
30
Chapter 2FunGIMS Design and Implementation2.1. OverviewThe FunGIMS (Funtional Genomis Information Management System) is a web-basedsystem designed to integrate most of the major data types that a researher might en-ounter in a modern funtional genomis experiment. These data types inlude sequenedata, protein struture data, miroarray data, small moleule data and literature data.In addition, it also provides online aess to some of the more ommonly used tools ineah of the data type subsetions. This allows the user aess to data and analysis toolsin one, entralized loation as well as providing storage for the data generated by theanalysis tools in FunGIMS.The following setions will disuss the tehnologies used in FunGIMS as well as the designproess and the data model used.2.2. FunGIMS Design and TehnologiesDuring the design phase of FunGIMS, every e�ort was made to �nd the most appropriatetehnologies for eah setion of the projet. Every setion involved exhaustive investiga-tions and testing of the options urrently provided by software manufaturers. Importantdeisions suh as a spei� programming language, were only made after extensive re-searh into the support provided and the ability to allow the programmer to do a spei�job.

 
 
 



Chapter 2. FunGIMS Design and Implementation 312.2.1. TehnologiesFor the suess of a large projet suh as FunGIMS, various tehnologies are neededto work in unison to produe the �nal outome. Eah of these tehnologies will bedisussed shortly in the following few setions. For the programming languages, Javaand Python were investigated extensively as well as the availability of software pakageswhih allow for interation with databases. Di�erent language-dependant web frame-works were also investigated. These inluded JBoss, TurboGears, Java Struts and us-tom Python sripts on top of a CherryPy server or Apahe web server. The ability of alanguage to interat with databases and failitate easy data persistene led to investiga-tions into Java Beans, Hibernate, SQLObjet and SQLAlhemy. Arhitetures suh asthe Model-View-Controller and Server-Client designs were investigated to �nd the mostsuitable option for delivering data and interativity to users. In the software world it isimportant to hoose your tehnologies wisely due to the rapid rate of new developmentsand the deline of one-popular software. The following setions will disuss the hoiesmade for eah of the tehnology aspets of the projet.2.2.1.1. PythonThe programming language hosen for this projet was Python (http://python.org).Python has been developed by Guido van Rossum sine 1991 and is a mature and stabledevelopment language. This maturity has led to it being used by the biggest searh engineompany at the moment, Google (http://www.google.om), on a wide range of servies.The widespread use of Python and the ease with whih it is learned has resulted in anextremely wide ode base that aters for a vast amount of funtionalities. In the lastfew years Python was used in developing games suh as Civilization IV (Firaxis Games,http://www.2kgames.om/iv4/home.htm), high performane sienti� omputing pak-ages (NumPy, http://numpy.sipy.org; SiPy, http://www.sipy.org), web developmentplatforms (TurboGears, http://www.turbogears.org; Pylons, http://pylonshq.om), movieanimations (Blender3D, http://www.blender.org) and being supported in ommerial si-enti� pakages suh as Disovery Studio II (Aelrys In.). Python was hosen due toits stability, ease-of-use and multitude of pakages.

 
 
 



Chapter 2. FunGIMS Design and Implementation 32Python is also widely used in Bioinformatis due to its ease of use. Examples over andabove sripting inlude: PySCeS (Olivier et al., 2005) that is used very suessfully inmodelling the kinetis and substrate �ow through enzymati pathways (Uys et al., 2006),PyMol (http://pymol.soureforge.net) that is a very suessful open soure python-based3D protein struture viewer, and PyQuante (http://pyquante.soureforge.net/) when do-ing quantum mehanis.2.2.1.2. Web Development FrameworkFor FunGIMS it was deided to use the TurboGears web development platform. Turbo-Gears is mature, well developed and written in Python and allows for development ofprojets using all the possibilities provided by the Python language. Development in Tur-boGears takes some time to master but should a person have previous Python program-ming skills, the proess is far quiker. TurboGears is based on the Model-View-Controllerarhiteture (see setion 2.2.2) and uses various other pakages to perform the di�erentfuntions. The use of Python and the MVC arhiteture in TurboGears made it theperfet hoie for FunGIMS, whih uses the same tehnologies and thus allows for easyintegration. Figure 2.1 shows a diagrammati layout of the funtioning of TurboGears.2.2.1.3. Objet-Relational MapperOften a time onsuming step in programming is onstruting ode to represent the dataqueried from a database. To overome this problem, Objet-Relational Mapping (ORM)was developed. This is a method whereby a query to a relational database an be rep-resented in an objet-orientated way in the ode. The programmer de�nes all the tablesin the database using ode and also de�nes lasses for working with the tables. TheORM then uses this information to transparently onnet to the database, and providethe programmer with aess to the data using the prede�ned lasses. The ORM alsoprovides some methods, native to the database, as normal methods owned by the lasses.Thus the programmer does not have to learn the syntax needed to manage the databasenatively, only the onepts need to be known. These methods allow the programmer toontinue programming in the same style, without the need to write his own mapper be-

 
 
 



Chapter 2. FunGIMS Design and Implementation 33

Figure 2.1: A shemati representation of how the di�erent parts work together in TurboGears(http://dos.turbogears.org/1.0/GettingStarted/BigPiture). The user makes a request for datain the browser. This request gets direted by the ontroller to the model. The ORM thenonnets to the database, retrieves the data and returns it to the ontroller. The ontroller thenprovides the data to the appropriate template, whih is served up as HTML ode to the user'sbrowser.tween the database and the program. For FunGIMS it was deided to use SQLAlhemy(http://www.sqlalhemy.org). SQLAlhemy is supported in TurboGears and uses themodel.py �le to de�ne the database, link the tables in the database to ode lassesand implement data lass spei� methods. SQLAlhemy was hosen in preferene toSQLObjet as it provided more advaned funtions suh as polymorphi joins and lassreation via introspetion of the database. At the time of writing, SQLAlhemy was alsoslated to beome the default ORM for the TurboGears projet. It was deided to useMySQL (http://mysql.org) as the relational database for FunGIMS. This was hosen thepreferred hoie rather than PostgreSQL as SQLAlhemy provided slightly better support

