The value of extracts of *Ficus lutea* (Moraceae) in the management of Type II diabetes in a mouse obesity model

Oyinlola Oluwunmi Olaokun
(B.Sc, M.Sc Biochemistry)

Thesis submitted in the fulfilment for the degree

Doctor of philosophy (PhD)

In the Phytomedicine Programme,
Department of Paraclinical Sciences,
Faculty of Veterinary Sciences
University of Pretoria

Supervisor: Prof V. Naidoo
Co-supervisors: Prof J.N. Eloff
 Dr L.J. McGaw

December, 2012

© University of Pretoria
Declaration

I declare that the thesis hereby submitted to the University of Pretoria for the degree of doctor of philosophy has not been previously submitted by me for a degree at this or any other university, that it is my own work in design and in execution, and that all material contained herein has been duly acknowledged.

Mrs O.O. Olaokun
This work is dedicated to the memory of my father (Late Mr Olatunji Korede) and to a colleague and friend (Late Olukemi Ore Udom who started her PhD in the Phytomedicine Programme but passed away before completing). May their souls rest in perfect peace
Acknowledgement

First of all I want to thank the Almighty God, the giver of life for granting me the grace to complete the PhD study. The support and encouragement of my family and friends have been an essential part of my success. My ambition to have a PhD degree would not have been possible without the support of my husband Mr. Samson Olabamiji Olaokun who is my motivation and also paid for my subsistence. My children, Timilehin, Folakemi and Mayowa were with me during my study and provided the necessary diversion when I was stressed. I am grateful to my mum Mrs. Mojisola Korede for her prayer, my sister Mrs. Mobolaji Tanimola and her husband Mr. Afolabi Tanimola and my friend Mrs. Francisca Ezeana for their emotional support. I recognise the contribution of Mrs. Timi Bamuza-Pemu, Dr. Chris Adewale, the bishop and members of the New Testament Gospel Church (NTGC), and the pastor and members of the Redeemed Christian Church of God (RCCG) Mount Zion Parish. I am deeply indebted to the Federal Institute of Industrial Research Oshodi (FIIRO) for granting me study leave with pay. The University of Pretoria provided support through a university bursary, National Research Foundation (NRF) of South Africa, Faculty of Veterinary Science and the Department of Paraclinical Sciences provided funds for research.

I am grateful to my supervisor, Prof. V. Naidoo for his guidance, patience and dedication to this study from the inception to the write up of this thesis. I am also grateful to my co-supervisors Prof. J.N. Eloff and Dr. L.J. McGaw for imparting knowledge and for your constructive criticism. My thanks go to the Secretary of the Phytomedicine Programme, Tharien de Winnaar for her assistance in administrative issues and in the purchase of needed materials.

The animal study was carried out at the UPBRC, where I received assistance of Mrs. Ilse Janse van Rensburg and Mrs. Santa Meyer for the in vivo assay. Dr. Tamsyn Pulker treated sick animals while Ms. Marleze Rheeder, Mrs. Antonette van Wyk, and Mr. Jeff Ramohlola assisted with the glucose tolerance tests. I am grateful for all your contributions.

I recognise the help of Dr. Aroke S. Ahmed and Dr. Maurice D. Awouafack for running the column for the isolation of compounds, Prof Ahmed A. Hussein for running the NMR for two of the isolated compounds and Dr. Maurice D. Awouafack for elucidating the structure of the compounds from the NMR spectra. Also Ms. Annette Venter for her help with tissue culturing during the primary muscle and fat cell isolation and for reviving of established cell lines of muscle, liver and pre-adipocyte. Ms. Magds Nel of the Manie van der Schhff Garden, and Ms. Elsa van Wyke and Mr. Jason Sampson (Curator of the HGW Schweickert Herbarium of the University of Pretoria) assisted in the collection, identification and authentication of the plant samples. I also would like to recognise my colleagues in the Phytomedicine Programme; as it was a pleasure working together with you.
Conference presentations

Paper: O.O. Olaokun, L.J. McGaw, J.N. Eloff and V. Naidoo. The importance of cytotoxicity testing in selecting *Ficus* plant extract with promising antidiabetic enzyme inhibitory activity for further research presented at the joint Annual Conference of the South African Society for Basic and Clinical Pharmacology in association with the department of Family medicine (University of Pretoria) and Toxicology Society of South Africa, 29th – 2nd October, 2012, University of Pretoria, Hatfield.

