

Functional genomics analysis of the effects of co-

inhibition of the malarial S-adenosylmethionine

decarboxylase/ornithine decarboxylase

by

Anna Catharina van Brummelen

Submitted in partial fulfilment of the requirements for the degree *Philosophiae Doctor*

> in the Faculty of Natural and Agricultural Sciences Department of Biochemistry University of Pretoria Pretoria South Africa

SUPERVISOR: Dr. Lyn-Marie Birkholtz Department of Biochemistry, University of Pretoria, South Africa

CO-SUPERVISOR: Prof. Abraham I Louw Department of Biochemistry, University of Pretoria, South Africa

CO-SUPERVISOR: Prof. Manuel Llinás Department of Molecular Biology, Princeton University, USA

October 2008

© University of Pretoria

DECLARATION:

I, Anna Catharina van Brummelen declare that the thesis/dissertation, which I hereby submit for the degree *Philosophiae Doctor* at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE:..... DATE:

Soli Deo gloria

The completion of this dissertation was made possible by the following people whom I would like to thank with all my heart:

My supervisor, Dr. Lyn-Marie Birkholtz, for your guidance, encouragement, support and faith in me.

Prof. Braam Louw, for your support, guidance and for giving me the opportunity to enrol for a PhD in Biochemistry.

Prof. Manuel Llinás, for the opportunity to do research in your laboratory, for stimulating discussions and long distance guidance via email.

Staff from the University of Pretoria, specifically Jaco de Ridder, Loveness Dzikiti, Fourie Joubert, Nicky Olivier and Sandra van Wyngaardt. Thank you for all your kindness and support, as well as assistance with experimental work and data analyses.

Fellow students and friends from the University of Pretoria, specifically Pieter Burger, Katherine Clark, Jandeli Niemand, Shaun Reeksting, Christiaan Stutzer, Gordon Wells and Marni Williams. It was pleasure to get to know all of you. Thank you for everything!

CSIR staff, specifically Bridget Crampton and Stoyan Stoychev, for your help with analyses.

Fellow students, technicians and friends from Princeton University, specifically IIsa Leon, Kellen Olszewski and Daniel Wilinski. Thank you for making me feel welcome, also for teaching me to do microarrays and all your hard work with the metabolomics.

My husband, Roy van Brummelen, for all the times we had to go to the lab in the middle of the night, your unconditional love and support.

My parents, Johannes and Adéle Retief and my family. Thank you for all your love, continuous support, endless prayers and encouragement all my life.

Polyamines are ubiquitous components of all living cells and their depletion usually causes growth arrest or cytostasis, a strategy employed for treatment of West-African trypanosomiasis. In the malaria parasite, *Plasmodium falciparum*, polyamine biosynthesis is regulated by the uniquely bifunctional protein, S-adenosylmethionine decarboxylase/ornithine decarboxylase (PfAdoMetDC/ODC). The unique nature of this protein could provide a selective mechanism for antimalarial treatment.

To validate polyamine depletion and specifically PfAdoMetDC/ODC, as drug target for antimalarial therapeutic intervention, polyamine biosynthesis was completely restrained via the inhibition of both catalytic sites of PfAdoMetDC/ODC with DFMO and MDL73811. The physiological effects during the resulting cytostasis were studied with a comprehensive functional genomics approach. The study was preceded by various assays to determine the treatment dosage that would result in complete cytostasis, without non-specific chemical cytotoxicity. The results obtained revealed that the cytostatic mechanism with growth arrest of the treated parasites and normal progression of the untreated controls require special consideration for basic comparisons of response in terms of the assay methodology used and data analysis. This is particularly important when studying a multistage organism such as *P. falciparum*, which constantly develops and change during the intraerythrocytic developmental cycle, such that growth arrest compared to normal progression would result in significant differences merely due to stage. This critical principle was kept in mind throughout the investigation and was applied to the relative quantification of RNA, proteins and metabolites via a relative time zero approach as opposed to the standard parallel time point comparison.