 
 
 



Chapter 2. FunGIMS Design and Implementation 34for MySQL than for PostgreSQL when the projet was started. Most of the developersalso had more exposure to MySQL than PostgreSQL. MySQL provides a way to storevast amounts of data, while providing extremely fast searh aess to the data. All thedata are stored in rows in user-de�ned tables, and a user an searh over all �elds in thetables. This provides a very powerful way of storing and querying data.2.2.1.4. Version ControlIn a projet of this sope, version ontrol is essential. Version ontrol provides a wayfor the system to be baked up in inrements as eah part of the system hanges. Adeveloper an hek out a ertain part of ode, work on it and then hek it bak intothe system. The system then heks whether there was any on�it in the ode, andstore the hanges made to the ode. It also traks the hanges eah developer makesas well as any hanges to �les. Furthermore, it prevents hanges made by the di�erentdevelopers on the same piee of ode to be heked in prior to validation thereof. Anessential feature is the ability to rollbak hanges made to the system. It was deidedto use Subversion (http://subversion.tigris.org) for this projet rather than ConurrentVersion System (CVS).2.2.1.5. Templating LanguageWeb browsers display pages written in HyperText Markup Language (HTML). HTMLuses a stati ode to represent items on a web page. To overome the stati elementof HTML, programmers developed templating languages. These languages allow a pro-grammer to generate stati HTML ontent based on deisions made by the algorithm orprogram or even based on user input. The Kid templating system (http://www.kid.org)was used for FunGIMS. Kid is a templating system that is based on eXtensible MarkupLanguage (XML), of whih HTML is a derivative, and allows for the inorporation ofPython ode in the template. KID will take the XML template and the data provided bythe ontroller, ombine it and render it into HTML that is then sent to the web server.The user will then see the page as normal HTML in his browser.

 
 
 



Chapter 2. FunGIMS Design and Implementation 352.2.2. Development and DesignThe design of a large system suh as FunGIMS is a omplex task and requires areful de-velopment and planning to prevent a luttered and omplex ode base. This is espeiallyimportant when there are multiple programmers working on a projet and oordinationbetween them is vital. The �rst step in planning suh a projet is to identify the potentialusers and analyze their requirements. These requirements must then be implemented ina logial way to bene�t the user. The programming task must also be divided amongstthe programmers to speed up development.As a �rst step, the use of objet-orientated programming was implemented. This results inode bloks that an be reused throughout the projet and failitates faster development.A Model-View-Controller arhiteture was also followed (Fig. 2.2) for the software designof FunGIMS. This arhiteture separates a projet into three di�erent setions on the basisof the funtion of eah setion:
• Model - this ontains all the ode neessary for the storage of results and managingthe database bak end as well as handling queries to the database.
• View - this setion ontains all the ode used in displaying results/output from thesystem. It ontains mostly templates and usually ontains very little logi ode.
• Controller - this is the setion in whih all the funtionality and the majority of theode resides. All the deision making proesses in the system are stored here, and itontrols input and output to the model and view. It �ontrols� the entire system anddirets tra� and requests to the appropriate subontrollers.Following the MVC arhiteture, the projet was divided into three setions namelymodel.py, ontroller.py and a folder for all the templates entitled templates. Theseare eah disussed in more detail in setions 2.2.2.1, 2.2.2.2 and 2.2.2.3. In Figure 2.3 theoverall design and implementation of the MVC arhiteture in FunGIMS is shown. Thishigh level overview provides a lear depition of how eah part of FunGIMS �ts together.

 
 
 



Chapter 2. FunGIMS Design and Implementation 36

Figure 2.2: The Model-View-Controller (MVC) arhiteture. The Model ontains the datamodel needed by the ORM to interat with the database. The View ontain all the templatesneeded to display the data and the Controller ontrols and handles all ommuniation betweenthe Model and the View. The ontroller also alls any external programs that are needed.During the development proess, the spiral development methodology was followed. Thismethodology is based upon small improvements and step-wise additions of features, fol-lowed by rapid deployment and testing of the new features. This yle is repeated aseah new feature or funtionality is added. The advantage of this methodology is thaterrors in the ode and feedbak from the users an be orreted and implemented quikly,whih results in less e�ort ompared to orreted errors in a projet where the releaseand testing yle is longer. Most of the modules were developed in onjuntion with userinput. Thus at eah stage in the development, the user was onsulted. The user wasasked whih funtionalities he wanted, where after the programmer would implement itand the user would test it and give feedbak.During the design of FunGIMS, the usability and users of the system were always keptin mind. This fored the oding proess, and the ode itself, to be far more e�ientand intelligent in the manner in whih the di�erent appliations and funtionalities wereimplemented. A good example of this is the System ID (sid) that is assigned to everyentry of a data type. The sid should identify the spei� reord in suh a way as to

 
 
 



Chapter 2. FunGIMS Design and Implementation 37

Figure 2.3: The overall design of the FunGIMS system. The design follows theModel-View-Controller arhiteture and uses TurboGears as the web development environment.Various other modules suh SQLAlhemy provide interfaes and methods to aess data and allexternal programs. The View provides the interfae the user sees when using the system. TheController ontrols and direts all requests within the system and the Model stores all the data.