Articles prepared from this thesis for publication

Abstract

Diabetes mellitus is a chronic disease characterised by prolonged hyperglycaemia, especially post-prandial, in association with the consumption of diets that promote obesity. While different types of the disease have been identified, Type II diabetes also known as insulin dependent diabetes is most prevalent. Treatment for patients with this disease is usually a combination of exercise, low caloric diet and specific medical intervention through the use of allopathic medicines or surgery. While the number of treatment options is large, unfortunately, treatment is usually associated with complications such as drug adverse reactions and failure to halt disease progression. As a result, new therapies are required. Herbal medicines such as those derived from the *Ficus* species, which have been used traditionally in the treatment of diabetes, may serve as new sources of drug therapies. The aim of this study was to evaluate the effectiveness of selected South African *Ficus* species for their potential ability to manage Type II diabetes using *in vitro* and *in vivo* screening models. Dried and ground leaves of ten *Ficus* species were extracted separately with acetone, chloroform and hexane for determination of its phytochemical constituents. Since acetone extracted more variety of compounds, the extracts were used for determination of total polyphenol content, antioxidant activity, α-amylase and α-glucosidase inhibitory activity, cytotoxicity, glucose uptake in primary cell cultures and established cell lines, and insulin release in pancreatic cell lines. The most active extract (*F. lutea*) was subjected to solvent-solvent fractionation and the six fractions subsequently evaluated by the same assays. The most active fraction (ethyl acetate) was thereafter subjected to fractionation for the isolation of bioactive compound(s) or direct evaluation in a mouse obesity model.

The acetone extract of *F. lutea* had the highest polyphenolic content (56.85 ± 1.82 mg GAE/g dry weight), the strongest antioxidant activity (4.80 ± 0.90 TEAC) and the highest α-amylase inhibitory activity with an EC$_{50}$ value of 9.42 ± 2.01 µg/ml. Although the extract of *F. lutea* had the highest sucrase (64.31 ± 3.57%) inhibitory activity at concentration of 0.5 mg/ml, the EC$_{50}$ of *F. sycomorus* (217 ± 69 µg/ml) was the best followed by *F. lutea* (289 ± 111 µg/ml). Based on the correlation coefficient between polyphenol and alpha amylase inhibition (0.80) and alpha glucosidase (sucrase) inhibition (0.84), and the partial non-competitive manner by which the acetone extract of *F. lutea* inhibited the α-amylase and α-glucosidase enzymes, the polyphenols appear to be in part responsible for the evident activity. All ten *Ficus* species were less toxic than doxorubicin (positive control) but contained compounds that are generally relatively more toxic to the Vero kidney cells than to the C3A liver cells. The extract of *F. craterostoma* was the least toxic to the C3A and Vero cells, while the LC$_{50}$ for the extract of *F. lutea* extract were relatively non-toxic to the Vero cells (214.8 ± 5.0 µg/ml) and more toxic (126.0 ± 6.8 µg/ml) to the C3A cell line.

In the glucose uptake assays using primary rat abdominal muscle or epididymal fat cells, *F. lutea* acetone extracts (200 µg/ml) induced greater glucose uptake of 10.8 ± 1.8% for muscle and of 32.0 ± 8.4% for fat respectively, in comparison to the DMSO control wells. A similar response was seen with the established C2C12 muscle and H-4-II-E liver cell lines, where *F. lutea* in a dose related manner increased glucose uptake and at the highest concentration (500 µg/ml) increase glucose uptake by 14.9 ± 2.3% and 19.3 ± 0.6% respectively. In contrast no result was quantifiable in the established 3T3-L1 pre-adipocytes cell line, most likely due to a flaw in the methodology. The concurrent insulin addition, (1 and 10 µM) also potentiated the glucose utilisation in the *F. lutea* treated C2C12 and H-4-II-E cells. On addition of extracts to the RIN-m5F pancreatic β-cells, the extract of *F. lutea* stimulated a dose related increase in insulin release with insulin secretion of 120.8 ± 11.1% at the highest concentration (500 µg/ml) and concurrent dose related decrease in cell viability in comparison to the untreated control. As a result it would appear that *F. lutea* acetone extracts have a dual mechanism behind its ability to reduce glucose concentrations.