Three independent functional genomics investigations, namely transcriptomics, proteomics and metabolomics were conducted, in which highly synchronised 3D7 parasite cultures were treated during the schizont stage and parasites were sampled during a time course at three time points (just before and during cytostasis). Transcriptome analysis revealed the occurrence of a generalised transcriptional arrest just prior to the growth arrest. To our knowledge this is the first time that transcriptional arrest as the preceding mechanism of cytostasis due to polyamine depletion, was demonstrated. However, despite the transcriptional arrest, the abundance of 538 transcripts was differentially affected and included three perturbation-specific compensatory transcriptional responses: the increased abundance of the transcripts for lysine decarboxylase and ornithine aminotransferase (OAT) and the decreased abundance of that for S-adenosylmethionine synthetase (AdoMet synthetase). Pearson correlations indicated more subtle effects of the perturbation on the proteome and even more so on the metabolome where homeostasis was generally maintained, except downstream to the enzymatic blockade at PfAdoMetDC/ODC. The perturbation-specific compensatory roles of OAT in the

regulation of ornithine and AdoMet synthetase in the regulation of AdoMet were confirmed on both the protein and metabolite levels, confirming their biological relevance.

The results provide evidence that *P. falciparum* respond to alleviate the detrimental effects of polyamine depletion via the regulation of its transcriptome and subsequently the proteome and metabolome, which supports a role for transcriptional control in the regulation of polyamine and methionine metabolism within the parasite. The study concludes that polyamines are essential molecules for parasite survival and that PfAdoMetDC/ODC is a valid target for antimalarial drug development.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	i
SUMMARY	ii
TABLE OF CONTENTS	iv
LIST OF EQUATIONS	ix
LIST OF FIGURES	x
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii

CHAPTER 1

1.1	HISTORY OF MALARIA	1
1.2	MALARIA AS GLOBAL HEALTH PROBLEM	1
1.3	THE PARASITE'S LIFE CYCLE	
1.4	HUMAN MALARIA SPECIES	5
1.5	THE PATHOGENESIS AND CLINICAL PRESENTAT	ION OF MALARIA6
1.6	ANTIMALARIAL VACCINES	
1.7	ANTIMALARIAL THERAPEUTICS	9
1.7	.7.1 Quinoline and related antimalarials	10
1.7	.7.2 Artemisinin and derivatives	12
	1.7.3 Antifolates	13
1.8	ANTIMALARIAL DRUG TARGETS	14
1.9	POLYAMINE METABOLISM	15
1.9	.9.1 The biological importance of polyamines	15
1.9	.9.2 The biosynthesis of polyamines	16
1.10	MOLECULAR ASPECTS OF MALARIA	19
1.1	.10.1 Sequenced <i>Plasmodium</i> genome data	19
1.1	.10.2 <i>Plasmodium</i> transcriptome data	21
1.1	.10.3 The <i>P. falciparum</i> proteome and interactome	23
1.1	.10.4 The <i>P. falciparum</i> metabolome	24
1.1	.10.5 Gene regulation in <i>P. falciparum</i>	25
1.1	.10.6 Manipulation of the <i>Plasmodium</i> genome	26
1.11	FUNCTIONAL GENOMICS FOR DRUG DISCOVERY	AND TARGET VALIDATION

1.12	RESEARCH OBJECTIVES	27
	Papers:	28
	Conference proceedings:	29

CHAPTER 2

2.1 IN	TRODUC	TION	
2.1.1 Pc	olyamine b	iosynthesis inhibitors	30
2.1.2 Ar	ntimalarial	drug sensitivity methods	32
2.2 M/	ATERIALS	SAND METHODS	
2.2.1 In	vitro cultiv	ation of asexual <i>P. falciparum</i> cultures	34
2.2.2	Sort	pitol synchronisation of growth stage	35
2.2.3 Pa	arasite grov	wth and drug sensitivity assays	36
2.2.3	.1 Drug	g treatment and plate storage until analysis	36
2.2.3	.2 Indir	ect parasitaemia quantitation assays	37
2.2	2.3.2.1	Lactate dehydrogenase (Malstat) assay	37
2.2	2.2.3.2.2 Histidine-rich protein II (HRPII) ELISA		38
2.2.3	.3 Dire	ct parasitaemia quantitation assays	39
2.2	2.3.3.1	FACS analysis	39
2.2.3	.4 Con	centration-response curves	39
2.2.3	.5 Prop	pidium iodide (PI) membrane integrity assay	40
2.3 RE	ESULTS		41
2.3.1 Va	alidation of	signal to inoculum linearity	41
2.3.2 Co	oncentratio	on-response curves and IC ₅₀ s	44
2.3.3 DF	-MO and M	MDL73811 interaction during PfAdoMetDC/ODC co-inhibition	49
2.3.4 PI	membran	e integrity assay of PfAdoMetDC/ODC co-inhibition	49
2.4 DI	SCUSSIO	N	