 
 
 



Chapter 2. FunGIMS Design and Implementation 38failitate easy use during oding, as well as for easy understanding thereof by the user.With FunGIMS the number of reords of di�erent data types was huge. To assist usersas well as failitate easier oding, it was deided to use a ommon sid format. Theformat, <data type:id>, onsists of a data type identi�er, followed by a :, followed by aunique number for user-generated data or the id assigned by the spei� publi databasee.g. PDB �le 1eye would have the sid: pdb:1eye. This identi�es the reord as a proteinoordinate �le and uses the more well known publi database id as well. The PDB isa good example of the e�ient use of a system-wide, unique id. The unique number isgenerated by taking the system time, in seonds sine 1 January 1970, and multiplyingit by a fator of ten million to get an integer number.At the time of writing, FunGIMS atered for the following data type identi�ers:
• seq - user generated/uploaded sequene
• gi - sequene from GenBank publi database
• sp - sequene from SwissProt publi database
• pri - user generated primer sequene
• pdb - protein struture �le from the PDB
• pmid - artile from the PubMed publi database
• �le - user uploaded generi �le
• hebi - small moleule from the ChEBI database
• note - user generated note
• blast - BLAST results �le
• go - Gene Ontology term
• taxon - NCBI taxon term
• trae - DNA sequene hromatogram �lesThese data type identi�ers makes it easy for the user to see whih entry they are urrentlyworking on or whih entry's results they are looking at. To make the development proessfaster, eah programmer was given responsibility for a module on FunGIMS, while oremodules were developed together as they were needed.

 
 
 



Chapter 2. FunGIMS Design and Implementation 39Coding was not the main area where ease of use was of primary importane. Ease of useis the most important in the user interfae. Throughout FunGIMS the interfaes weredesigned to be lean, intuitive and easy to use. This implies that pages do not showunneessary information to the user. Future releases may have the option to displayextra information ontained in the relevant �les. Eah page is designed to show only theinformation the user needs at that moment. In the ase of analysis tools, the user is askedfor only the neessary information before the analysis is run.2.2.2.1. The ViewThe views in FunGIMS are responsible for interating with the user and presenting datato him. Although the views only present data, in some instanes deisions on displayitems an only be made one the data is rendered or to alleviate more extensive odingof templates. Eah view is written in the Kid templating language. Eah module inFunGIMS has its own set of views and a shared subset deals with general, administrativedisplays suh as headers, new user registration and shared items. The view �les are storedin a separate diretory (templates) and use the .kid extension. The views are ompiledto Python ode as needed using just-in-time (JIT) ompilation.The view also makes use of JavaSript for some visual e�ets and for managing theaddition and deletion of notes through JSON, an AJAX library (Asynhronous JavaSriptand XML) used in TurboGears to onnet Python funtions and JavaSript. The viewalso allows the inlusion of applets suh as Jmol, whih is used in the Strutural module.These applets allow for extra funtionality in the browser.2.2.2.2. The ControllerThe ontroller is that part of FunGIMS that regulates all the deisions regarding �owontrol. The ontroller deides what data must be retrieved, what data must be sent to theview and whih ommands to exeute with regard to the given variables. In essene, theontroller ontrols everything in the appliation. All ode that make a deision resides inthe ontrollers. In FunGIMS the responsibility of the ontroller has been split to failitateollaborative oding as well as to derease the amount of ode residing in one main on-

 
 
 



Chapter 2. FunGIMS Design and Implementation 40Table 2.1: The tehnial spei�ations of FunGIMS.FeatureProgramming Language Python 2.4Development Framework TurboGears 1.0.2Code Revision Control Subversion 1.2.3HTML Templating Kid 0.9.6Objet Relational Mapping SQLAlhemy 1.3.9Doumentation Epydo 3.0beta1Bak end Database MySQL 5.0troller. The main ontroller (ontroller.py) in FunGIMS deides whih sub-ontroller(loated either in the view_ontrollers or searh_ontrollers folders) reeives thedata and whih sub-ontroller is responsible for exeuting the user's ommands.In FunGIMS the following tasks are under the diret responsibility/ontrol of the mainontroller:
• Deiding whih view to present to the user
• Managing the searh funtionality
• Managing user aess (logging in/out) and seurity
• Making deisions on whih analysis interfae to send data to
• Upload/download of �les
• Generi saving of results produed by analysis methods
• Web serviesThe tehnial spei�ations of FunGIMS are given in Table 2.1. The hoie of language(2.2.1.1), development platform (2.2.1.2) and other deisions have been disussed in therelevant setions.2.2.2.3. The ModelThe model forms the basis of all the interations between the ontroller and the databasein the MVC arhiteture. All the table de�nitions, table-lass mappings and lass-spei�methods are de�ned in the model.py �le. This �le is used by the ORM to interat withthe database and return the relevant data to the ontroller. The details of the data

 
 
 



Chapter 2. FunGIMS Design and Implementation 41model will be disussed in setion 2.4.1. There are a few main model-related methodsthat are used aross FunGIMS. These inlude retrieving data for a spei� entry whileonsidering seurity and aess restritions on the entry, deleting privately owned dataand generating new, unique identi�ers for data inserted into the system.2.3. FunGIMS Core FuntionalitiesFunGIMS ontains a few ore funtionalities that are used aross the board in all thedi�erent modules. These inlude managing users and groups, new registrations andsearhing of data.2.3.1. User and Group ManagementCommon pratie in laboratories is to divide people into work-related groups. This on-ept was also used in FunGIMS to manage aess to data. When starting a TurboGearsprojet, it provides you with default identity handlers. These are divided into users andgroups. Eah user an belong to one or multiple groups. For FunGIMS this de�nitionwas extended so that groups an also belong to other groups e.g. the di�erent groups inan aademi department. An example would be a supervisor who wants to share datawith her students as well as between the students, but also wants her own private group.Under the FunGIMS identity sheme this would mean that the supervisor belongs to twogroups, her own private group and the student group. This would allow the students toshare data but also allow the supervisor to have private data. It is basially a oneptof group of groups. Although this ompliates the identity management, the advantagesthereof are far more than the extra e�ort required to program it.In FunGIMS eah data entry belongs to either a spei� user or group or, in the aseof publily available data, to the �world� group. The �world� group is aessible toeveryone and all users an view and use entries belonging to this group. When databelongs to a ertain group, all the users who are members of that group may aess, viewand use the data. This hierarhial implementation of aess restritions allows for theseparation of visible data to eah group. A user may also deide to browse and analyse

