA chimeric NS1 gene Bam H1 site of pFastbacl.	71
Figure	2.16: labelled Agarose	(A) An autoradiograph representing dot-blot hybridisation of a 32P- NS1-specific probe (pBR-S5.2) to recombinant bacmid DNA. (B) e gel analysis of PCR amplified fragments from composite bacmids.	72
Figure	2.17: cells inf	SDS-PAGE analysis of the expression of the NS1 protein in insect ected with a recombinant baculovirus containing the NS1 gene.	73
Figure	2.18: infected protein cushion	Autoradiograph of SDS-PAGE separated cell lysates of insect cells I with recombinant and wild-type baculoviruses. (B) Multimeric NS1 complexes were recovered by centrifugation through a 40% sucrose	74
Figure	2.19: baculov centrifu	Negative contrast electron micrographs. The recombinant rirus-expressed NS1 tubules were purified by sucrose gradient gation and stained with 2% uranyl acetate.	76
Figure	2.20: cells inf	Negative contrast electron micrographs of thin sections of insect ected with the recombinant baculovirus Bac-AH6NS1.	78
Figure	2.21: M NaCl	Electron micrographs of negatively stained tubules , treated with 1 (A), buffer of pH > 8.0 (B) and buffer with pH 5.0 - 5.5 (C).	79

Figure :	3.1: (A) A schematic diagram showing the strategy for cloning both AHSV-9 VP3 and VP7 genes into the dual expression transfer vector, pFastbac-Dual. (B) A schematic representation of a partial restriction map of the dual recombinant plasmid, pFBd-S3.9-S7.9. (C) Agarose gel electrophoretic analysis of pFBd-S3.9-S7.9.	98
Figure :	 3.2: A schematic diagram of the strategy employed for the respective cloning of AHSV-3 and AHSV-9 VP2 genes in combination with AHSV-9 VP3 into the transfer vector pFastbac-Dual. 	101
Figure : 	 3.3: (A) A schematic representation of a partial restriction map of the plasmid pFBd-S2.9-S3.9, containing AHSV-9 VP2 and VP3 genes in the correct transcriptional orientation for expression by the polyhedrin and p10 promoters, respectively. (B) A restriction analysis of pFBd-S2.9-S3.9. 	102
Figure : i	 (A) A schematic representation of a partial restriction map of the plasmid pFBd-S2.3-S3.9, containing AHSV-3 VP2 and AHSV-9 VP3 genes in the correct transcriptional orientation for expression by the polyhedrin and p10 promoters, respectively. (B) A restriction analysis of pFBd-S2.3-S3.9. 	103
Figure :	3.5: (A) A schematic diagram showing the cloning strategy for inserting both AHSV-9 VP5 and VP7 into the dual expression transfer vector, pFastbac-Dual. (B) A schematic representation of a partial restriction map of the recombinant dual transfer vector, pFBd-S6.9-S7.9. (C) An agarose gel electrophoretic analysis of the dual recombinant plasmid, pFBd-S6.9-S7.9.	105
Figure :	3.6: In situ Northern blot analysis of Sf 9 cells infected with dual recombinant baculoviruses.	108
Figure :	 3.7: (A) SDS-PAGE analysis of cell lysates of insect cells infected with recombinant and wild-type baculoviruses. (B) Autoradiograph of 35S-methionine labelled proteins separated by SDS-PAGE. 	10
Figure : 	3.8: Autoradiograph of SDS-PAGE analysis of 35S-methionine labelled proteins from cell lysates of insect cells infected with VP3/VP2 dual recombinant and wild-type baculoviruses.	10
Figure : I	3.9: Autoradiograph of SDS-PAGE analysis of 35S-methionine labelled proteins from cell lysates of insect cells infected with VP5/VP7 dual recombinant and wild-type baculoviruses.	11

