

ISOLATION AND IDENTIFICATION OF NAPHTHOQUINONES FROM EUCLEA NATALENSIS WITH ACTIVITY AGAINST MYCOBACTERIUM TUBERCULOSIS, OTHER PATHOGENIC BACTERIA AND HERPES SIMPLEX VIRUS

BY

NAMRITA LALL

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHIAE: PLANT PHYSIOLOGY Department of Botany

Faculty of Natural and Agricultural Sciences University of Pretoria

Pretoria

PROMOTER: Prof J J M Meyer

April 2001

List of Abbreviations

CFU	Colony forming units
CPE	Cytopathic effect
DEPT	Distortionless enhancement by polarisation transfer
DMSO	Dimethyl sulphoxide
EB	Ethambutol
FCS	Fetal calf serum
HIV	Human immunodeficiency virus
HSV	Herpes simplex virus
INH	Isoniazid
MDR	Multidrug-resistant
MEM	Minimum essential medium
MIC	Minimal inhibitory concentration
MM	Maintenance medium
MRC	Medical Research Council
MTT	3-4,5-dimethylthiazol-2,5-diphenyl tetrazolium bromide
NMR	Nuclear magnetic resonance
NQ	Naphthoquinone
PBS	Phosphate buffer saline
RIF	Rifampin
SM	Streptomycin
ТВ	Tuberculosis
TLC	Thin layer chromatography
TMS	Tetramethylsilane
VK	Vervet monkey kidney cells

CONTENTS

List of Abbreviations	ii
List of Figures	Xİ
List of Tables	xiv

Chapter 1 INTRODUCTION

1.1	Backg	ground1
	1.1.1	Phytomedicines: the greening of modern medicine1
	1.1.2	Ethnopharmacology and the utilization of herbal drugs2
	1.1.3	South African traditional medical practice4
1.2	Tube	rculosis5
	1.2.1	Epidemiology5
	1.2.2	TB in animals6
	1.2.3	Mycobacterium tuberculosis; the causative agent
	1.2.4	Multidrug-resistant TB10
1.3	Other	Bacterial infections11
1.4	Viral	infections12
1.5	Media	cinal plants with antibacterial and antiviral activity13
1.6	Scope	of the thesis
	1.6.1	Antimycobacterial activity of plant extracts17

.

	1.6.2	Comparative study of the different methods for susceptibility	,
		testing of <i>M. tuberculosis</i>	. 18
	1.6.3	Cytotoxicity assay of plant extracts	. 19
	1.6.4	Antibacterial activity of <i>Euclea natalensis</i>	. 19
	1.6.5	Isolation, purification and identification of the active	
		compound(s) from <i>E. natalensis</i>	21
	1.6.6	Antiviral activity of <i>E. natalensis</i>	22
1.7	Struc	ture of the thesis	22
1.8	Refer	ences	24

Chapter 2 SUSCEPTIBITY TESTING OF *MYCOBACTERIUM TUBERCULOSIS* USING THE AGAR PLATE METHOD

Abs	tract	
2.1	Introduction	
2.2	Materials and methods	35
	2.1.1 Plant material	
	2.2.2 Preparation of plant extracts	
	2.2.3 Determination of antimycobacterial activity	
	2.2.3.1 Preparation of bacterial media	
	2.2.3.2 Interpretation of results	
2.3	Results and Discussion	
2.4	Conclusion	42
2.5	References	

CHAPTER 3 SUSCEPTIBILITY TESTING OF *MYCOBACTERIUM TUBERCULOSIS* USING THE BACTEC RADIOMETRIC ASSAY

Abst	tract		
3.1	Introd	duction	46
3.2	Mater	rials and methods	47
	3.2.1	Plant material	
	3.2.2	Determination of antimycobacterial activity	47
3.3	Result	ts and Discussion	54
	3.3.1	Inhibitory activity of plant extracts	
	3.3.2	Comparison of the two susceptibility testing methods	56
3.4	Concl	lusion	57
3.5	Refer	'ences	58
СН	APTE	CR 4 CYTOTOXICITY ASSAY OF PLANT	