The extract of *Ficus lutea*, was further subjected to solvent-solvent fractionation in hexane, chloroform, dichloromethane, ethyl acetate, n-butanol and water due to its superior response. The ethyl acetate fraction had the highest polyphenolic content (100.5 ± 1.6 mg GEA/g dried extract) and the highest sucrase inhibitory activity (126.8 ± 30.6 µg/ml), while the n-butanol fraction had the highest α-amylase inhibitory activity (26.5 ± 1.3 µg/ml). Nonetheless the inhibition of the α-amylase...
enzyme activity by the various fractions was in all cases lower than that for the crude extract. In the cytotoxic assay using Vero monkey kidney and C3A liver cell line, the hexane fraction was the least toxic while the ethyl acetate fraction was relatively non-toxic, it had the lowest LD$_{50}$ against the Vero cells (LD$_{50}$ = 126.9 ± 1.5 µg/ml). In the glucose uptake assays, the ethyl acetate fraction stimulated the greatest glucose uptake into the C2C12 muscle and H-4-II-E liver cells in dose responsive manner, with no added benefits being achieved through the concurrent addition of insulin. The ethyl acetate fraction also enhanced insulin secretion in RIN-m5F pancreatic β-cells, albeit to a lower extent than the crude extract with dose related decrease in cell viability. With the ethyl acetate fraction being the most active fraction with moderately toxicity, further isolation was attempted. Five compounds were isolated, namely lupeol, stigmasterol, α-amyrin acetate, epicatechin and epiafzelechin, with all of the compounds except epiafzelechin previously known to possess antidiabetic activity. The ethyl-acetate fraction was also evaluated for its weight reducing potential in obese mouse model. Unfortunately no in vivo activity was discernible. In conclusion, this study is the first to report on the $\textit{in vitro}$ antidiabetic activity of the extract of $F. lutea$.
Table of Contents

DECLARATION

DEDICATION

ACKNOWLEDGEMENT

CONFERENCE PRESENTATIONS

ARTICLES PREPARED FROM THIS THESIS FOR PUBLICATION

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLE

LIST OF ABBREVIATIONS

CHAPTER 1

1.1 Introduction

1.2 Hypothesis

1.3 Aim

1.4 Objectives

CHAPTER 2

2.1 Introduction

2.2 Glucose Metabolism

2.2.1 Digestion

2.2.2 Absorption and transport of glucose

2.2.3 Entry of Glucose into cells

2.3 Insulin

2.3.1 Structure and biochemistry

2.3.2 Mechanism of insulin secretion

2.3.3 Mechanism of insulin action

2.3.4 Physiology of normal insulin secretion
3.2.4 Trolox equivalent antioxidant capacity (TEAC)--- 52
3.2.5 α-Amylase inhibition assay--- 53
3.2.6 α- Glucosidase inhibition assay-- 54
3.2.7 Kinetics of inhibition against α- amylase and α- glucosidase activities------------------ 55
3.2.8 Calculation of EC₅₀--- 55
3.2.9 Cytotoxicity assay--- 55
3.2.10 Glucose uptake in primary cell cultures--- 56
3.2.11 Glucose uptake in established cell lines--- 58
3.2.12 Insulin secretion assay--- 60
3.2.13 Solvent-solvent fractionation and isolation of compounds------------------------------- 60
3.2.14 Isolation of compounds-- 61
3.2.15 General experimental procedures-- 61
3.2.16 In vivo assay-- 61
3.2.17 Statistical analyses-- 66

CHAPTER 4 --- 67

4 RESULTS-- 67
4.1 Crude extracts -- 67
4.1.1 Extraction of plants-- 67
4.1.2 Phytochemical analysis--- 68
4.1.3 Antioxidant activity--- 68
4.1.4 Total polyphenol content and antioxidant activity--------------------------------- 70
4.1.5 α-Amylase inhibitory activity of extracts of Ficus species------------------------------- 71
4.1.6 α-Glucosidase inhibitory activity of extracts of Ficus species------------------------ 73
4.1.7 The enzyme kinetics of α- amylase and α- glucosidase inhibition by extract of F. lutea -- 75
4.1.8 Cytotoxicity of the acetone extracts of the ten Ficus species--------------------------------- 76
4.1.9 Glucose uptake activity in primary rat abdominal muscle culture---------------------- 77
4.1.10 Glucose uptake in primary rat epididymal fat cells-------------------------------------- 78
4.1.11 Glucose uptake activity in C2C12 muscle cells-- 78
4.1.12 Glucose uptake activity in H-4-11-E liver cells