 
 
 



Chapter 2. FunGIMS Design and Implementation 42data anonymously. This will allow him to see all publi data and do analysis, but notsave any results, or add notes to any entries.To manage users, a registration setion was inluded. This enables the user to add newusers, add users to groups and to reate groups. Some restritions are also implemented,whih gives only ertain users the right to add or delete users.2.3.2. Result ManagementWhen users generate results in FunGIMS, they are presented with the option of eitherstoring the results in the FunGIMS database or viewing them without saving. This fun-tionality allows users to use the FunGIMS database as a data repository. User-generatedresults are stored as uploaded �les in the database. When the user wants to save results,they are presented with an option of seleting to whih group the results will belong. Thegroup listing inludes all the groups to whih the user belongs . This allows the user toshare generated results with other members of the group. These results are inluded inany future searhes that might be done against the database. If a user is browsing andanalyzing data while not logged in, results annot be saved.2.3.3. Searhing of Data and ResultsFunGIMS ontains a large amount of data and the best way to aess a spei� pieeof data is to searh for it. FunGIMS provides a searh faility aross all the data andresults saved by the user. This allows the user to searh for entries by means of akeyword or phrase, or simply aess stored results. A user an selet to searh arossall the data types with a keyword or a spei� identi�er an be entered e.g. searhfor �dihydropteroate synthase� or searh for PDB id �1eye�. The searh is implementedon two levels. The �rst level is a ase insensitive text searh aross all the �elds inIdentifiable and Desription. The results from this searh are then �ltered in theseond level of the searh, to exlude entries that the user may not see. Users an searha keyword or sid against a spei� data type or aross all data types. At the time ofwriting, FunGIMS provided searhes aross protein strutures, sequenes, literature andsmall moleule data sets. A keyword searh aross all data types will produe a page

 
 
 



Chapter 2. FunGIMS Design and Implementation 43

Figure 2.4: The result of a searh for �dihydropteroate synthase�. The results are orderedaording to data type.with results sorted aording to the setion they belong to e.g. sequenes in the Sequenesetion and any struture hits in the Struture setion. Should a user searh for a spei�identi�er and it is found to be unique, the user will automatially be redireted to a viewof the requested entry. Aess restritions are implemented on the searhes and thus auser will not see any mathes in restrited data. Figure 2.4 shows the results of a searhfor the keywords �dihydropteroate synthase�.2.4. FunGIMS Data Model2.4.1. The Data ModelFunGIMS was designed to use one database that ontains all the data for eah data typein separate tables. In order to inorporate the large amount of data and relationshipsin FunGIMS, an extensive data model had to be developed. The Funtional Genomis

 
 
 



Chapter 2. FunGIMS Design and Implementation 44Experiment (FuGE) data model was used as a starting point (Jones et al., 2007, Joneset al., 2006) as disussed in Chapter 1. The FunGIMS data model was extended byinheriting from the Identifiable lass in FuGE. This allowed for features in FuGE suhas Seurity, Desription and Audit to be aommodated in FunGIMS. Seurityimplements various features related to the FuGE data model with regard to ownership ofthe reord. Audit traks hanges made to a reord and Desription provides a way toadd free text desriptions of the reord. Identifiable onsists of a sid, data typename,user id, group id and desription id �elds. These �elds link an Identifiable entry toa user, a group, a spei� desription (whih is linked to the Desription lass) and aspei� data type. The data typename �eld is used when onstruting the polymorphijoins for a spei� module. When a new �le or data entry is reated in Identifiable,the user must also supply the �elds required for Desription. Desription implements�elds for id, desription text, keywords and synonyms. When searhing the databaseusing a keyword, it is searhed against Desription.The ore data model for FunGIMS extended the FuGE data model by inluding additionallasses to FunGIMS, all of whih all inherited from Identifiable. These lasses inludeNote, File and Relationship. Note is a free text �eld that allows a user to add free textnotes to an entry. More than one Note may be assoiated with a unique Identifiableentry. File is a lass that aters for any �les uploaded by the user suh as proteinmodels, douments or sequenes. One File objet is linked to one Identifiable objet.Relationship is a lass used to link two Identifiable entries. This relationship is eitheruser generated or automatially generated from the parsed data. Eah spei� moduleextends the FunGIMS data model further and by inheriting from the Identifiablelass, allows a onsistent data model to be maintained. FunGIMS urrently implementsthe following main data type lasses: Struture, Sequene, MedlineReferene andCompound. The spei� data model used for the Strutural module will be disussedin setion 2.5.2. The information in Identifiable was also used by SQLAlhemy toreate groups of tables in the data model that ontains only a ertain data type usingpolymorphi identity joins (reating one objet by joining di�erent sublasses from thedatabase).

 
 
 



Chapter 2. FunGIMS Design and Implementation 45The TurboGears user traking/validation data model was used to allow the login of usersand to maintain session ids during usage. TurboGears employs a set of tables for usersand groups and allows users to belong to more than one group. When a user logs in,they are validated against this data model. When retrieving data belonging to a ertaingroup, the group table is heked to assess whether a user may see the data. A uniquesession id is generated every time a user logs in and this allows the user to remain loggedin to the system for a set amount of time (default is 20 minutes).
2.5. Strutural Module2.5.1. OverviewThe Strutural module aters for all protein struture data. It allows the user to inves-tigate the protein strutures, to ondut analysis on the protein sequenes and strutureand to generate simulation sripts for proteins. The design of the Strutural module wasbased on the MVC design as shown and used in the rest of FunGIMS. This allows for anextensible and easily upgradable system and further allows for a maintainable ode base.The vast majority of the data in the Strutural module is parsed from the MSD disussedin Chapter 1. Most protein struture data is represented in a standard olumn-based for-mat known as the PDB format (http://www.pdb.org/dos.html). This text format pro-vides strutural and administrative information about the protein as well as the Cartesianoordinates of every atom in the protein. Figure 2.5 shows the olumn layout and anexample of the latest PDB �le format.2.5.2. Data ModelThe main data model used for the Strutural module is based on the MSD (Boutselakiset al., 2003) from the EBI at Cambridge. The MSD provides a very extensive data modelto deal with protein struture data. All the data are parsed from PDB and are also linkedto primary sequene providers suh as GenBank.

