Agriculture and Future Climate Dynamics in Africa: Impacts and Adaptation Options

by

Nhemachena Charles

Submitted in partial fulfilment of the requirements for the degree of

PhD Environmental Economics

Centre for Environmental Economics and Policy in Africa (CEEPA)
Department of Agricultural Economics, Extension and Rural Development
Faculty of Natural and Agricultural Sciences
University of Pretoria
South Africa

January 2009
Dedication

To my wife Charity and son Blessings
Declaration

I declare that this thesis I hereby submit for the degree of PhD in Environmental Economics at the University of Pretoria is entirely my own work and has not been submitted anywhere else for the award of a degree or otherwise.

Parts of the thesis have been published and submitted for publication in journals.

Any errors in thinking and omissions are entirely my own responsibility.

Signed: ………………………

Name: Charles Nhemachena

January 2009
Acknowledgements

I am very grateful to many people and institutions that have supported me throughout my PhD studies. This thesis would not have become a reality without the strong support from my supervisor, Professor Rashid Hassan, who demonstrated a lot of patience, high intellectual guidance, and untiring support throughout the writing process of the thesis. I am grateful for his enormous contribution that has shaped this work.

Financial support from the CEEPA-SIDA PhD programme is highly appreciated. I am also very grateful for the opportunity to use data from the GEF/WB/CEEPA funded Africa Climate study. Further acknowledgement is due to the International START Secretariat for providing a START/PACOM Doctoral Research Fellowship for research support. The author also gratefully acknowledges the dissertation award supported by the W.K. Kellogg Foundation. I am also very grateful to Dr Reneth Mano for all the financial support during the initial stages of my PhD programme, without which I could not have managed. I would also like to thank Dr Claudia Ringler for her support and for including me as part of the IFPRI/CEEPA funded project: Food and Water Security under Global Change – Developing Adaptive Capacity with a focus on Rural Africa. I also thank the CSIR Built Environment, especially the Rural Infrastructure & Services unit for the support during the final stages of my studies.

I am also deeply indebted to Drs James Benhin, Siwa Msangi and Wisdom Akpalu for their invaluable comments and encouragement at various stages of this work. I am thankful to Dalene du Plessis and Lynette Burger for their contributions and help. To my friends and fellow students at the University of Pretoria: Benjamin, Jethro, Wellington, Patrick, Davison, Abebe, Temesgen, Glwadyes, Yemane and all the members of the PhD room – your support and encouragement are highly appreciated.

I would like to thank my parents, Mr and Mrs Nhemachena, and Mr and Mrs Mudombi for patiently enduring the long wait for this study to be completed. I greatly appreciate your invaluable support throughout my PhD studies. I am also greatly thankful to Mr and
Mrs Matsekete, and Mr and Mrs Mukaratirwa for your prayers and support throughout my studies. To my dear brothers Casnos and Givemore, unfortunately you were taken before you could witness the end of my PhD programme – may your souls rest in peace.

I would not have accomplished this work without the unprecedented support, love and care of my wife, Charity and son, Blessings, who have been patient and extraordinarily supportive of my efforts throughout the last few years. Thank you for standing by my side even in extremely trying moments of the entire study period. I am very grateful to many people who contributed in various ways to the completion of this thesis, whom I have not mentioned by name – your support is highly appreciated.

Finally, I thank my Lord, Jesus, for providing me with wisdom, patience and strength throughout my studies.

Charles Nhemachena
University of Pretoria, South Africa
January 2009
Agriculture and future climate dynamics in Africa: Impacts and adaptation options

by

Charles Nhemachena

Degree: PhD Environmental Economics
Supervisor: Professor Rashid M. Hassan
Department: Agricultural Economics, Extension and Rural Development

Abstract

This study had two main objectives. One objective was to measure the aggregate impact of climate change on income from all agricultural production systems (crop, livestock and mixed) in Africa and to predict future impacts under various climate scenarios. In addition to measuring economic impacts, the study analysed determinants of farmers’ choices between alternative adaptation measures available to African farmers. The study is based on a cross-section survey of over 8000 farming households from 11 countries in east, west, north and southern Africa.