4.1.13 Glucose uptake in 3T3-L1 pre-adipocytes

4.1.14 Insulin secretion in RIN-m5F pancreatic cells

4.2 Solvent-solvent fractionation of extract of *F. lutea*

4.2.1 Percentage yield of fractions

4.2.2 Antioxidant activity

4.2.3 Total polyphenol content

4.2.4 Inhibition of α-amylase activity by the fractions from the acetone extract of *F. lutea*

4.2.5 Inhibition of α-glucosidase activity by the fractions of acetone extract of *F. lutea*

4.2.6 Cytotoxicity of the fractions from acetone extract of *F. lutea*

4.2.7 Glucose uptake in C2C12 muscle cells

4.2.8 Glucose uptake activity in H-4-11-E liver cells

4.2.9 Insulin secretion in RIN-m5F pancreatic cells

4.3 Structure Elucidation of Compounds from the ethyl acetate fraction of *F. lutea*

4.3.1 Structure Elucidation of AFL1 or Lupeol (1)

4.3.2 Structure Elucidation of AFL2 or Stigmasterol (2)

4.3.3 Structure Elucidation of AFL3 or α-Amyrin Acetate (3)

4.3.4 Structure elucidation of AFL4 or Epicatechin (4)

4.3.5 Structure elucidation of AFL5 or Epiafzelechin (5)

4.3.6 Inhibition of α-glucosidase activity by the compounds

4.3.7 Glucose uptake in C2C12 muscle cells

4.3.8 Glucose uptake in H-4-11-E liver cells

4.3.9 Insulin secretion in RIN-m5F pancreatic cells

4.4 *In vivo* study

4.4.1 The effect of different diets on body weight

4.4.2 The effect of different diets on food intake

4.4.3 The effect of different diets on faecal weight

4.4.4 The effect of high calorie diet on blood glucose concentration
List of Figures

Figure 2-1: The features of eukaryotic animal cell structure (Alberts et al., 1998) ..4
Figure 2-2: Illustration of the point of hydrolysis of the internal glycosidic linkages of starch.7
Figure 2-3: Illustrations of digestion of starch in the human gut by enzymes (α-amylase and α-glucosidases) to yield monosaccharide as the final product (Guyton and Hall, 2000).....................8
Figure 2-4: Illustration of the transport of glucose across the the intestinal epithelium.9
Figure 2-5: Illustration of the ten steps which make up glycolysis (King, 1996).11
Figure 2-6: Illustration of the reactions which make up the citric acid cycle (King, 1996).................13
Figure 2-7: Illustration of the mechanism of oxidative phosphorylation (Nelson and Cox, 2005)14
Figure 2-8: Illustration of the chemical reactions of glycogenesis and glycogenolysis......................15
Figure 2-9: Illustration of the process of maturation of insulin from the larger precursor preproinsulin molecule via a proteolytic process (Brunton, 2011). ...19
Figure 2-10: Illustration of glucose induced regulation of insulin secretion by pancreatic β-cell.20
Figure 2-11: Illustration of Pancreatic β-cell dysfunction Type II diabetes27
Figure 2-12: Superoxide production by the mitochondrial electron transport chain28
Figure 2-13: Speculated pathways by which glucose metabolism can lead to the production of reactive oxygen species (ROS) (Robertson, 2004). ...30

Figure 3-1 Ficus capreifolia (van Noort and Rasplus, 2004) ..44
Figure 3-2 Ficus cordata (van Noort and Rasplus, 2004)...45
Figure 3-3 Ficus craterostoma (van Noort and Rasplus, 2004) ...46
Figure 3-4 Ficus glumosa (van Noort and Rasplus, 2004) ..46
Figure 3-5 Ficus lutea (van Noort and Rasplus, 2004) ...47
Figure 3-6 Ficus natalensis (van Noort and Rasplus, 2004)...48
Figure 3-7 Ficus polita (van Noort and Rasplus, 2004) ...49
Figure 3-8 Ficus religiosa (Warrier et al., 2995) ...49
Figure 3-9 Ficus sycomorus (van Noort and Rasplus, 2004) ..50
Figure 3-10 Ficus thonningii (van Noort and Rasplus, 2004) ...51
Figure 4-1 Percentage extract yield (W/V) calculated as (dry extract weight/dry starting material weight) x 100. Different solvents; acetone, chloroform and hexane were used separately to extract plant material...67