 
 
 



Chapter 2. FunGIMS Design and Implementation 461234567890123456789012345678901234567890123456789012345678901234567890...ATOM 66 N VAL A 14 22.866 0.219 42.591 1.00 20.77 NATOM 67 CA VAL A 14 21.639 -0.157 43.253 1.00 26.59 CATOM 68 C VAL A 14 20.898 1.039 43.832 1.00 43.97 CATOM 69 O VAL A 14 19.894 0.894 44.535 1.00 44.07 OATOM 70 CB VAL A 14 21.834 -1.310 44.228 1.00 29.30 CATOM 71 CG1 VAL A 14 22.197 -2.582 43.471 1.00 28.10 CATOM 72 CG2 VAL A 14 23.022 -0.961 45.095 1.00 36.14 C...COLUMNS DATA TYPE FIELD DEFINITION1 - 6 Reord name �ATOM � Reord name7 -11 Integer serial Atom serial number13-16 Atom name Atom name17 Charater altLo Alternate loation indiator18-20 Residue name resName Residue name22 Charater hainID Chain identifier23-26 Integer resSeq Residue sequene number27 AChar iCode Code for insertion of residues31-38 Real(8.3) x Orthogonal oordinates for X in Angstroms39-46 Real(8.3) y Orthogonal oordinates for Y in Angstroms47-54 Real(8.3) z Orthogonal oordinates for Z in Angstroms55-60 Real(6.2) oupany Oupany61-66 Real(6.2) tempFator Temperature fator77-78 LString(2) element Element symbol, right-justified79-80 LString(2) harge Charge on the atomFigure 2.5: Top: A protein struture �le example (Valine residue 14 from 1eye.pdb). Bottom:the PDB �le format spei�ation for ATOM entries.The MSD data model tries to provide a logial view of protein struture. It is orga-nized into one main entity (Struture) that onsists of 6 sub-entities (Ative Sites,Seondary Struture, External Database Links, Header, Taxonomy and Ligands).Eah of these sub-entities are divided into logial groups e.g. Header is made up of ta-bles ontaining information on authors, keywords, X-ray data, et. In this fashion eahsub-entity ontains di�erent levels of information. What makes MSD unique and di�erentfrom the PDB is that for every di�erent feature in MSD, detailed data are available e.g.for every protein atom, the binding order, predited atom valene, atom type, residue it

 
 
 



Chapter 2. FunGIMS Design and Implementation 47

Figure 2.6: The relationship between the Struture objet and the FuGE data model.Identifiable is the main data objet in FuGE. Desription provides some additional dataabout Identifiable. The Struture objet inherits from Identifiable and thus also hasDesription data.belongs to, other atoms it makes ontat with, et. This makes it one of the most ompletestruture databases urrently available. A omplete user-friendly web aessible front endto MSD has been written and is aessible at the EBI's website.The MSD data model (�gure 1.2) was extensively modi�ed before being inorporated intoFunGIMS. The Strutural module data model onsists of the following lasses: Residue,Helix, Sheet, Strand, Turn, SeondarySummary, Tstru, Chain, PfamInt, SopInt, Go,E,CathInt, SwissprotInt and Interpro. All the lasses inherit from Struture eitherdiretly or indiretly from another lass. The data extrated and stored from MSD arePDB entry information (Struture), protein seondary struture (SeondarySummary)inluding α-helies (Helix), β-strands (Strand), β-sheets (Sheet) and β-turns (Turn),protein fold (Tstru) information from CATH (CathInt) and SCOP (SopInt), proteinlassi�ation information from GO (Go), Interpro (Interpro), Pfam (PfamInt) and Swis-sprot (SwissprotInt) as well as EC numbers (E). Information suh as the energy types

 
 
 



Chapter 2. FunGIMS Design and Implementation 48of eah atom and atom types were not extrated, as the Strutural module only aters fora higher level of protein struture. A seond set of sripts was then run on the MSD datato extrat basi relationships between data types suh as linking the Pubmed id witha protein entry and these were stored in the Relationship lass. Stored relationshipsare between the protein, Swissprot and GO numbers as well as between the protein andPubmed. All these generated links were also added to the FunGIMS database. Setion2.5.2.1 disusses other data soures. Most data relating to the detail suh as atoms,residue planarity and energy types were omitted. This was due to the fat that theStrutural module provides a basi introdution to a struture. Its main purpose is forexploratory analysis and investigation.The FunGIMS struture data model was onstruted to losely represent the atual stru-ture levels in a protein in a top down fashion. This ensures that a protein model anbe browsed by starting with the assembly, followed by the loal fold, the hain spei�seondary struture and �nally by residue data (Figs. 2.6, 2.8 and 2.7).2.5.2.1. Data SouresThe majority of the data in the Struture module, and also FunGIMS, are derived andparsed from publi databases suh as the PDB, GenBank and SwissProt. In the ase ofthe Struture module, Python sripts were used to parse the �at �le format of MSD andto add the data to the FunGIMS database.FunGIMS also aters for user-generated data. In the Struture module spei�ally,user-generated data makes up a very small portion of the stored data. This is due to thefat that a model that a user generates will not be parsed and stored in the databaseas there is no experimental validation of the struture. All generated modelling sriptsand models will be stored as �les belonging to a spei� user and group should the userhoose to save the �les.2.5.3. FuntionalitiesThe Strutural module has various di�erent funtionalities. A user an investigate a pro-tein struture and retrieve information about strutural elements, perform motif searhes

 
 
 