CHAPTER 3

3.1	INTRO	DUCTION	54
3.1.	1 Transci	riptional profiling of perturbed P. falciparum compared to other organisms	54
3.1.	2 Transci	riptomics methodologies, experimental design and data analysis	55
3.2	MATEF	RIALS AND METHODS	59
3.2.	1 Ensurin	ig the correct treatment dosage for the transcriptomics investigation	59
3	.2.1.1	Growth morphology studies	59
3	.2.1.2	Radio-labelled substrate assays	59

3.2.2 D	rug treatmer	nt for the transcriptomics investigation	60
3.2.3 R	NA isolation		60
3.2.4 cI	ONA synthes	sis	61
3.2.5 0	ligonucleotic	le array spotting and slide post-processing	62
3.2.6 C	y dye cDNA	labelling	63
3.2.7 0	ligonucleotic	le array hybridisation, washing and scanning	63
3.2.8 D	ata analysis		64
3.2.8	3.1 Explo	ratory data analysis	64
3.2.8	3.2 Differ	ential transcript abundance analysis	64
3.	2.8.2.1	Linear models for microarray data (LIMMA) analysis	64
3.	2.8.2.2	EDGE time course analysis	65
3.2.8	3.3 Addit	ional data analysis	65
3.2.9 R	eal-time PC	R validation of differential transcript abundance data	66
3.3 R	ESULTS		66
3.3.1 E	nsuring the o	correct treatment dosage for the functional genomics investigations	66
3.3.2 Ti	ranscriptomi	cs sampling, RNA isolation and cDNA synthesis	68
3.3.3 0	ligonucleotic	de microarray analysis	70
3.3.4 E	Exploratory d	ata analysis	71
3.3.4	1.1 Hiera	rchical clustering of data with those of other perturbations	71
3.3.4	1.2 Hiera	rchical clustering of data related to polyamine and methionine metabolism	75
3.3.4	1.3 Phase	e-ordering and correlation calculations	75
3.3.5 D	ifferential tra	inscript abundance analysis	77
3.3.5	5.1 Data	normalisation	77
3.3.5	5.2 LIMM	A data analysis	80
3.3.5	5.3 EDG	E time course analysis	84
3.3.6 G	O assignme	nt of differentially affected transcripts	84
3.3.7 Fi	inding adjac	ently located genes with differentially affected transcripts	85
3.3.8 P	fAdoMetDC/	ODC-interactome data comparisons	87
3.3.9 R	eal-time PC	R validation of differential transcript abundance data	89
3.4 D	ISCUSSION	l	92
3.5 R	AW DATA A	ND SUPPLEMENTARY WEBSITE	100