To achieve the first objective, the cross-section (Ricardian) approach was used to measure the impact of climate change attributes (rainfall and temperature levels) on income from all agricultural production systems (crop, livestock and mixed) in Africa, controlling for other production factors. Based on empirical estimates from the Ricardian model, the study predicts future impacts under various climate scenarios. In addition to estimating impacts on mixed crop–livestock farms, the study also measures and compares impacts on specialised crop and livestock farms. Responses of different production systems are analysed under irrigation and dryland conditions. The response of net revenue from crop and livestock agriculture across various farm types and systems in
Africa, to changes in climate variables (i.e. mean rainfall and temperature) is analysed. The analysis controlled for effects of key socio-economic, technology, soil and hydrological factors influencing agricultural production. In addition to measuring impacts on aggregate revenue, the study examined variations in the response of three distinct production systems characterising African agriculture: specialised crop; specialised livestock and mixed crop and livestock systems. Differential impacts of climate change on the studied systems were measured under irrigation and dryland conditions.

Results show that net farm revenues are in general negatively affected by warmer and dryer climates. The mixed crop and livestock system predominant in Africa is the most tolerant, whereas specialised crop production is the most vulnerable to warming and lower rainfall. These results have important policy implications, especially in terms of the suitability of the increasing tendency toward mono-cropping strategies for agricultural development in Africa and other parts of the developing world, in the light of expected climate changes. Mixed crop and livestock farming and irrigation offered better adaptation options for farmers against further warming and drying predicted under various future climate scenarios.

For the second objective, the study employed a multinomial choice model to analyse determinants of farm-level climate adaptation measures in Africa. Results indicate that specialised crop cultivation (mono-cropping) is the most vulnerable agricultural practice in Africa in the face of climate change. Warming, especially in summer, poses the highest climate risk which tends to indicate switching away from mono-cropping towards the use of irrigation, multiple cropping and integration of livestock activities. Increased precipitation reduces the need for irrigation and will be beneficial to most African farming systems, especially in drier areas. Better access to markets, agricultural extension and credit services, technology and farm assets (such as labour, land and capital) are critical enabling factors to enhance the capacity of African farmers to adapt to climate change. Government policies and investment strategies that support the provision of and access to education, markets, credit, and information on climate and adaptation measures, including suitable technological and institutional mechanisms that facilitate climate
adaptation, are therefore required for coping with climate change, particularly among poor resource farmers in the dry areas of Africa.

Key words: climate change, impacts, adaptation, agriculture, Africa, Ricardian approach, multinomial choice models
Table of Contents