Figure 4-2 TLC chromatograms of acetone, chloroform and hexane extracts of ten Ficus species, developed with BEA, CEF, EMW and FAWE (for acetone extracts only) sprayed with acidified vanillin to show compounds. Lanes from left to right are F. capreifolia (1), F. cordata (2), F. craterostoma (3), F. glumosa (4), F. lutea (5), F. natalensis (6), F. polita (7), F. religiosa (8), F. sycomorus (9), and F. thonningii (10)...69

Figure 4-3 Antioxidant TLC chromatograms of acetone, chloroform and hexane extracts of different Ficus species separated by CEF, EMW and FAWE (for acetone extracts only) sprayed with 0.2% DPPH. Clear zones indicate antioxidant activity. Lanes from left to right are F. capreifolia (1), F. cordata (2), F. craterostoma (3), F. glumosa (4), F. lutea (5), F. natalensis (6), F. polita (7), F. religiosa (8), F. sycomorus (9), and F. thonningii (10)..70

Figure 4-4 The correlation between log of percentage α-amylase inhibitory activity and log of total polyphenolic contents (mg gallic acid equivalent/g dry weight of sample) of acetone extracts from the ten South African Ficus species. ...73

Figure 4-5 The correlation between log of percentage α-amylase inhibitory activity and the log of TEAC of acetone extracts from the ten South African Ficus species. ...73

Figure 4-6 The correlation between log of percentage α-glucosidase inhibitory activity and log of total polyphenolic contents (mg gallic acid equivalent/g dry weight of sample) of acetone extracts from ten South African Ficus species. ...75

Figure 4-7 The correlation between log of percentage α-glucosidase inhibitory activity and the log of TEAC of acetone extracts from the ten South African Ficus species. ...75

Figure 4-8 Lineweaver-Burk double reciprocal plots for kinetic analysis analysis of enzyme reactions. ...76

Figure 4-9 Glucose uptake in rat abdominal primary muscle culture (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the acetone extracts of the ten Ficus species and insulin at 1 mM glucose concentration...79

Figure 4-10 Glucose uptake in rat epididymal primary fat cell culture (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the acetone extracts of the ten Ficus species and insulin at 1 mM glucose concentration...80

Figure 4-11 Glucose uptake in C2C12 muscle cells (as percentage of untreated control cells± standard error of mean, n=9) exposed to the acetone extracts of the ten Ficus species and insulin.................81
Figure 4-12 Glucose uptake in C2C12 muscle cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the acetone extract of *F. lutea* in medium containing different concentrations of insulin (represented by the different colours) in the presence of different concentrations of insulin (x-axis). ...82

Figure 4-13 Glucose uptake in H-4-11-E rat liver cells (as percentage of untreated control cells ± standard error of mean, n=9 for) exposed to the acetone extracts of the ten *Ficus* species, metformin and insulin. ..84

Figure 4-14 Glucose uptake in H-4-11-E liver cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the different concentrations of the acetone extract (represented by the different colours) of *F. lutea* in medium containing different concentrations of insulin (x-axis)........85

Figure 4-15 Glucose uptake in 3T3-L1 pre-adipocytes (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the acetone extracts of the ten *Ficus* species and insulin.....86

Figure 4-16 Insulin secreted in RIN-m5F pancreatic cell (as percentage of untreated control cells ± standard error of mean, n=6) exposed to the acetone extract of *F. lutea* and glibenclamide (positive control) in glucose free medium..87

Figure 4-17 Effect of the extract of *F. lutea* on RIN-m5F pancreatic cell viability (as percentage of untreated control cells ± standard error of mean, n=6) after stimulating insulin secretion.................88

Figure 4-18 The correlation between percentage cell viability of RIN-m5F pancreatic β-cells and percentage insulin secretion by the acetone extract of *F. lutea.. 88