Figure 3.10: (A) Electron micrographs of empty Al- cells by a recombinant baculovirus express proteins VP3 and VP7. (B) Negative contra- purified CLPs bound to VP7 monoclonal and	ISV CLPs synthesised in insect ing the two major AHSV core st electron micrographs of the tibodies. 114
Figure 3.11: (A) Electron micrograph of partial VL by co-infection of a dual VP3/VP7 recomb single recombinant baculovirus. (B) Negative of the purified partial VLPs (CLPs & VP5) dee antisera and stained with uranyl acetate.	Ps synthesised in insect cells binant baculovirus and a VP5 contrast electron micrographs corated with VP5 monospecific 116
Figure 3.12: Electron micrograph of partial VLPs sy infection of a dual VP3/VP7 recombinant l recombinant baculovirus.	ynthesised in insect cells by co- baculovirus and a VP2 single 117
Figure 3.13: Electron micrograph of VLPs synthe particles were synthesised by co-infection of dual recombinant baculoviruses. In (B) the VLPs were synthesised by the co-infection dual recombinant baculoviruses.	sised in insect cells. In (A) the of a VP2/VP3 and a VP5/VP7 e empty AHSV double-shelled of a VP2/VP5 and a VP3/VP7 118
Figure 4.1: Hydrophilicity (a) and antigenicity p comparison with the predicted solvent-acce	profiles (b) of AHSV-9 VP7 in essiblity (c).
Figure 4.2: A schematic representation of the t AHSV VP7 trimer, looking vertically into the	three-dimensional structure of 135 top of the trimer.
Figure 4.3: Schematic representation of the first the recombinant transfer vectors containing of the VP7 gene.	PCR method used to construct the mutagenised DNA copies 137
Figure 4.4: Agarose gel electrophoretic analysis by PCR amplification of the AHSV-9 VP7 ge inverted tail-to-tail mutagenic primers in com specific primers.	of the DNA products obtained ene (pBR-S7cDNA), using two bination with VP7 5' and 3' end 138
Figure 4.5: In the second method used for inser was performed in a one step PCR process.	tion mutagenesis the insertion 139
Figure 4.6: (Previous page) Alignment of the nu insertion mutants mt177 and mt200 with the	cleotide sequences of the two VP7 gene. 141
Figure 4.7: Comparison of the deduced amino insertion mutants 177 and 200.	acid sequences of VP7 and 142

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI VA PRETORIA

Figure 4.8: Comparison of the hydrophilicity profiles of AHSV-9 VP7 with that of the two insertion mutants mt177 and mt200.	143
Figure 4.9: A schematic representation of the structure of the insertion mutants mt177 and mt200 monomers as predicted by the MODELLER package.	144
Figure 4.10: Agarose electrophoretic analysis of pFBd-S3.9-mt177 and pFBd-S3.9-mt200.	145
Figure 4.11: SDS-PAGE analysis of the recombinant VP7 protein expression in insect cells.	148
Figure 4.12: Differential centrifugation of the cytoplasmic extracts from Bac- AH9VP7, Bac-mt200 and Bac-mt177 infected cells.	148
Figure 4.13: Sedimentation analysis of the cytoplasmic extracts from Bac- AH9VP7 (A) and Bac-mt177 (B) infected cells by sucrose density centrifugation.	149
Figure 4.14: Sedimentation analysis of the cytoplasmic extracts from Bac- AH9VP7 and Bac-mt177 infected cells by sucrose density centrifugation.	150
Figure 4.15: Scanning electron micrographs of sucrose gradient purified VP7 (A) and mt200 (B1-3) crystals.	152
Figure 4.16: Scanning electron micrographs of purified VP7 crystals (A) and mt177 ball-like structures (B1-3).	153
Figure 4.17: Autoradiograph of 35S-methionine labelled proteins resolved by SDS-PAGE to evaluate co-expression of AHSV-9 VP3 and the VP7 insertion mutants in insect cells by dual recombinant baculoviruses.	154
Figure 4.18: Electron microscopy of purified CLPs obtained from the co- expression of the two VP7 insertion mutants mt200 (A) and mt177 (B) with AHSV-9 VP3 in insect cells.	156
 Figure 4.19: (A) A schematic diagram of the cloning strategy for the construction of two VP7/TrVP2 chimeric genes for expression in the Bac-to-Bac baculovirus system. (B) Agarose gel electrophoretic analysis of the two recombinant chimeric VP7 gene cloned into pFastbac transfer vector. 	157
Figure 4.20: Comparison of the hydrophilicity profiles of the two chimeric proteins mt177/TrVP2 and mt200/TrVP2. Hydrophilicity was predicted according to	

Hopp & Woods (1981) utilising the ATHEPROT computer program.	160
Figure 4.21: SDS-PAGE analysis of the recombinant VP7 protein expression. Lane 1 contains rainbow molecular weight marker.	161
Figure 4.22: A graph representing the sedimentation analysis of the cytoplasmic extracts from Bac-177/TrVP2 infected cells by sucrose density centrifugation.	162
Figure 4.23: Scanning electron micrographs of purified chimeric VP7/TrVP2 ball- like structures. (A) Represent structures from 177/TrVP2 and (B)	
200/TrVP2.	163