DEDICATION .. I
DECLARATION .. II
ACKNOWLEDGEMENTS ... III
ABSTRACT ... V
TABLE OF CONTENTS .. VIII
LIST OF TABLES ... X
LIST OF FIGURES .. XI
ACRONYMS AND ABBREVIATIONS .. XII
CHAPTER 1 ... 1
INTRODUCTION .. 1
 1.0 BACKGROUND AND STATEMENT OF THE PROBLEM ... 1
 1.2 OBJECTIVES OF THE STUDY ... 3
 1.3 HYPOTHESES OF THE STUDY ... 4
 1.4 APPROACH AND METHODS OF THE STUDY .. 5
 1.5 ORGANISATION OF THE THESIS ... 5
CHAPTER 2 ... 7
AFRICAN CLIMATE, FARMING SYSTEMS AND AGRICULTURAL PRODUCTION 7
 2.0 INTRODUCTION .. 7
 2.1 AFRICAN CLIMATE AND AGRICULTURAL POTENTIAL .. 8
 2.2 AGRO-CLIMATES AND FARMING SYSTEMS IN SUB-SAHARAN AFRICA 11
 2.3 CHARACTERISATION OF SELECTED PRIORITY FARMING SYSTEMS 16
 2.4 IMPORTANCE OF LIVESTOCK IN AFRICAN FARMING SYSTEMS 21
 2.5 ENVIRONMENTAL CONSTRAINTS IN MAJOR FARMING SYSTEMS 22
 2.6 SUMMARY .. 24
CHAPTER 3 ... 26
REVIEW OF LITERATURE ON MEASURING THE ECONOMIC IMPACTS OF CLIMATE CHANGE ON AGRICULTURE .. 26
 3.0 INTRODUCTION .. 26
 3.1 APPROACHES TO MEASURING ECONOMIC IMPACTS OF CLIMATE CHANGE 26
 3.1.1 Structural approaches ... 26
 3.1.2 The Spatial analogue approach ... 29
 3.1.2.1 The Future Agricultural Resources Model (FARM) .. 30
 3.1.2.2 Ricardian cross-sectional approach ... 31
 3.1.3 Integrated assessment models .. 35
 3.1.4 Agro-ecological zone (AEZ) method ... 36
 3.2 EMPIRICAL STUDIES ASSESSING IMPACTS OF CLIMATE CHANGE ON AGRICULTURE .. 37
 3.2.1 Empirical studies based on structural approaches ... 37
 3.2.2 Empirical studies based on the cross-sectional (Ricardian) approach 43
 3.3 SUMMARY .. 46
CHAPTER 4 ... 50
MEASURING THE ECONOMIC IMPACT OF CLIMATE CHANGE ON AFRICAN AGRICULTURAL PRODUCTION SYSTEMS .. 50
 4.0 INTRODUCTION .. 50
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>MAJOR FARMING SYSTEMS IN SUB-SAHARAN AFRICA</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>MAJOR CHARACTERISTICS OF SELECTED PRIORITY FARMING SYSTEMS</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>PRODUCTIVITY TRENDS FOR VARIOUS COMMODITIES IN THE PRIORITY FARMING SYSTEMS</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>IRRIGATED LAND WITHIN THE MAIN FARMING SYSTEMS IN AFRICA IN 2000</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>PROPORTIONS OF RAIN-FED AREAS AND PRODUCTION TOTALS IN 1995 AND PROJECTED TO 2021-25 IN AFRICA FOR SELECTED CROPS</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>MAJOR ANIMAL PRODUCTION SYSTEMS IN AFRICAN AGRO-ECOLOGICAL ZONES</td>
<td>22</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>SUMMARY STATISTICS OF THE SURVEY SAMPLE</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>CHARACTERISATION OF FARM TYPES</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>VARIABLES USED IN THE EMPIRICAL ANALYSIS AND THEIR EXPECTED EFFECTS</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>RICARDIAN REGRESSION RESULTS</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>MARGINAL IMPACTS AND ELASTICITIES OF CLIMATE VARIABLES ON NET REVENUE ($/FARM)</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>PREDICTED IMPACTS OF CLIMATE CHANGE ON NET REVENUE FROM SIMPLE SCENARIOS</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>CLIMATE PREDICTIONS OF AOGCM MODELS FOR 2100</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>PREDICTED IMPACTS FROM AOGM CLIMATE SCENARIOS (PCM AND CCC) FOR THE YEAR 210081</td>
<td>79</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>FARMER PERCEPTIONS ON LONG TERM TEMPERATURE AND PRECIPITATION CHANGES (% OF RESPONDENTS)</td>
<td>95</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>PERCEIVED FARM-LEVEL ADAPTATION STRATEGIES IN AFRICA (% OF RESPONDENTS)</td>
<td>96</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>CATEGORISED ADAPTATION MEASURES USED BY FARMERS</td>
<td>98</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>DEFINITION OF VARIABLES USED IN THE EMPIRICAL ANALYSIS</td>
<td>103</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>MARGINAL EFFECTS OF EXPLANATORY VARIABLES FROM THE MULTINOMIAL LOGIT ADAPTATION MODEL</td>
<td>111</td>
</tr>
</tbody>
</table>
List of Figures