CHAPTER 4

4.1	INTRODUCTION	
4.1.1	Evidence of post-transcriptional regulation in <i>P. falciparum</i>	101

4.1.	.2 Integra	tive biolo	ogy from Plasmodium functional genomics data	102
4.1.	.3 Proteo	mics met	thodologies	103
4.1.	4 Metabo	olomics n	nethodologies	105
4.2	MATER	RIALS AI	ND METHODS	
4.2.	1 Proteo	mics		106
4	1.2.1.1	Protein	extraction and quantitation	107
4	1.2.1.2	lso-eleo	ctric focussing (IEF)	107
4.2.	.1.3	Two-dir	mensional polyacrylamide gel electrophoresis (2D-GE)	108
4	1.2.1.4	Gel sca	anning and data analysis	108
4	1.2.1.5	Spot ex	ccision, destaining and trypsin digestion for protein identification	109
4.2.	.2 Metabo	olomics		110
4	1.2.2.1	Metabo	lite extraction and polyamine derivatisation	110
4	1.2.2.2	LC-MS	S/MS metabolite analysis	111
4	1.2.2.3	Metab	olomics data analysis	111
4.2.	.3 Decarb	oxylase	activity assays	112
4	1.2.3.1	LDC in	duction in <i>E. coli</i> as assay positive control	112
4.2.	.4 Methyla	ation stat	tus determination	113
4	1.2.4.1	CpG isl	land analysis of the differential transcript abundance list	113
4	1.2.4.2	Global	methylation assays	113
	4.2.4.2	.1	gDNA isolation	113
4.2.4.2.2 Methylation negative and positive controls		113		
4.2.4.2.3		.3	Restriction-enzyme digestion to assess gDNA methylation	114
	4.2.4.2	.4	South-Western immunoblotting	114
4.3	RESUL	.TS		115
4.3.	1 Proteo	mics ana	lysis of PfAdoMetDC/ODC co-inhibited P. falciparum	115
4	1.3.1.1	Differer	ntial protein abundance analysis and protein identification	117
4	1.3.1.2	Perturb	ation-specific compensatory mechanisms confirmed in the proteome	121
4.3.	.2 Metabo	olomics a	analysis of PfAdoMetDC/ODC co-inhibited P. falciparum	122
4	1.3.2.1	Perturb	ation-specific compensatory mechanisms confirmed in the metabolome	123
4.3.	.3 Compe	ensatory	LDC induction during polyamine depletion investigated further	127
4.3.	.5 gDNA l	Methylati	ion status investigation	128
4	1.3.5.1	CpG isl	land analysis of the differential transcript abundance list	128
4	1.3.4.2	Global	methylation assays	128
	4.3.4.2	.1	Methylation-sensitive restriction endonucleases	129
	4.3.4.2	.2	South-Western immunoblotting	129
4.4	DISCU	SSION		130

CHAPTER 5

CONCLUDING DISCUSSION	136
REFERENCES	142
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	

APPENDIX E

LIST OF EQUATIONS

Equation no. Title of Equation Page no. 2.1 2.2 3.1 3.2 3.3 4.1 4.2

Figure no.

Title of Figure

U		
1.1	Malaria geographical distribution and chloroquine resistance	2
1.2	Giemsa-stained thin smears depicting the life cycle of 3D7 P. falciparum	4
1.3	Currently used antimalarial drugs.	11
1.4	Chemical structures of the natural polyamines	15
1.5	Polvamine metabolism in mammalian cells	16
16	Polvamine metabolism in <i>Plasmodium</i>	18
17	Composite diagram of polyamine levels and biosynthetic enzyme transcript levels	18
1.8	The 48 h IDC transcriptomes of 3D7 Dd2 and HBR P falcinarum	22
1.0	The proposed experimental layout for the application of transcriptione and proteome	
1.5	analysis to drug challongod malaria parasitos	27
01	Chamical structures of DEMO, MDI 73811, MAORA and MAORA	21
2.1	Sigmaidal exponentration response aurue used by Grant Dad Drism 4.0 software to	51
Ζ.Ζ.	Signolial concentration response curve used by Graphinau Firstin 4.0 Software to	10
0.0		40
2.3	IRPITELISA Optimisation	4Z
2.4		42
2.5	FAUS versus microscopy	43
2.6	Typical FACS images	44
2.7	Concentration-response curves of chloroquine	44
2.8	Concentration-response curves of cytostatic compounds	45
2.9	Parasite stage-specific levels of HRPII and LDH activity	47
2.10	Transcript levels of LDH and three histidine-rich proteins during the IDC	48
2.11	Concentration-response curves of MDL73811, DFMO and the combination	49
2.12	Giemsa-stained thin smears of chicken erythrocytes and 3D7 <i>P. falciparum</i> -infected human	
	erythrocytes	50
3.1	Six designs of microarray time course experiments	57
3.2	Giemsa-stained thin smears of untreated <i>P. falciparum</i> and cultures treated with 5 mM DFMO,	
	5 μM MDL73811 or the combination	67
3.3	Total activity of AdoMetDC and ODC based on the release of ¹⁴ CO ₂	68
3.4	Transcriptomics sampling times	69
3.5	The total RNA yield and denaturing agarose/formaldehyde electrophoresis	69
3.6	Typical 70-mer oligonucleotide spotted arrays	70
3.7	Hierarchical data clustering between genes of the PfAdoMetDC/ODC co-inhibition data	72
3.8	Hierarchical data clustering between arrays of the PfAdoMetDC/ODC co-inhibition data and the	
	Llinás perturbation data	73
39	A tight cluster containing several polyamine pathway transcripts	74
3 10	"Biphasic" segregation of the expression/peak abundance of polyamine and methionine	• •
0.10	metabolism transcripts	75
3 11	Phaseogram denicting the transcriptional profiles of untreated versus PfAdoMetDC/ODC co-	10
0.11	inhibition data and Pearson correlation between the PfAdoMetDC/ODC co-inhibition data	76
3 1 2	Pod and groon background images of a typical array (111 TAt33)	78
J. 12 2 12	MA plats from a typical array (125, LITPt22) before and after data transformation	70
J. IJ 2 14	Drint tin bounded from a typical array (125_010103) before and after data transformation	70
J. 14 2 15	Print-up polypois normal typical array (110_10120) before and after data transformation	19
J.10 2.40	Doxplots of log2-fatios (ivi) and intensities (A) across all arrays post-normalisation.	00
J.10	Red/Green density plots of all the arrays before and after data transformation	σU
3.17	i ranscript profiles of PTAdoWetDC/ODC, lysine decarboxylase and ornithine aminotransferase	~
		8