Figure 4-19 Percentage yield of fractions was calculated as (dry fraction weight/dry extract weight) × 100.. 89

Figure 4-20 TLC chromatograms of fractions from the crude acetone extract of *F. lutea* developed with BEA, CEF, EMW and FAWE sprayed with (A) acidified vanillin to show compounds and (B) 0.2% DPPH with clear zone indicating antioxidant activity. Lanes from left to right are fractions of hexane (1), chloroform (2), dichloromethane (3), ethyl acetate (4), n-butanol (5) and water (6).90

Figure 4-21 The percentage inhibition of α-amylase and α-glucosidase (sucrase) activity by the six fractions of the crude acetone extract of *F. lutea* (0.5 mg/ml). Results are expressed as mean ± SEM (n=9)...92

Figure 4-22 The correlation between α-amylase inhibitory activities (%) and total polyphenolic contents (mg gallic acid equivalent/g dry weight of sample) of the fractions of the acetone extract of *F. lutea. ..93
Figure 4-23 The correlation between α-glucosidase inhibitory activities (%) and total polyphenolic contents (mg gallic acid equivalent/g dry weight of sample) of the fractions of the acetone extract of *F. lutea.* ... 94

Figure 4-24 Glucose uptake in C2C12 muscle cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the fractions of acetone extract of *F. lutea.* ... 95

Figure 4-25 Glucose uptake in C2C12 muscle cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to difference concentrations of the ethyl acetate fraction (represented by the different colours) in medium containing different concentrations of insulin (x-axis). 96

Figure 4-26 Glucose uptake in H-4-11-E rat liver cells (as percentage of untreated control cells ± standard error of mean, n=9 for) exposed to the fractions of acetone extract of *F. lutea.* 97

Figure 4-27 Glucose uptake in H-4-11-E rat liver cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to different concentration of the ethyl acetate fraction (different colours) in medium containing different concentrations of insulin (x-axis). .. 98

Figure 4-28 Insulin secreted in RIN-m5F pancreatic cells (as percentage of untreated control cells ± standard error of mean, n=6) exposed to the ethyl acetate fraction from crude acetone extract of *F. lutea.* ... 99

Figure 4-29 Effect of the ethyl acetate fraction from the extract of *F. lutea* on RIN-m5F pancreatic cell viability (as percentage of untreated control cells ± standard error of mean, n=6) after stimulating insulin secretion .. 99

Figure 4-30 The correlation between percentage cell viability of RIN-m5F pancreatic β-cells and percentage insulin secretion by the ethyl acetate fraction of the extract of *F. lutea.* ... 100

Figure 4-31 The structure of AFL1 (lupeol) isolated from the leaves of *F. lutea.* 100

Figure 4-32 The structure of compound AFL2 (stigmasterol) isolated from the leaves of *F. lutea.* 101

Figure 4-33 The structure of compound AFL3 (α-amyrin acetate) isolated from the leaves of *F. lutea.* .. 102

Figure 4-34 The structure of AFL4 (epicatechin) isolated from the leaves of *F. lutea.* 103

Figure 4-35 The structure of AFL5 (epiafzelechin) isolated from the leaves of *F. lutea.* 103

Figure 4-36 Glucose uptake in C2C12 muscle cells (as percentage of untreated cells control cells ± standard error of mean, n=9) exposed to the fractions of acetone extract of *F. lutea.* 105

Figure 4-37 Glucose uptake in C2C12 muscle cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the epiafzelechin at different concentrations (represented by the different colours) in medium containing different concentrations of insulin (on the x-axis). 106
Figure 4-38 Glucose uptake in H-4-11-E rat liver cells (as percentage of untreated control cells ± standard error of mean, n=9 for) exposed to the fractions of acetone extract of *F. lutea*. 107

Figure 4-39 Glucose uptake in H-4-II-E rat liver cells (as percentage of untreated control cells ± standard error of mean, n=9) exposed to the compound epiafzelechin in medium containing different concentrations of insulin. .. 107

Figure 4-40 Insulin secreted in RIN-m5F pancreatic cells (as percentage of untreated control cells ± standard error of mean, n=6) exposed to the isolated compound (epiafzelechin). 108

Figure 4-41 Effect of epiafzelechin on RIN-m5F pancreatic cell viability (as percentage of untreated control cells ± standard error of mean, n=6) after stimulating insulin secretion .. 109