Chapter 2. FunGIMS Design and Implementation 49and strutural analysis on a protein sequene, generate homology models or generatesripts for modelling and moleular dynamis. Eah of these features will be disussedseparately. For the �rst release of the Strutural module it was deided to inlude toolsthat are often used by biologists and some tools that are less used but equally valuableand that an provide new insights into their work. The design of FunGIMS and theStrutural module allows for the easy addition of new tools by programmers.The browser-based moleular viewer known as Jmol (http://jmol.soureforge.net) is oneof the features that makes the Strutural module very useful. Jmol is a Java-basedthree dimensional moleular view that an run inside a browser as a Java applet. Ituses software to render the proteins and thus does not need expensive hardware suhas graphis ards. Jmol was spei�ally written to allow protein struture �les to bedisplayed and manipulated inside browsers. The user an rotate the protein, zoom in,selet di�erent representations of the protein, and various other misellaneous funtions.Jmol an also be run as a standalone Java appliation, whih allows users to downloadthe protein �les and work with them in a familiar environment.In the Strutural module, Python is used to parse the data suh as residue start and endnumbers in a turn or helix, and then use this data to generate buttons whih ontrolsvarious Jmol representations.2.5.3.1. Strutural Data RepresentationThe Strutural module inludes all strutural data suh as primary struture, seondarystruture, tertiary struture and atomi oordinates. The �rst view a user would seewhen querying a protein is the primary sequene data. This inludes the sequene of theprotein, the name of the protein and other data parsed from the header suh as resolution(Fig. 2.9). The primary view also shows any notes added to the spei� protein as wellas an atom representation (based on the oordinates in the rystallized struture) of theprotein loaded into Jmol.From the primary view the user an navigate to the seondary and tertiary strutureviews. The main seondary view ontains a summary of all the seondary struturefeatures found in eah hain in the protein and provides links to a more detailed view

 
 
 



Chapter 2. FunGIMS Design and Implementation 50of eah feature. When a spei� hain is seleted, it takes the user to a summary of theseondary strutural features for that spei� hain (Fig. 2.10). This inludes data on
α-helies, β-strands, sheets, turns and other hain features.A user an also see a summary of all the strands in a spei� protein hain by liking onthe strand link in the seondary struture summary (Fig. 2.11). This will provide a pagewith a summary of the strands found in the protein hain together with their position,length and sheet id as lassi�ed in the MSD. A artoon representation is presented inJmol and buttons are provided to selet the spei� strands. These buttons are notalways 100% aurate as Jmol interprets residue numbers di�erently than those foundin the MSD due to missing residues in the protein rystal struture. This is due to thefat that sometimes part of the protein does not rystallize or only a trunated peptidewas used. Thus, those residues do not get used when assigning numbers to the residuesfound in the rystal struture. A user an also selet the sheet link and see the numberof sheets in a protein struture.A user an also aess data about the α-helies in the protein hain (Fig. 2.12) fromthe seondary struture summary. This view gives an overview of the number of heliesas well as their length, start and end residue numbers. A artoon representation is alsodisplayed with Jmol buttons for highlighting the helies. Information about β-strandsand β-sheets an also be aessed from the seondary struture summary.Information about all the turns in a protein an also be aessed from the seondarystruture summary page. This option presents a user with a table of all the turns thatour in the protein as well as the turn type and lass, start residue, end residue and aJmol representation with Jmol buttons to selet all the turns (Fig. 2.13).In addition to the seondary struture summary, a user an also aess information aboutthe tertiary struture of the protein (Fig. 2.14). This view inludes the Pfam (Finn et al.,2006), CATH (Pearl et al., 2005), SCOP (Conte et al., 2000), GO (Ashburner et al., 2000)and Interpro id's (Zdobnov and Apweiler, 2001) assoiated with eah hain. One againJmol is also present but in this ase the protein is shown in a ribbon representationoloured by hain.

 
 
 



Chapter 2. FunGIMS Design and Implementation 51The Strutural module of FunGIMS ontains tools related to seondary and tertiarystruture as well as protein sequene feature predition. Although the database (seesetion 2.5.2.1) provides most of the struturally derived data, a user may want to do are-analysis of a struture or use the tools to analyze a new struture or model or proteinsequene. At the time of writing, only X-ray data was supported. The strutural modulean be divided into roughly two parts, a strutural data part and a analysis tools part.

 
 
 



Chapter 2. FunGIMS Design and Implementation 52

Figure 2.7: The relationship between di�erent seondary strutures in a hain and the residuesin a protein. This provides the learest example of how the data model organization followsthe logial, hierarhial organization seen in a protein struture. Eah seondary struture(se_stru) objet has several features suh as a helix or a strand or a turn. And eah ofthese spei� seondary strutural features also onsists of a residue thus following the inherentlogi in a protein struture. Due to the levels of inheritane, eah residue objet still has anidentifiable and desription objet assoiated with it.

 
 
 



Chapter 2. FunGIMS Design and Implementation 53

Figure 2.8: The data model for the high level Struture lass. A Struture entry is linked toits referene (Pubmed) as well to high level lassi�ers suh as Interpro and GO. The di�erentorganization levels an be seen learly e.g. a Struture onsists of one/many Chain objets andeah Struture objet also has other high level features suh as a SwissProt id (swissprotid).
2.5.3.2. Data AnalysisThe seond part of the strutural module is the data analysis tools (Fig. 2.15). Thisprovides web interfaes to some ommonly used tools in protein strutural analysis. Allthese tools are external programs that are alled using Python 2.4 system alls, and the

 
 
 