FIGURE 2.1 (A): VARIATIONS OF THE EARTH’S SURFACE TEMPERATURE FOR THE PAST 100 YEARS IN AFRICA
--- 10

FIGURE 2.1 (C): FOOD PRODUCTION INDEX IN AFRICA 11

FIGURE 2.2: MAJOR FARMING SYSTEMS IN AFRICA 12

FIGURE 2.3(A): AVERAGE ANNUAL PRECIPITATION IN MAJOR FARMING SYSTEMS 15

FIGURE 2.3(B): AVERAGE ANNUAL TEMPERATURES IN MAJOR FARMING SYSTEMS 15

FIGURE 2.4: ENVIRONMENTAL CONSTRAINTS IN MAJOR FARMING SYSTEMS 23

FIGURE 4.1: MAP OF STUDY COUNTRIES 53

FIGURE 4.2: TEMPERATURE RESPONSE FUNCTION – ALL FARMS 71

FIGURE 4.3: PRECIPITATION RESPONSE FUNCTION – ALL FARMS 71

FIGURE 4.4: TEMPERATURE RESPONSE FUNCTION – MIXED CROP–LIVESTOCK FARMS 72

FIGURE 4.5: PRECIPITATION RESPONSE FUNCTION – MIXED CROP–LIVESTOCK FARMS 72

FIGURE 4.6: TEMPERATURE RESPONSE FUNCTION – SPECIALISED CROP FARMS 73

FIGURE 4.7: PRECIPITATION RESPONSE FUNCTION – SPECIALISED CROP FARMS 73

FIGURE 4.8: TEMPERATURE RESPONSE FUNCTION – SPECIALISED LIVESTOCK FARMS 74

FIGURE 4.9: PRECIPITATION RESPONSE FUNCTION – SPECIALISED LIVESTOCK FARMS 74
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEZ</td>
<td>Agro Ecological Zone</td>
</tr>
<tr>
<td>AGRIM</td>
<td>Agriculture, Growth and Redistribution of Income Model</td>
</tr>
<tr>
<td>AOGCMs</td>
<td>Atmospheric-Oceanic Global Circulation Models</td>
</tr>
<tr>
<td>APN</td>
<td>Asia-Pacific Network for Global Change Research</td>
</tr>
<tr>
<td>ARTES</td>
<td>Africa Rainfall and Temperature Evaluation System</td>
</tr>
<tr>
<td>CCC</td>
<td>Canadian Climate Centre</td>
</tr>
<tr>
<td>CEEPA</td>
<td>Centre for Environmental Economics and Policy in Africa</td>
</tr>
<tr>
<td>CERES</td>
<td>Crop Estimation through Resources and Environmental Synthesis</td>
</tr>
<tr>
<td>CGE</td>
<td>Computable General Equilibrium</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CROPWAT</td>
<td>Crop Water</td>
</tr>
<tr>
<td>DES</td>
<td>Dietary Needs Supply</td>
</tr>
<tr>
<td>EASM</td>
<td>Egyptian Agricultural Sector Model</td>
</tr>
<tr>
<td>EPIC</td>
<td>Erosion Productivity Impact Calculator</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FARM</td>
<td>Future Agricultural Resources Model</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environmental Facility</td>
</tr>
<tr>
<td>GCM</td>
<td>Global Circulation Model</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>LUT</td>
<td>Land Utilisation Types</td>
</tr>
<tr>
<td>IAC</td>
<td>InterAcademy Council</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>MINK</td>
<td>Missouri-Iowa-Nebraska-Kansas</td>
</tr>
<tr>
<td>MLCRDRY</td>
<td>Multiple crops under dryland</td>
</tr>
<tr>
<td>MLCRIRRG</td>
<td>Multiple crops under irrigation</td>
</tr>
<tr>
<td>MLCRLSIR</td>
<td>Multiple crop-livestock under irrigation</td>
</tr>
<tr>
<td>MLCRLSIR</td>
<td>Multiple crop-livestock under dryland</td>
</tr>
</tbody>
</table>
MOCRLSDR Mono crop-livestock under dryland
MOCRLSIR Mono crop-livestock under irrigation
MNL Multinomial Logit
MNP Multinomial Probit
PCM Parallel Climate Model
SNM Standard National Model
SRES Special Report on Emissions Scenarios
SSA Sub-Saharan Africa
SSMI Special Sensor Microwave Imager
TAR Third Assessment Report
UNEP United Nations Environmental Programme
US United States of America
VIF Variance Inflation Factor
WB World Bank