EXTRACTS

Abst	tract		60
4.1	Introd	luction	61
4.2	Mater	rials and methods	62
	4.2.1	Plant material	
	4.2.2	Cell culture	
	4.2.3	Cytotoxicity assay	

Results and Discussion	63
Conclusion	66
References	67
	Results and Discussion Conclusion References

CHAPTER 5 ANTIBACTERIAL ACTIVITY OF EUCLEA NATALENISIS

Abs	stract	•••••••••••••••••••••••••••••••••••••••	
5.1	Introd	uction	
5.2	Materi	als and methods	
	5.2.1	Plant material	
	5.2.2	Preparation of plant extracts	
	5.2.3	Bacteria	
	5.2.4	Antibacterial testing	
5.3	Result	ts and Discussion	74
5.4	Concl	usion	
5.5	Refer	ences	

CHAPTER 6. ANTIBACTERIAL ACTIVITY OF DIOSPYRIN ISOLATED FROM *EUCLEA NATALENSIS*

bstract)

6.1	Introduction	. 81
-----	--------------	------

6.2	Mater	ials and methods	82
	6.2.1	Extraction, isolation and purification of the active compound	82
	6.2.2	Bioassay on <i>M. tuberculosis</i>	82
	6.2.3	Antibacterial testing	84
6.3	Resul	ts and Discussion	85
	6.3.1	Identification of the isolated compound	85
	6.3.2	Effect of diospyrin on <i>M. tuberculosis</i>	89
	6.3.3	Effect of diospyrin on bacterial species	92
6.4	Concl	usion	96

CHAPTER 7. ANTIVIRAL PROPERTIES OF EUCLEA NATALENSIS

Abs	tract		101
7.1	Introd	Juction	102
7.2	Mater	rials and methods	104
	7.2.1	Plant material	104
	7.2.2	Cell culture and virus stock solution	104
	7.2.3	Cytotoxicity assay	104
	7.2.4	Antiviral assay	105
		7.2.4.1 Preparation of virus staining solutions and staining	
		procedure	106
7.3	Result	ts and Discussion	107

7.4	Conclusion	109
7.5	References	110

CHAPTER 8 ISOLATION AND IDENTIFICATION OF 7-METHYLJUGLONE, THE SECOND ANTIBACTERIAL COMPOUND ISOLATED FROM EUCLEA NATALENSIS

Abs	tract	
8.1	Introd	luction114
8.2	Mater	ials and methods115
	8.2.1	Extraction, isolation and purification of the compound115
	8.2.2	Bioassay on <i>M. tuberculosis</i> 116
	8.2.3	Bioassay on other bacterial species118
8.3	Results and Discussion119	
	8.3.1	Identification of the isolated compound119
	8.3.2	Effect of 7-methyljuglone as a single agent and in combination with
		diospyrin on <i>M. tuberculosis</i> 123
	8.3.3	Effect of 7-methyljuglone as a single agent and in combination with
		diospyrin on other bacterial species126
8.4	Concl	usion131
8.5	Refer	ences

CHAPTER 9. GENERAL DISCUSSION AND CONCLUSION

9.1	Motivation for this study137
9.2	In vitro susceptibility testing of M. tuberculosis
9.3	Cytotoxicity assay of plant extracts139
9.4	Antibacterial activity of the crude extracts of <i>E. natalensis</i>
9.5	Antimycobacterial and antibacterial activity of the isolated compounds from
	E. natalensis140
9.6	Antiviral activity of <i>E. natalensis</i> 141
9.7	References

CHAPTER 11 ACKNOWLEDGEMENTS 146

CHAPTER 12 APPENDICES

 lix 1 - Publications	Append
 Publications resulting from this thes	12.1
 Articles in preparation	12.2

Appendix 2 - Provisional	patent registered	
	1 · · · · · · · · · · · · · · · · · · ·	