4

African horsesickness virus (AHSV), a member of the genus Orbivirus in the family Reoviridae, is the aetiological agent of African horsesickness, a highly infectious non-contagious disease of equines. The AHSV virion is composed of seven structural proteins organised into a double layered capsid, which encloses ten double-stranded RNA segments. The double stranded (ds) RNA genome of AHSV encodes, in addition to the seven structural proteins, at least three non-structural proteins (NS1 to NS3). The assembly of viral proteins in AHSV-infected cells results in at least three characteristic particulate structures. The first of these structures are the complete virions and viral cores. Empty virions or particles that simulate the virion surface can be produced synthetically by the co-expression of various combinations of AHSV structural genes in insect cells. Apart from the core particles and complete virions, there are two additional structures observed in AHSV-infected cells. Unique virus-specified tubular structures, composed of NS1, are observed in the cytoplasm of all orbivirus-infected cells. The second structure, distinctive hexagonal crystals, is unique to AHSV and is composed entirely of VP7, the major core protein. The assembly of all these particles can be produced synthetically when expressed individually in an insect cell expression system. The aim of this investigation was first of all to investigate the structure and assembly of these structures and secondly to evaluate their use as vehicles for foreign immunogens.

The NS1 gene of AHSV-6 was cloned as a complete and full-length cDNA fragment from purified dsRNA genome segment 5 and the complete nucleotide sequence determined. The gene was found to be 1749 bp in length with one major open reading frame (ORF) of 1645 bp, encoding a protein comprising 548 amino acids. The 5' and 3' termini of the gene were found to contain the conserved terminal hexanucleotide sequences of AHSV RNA fragments, followed by inverted heptanucleotide repeats. The deduced amino acid sequence was analysed and found to define a hydrophobic protein of 63 kDa. Antigenic profile analysis indicated a hydrophilic domain with relative high antigenicity in the C-terminus of the protein. This represents a possible insertion site for immunogenic epitopes. The cloned NS1 gene of AHSV-6 was modified at the 5' and 3' terminal ends to facilitate expression of the gene. *In vitro* expression yielded a protein corresponding to the predicted size of NS1. The gene was also expressed in insect cells, using a recombinant baculovirus and yields of approximately 1.0mg NS1 protein/10⁶ cells were obtained. Expression of NS1 in insect cells resulted in the intracellular formation of tubular structures with diameters of 23 ±2 nm. Biophysical analysis of the AHSV tubules suggests that they are more fragile and unstable than BTV NS1 tubules.

To gain more insight into the structure, assembly and the biochemical characteristics of AHSV cores and virions, a number of baculovirus multigene expression vectors have been developed and utilised to coexpress various combinations of AHSV genes. Cells infected with a dual-recombinant baculovirus, expressing AHSV-9 VP3 and VP7 genes, contained high levels of VP7 and low levels of VP3. The simultaneous expression of the two proteins resulted in the spontaneous intracellular assembly of empty multimeric core-like particles (CLPs) with a diameter of approximately 72 nm. These particles structurally resembled authentic AHSV cores in size and appearance. The yield of CLP production was low as a result of the insolubility of VP7, which aggregates preferably into large hexagonal crystal as well as the low yield of VP3. The interaction of CLPs with either VP2 or VP5 was investigated by co-infection of the VP3 and

VP7 dual recombinant baculovirus with a VP2 or VP5 single recombinant baculovirus. Each of the outer capsid proteins interacted separately with CLPs. Co-expression of all four major structural proteins of AHSV, using two dual recombinant baculoviruses one expressing VP2 and VP3, the other VP5 and VP7, resulted in the spontaneous assembly of empty virus-like particles with a diameter of 82 nm. Although co-expression of the different combinations of AHSV proteins was obtained, the levels of expression were low. This low levels of the AHSV capsid proteins and the aggregation of VP7 downregulated the assembly process.

In order to investigate the possibility of the use of CLPs and VP7 crystals as particulate delivery systems, insertion analysis of VP7 was used to identify certain sequences in the VP7 protein that are not essential for the assembly of CLPs or trimer-trimer interactions in the crystals. Two insertion mutants of VP7 (mt177 and mt200) were constructed. In each case three unique restriction enzyme sites were introduced that coded for six amino acids. In mt177 these amino acids were added to the hydrophilic RGD loop at position 177 - 178 and for mt200 to amino acid 200 - 201. Both regions were located in the top domain of VP7. Insertion mt177 increased the solubility of VP7, but did not abrogate trimerisation and CLP formation with VP3. The yield of mutant CLPs was significantly higher than the normal CLPs, possibly due to the increased solubility and availability of VP7 trimers. Evidence about the size of an insert that can be accommodated by VP7 was provided by the insertion of a 101 amino acid region of VP2, containing a previously identified immunodominant region of VP2. The two chimeric VP7/TrVP2 proteins were investigated for their ability to form crystal structures and CLPs. The chimeric proteins did not produce the typical hexagonal crystal structure, but rather small ball-like structures.

This investigation yielded valuable information regarding the structure and assembly of AHSV tubules, CLPs and VLPs. These findings also have practical value, since the multimeric structures can be utilised as delivery systems for immunogens, like the AHSV VP2 immunodominant epitopes.