3

3.18	EDGE output in the form of a histogram	84
3.19	Functional classification of transcripts with increased and decreased differential abundance	85
3.20	Eleven gene cluster from chromosome 10	86
3.21	The relative constant transcription profile of the putative cyclophilin (PFE0505w) in the	
	PfAdoMetDC/ODC co-inhibition data and in the IDC transcriptome	89
3.22	A real-time PCR plot obtained for a five-part cDNA dilution series of the putative cyclophilin	90
3.23	Melting curve analysis of the amplification product of cyclophilin	90
3.24	A standard curve of the putative cyclophilin (PFE0505w)	91
3.25	Polyamine and methionine metabolism (differentially affected transcripts indicated)	95
4.1	The master image and actual images of the three best 2D-GE technical replicates used for	
	analysis of UT _{t1} versus T _{t1} , T _{t2} and T _{t3} .	116
4.2.	A typical gel (UTt1_84404) indicating the 41 spots with differential abundance	117
4.3	MALDI-Q-TOF MS/MS protein identification of LDH as an example	119
4.4	A typical gel (UTt1_84404) with an enlarged view of AdoMet synthetase and OAT over the tir	ne
	COURSE	121
4.5	Metabolite profiles compared to relative to of putrescine, spermidine, 5-methylthioinosine,	
	ornihine and AdoMet	124
4.6	Metabolite profiles of treated parasites directly compared to the parallel untreated controls for	-
	putrescine, spermidine, 5-methylthioinosine, ornithine and AdoMet	126
4.7	Lack of measurable LDC activity of untreated and DFMO/MDL73811-treated parasite lysates	
	after incubation with L-[14C]-lysine.	127
4.8	Gel electrophoresis of digested and undigested gDNA to assess methylation after	
	PfAdoMetDC/ODC co-inhibition.	129
4.9	South-Western blot of 5mC in <i>P. falciparum</i> gDNA	130
4.10	Polyamine and methionine metabolism (differentially affected transcripts, proteins and	
	metabolites indicated)	133

Table no.

Title of Table

Page no.