Figure 4-42 The correlation between percentage cell viability of RIN-m5F pancreatic β-cells and percentage insulin secretion by epiafzelechin. ... 109

Figure 4-43 The effect of high calorie and normal diet with and without treatment (the ethyl acetate fraction of *F. lutea*) on body weight of CD1 mice (mean ± S.E.M.). The initial body weight at period 0 was when obesity state was attained by mice prior to commencement of treatment for about 7 weeks. ... 111

Figure 4-44 The effect of high calorie and normal diet with and without treatment (the ethyl acetate fraction of *F. lutea*) on food intake of CD1 mice (mean ± S.E.M.). Food intake at period 0 was when obesity state was attained by mice prior to commencement of treatment for about 7 weeks................................. 112

Figure 4-45 The effect of high calorie and normal diet with and without treatment (the ethyl acetate fraction of *F. lutea*) on faecal output (mean ± S.E.M.). Faecal output at period 0 was when obesity state was attained by mice prior to commencement of treatment for about 7 weeks. 113

Figure 4-46 The effect of high calorie diet on blood glucose concentrations of CD1 mice (mean ± S.E.M.). Fasting blood glucose concentrations and glucose tolerance tests (GTT) at period 0 when obesity state was attained by CD1 mice prior to commencement of treatment.. 114

Figure 4-47 The effect of different diets on blood glucose concentrations of CD1 mice (mean ± S.E.M.). Fasting blood glucose concentrations and glucose tolerance tests (GTT) of CD1 mice after 6 weeks of treatment.. 115
List of Table