Chapter 2. FunGIMS Design and Implementation 54

Figure 2.9: The primary view when a user views a protein. Note the general FunGIMS featurewhere an entry an be annotated by a note.results are displayed to the user. Eah program has a unique sript loated in the utilsfolder of the FunGIMS.Users are able to analyze a protein sequene using these tools. The tools urrentlyimplemented in the Strutural module are:
• Hmmer searh against Pfam - Hmmer is a hidden markov model-based (HMM) searhtool that tries to identify a protein sequene by mathing it to a database of proteinfamilies (Finn et al., 2006). Hmmer takes the sequene, an E-value ut-o� and adatabase to searh against. The output ontains a list of families that mathes theuser submitted sequene. It also inludes on�dene values for every hit found to aprotein family. The hmmer.py sript in utils is used.
• TMHMM - TMHMM is a HMM-based tool for searhing for transmembrane heliesbased on the amino aid sequene found in a protein sequene (Sonnhammer et al.,1998). It takes a protein sequene as input and produes a graph showing whih areas

 
 
 



Chapter 2. FunGIMS Design and Implementation 55

Figure 2.10: The hain summary view for a spei� hain in a protein.are predited to ontain transmembrane helies. The tmhmm.py sript in utils isused.
• S-TMHMM - This tool tries to predit the topology (inside/outside) of any transmem-brane helies found in a protein sequene (Viklund and Elofsson, 2004). It takes aprotein sequene as input and produes a table showing the probability of eah residuebeing inside or outside the membrane. The stmhmm.py sript in utils is used.
• Prosite - Prosite is a database of protein motifs (de Castro et al., 2006). These inludeshort motifs suh as glyosylation sites as well as longer motifs that an identify aspei� protein family. To searh Prosite, the ps_san.pl sript from the EBI is used.Using a protein sequene as input, it produes a list of motifs found in the protein.Flags an be set to exlude motifs with a high probability of ourrene, but this hasnot been implemented in the Strutural module. The prosite.py sript in utils isused.
• PROCHECK - This allows a user to hek a protein struture �le for any abnormalstrutural errors (Laskowski et al., 1993). The heks are based on a set of normal

 
 
 



Chapter 2. FunGIMS Design and Implementation 56

Figure 2.11: The strand summary page for a protein hain.strutural parameters derived from the PDB. The input is a protein oordinate �leand it produes a set of ten �les that inlude Ramahandran plots, graphs plottingthe deviation of eah amino aid type from normal as well as a summary. In theStrutural module the user an download eah �le for later use. The prohek.pysript in utils is used.
• WHAT IF - WHAT IF is a omprehensive set of tools for moleular modelling and foranalyzing proteins in their native environments (Vriend, 1990). The struture hekingtool was implemented in the Strutural module and this does a range of heks on asubmitted protein �le to identify possible errors and warnings. It produes a detailedreport on the struture analysis that the user an download. The whatif.py sriptin utils is used.
• DSSP - This program alulates seondary struture based on the oordinates of theatoms in a PDB �le (Kabsh and Sander, 1983). The program takes a pdb �le asinput and produes a report that gives the seondary struture of eah amino aid.The dssp.py sript in utils is used.

 
 
 



Chapter 2. FunGIMS Design and Implementation 57

Figure 2.12: The α-helix summary view for a protein hain.All these tools aept either a �le or a sequene from the user. The seleted tool is thenrun via a tool-spei� Python sript, whih thereafter uses Python system alls to runthe appropriate tool on the sequene or �le. The sripts for eah tool are saved under theutils diretory. All the results are saved on disk during the session. The results are alsodisplayed to the user and the option to save the results to a ertain group is available.Figures 2.16, 2.17 and 2.18 show the results from an analysis run of TMHMM, Hmmeragainst Pfam and a PROCHECK analysis.2.5.3.3. Modelling and Moleular DynamisThe third setion of the Strutural module has funtions that allow the user to generatesripts for homology modelling and moleular dynamis (Fig. 2.15) and build models.For protein homology modelling the user has a hoie between two programs, Modeller(Fiser and Sali, 2003) and WHAT IF (Vriend, 1990). The module will ask for the relevantinformation, pass it to the spei� sript loated in the utils folder, and produe a sript,using Python, whih the user an download and run on his or her loal mahine. This

 
 
 



Chapter 2. FunGIMS Design and Implementation 58

Figure 2.13: The summary view for all the turns that our in a protein hain.preludes the user having to atually set up and understand the sripts and sriptinglanguage. In addition to the modelling sripts, the user may also deide to onstrut amodel using the automati method in the Strutural module (Fig. 2.20). The user entersa template PDB id, target name, target sequene and re�nement level. This will bepassed to Modeller (version 9v1), whih will perform an automati alignment of the twosequenes and then proeed to build a model. Currently the automated modelling proessuses the �rst hain in a multi-hain protein as a template. When the model is ready, theuser is alerted and presented with a page to download the model, modelling sript andalignment �le. A drawbak of the automated modelling is the automated alignmentperformed by Modeller. When the sequenes display a high identity, alignment is easyand should be aurate. However in lower identity ranges (less than 40%), automatedalignment is not as aurate and it is advisable to do the alignment with manual urationof the results.The module an also generate basi sripts, using Python, for three di�erent moleulardynamis suites, (NAMD (Phillips et al., 2005), CHARMM (Brooks et al., 1983) and

 
 
 



Chapter 2. FunGIMS Design and Implementation 59

Figure 2.14: The tertiary struture view of a protein. This shows information for the ompleteprotein omplex.Yasara (http://www.yasara.om) given user input. The dynamis setion only supportssript generation, not running the atual simulations as this is extremely resoure in-tensive. This allows the user to fous on the researh questions without the need fortehnial knowledge. Figure 2.20 shows the interfae for the moleular dynamis sriptgeneration setion. The moleular dynamis sripts will need further editing dependingon the moleule the user wants to investigate and the type of dynamis. All the modellingfuntionalities are loated in the utils folder and the modelling.py sript is used. Fordynamis the dynamis.py sript in utils is used. While validated homology programsare used, the quality of a model is determined by various fators suh as template reso-lution, template-target alignment and the spei� algorithm used.The running of simulations in a UNIX environment will still require some skills and UNIXknowledge but an IT support person should be able to assist with the installation of theprograms. The interpretation of the dynamis results are up to the user as automatedanalysis is not really a possibility yet. The intent is to provide the user with basi aess