List of Figures

Figure 1.19
Mycobacterium tuberculosis stained uniformly by the Ziehl-Neelsen method:
(a) Colonies x 400. (b) Straight and curved rods x 1000 of <i>M. tuberculosis</i> (Courtesy:
WHO/TB/98.258).
Figure 1.2
Euclea natalensis: (a) Tree. (b) Fruit.
Figure 1.3
Distribution of Euclea natalensis in Southern Africa (Van Wyk and Van Wyk 1997).
Figure 2.1
Examples of ethnobotanically selected plant parts.
Figure 2.2
Colonies of M. tuberculosis on Lowenstein-Jensen medium.
Figure 2.3
Inhibitory effect of acetone and water extracts of Croton pseudopulchellus on the
growth of M. tuberculosis: (a) Control - colonies of M. tuberculosis. (b) Acetone extract
(0.5, 1.0 and 5.0 mg/ml) - total inhibition of <i>M. tuberculosis.</i> (c) Water extract (5.0
mg/ml) - colonies of <i>M. tuberculosis</i> .

Figure 3.3
Ziehl-Neelsen staining (Kleeberg et al. 1980; WHO/TB/98.258).
Figure 4.1
Cytotoxic effect of acetone extract of Acacia xanthophloea against primary vervet
monkey kidney cells: (a) Cell control. (b) Cytopathic effect of the acetone extract.
Figure 5.1
Roots of Euclea natalensis.
Figure 6.1
UV spectrun of disopyrin isolated from E. natalensis.
Figure 6.2
¹ H-NMR spectrum of diospyrin isolated from <i>E. natalensis</i> .
Figure 6.3
¹³ C-NMR spectrum of diospyrin isolated from <i>E. natalensis</i> .
Figure 6.4
Chemical structure of diospyrin.
Figure 6.5
Triterpenes: (a) $(24R)$ -24,25-epoxycycloartan-3-one. (b) $(3 \propto H, 24R)$ -24,25-
epoxycycloartan-3-ol isolated from Borrichia frutescens.
Figure 6.6

Zone of inhibition of *Staphylococcus aureus* on TLC plate in a direct bioassay of diospyrin isolated from the roots of *E. natalensis*. Silica gel 60 plate developed in chloroform-hexane(1:1).

Figure 6.7
Plumbagin isolated from <i>Plumbago auriculata</i> and <i>P. zeylanica</i> .
Figure 6.8
Kigelinone isolated from Kigelia pinnata.
Figure 8.1
Biotage flash chromatography apparatus.
Figure 8.2
Glass column chromatography and fraction collector.
Figure 8.3
Structure of 7-methyljuglone.
Figure 8.4
¹ H-NMR spectrum of 7-methyljuglone isolated from <i>E. natalensis</i> .
Figure 8.5
¹³ C-NMR spectrum of 7-methyljuglone isolated from <i>E. natalensis</i> .
Figure 8.6
DEPT spectra of 7-methyljuglone isolated from <i>E. natalensis</i> .
Figure 8.7
Mass spectra of 7-methyljuglone isolated from <i>E. natalensis</i> .
Figure 8.8
Effect of 7-methyljuglone as a single agent and in combination with diospyrin on
bacterial species: (a) 7-methyljuglone. (b) 7-methyljuglone + diospyrin.

Table 1.1	16
The World's 25 Best Selling Pharmaceuticals (Sneader 1985; Phillips & Drew 1992)	

Table 2.140Antimycobacterial activity of plant extracts on the H37Rv strain of *Mycobacteriumtuberculosis* as determined by the agar plate method.

Table 4.164ID₅₀ (μg/ml) values of 14 plant extracts on monkey kidney cells.

 Table 5.1
 75

 Antibacterial activity of aqueous and acetone extracts of the roots of *E. natalensis*.

Table 6.190Effect of diospyrin on the growth of the sensitive strain (H37Rv) and resistant strains ofMycobacterium tuberculosis as determined by the radiometric method.

Table 7.1107Dose response pattern of herpes simplex virus type-1 on VK cells to plant extracts anddiospyrin. Absorbance of the negative cell controls for acetone extract, water extractand diospyrin was 0.518 ± 0.039 , 0.503 ± 0.070 and 0.457 ± 0.063 respectively.