Table 3-1 Nutritional contents of food (g) to induce obesity and after inducement of obesity 63
Table 3-2 Weight prediction chart for the CD1 mice ... 63
Table 3-3 Chart for placement of CD1 mice into treatment group once obesity was induced 64
Table 3-4 Codes assigned to the treatments group and the numbers of animals 64
Table 4-1 Percentage yield, total polyphenol content and antioxidant activity of crude acetone extracts of leaves of ten Ficus species .. 71
Table 4-2 The percentage inhibition of α-amylase activity (1 ml/mg) and concentration leading to 50% inhibition (EC50) of crude acetone extracts of the ten Ficus species ... 72
Table 4-3 The percentage inhibition of α-glucosidase activity (0.5 ml/mg) and concentration leading to 50% inhibition (EC50) of crude acetone extracts of ten Ficus species .. 74
Table 4-4 Cytotoxicity activity of acetone extracts of Ficus species (LC50 in µg/ml ± SE) 77
Table 4-5 The total polyphenol content of fractions of the crude acetone extract of F. lutea 91
Table 4-6 The EC50 of α-amylase and α-glucosidase activity of the fractions of the acetone extract of F. lutea .. 92
Table 4-7 Cytotoxicity activity of fractions from extract of F. lutea (LC50 in µg/ml ± SE) 94
Table 4-8 The EC50 sucrase activity of compounds from ethyl acetate fraction of F. lutea 104
Table 4-9 The effect of diets (with or without ethyl acetate fraction of F. lutea) on haematological parameters of mice ... 117
Table 4-10 The effect of diets (with or without ethyl acetate fraction of F. lutea) on serum chemistry parameters of mice .. 118
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>2, 2–Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>AMPK</td>
<td>Adenosine monophosphate protein kinase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AGEs</td>
<td>Advanced glycation endproducts</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase activity</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>α-KGDH</td>
<td>α-Ketoglutarate dehydrogenase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>AUCC</td>
<td>Animal Use and Care Committee</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>Baso</td>
<td>Basophiles</td>
</tr>
<tr>
<td>BEA</td>
<td>Benzene: ethanol: ammonium hydroxide</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>brs</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>brd</td>
<td>Broad Doublet</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Ca<sup>2+</sup></td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CaCl<sub>2</sub></td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CEF</td>
<td>Chloroform: ethyl acetate: formic acid</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>CoASH</td>
<td>Coenzyme A not attached to an acyl group</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated Spectroscopy</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of Doublets</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarisation Transfer</td>
</tr>
<tr>
<td>DHAP</td>
<td>Dihydroxyacetone phosphate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s minimal essential medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
</tbody>
</table>
DNA Deoxyribonucleic acid
DNS 3, 5-Dinitrosalicylic acid
DPPH 1, 1-Diphenyl-2-picryl-hydrazyl
EGCG Epigallocatechin gallate
ER Endoplasmic reticulum
EMW Ethyl acetate: methanol: water
EC50 Effective concentration that will produce 50% inhibition
Eos Eosinophil
EtOAc Ethyl acetate
FAD Flavin adenine dinucleotide
FADH2 Reduced flavin adenine dinucleotide
FAWE Ethyl acetate: water: formic acid: acetic acid
FBS Foetal bovine serum
GAD Glutamic acid decarboxylase
GAE Gallic acid equivalent
GLAP Glyceraldehyde-3-phosphate
GLUT Glucose transporter
GTP Guanosine triphosphate
GTT Glucose tolerance test
H+ Hydrogen ion (proton)
HCl Hydrogen chloride
H2SO4 Hydrogen sulphate
Hb Haemoglobin
HEPES 2-[4-(2-hydroxyethyl)piperazin-1-yl]-ethanesulfonic acid
Hex n-Hexane
HLA Human leukocyte antigen
HMBC Heteronuclear Multiple Bond Connectivity
HSQC Heteronuclear Single Quantum Coherence
Ht Haematocrit
IAA Insulin autoantibodies
ICA Islet cell antibodies
IDDM Insulin dependent diabetes mellitus
IDH Isocitrate dehydrogenase
IRS Insulin receptor substrate
i.p. Intraperitoneally
K+ Potassium ion
KCl Potassium chloride
KH$_2$PO$_4$ Potassium hydrogen phosphate
KRB Kreb-Ringer biocarbonate
KRH HEPES buffered Kreb-Ringer
LC$_{50}$ Lethal concentration that will kill 50% cells
Lymph Lymphocytes
m Multiplet
MCH Mean corpuscular haemoglobin
MCHC Mean corpuscular haemoglobin concentration
MCV Mean corpuscular volume
MDH Malate dehydrogenase
MEM Modified essential medium
MgSO$_4$ Magnesium sulphate
MgCl$_2$ Magnesium chloride
MODY Maturity onset diabetes of the young
Mono Monocytes
MPV Mean platelet volume
mRNA Messenger ribonucleic acid
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
NaCl Sodium chloride
NAD$^+$ Oxidised nicotinamide adenine dinucleotide
NADH Reduced nicotinamide adenine dinucleotide
Na$^+/K^+$ATPase Sodium-potassium pump
NADPH Reduced nicotinamide adenine dinucleotide phosphate
NaHCO$_3$ Sodium hydrogen carbonate
NaH$_2$PO$_4$ Sodium hydrogen phosphate
NaOH Sodium hydroxide
Neut Neutrophils
NFkB Nuclear factor κB
NIDDM Non-insulin dependent diabetes mellitus
NMR Nuclear magnetic resonance
OAA Oxaloacetate
OVI Onderstepoort Veterinary Institute
PBS Phosphate buffered saline
PDX-1 Pancreas duodenum homeobox-1
PEPCK Phosphoenolpyruvate carboxykinase
Pi Inorganic phosphate
PKC Protein Kinase C
Plt C Platelets count
PPAR\(\gamma\) Peroxisome proliferators activated receptor \(\gamma\)
\(R^2\) Correlation coefficient
RBC/RCC Red blood cell
RCD Red cell distribution
RNA Ribonucleic acid
RAGEs Receptors for advanced glycation endproducts
ROS Reactive oxygen species
RPMI-1640 Roswell Park Memorial Institute medium 1640
RNS Reactive nitrogen species
s Singlet
SEM Standard error of mean
SGLUT Sodium - Glucose symporter (sodium dependent glucose transporter)
SUR-1 Sulfonylurea receptor-1
\(t\) Triplet
TCM Traditional Chinese Medicine
TEAC Trolox equivalent antioxidant capacity
TLC Thin layer chromatography
TMS Tetramethylsilane
TNF\(\alpha\) Tumour necrosis factor \(\alpha\)
UCP-2 Uncoupling protein 2
UPBRC University of Pretoria Biomedical Research Centre
UV Ultraviolet
WBC/WCC White blood cell count
WHO World Health Organisation