 
 
 



Chapter 2. FunGIMS Design and Implementation 60

Figure 2.15: The di�erent tools available in the Strutural module. Shown are the input (userand FunGIMS supplied) required for eah of the tools, the spei� method alled in the utilsfolder as well as the type of output the tool generates.to moleular dynamis funtionality but guidane in the interpretation of the results isurrently outside the sope of the system. It is always reommended that the user onsultsuitable literature when engaging in any form of advaned simulations.2.5.3.4. Help SetionFunGIMS was designed to assist biologists to ondut faster and easier analysis andexploration of data. To further this goal, a help page is provided for eah funtion in theStrutural module. This an be aessed by liking on the link found on eah page. Toinrease visibility it has been labeled in red. Figure 2.19 shows a typial result when auser liked on a help link for a spei� funtion. The help link provides a brief synopsis

 
 
 



Chapter 2. FunGIMS Design and Implementation 61

Figure 2.16: The results from a transmembrane helix predition on a submitted protein sequene.The drop-down menu allows the user to save the results to a spei� group.of the tool and the inputs required, as well as the output a user might expet when thetool runs suessfully.2.5.3.5. Con�gurationThe Strutural module relies on various external programs to provide analysis methods.Installation loations and exeution of these programs usually di�er between mahinesand programs. To overome this, a on�guration �le (utils/onfig.py) was reatedthat stores all the program spei� settings. This �le an be edited by hand to hangeprogram properties. For eah program the following properties are spei�ed: the pathto the program (exeutable �le), a program-spei� temporary diretory for output, andother program spei� parameters and settings. These programs are then alled frominside the Strutural module simply by referening these variables. This makes systemadministration far easier as program settings have only to be spei�ed and hanged inone �le.

 
 
 



Chapter 2. FunGIMS Design and Implementation 62

Figure 2.17: The results from a Hmmer searh aross Pfam using the strutural module.2.6. Future Improvements2.6.1. FunGIMSA system suh as FunGIMS is in a onstant �ux of development. FunGIMS was designedto allow for the easy addition of new tools and features. There are a number of areas thatan be improved upon, the database being one of them. Database table optimizationwould allow for queries to be dealt with faster. Distributed databases would lessenthe load on the server when the database size inreases signi�antly. In the urrentimplementation of FunGIMS, the database size presented some hallenges and smartindexing of often-queried olumns in tables resulted in a derease in query time. Thedatabase should also be expanded to inlude more detailed data types suh as proteinhip array data.Furthermore, smart �le reognition and improved �le parsers would enable the user toupload a �le, allow FunGIMS to parse it entirely and then insert the data into the

 
 
 



Chapter 2. FunGIMS Design and Implementation 63

Figure 2.18: The results from a PROCHECK analysis run on PDB 1EYE.database, not merely as a �le but as a full data type. This allows queries to be moreaurate as uploaded �les will be parsed and stored in a data type spei� manner.Automati link generation between entries would be another major bene�t to FunGIMS.Currently links between entries are generated when the database is �rst populated withpubli data and when a user links to entries with a note. Automati link generation wouldnavigate free text �elds, notes and desription text and then reate the appropriate links.This automati link generation tool should run on a daily basis so that links are alwaysup to date.2.6.2. Strutural ModuleIn addition to the improvements to FunGIMS mentioned in the previous setion, theStrutural module also has some possible improvements.More analysis methods an be inluded for di�erent features. Tools suh as onsensus se-

 
 
 



Chapter 2. FunGIMS Design and Implementation 64

Figure 2.19: The help setion for the Investigate setion. Eah funtion has its own help setionon the Help page.ondary struture predition, protein export signal predition and other protein sequeneanalysis tools will be a bene�t to the system.The most improvement is probably in the modelling and simulation setion. The urrentsripts an be modi�ed to inlude modelling on the seleted hain of a protein, on multipletemplates as well as inluding ligands in the modelling proess. A feature ould alsobe implemented to use alignments provided by the user. More simulation sripts withdi�erent parameters and environments ould also possibly be added. A possible additionould be the implementation of a module whereby a user an start a simulation on aluster or another omputer while being able to ontrol it from the FunGIMS system.This will allow the user to run simulations on various mahines without needing thetehnial knowledge.There is sope for the improvement of the user interfae of the Strutural module. Jmolbuttons for seondary struture elements an be made more aurate. In addition avisualization library an also be inluded to generate salable images of a summary of

 
 
 



Chapter 2. FunGIMS Design and Implementation 65the seondary struture elements found in a protein and present them to the user ina downloadable format. A useful improvement would be sripts that failitate a moreautomati update of the database as soon as the data soures used, are updated. Thiswould lessen the load on the site administrator and would keep the database up to date.2.7. ConlusionFunGIMS onsists of various modules dediated to di�erent data types. The Struturalmodule urrently provides funtions to explore strutural data for a spei� protein, on-dut analysis on a user-submitted protein struture, inluding analysis suh as transmem-brane helix predition, Prosite motif searh and also allows the user to reate homologymodelling and moleular dynamis sripts. The appliation of the Strutural module tovarious problems in FMDV will be disussed in the next three hapters.

 
 
 



Chapter 2. FunGIMS Design and Implementation 66

Figure 2.20: Top: The automated modelling interfae when building a model using Modeller.The user an deide to generate homology modelling sripts for Modeller or WHAT IF. Bottom:The moleular dynamis sript-generating interfae. Users an selet between the di�erentprograms from the drop-down menu in the form.

 
 
 


	Front
	Chapter 1
	CHAPTER 2
	2.1 Overview
	2.2 FunGIMS design and technologies
	2.3 FunGIMS core functionalities
	2.4 FunGIMS data model
	2.5 Structural module
	2.6 Future improvements
	2.7 Conclusions

	Chapter 3
	Chapter 4
	Chapters 5-6
	Back