1.1	Antimalarial therapeutics and combinations	10
2.1	IC ₅₀ values obtained with three different drug sensitivity assays	46
2.2	PI assay and FACS analysis of PfAdoMetDC/ODC co-inhibited P. falciparum	50
3.1	Real-time PCR primer information	66
3.2	Pearson correlation within the PfAdoMetDC/ODC co-inhibition transcript data	77
3.3	Biological functions of a subset of the transcripts differentially affected according to	
	LIMMA as a result of PfAdoMetDC/ODC co-inhibition	81
3.4	Adjacent gene clusters with decreased abundance transcripts	86
3.5	IDC mRNA expression profiles of the eleven gene cluster from chromosome 10	87
3.6	Interactome data comparisons	88
3.7	Microarray data validation with real-time PCR	92
4.1	Iso-electric focussing step-and-hold programme	108
4.2	Correlation of the 2D-GE data across replicates groups	115
4.3	Identification and characterisation of a subset of proteins with differential abundance	120
4.4	Pearson correlation of the metabolite data	122
4.5	Metabolites with differential abundance (i.e. fold changes of more than 2 in either direction	า)
	in treated and untreated samples (relative to comparison)	123
4.6	Metabolites with differential abundance (i.e. fold changes of more than 2 in either direction	n)
	after PfAdoMetDC/ODC co-inhibition (parallel time point comparison)	125
4.7	Geecee-count analysis of the genes encoding the 538 differentially affected transcripts	128

¹ H-NMR 2D 2D-DIGE 2D-GE 2D-NMR 2D-PAGE 5mC 5mC(P) 6mA	Proton nuclear magnetic resonance Two-dimensional Two-dimensional difference gel electrophoresis Two-dimensional gel electrophoresis Two-dimensional nuclear magnetic resonance Two-dimensional polyacrylamide gel electrophoresis 5-Methyl-2-deoxycytosine 5-Methyl-2-deoxyadenine
A	Adenosine or average signal intensities (MA plot)
AcN	Acetonitrile
AdoHcy	S-adenosylhomocysteine
AdoMet	S-adenosylmethionine
AdoMet synthetase	S-adenosylmethionine synthetase
AdoMetDC	S-adenosylmethionine decarboxylase
AMA1	Apical membrane antigen 1
APAD	3-acetyl pyridine adenine dinucleotide
ApiAP2	Apicomplexan Apetala2
ATP	Adenosine triphosphate
BC	Before Christ
bp	Base pair
BSA	Bovine serum albumin
C	Cytidine
CD36	Cluster determinant 36
CHAPS	3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CO	Carbon monoxide
CpG	Cytosine Guanine dinucleotide with connecting phosphodiester bond
CPM	Counts per minute
CSA	Chondroitin sulphate A
Ct	Cycle threshold of the real-time amplification curve
Cys	Cysteine
DALY	Disability adjusted life years
dATP	Deoxyadenosine triphosphate
DAVID	Database for annotation, visualization and integrated discovery
dCTP	Deoxycytidine triphosphate
dcAdoMet	Decarboxylated S-adenosylmethionine
DDT	Dichlorodiphenyltrichloroethane
DELI	Double-site enzyme-linked LDH immunodetection
DEPC	Diethyl pyrocarbonate
DFMO	DL-a-difluoromethylornithine
dGTP	Deoxyguanosine triphosphate
DHFR	Dihydrofolate reductase

DHFR/TS	Dihydrofolate reductase/thymidylate synthase
DHPS	Dihydroopteroate synthase
DHPS/PPPK	Dihydroopteroate synthase/dihydroxymethylpterin pyrophosphokinase
DIGE	Difference gel electrophoresis
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphates
DPM	Disintegrations per minute
DTT	Dithiothreitrol
dTTP	Deoxythymidine triphosphate
dUTP	Deoxyuridine triphosphate
EDTA	Ethylenediamine tetra-acetic acid
ELISA	Enzyme-linked immunosorbent assay
ESI	Electrospray ionization
EtOH	Ethanol
FACS	Fluorescence activated cell sorting
F-MES	Modified Falkow (medium)
FTICR	Fourier transform ion cyclotron resonance
G	Guanosine
GABA	Gamma-aminobutyrate or 4-aminobutyrate
gDNA	Genomic DNA
gff	General feature format
GO	Gene ontology
hpi	Hours post-invasion
HPLC	High-performance liquid chromatography
HRP	Histidine-rich proteins
hrp ^a	Horseradish peroxidase
hrp-conjugate	Anti-mouse horseradish peroxidase-conjugated secondary antibody
HRPII	Histidine- and alanine-rich protein 2
IC₅0	Median inhibitory concentration
ICAT	Isotope-coded affinity tags
IDC	Intraerythrocytic developmental cycle
IEF	Iso-electric focusing
IFN	Interferons
IL	Interleukin
IPG	Immobilized pH gradient
iTRAQ	Isobaric tags for relative and absolute quantitation
KEGG	Kyoto Encyclopedia of Genes and Genomes
LB	Luria-Bertani (broth)
LC	Liquid chromatography
LC-ESI/MS	Liquid chromatography/electron spray ionization mass spectrometry
LDC	Lysine decarboxylase
LDH	Lactate dehydrogenase
LIMMA	Linear models for microarray data (software)
LOWESS	Locally weighted scatterplot smoothing

M m/z MALDI MAOBA MAOEA MDL73811 MDR1 MeOH MIAME MOPS MPMP Mr mRNA mRNP MS MS/MS MS/MS MSP1 MSRE MudPIT	Log ₂ -ratios of transcript abundance Mass/charge ratio Matrix assisted laser desorption/ionization 5'-Deoxy-5'-[N-methyl]-N-[2-(aminooxy)buthyl]amino]adenosine 5'-Deoxy-5'-[N-methyl]-N-[2-(aminooxy)ethyl]amino]adenosine 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine Multidrug-resistance type 1 protein Methanol Minimum information about a microarray experiment 3-(N-morpholino)propanesulfonic acid Malaria Parasite Metabolic Pathways Molecular weight Messenger RNA Messenger ribonucleoprotein complexes Mass spectrometer/spectrometry Tandem mass spectrometry Merozoite surface protein 1 Methylation-sensitive restriction endonucleases Multidimensional protein identification technology
NBT	Nitroblue tetrazolium
NMR	Nuclear magnetic resonance
NO	Nitric oxide
OAT	Ornithine aminotransferase
OAT _{met}	Methylated ornithine amino transferase DNA
ODC	Ornithine decarboxylase
ORF	Open reading frame
PBS PCR pdx1 PES PEXEL PfAdoMetDC/ODC PfCRT PfEMP1 PI Pls PLS PMF PMT PMT PDMT PUMAdb	Phosphate buffered saline Polymerase chain reaction Pyridoxal-5'-phosphate synthase Phenazine ethosulphate <i>Plasmodium</i> export element <i>P. falciparum</i> S-adenosylmethionine decarboxylase/ornithine decarboxylase <i>P. falciparum</i> chloroquine-resistance transporter Erythrocyte membrane protein 1 Propidium iodide Iso-electric point <i>Plasmodium</i> database Pyridoxal-5'-phosphate Partial Least Squares Peptide mass fingerprint/fingerprinting Photon multiplier tube (fluorescent scanners) Parts per million Princeton University Microarray database
Q	Quadropole
Q-TOF	Quadropole-time-of-flight mass spectrometer/spectrometry
r	Pearson correlation
R	Correlation coefficient of the regression line of data plotted on the same graph

Rifin	Repetitive interspersed family (genes)
RNA	Ribonucleic acid
rRNA	Ribosomal RNA
SAGE	Serial analysis of gene expression
SDS	Sodium-dodecylsulphate
SERCA	Sarcoplasmic reticulum calcium-dependent ATPase
SRM	Single reaction monitoring (mass spectrometry)
SSC	Saline sodium citrate
SSP	Standard spot numbers
Stevor	Subtelomeric variable open reading frame (genes)
T	Thymidine or treated (sample)
to	Time zero
t1	Time point 1
t2	Time point 2
t3	Time point 3
TAE	40 mM Tris, 20 mM glacial acetic acid, 1 mM EDTA (buffer)
Tm	Melting temperature
TNF	Tumour necrosis factor
TOF	Time-of-flight
tRNA	Transfer RNA
U	Units
UT	Untreated (sample)
UV	Ultraviolet
V	Volts
<i>var</i>	Variant (genes)
Vh	Volt hours
VTS	Vacuolar transport signal
WHO	World Health Organisation

a. HRP is the customary abbreviation for horseradish peroxide, but to distinguish from the abbreviated histidine rich protein, lowercase characters (hrp) were used.