AcNPV	-	Autographa californica nuclear polyhedrosis virus
AHS	-	African horsesickness
AHSV	-	African horsesickness virus
AHSV-9	-	African horsesickness virus serotype 9
ATP	-	adenosine-5'-triphosphate
amp	-	ampicillin
ВНК	-	Baby hamster kidney cells
bp	-	base pairs
BRDV	-	Broadhaven virus
BSA	-	bovine serum albumin
BT	-	bluetongue
BTV	-	bluetongue virus
°C	-	degrees Celcius
ca.	-	approximately
cDNA	-	complementary DNA
CCC	-	covalently closed circular
CF	-	complement fixation
Ci	-	Curie
CIP	-	calf intestinal alkaline phosphatase
CLP	-	core-like particle
cm ²	-	square centimetre
cpm	-	counts per minute
CsCl	-	cesium chloride
Da	-	dalton
ddH₂O	-	deionized distilled water
DEPC	-	deithylpyrocarbonate
dATP	-	2'-deoxyadenosine-5'-triphosphate
dCTP	-	2'-deoxycytidine-5'-triphosphate
dGTP	-	2'-deoxyguanosine-5'-triphosphate
dTTP	-	2'-deoxythymidine-5'-triphosphate
dNTP	-	deoxyribonucleoside-triphosphate
ddATP	-	2',3'-dideoxyadenosine-5'-triphosphate
ddCTP	-	2',3'-dideoxycytidine-5'-triphosphate
ddGTP	-	2',3'-dideoxyguanosine-5'-triphosphate
ddTTP	-	2',3'-dideoxythymidine-5'-triphosphate
DNA	-	deoxyribonucleic acid
DNAse	-	Deoxyribonuclease
ds	-	double stranded
DTT	-	1,4-dithiothreitol
EDTA	-	ethylenediaminetetra-acetic acid
EEV	-	Equine encephalosis virus
e.g.	-	<i>exempli gratia</i> (for example)

EHDV <i>et al.</i> etc. EtBr	- - -	epizootic haemorrhagic disease virus <i>et alia</i> (and others) <i>et cetera</i> (and so forth) ethidium bromide
FCS FESEM Fig. g GTP GST h HPRI		fetal calf serum Field emission scanning electron microscopy figure gram / gravitational acceleration guanosine-5'-triphosphate glutathione S-transferase hour human placental RNase inhibitor
IgA IgG IPTG	- - -	immunoglobulin class A immunoglobulin class G isopropyl-β-D-thiogalactopyranoside
kb kDa/kd I LB log	- - - -	kilobase pairs kilodalton litre Luria-Bertani logarithmic
M mA MAb MCS mg min ml mM mMO MMOH MOI Mr mRNA m/v		Molar milliampere monoclonal antibody multiple cloning site milligram minute milliitre millimolar millimole methylmercuric hdroxide multiplicity of infection molecular weight messenger ribonucleic acid mass per volume
N NaAc nm NS	- - -	normal sodium acetate nanometre non-structural
OD ₅₅₀ OD ₂₆₀ ORF OVI	- - -	optical density at 550 nm optical density at 260 nm open reading frame Onderstepoort Veterinary Institute

PAGE	-	polyacrylamide gel electrophoresis
PCR	-	polymerase chain reaction
p.f.u.	-	plaque forming units
p.i.	-	post infection
pmol	-	picomole
PSB	-	protein solvent buffer
PSV	-	perdesiekte virus
RE	-	restriction endonuclease
RNA	-	ribonucleic acid
RNAse	-	ribonuclease
rpm	-	revolutions per minute
RT	-	room temperature
RT-PCR	-	reverse transcriptase PCR
S	-	second
S	-	Svedberg unit
S 1-10	-	segment 1-10
SDS	-	sodium dodecyl sulphate
SEM	-	Scanning electron microscopy
Sf9	-	Spodoptera frugiperda
SS	-	single stranded
T _{An}	-	annealing temperatures
ТС	-	transcriptase complex
TdT	-	terminal deoxynucleotidyl transferase
TEM	-	Transmission electron microscopy
TEMED	-	N.N.N'.N'-tetramethylethylenediamine
tet	-	tetracycline hydrochloride
TFB	-	Transformation buffer
Tris	-	Tris(hydroxymethyl)-aminomethane
TSB	-	Transformation suspension buffer
TSBG	-	Transformation suspension buffer with ducose
TX-100	-	Triton X-100
U	_	units
μCi	-	microcurie
μg	_	microgram
ц	-	microlitre
UV	-	ultraviolet
V	_	volts
v	-	volume
VIB	-	viral inclusion body
VLP	_	Virus-like particle
VP	-	viral protein
VT	-	viral tubulee

v/v	-	volume per volume
W	-	watt
X-gal	-	5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside