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Supply Chain Management could be defined as the practice of analysing aU 

aspects o f acquiring, storing, moving, and delivering materials from d,e time they 

are acquired dlrough any conversion or production processes through to the time 

final products are used or sold. Due to the expansion of online retail and online 

Business To Business (l32B) transactions, there is a great need for companies to 

invest in effective solutions that will aid them in ensuring d,at their supply chains, 

and particularly the rlistribution side o f the supply chain, work as effectively and 

seamlessly as possible. r\ company will barde to be successful if it has the besr 

producrs but a poor fulfilment side to its business. It is e,~dent that there arc at 

present a number of shortfalls widlln the fulfrIment environment. 11,ere is thus 

scope for an effective, all-encompassing order flrI [rIment engine that addresses all 

problenls, and ensures that all dle positive aspects arc maintained. 

11,ere exist a need in the industry for an affordable sen~ce, which can assist ",ith 

the optimization of rlistribution routes. Not all businesses have a large enough 

fleet to vetify the costs associated with a fleet managetnent system that includes 

optimization. Such a system normally requires a skilled operator, d1at add to the 

cost. A solution to this problem is the implementation of an optimization sen 'er 

 
 
 



in public domain. 11us is done by implementing a routing engine on an 

Application Sen;ce Provider (ASP). The ASP is a web-enabled distribution and 

fulfilment planning and optimization systenl that assist its users in the fulfil.I11ent 

of their customers' orders. Tlus allows the provider to manage the system from 

one centralised server that allows other users to access the system Vla the 

Internet. 

The Veluc1e Routing Problem (VRP) is an important problem occurring in many 

distribution systems. VRP can be described as the problem of designing least cost 

routes from one depot to a set of geographically scattered points. "11,e basic VRP 

is not sufficient enough for inlplementing in disuibution systems. t\ deli tional 

constraints such as multiple time windows, heterogeneous fleet, double 

scheduling, stop priority and route length must be added to the basic problem. 

Desi!l1ung an algorithm that is efficient to solve the VRP with the reguired 

additional constraints, as well as effective in an r\SP envllomnent involves the 

extension of existing methods as well as desi!l1ung new ones . This research 

implements a Tabu Search heUlistic in a two-stage process to solve the problem. 

The Tabu Search was selected because of its memory capabilities. 

Kry IVO,rlJ: F"lfilmeJlI; Vehicle RnllliJlg Pmblem; ApplicalioJl Servi" Pmvid,,;· Tab" Search; 

AI "lliple tVJlJlraiJlls; Mlllliple Time If!liJldoWJ; Helemg'JleollJ )1eel; DOllble sdleddiJlg; S"pply 

Chain lV[clllagclIlenl; Btlsiness /0 Bwilll?.r.r. 
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Chapter I 

1 INRODUCTION 

1.1. Overview 

Supply Chain t- Ianagement could be defined as the practice of analysing all 

aspects of acquiring, storing, moving, and delivering materials from the time they 

arc acquired through any conversion or production processes through to the time 

final products are used or sold. A company's supply chain may consists of 

geographically dispersed facilities where raw material s, intennediate products, or 

finished products arc acquired, transfonned, stored, or sold, and transportaaon 

links connecting the facilities along which products flow. 

Supply Chain Management thus involves whatever an organisation does to plan, 

source, make and deliver its products. 

There is a distinction between tnanufacturing facilities and distribution centres. 

In manufacturing facilities, physical product transfonnations take place and at 

distribution centres, products arc received, sorted, put into inventory, cilcn picked 

from inventory and dispatched. These products are not physically transfonned. 

The company's goal is to add value to its products as they pass through its supply 

chain and transport them to geographically dispersed markets in the correct 

cluantiries, wid, the correct specifications , at the correct tUne, and at a competitive 

cost. 

Supply chain management crystallises those concepts of integrated business 

planning that have been espoused for many years by logistics experts, strategists, 

 
 
 



and operations research practitioners. Today, integrated planning is possible due 

to advances in Infonnation Technology (T1). 

Due to the expansion of online retail and online Business To Business (l32B) 

transactions, there is a great need for companies to invest in effective solutions 

that will aid them in ensuring that D1ell supply chains, and particularly the 

distribution side of the supply chain, work as effectively and seamlessly as 

possible. A company will batDe to be successful if it has the best products but a 

poor fulfilment side to its business. Without effective fulfilment, customers will 

nOt be satisfied and hence all confidence in that particular company will be lost. 

Many online retailing ventures have failed solely due to the fact D1at D1eir 

fulfilment systems were not effective enough and traditional brick and mortar 

companies have under-optimized fulfilment systems where great impro\'ements 

are possible. 

Current predictions are Out business-to-business (l32B) online trading will grow 

from USS336 billion in 2001 to US$63 trillion in 2005. 

There is an indication out online supply chains will dominate D1e B2B commerce 

arena, swelling from 3% currenDY to 42% of the total B2B USA trade O\'er the 

next 5 years. Specifically, five 111ajor industries - aerospace and defence, 

chelnicals, computer and telecommunications equiplnent, electronics, and motor 

veh.icles and parts - will conduct more than half of the B2B transacoons online 

by 2004. Computers and telecommunications will become the biggest online B213 

market, wiD1 sales soaring past USSl trillion by 2005. The other four areas will 

each top USSSOO billion by 2005. 1 

I Source: Jupiter Research [241 (p. 13) 
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From thc above statistics, this markct is dcstined for phenomenal growth and 

hence d1crc is great scope for any products or business ventures related to 

ensuring that dlis environment opcrates optimally. 

The focus of this thesis is on fulfilment operations, specifically routing and 

distribution, but othcr factors that influence fulftlment must be taken into 

account. 

The following diagram illustrate fulfilment widlin the supply chain and factors 

that influence it: 

ORDER 
RECEIVING 

-... • (~. 

l=-;IC::LlDATION ~ ~, PICKING AND 
• PACKING 

~ 
~ • • 

. ~-

Can we opl,mil(! only thiS seelion, 0. 
do we have to look at the entire 
supply chaon? 

OPTIMIZE? 

INVOIC ING '- '! OISTRIBUTION 

0 ~ .... 
Figure 1: What part of the supply 

chain to optimize 

PROOF OF 
DELIVERY 

(POD) 

ll.~ -- ~ 

~ 

The abovc diagram (figure 1) dcpicts a typical supply chain from order rccci,oing 

through to proof of delivery. The idea bchind the development of this order 

fulfilment system is to optimise the supply chain from picking and packing 

through to distribution. Many packages focus entirely on the disuibution side 

without looking at other affecting factors like picking and packing. 
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It is evident that there are at present a l1lunber of shortfalls within the fulfilment 

environment. There is thus scope for an effective, all-encOlnpassing order 

fulfilmcnt engine that addresses all problems, and ensures that all the positive 

aspects arc maintained. 

\'(Ihar is needed is an "order fulfilment engine" that provides companies with the 

tools they necd to get the correct product to the correct place, at the correct time 

and cost, in the 1110St optitnal way - for every order and every custonl Cr. In order 

to develop such a fulfilment engine spccific market requiremcnts and information 

arc essential. 

1.2. Application Service Provider 

Therc exist a nccd in the industry for an affordable service, which can assist with 

the optimization of distribution routes. Not all businesses have a large enough 

fleet to verify the costs associated with a fleet management sysrenl dlar includes 

optimization. Such a system nonnally requires a skilled operator, that add to the 

cost. A solution to this problem is the implementation of an optimization server 

in public domain. This is done by implementing a routing cngine on an 

t\pplication Sen';ce Provider (ASP). ·n,e ASP is a web-cnabled distcibution and 

fulfilment planning and optimization system that assist its users in the fulfilment 

of their customers' orders. This allows the provider to managc the system from 

one centralised server that allows other users to access the systcln via the 

I ntcrnct. This approach reduces infrastructure casts and speeds up the process as 

a powerful server instead of the computcrs of individual users manages thc 

system. 

Implementing software that enablcs you to optimize vehicle routes can result in 

major cost savings for a company. Unfortunately the costs associatcd with 

implementing such a system prcycnt compal1lcs to take this step. The 
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environment we are proposing is an e-fulfilment engine that is a web-enabled 

distribution and fulfilment planning and optimization system that is hosted in the 

fOlm of an ASP (Application Service Provider). This means eI,at a company no 

longer hosts and maintains its own computer software, but access the system via 

the Internet in real-time. 

TI,e implementation of the system on the ASP results in huge saving in tenns of 

capital-, operational- and ll1alltenancc costs. To i.mplctncnt a sufficient solution, 

the SystC1TI must incorporate 

• An effective optimization engine. This will ensure ellat the client 

receives useful results. The engine is the heart of the system and is the 

topic of OUf discussion. "n1C reqUll:en1Cnrs of the engine are motivated 

from the implementation method, i.e. the engine must be able to 

hanclle different scenatios because it is located in an ASP 

environnlcnt, which is in essence a multi-user cnvirolUllcnt. 

• The ability to handle multiple clients. Tlus is the goal of the 

system, to provide cost effective solutions to clients that cannot 

afford eI,e capital layout required to implement such a system. Each 

client has its own set of customers and depots, which the system 

cannot predict. It is ell ere fore important for the engine to be robust 

and effective across different input scenarios. 

• Geographic locations of the customers. Tlus has a cost advantage 

for the clients because eI,ey do not need to keep geographic data on 

eI,eU: systems. They can benefit from experts as well as additional data 

that will allow for professional maps as output. They can also benefir 

from an up to dare road network on which the optimization is done. 

The service pro\~der can ensure that eI,e network used in the routing 

is representing the current status in the road network, e.g. peak rind 
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off-peak travel times, road segments that is closed due to accidents or 

ll1amtenance, as well as the addition of new segments. The 

optimization engine operates from a olne and distance matrix 

between CUSC0t11CrS, which ilnply that these ll1amccs lTIllS[ be up to 

date with the network and the engine must be able to handle multiple 

tU1le matrices. 

• A m anagement console. To allow the user to speci fy certain 

paranlcrers. These paranlcters can include the Inaxi nl W11 route length 

or time, the open and close times of the depots, etc. The optimization 

engine 111USt be able to enforce these cons traints. 

• An easy operation inte rface. This is not in the scope of this 

discussion, but form part of a successful ASP implementation. 111is 

include the abili ty to upload and download data to and from the 

sysrClTI, which consists of custonlcrs with their order detail that must 

be uploaded from the client, and routes in the form of reports or 

maps that must be downloaded to the client. 

Implementing the V1D> with additional constraints has been defined as a complex 

problem. Implementing the VRP with additional constraints in an cnvirOtU11ent 

as desClibed above, adds to the already complex problem. The algorithm cannot 

be designed to function well i.n one specific known environment, but 1l1ust be 

able to adapt to the emrironment as specified by the client. Tlus envirotUTIent, or 

charactet.isrics dlcreof, is not known at implenlcntario n rune and the algorithm 

must be able to produce good results independent of the specific environment. 

The designed algorithm must be able to perf0n11 stable and reliable under these 

conditions, as well as producing acceptable results. 
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1.3 . VRP and its Origin. 

Vehicle Routing Problems (VRP) are an extension to the well-known Travelling 

Salesperson Problem. f\ number of visits being given, the goal is to perfonll these 

visits with vehicles, using a set of nunimal-cost tours, each of which must start 

and end at the same position. The VRP is like the TSP, an NP-hard problem. If 

no extra constraints on the capacity or vehicles is given and a maximUlTI driving 

time or tour length is not given, the solution to a VRP would be a single tour. 

However, real-life VRP comes precisely with these kinds of constraints, or even 

tnore cOlTIplex ones. 

Vehicle routing problems are all around as in the sense that 111a11Y consumer 

products such as soft drinks, beer, bread, gasoline and pharmaceuticals are 

delivered to retail outlets by a fleet of trucks whose operations fits the vehicle 

routing model. In practice, the VRP has been recognized as one of the great 

success stories of operations research and it has been studied \-videly since the late 

fifties. Public services can also take advantage of these systems in order to 

improve their logistics chain. Garbage collection, or town cleaning, takes an ever­

increasing part of the budget of local authorities. 

The VRP was introduced by Dantzig and Ramser (1959) more than four decades 

ago. There has been since then a steady evolution in the design of solution 

methodologies, botl1 exact and approximate, for this problem. The VIZP is an 

NP-hard problem that is exceedingly difficult to solve to optimality. Y ct, no 

mown exact algoridlln is capable of consistendy solving to optimality instances 

involving rnore than 50 custoll1ers2 and often requires relative few side 

consU-runts . 

2 Sourcc; Colden 1.:[ aI" ~ 1998; Naddefand Rinaldi, 2002 in [141, p. 3 
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Besides being one of the most important problems of operations research in 

practical terms, the vehicle routing problem is also one of the mos t difficult 

problems to solve. It is quite close to one of the most famous combinatorial 

optimization problems, the Travelling Salesperson Problem (TSP), where only 

one person has to \~sit all the customers . The TSP is an N P-hard problem. It is 

believed dlat one lnay never find a computational technique dut \vill guarantee 

optimal solutions to larger instances for such problems. The vehicle routing 

probletTI is even t110re complicated. Even for smaU £Ieet sizes and a 1110derate 

mm1ber of transportation requests, the planning task is highly complex. Hence, it 

is not surprising cint human planners soon get overwheltl1ecl, and lTIUSt turn to 

simple, local rules for vehicle routing. 

In the m-TSP problem, m salesmen has to cover the cities given. Each city must 

be visited by exactly one salesman . .All salesmen start from tl1e same city (the 

depot) and must end their journey in tllis city again. We now want to minimize 

the sum of distances of the routes. The V lU) is me m-TSP where a demand is 

associated ,virh each city, and each salesmen/vehicles has a certain capacity (not 

necessarily identical). The sum of demands on a route cannot exceed the capacity 

of the vehicle assigned to tllis route. As in the m-TSP we want to millinlise the 

sum of distances of tl1e routes. Note that tl1e VIZ!' is not purely geographic since 

the demand may be constraining. The VRP is the basic model for a large number 

of different vehicle routing problems. 

Many new side constraints have been added to meet real life needs. If we add a 

tU11e window to each cusrotner in the VRP we get the vehicle [outing problem 

with time windows. In addition to the capacity constraint, a vehicle now has to 

\1.sit the cusrOlncr within a certain rime frame. The vehicle tnay arrive before the 

rune window opens. It is not allowed to arrive after the tilTIC window has closed. 
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Some models allowed for early or late servicing but with some fonn of additional 

cost or penalty. 

1.4. Success of automated methods 

Resea rchers often use models exhibiting some, but not all of the characteristics of 

real-world problems in order to test and evaluate their ideas. 

The V chicle Routing Problem (VRP) is no exception. 11,e class of Vehicle 

Routing Problems is an intensive research area because o f its usefulness to the 

logi stics and transportation industly. For distribution compames, the 

transportation cost is the perfect target. Toth and Vigo (2002) (in Cordeau and 

Laporte [14), (p. 3)) report that the use of computerized methods in distribution 

processes often results in savings ranging fro111 5% to 20% in transportarion 

costs. It is estimated that distribution costs aCCOilllt fo r almost half o f the total 

logistics costs and in some industl1es, such as in the food and drink business; 

distribution costs can aCCOill1( for up to 70% of the value added costs of goods. 

TIlls share has experienced a steady ina'case, since smaller) fa ster, more frequent, 

Inorc o n rune sh.ipments arc required as a result of trends such as increased 

valiability in consumer's demands, quest for total quality management, ncar-zero 

inventory production and distribution systems, sharp global-size competition. 

1.5. Problem Environment 

Knowledge of the problem environment can assist in developing a more effective 

algorithm. The problem environment consists of the constraints inlposed on the 

problem, the input data rI,at we have to work with and the objective function to 

rrurulnIse on. 

This thesis considers a set o f additional constraints added to the basic VRI'. 

r\lthough ri,e ASP environment allow flexibili ty for ri,e client to use these 
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constraints o r not, the design does implement a different method for each 

possible combination of constraints. The design treats the omission o f a 

constraint as a simple itnplemcntacion of the constraint, c.g. if the client docs not 

have heterogeneous flect, the scenario can srill be executed because 

homogeneous Beet is a subset of heterogeneous fleet. 111lls a client with 

homogeneous fleet has a special case of Ole heterogeneous fleet problem. r\ clien t 

with single time windows has a special case of the ,mutiple time windows 

problem. This implementation of a solution for an r\SP ready algOritlU1l will not 

include pre-processing o f data to determine such special cases, but tl,e guidance 

algorithm will handle the effectiveness of the algoritlU11. 

\\'orking in the ASP environment results in an unpredictable data environment. 

The input can differ from client to client. T11e objective of tlus study is to develop 

a solution d'3t can operate in such surroundings. The thesis will pro\~dc a 

method to solve the problem efficiently, and is tl,e first step towards prO\~ding a 

solution in tl,e 1\SP environment mat is flexible enough to pro\~de a feasible 

solution. Although me primary goal of tl,e 1\SP is to pro~de an affordable 

solution to tl,e SOUtll J\fi:i.can market, we cannot linut tl,e input data efficiently. 

We can define tl,e foll owing basic scenarios: 

• Short hauls Mth time window complexity-

• Short hauls with weight restriction 

• Long halus \~tll time window complexity 

• Long hauls \~tll weight restriction 

• Random located stops 

• Cl uster located stops 

10 

 
 
 



\'(Ie must also take into account the driving conditions between d1e stops. The 

goal is to pro\~de ilie algorithm \~ili as much as possible data d1at simulates ilie 

practical environment. \'('e simulate the ullvelling between stops \~th different 

travel times depending on the time of day, i.e. simulating peak and oft~peak travel 

times. 

1.6. Summary 

Practical V chicle Routing Problems come wiili additional consu'aints; for 

example, multiple capaoty constraints can be expressed in several units and 

dimensions (weight, volume, length, number of pellets, etc.). Some problems 

involved constraints where the total capacity of ilie vehicle cannot be used; 

instead, the loading after vehicle must follow specific nues or legislation . This is 

for example the case in Europe \~th oil tanks. 

"n1e Application Semce Provider en~ronment allows the shaJ:ing of data and 

utilities via the Internet. This results in a cost-effective way to in1plement utilities 

that require specialized data and procedures. For a routing engine to function in 

this environment, it must be stable and flexible, and be able to handle the 

diversity of requests from multiple clients. 
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CbapI,r 2 

2 PROBLEM BACKGROUND: VRP WITH MULTIPLE 
CONSTRAINTS 

2.1. The Vehicle Routing Problem 

Logistics can be defined as the pro\~sion of goods and services from a supply 

point to various dClnand points. TIle transportation of raw t11arcl;als from the 

suppliers to the factmy, from the factolY to the depots, and the disu1bution to 

customers can be descl1bed as a complete logistic system. With an effective 

logistic system, cost can be reduced due to less penalties for late dcli\·ery, lowered 

trucking cost, shorter distances and effective use of capacity of the \·ehicle. One 

of the InDst significant 111casures of a logistic systenl is effective vch.icle routing. 

Optimising of routes is the basis of vehicle routing problems. 

The VRP ot-iginated from the Travelling Salesmen Problem (l·S]». r\ccording to 

Winston [53) (p. 519) the TS]> can be define as a problem where a salesperson 

must ';sit each of tcn cities once before returning [0 his home. The cities need [0 

be selected to minimise the total distance the saicslllcn travels. 

According to Barbarosoglu et al. (3) (p. 256) the VRP can be described as the 

problem of designing optimal delivery or collection of routes from one or several 

depors to a number of customers subject to side constraints. ·n,US, the basic VRI' 

can be described as vehicles that depart from the depor, \~sit one or more 

customers and rerum to the depot. 
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The VID) has a finite number of feasible solutions. The VRP solution space 

increase exponentially as the mlllber of customers increases. Thus d,e VIU) is 

known as a non-polynomial hard (N P-hard) problem. 

'n,e basic VIU' is today no more than a classical problem. The advance o f science 

has prompted the industry to ask for more real life solutions The basic vm> is 

given by a set of identical vehicles, a depot, a set of custolners to be visited and a 

directed network connecting d,e depot and customers. Let us aSSLUTIe there are K 

vehicles, V ::: {O,1,2,3, .. X-I }, and N+l customers, C ::: {O,1,2,3, ... N}. We 

denote dle depot as CllS[Qll1er 0, or Co- Each arc in the network corresponds to a 

connection between two nodes. A route is defined as starting fr0111 the depot, 

going through a number of customers and ending at d,e depot. r\ cost ,; and a 

travel time 1,/ are associated with each arc of the network. 

"Il,e problem is to find tours for the vehicles in such a way that: 

• The objective function is minimized. 11,e objective function can be the 

total travel distance, the number of vehicles used, or any cost related 

function. 

Several constraints must be applied on the basie VRP: 

• Only one vehicle handles the deliveries for a given customer. \'(Ie will not 

split delivel;es across multiple vehicles . 1\ customer can only be visited 

once a day. 

• Tl1c llUll1bc[ of vchides is equal to the number of routes, meaning that a 

vehicle can only complete one route per day. 
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The VRP has a finite nwnber of feasible solutions. The VRP solution space 

increase exponentially as the l1lunber of customers increases. Thus d,e VRP is 

known as a non-polynomial hard (NP-hard) problem. 

'l1, e basic VR]> is today no more dun a classical problem .. J 'he ad\'a nce of science 

has prompted the industry to ask for more real life solutions The basic VRP is 

given by a set of identical vehicles, a depot, a set of customers to be \~sited and a 

clirected network connecting rile depot and cuStomers. Let us assume there are K 

yehicles, V = {0,1,2,3, ... K-l }, and N+l customers, C = {0,1,2,3, ... N}. \'(Ie 

denote rile depot as customer 0, or C". Each arc in rile network corresponds to a 

connection bct\veen two nodes. A route is defined as starting fr0l11 the depot, 

going through a number of customers and ending at d,e depot. r\ cost ';i and a 

travel rime II) are associated with each arc of the network. 

'l1,e problem is to find tOurs for d,e vehicles in such a way that: 

• The objective function is minimized. 11,e objective fi,nction can be the 

total travel distance, rile number of vehicles used, or any cost related 

funcrion. 

Several constraints must be applied on the basic VRP: 

• Only one vehicle handles the deliveries for a given customer. \'('e will nor 

split deliveries across multiple vehicles. £\ customer can only be visited 

once a day. 

• -n,e l1lunber of vehicles is equal to the number of routes, meaning dur a 

vehicle can only complete one route per day. 
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• 111e demand of the customers on every route is known with certainty. 

111e demand of the customers in total on one route cannot exceed the 

capacity of the specific vehicle that will cover that route. 

• The travelling distance between customer i and j are the Saine as the 

travel distance between) and i. 

• T1,e vehicles have the same capacity widl d,e same fixed and variable 

cost, thus a homogeneous fleet are assUl11ed. 

• The vehicles must complete d,cir route within a maximum length of time, 

usually the time the depot is open. 

• T1,e vehicle returns to d,e depot at d,e end of d,e route. 

The VIlP can be fonnulated as follows: 

• A set of identical vehicles V 

• r\ special node called d,e depot, 

• A set of customers C to be visited 

• r\ directed network connecting the depot and the customers 

Let us assume there are K vehicles, V 

customers, C = {O, 1, 2, ... ,N}. 

{a, 1, 2,., K - 1}, and N + 1 

• For simplicity, we denote the depot as customer 0. 

• Each arc in the network corresponds to a connection between t\vo nodes. 
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• ,\ route is defined as starting from the depot, going to any number of 

customers and ending at the depot. 

• "11,e number of routes in the traffic network is equal to the l1lunber of 

vehicles used, K. Therefore, exactly K directed arcs leave ti,e depot and 

1< arcs renlrn to the depot. 

• 

• 

r\ cost (jj and a travel time 1(/ arc associated with each arc of the network. 

Every customer in the network must be visited only once by one of the 

vehicles. 

• Since each vehicle has a limited capacity q" and each customer has a 

varying demand mi' q, must be greater than or equal to the summation of 

all demands on the route travelled by vehicle k. 

• V chicles are also supposed to complete their individual routes within a 

total route time, which is essentially the time window of ti,e depot. 

There arc two types of decision nriables in a VRP. 

• The decision variable x'lk.(i,j=O, I,2 . .N;k=O,I,2 . .K;iif'j) is 1 if 

vehicle k travels from node i to node J~ and ° otherwise. 

• 'The decision variable 1/ denotes the tUne a veh.icle starts service at node i. 

The triangular inequality, i.e. cij <ci,+c'j and tij s,t,.+t./'dh,i,jEN 

need not apply. 

The objective is to design a set of cost-minimizing routes that service all the 

customers willie all the constraints stated above arc satisfied. The model can be 

mamematically stated as follows: 
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Notation: 

1< = total number of vehicles . 

N = total number of customers. 

t~' = customer i, where i = 1,2, ... ,N. 

'" = the depot. 

c = cost incurred on arc from node ito)· . . , 

t'i = travel titne between node i andj. 

IJJj = demand a [ node i. 

q. = capacity of vehicle k. 

ei = open titne at node i. 

~ = close tUne at node i 

Ii = arrival tUlle at node i. 

J = service tUlle at node i. 

'i = maximWll route tUlle allowed for vehicle k. 

Pi = polar coordinate angle of customer i, i = 1,2, ... , N . 

R, = vchicle route k, k = 1,2, ... , K. 

0 , = total overload for vehicle k, k = 1, 2, ... , K. 
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Tk = total tardiness for vehicle k, k = 1,2, ... , K. 

D, = total travel distance for vehicle k, k = 1, 2, .. , K. 

IV, = total travel time for vehicle k, k = 1, 2, ... , K. 

C(R,) = cost of the route R, based on a cost funccion. 

C(S) = swn total cost of individual routes C(R.,). 

a. = weight factor for the total distance travelled by a vehicle. 

~ = weight factor for the latest arrival time of a customer. 

y = weight factor for the difference ill polar coordinate angles. 

'I' = weight factor for the travel total cime of a vehicle. 

'1 = penal ry weight factor for an overloaded vehicle. 

K = penalty weight factor for the toral tardy rime in a vehicle route. 

Principle decision variable: x = {O I}: 0 if there is no arc between node i ljk ' 

and j and 1 otherwise. 

(1 ) 

Subject to: 

K - I N 

LLx'i' = K for i = 0 (2) 
k=O ) =1 
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N N 

L X", = L X", ~ I for i = O;k e [0, K - IJ 
j= l )=1 

K-l N 

LL XiJk = 1 for i= 1,2 .. N 
k=O /== 1 

N tV 

L X,,,,- L X". =0 'v'h e [I,NJ;k e [O, K - IJ 
I=O.r>'h J= I.J ... h 

(3) 

(4) 

(5) 

1I, -lIj +Nx, ~N- 1 forie [I ,NJ:je [I. N J; i;tj (6) 

N N 

L I17, L X". ~qk 'v'ke [O,K- IJ 
i=O j=O.j"~" 

N N 

L L x'J. (t, +j,+\V, )~rk 'v'ke [O,K - IJ (8) 
i=O j =-O, j"'i 

• The objective function of the problem is given in (1). 

• Constraint (2) specifies that there are exacdr K routes going out of the 

depot. 

• The dlird constraint (3) makes sure that each route leaves the depot and 

return to the depot 

• Constraints (4) and (5) make sure exacdy one vehicle goes to and leaves a 

custolner. 

• Constraint (6) ensures d,at there are no sub-tours in d,e solution. r\ sub­

tour is a toute that does not pass through the depot. 
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• (7) is the capacity constraint. 

• ivlaximWll travel time for each vehicle is assured in Eq. (8). 

The model described in this section is a standard mathematical model for a basic 

VRP problem. \\fhen additional constraints are needed, they must be added to 

the existing constraints in the model or some of the existing constraints must be 

relaxed. 

11,e industry requires additional constra.l1lts on the basic VR.P. Additional 

constraints that we will address include: 

• The limitation of the length, duration or cost of each individual tour. 'Ilus 

restricts a route for nmning too long, which can resllit in overtime costs, 

insufficient fuel , etc. 

• The addition of a service time for each customer. The \'olume of the 

stock to be delivered can have an influence on the service rime at a 

customer. The delivery time will have an influence on the total route time 

and Inust be mken into account. 

• The addition of rime windows during wluch the customers have to be 

visited. TIle problem we will discuss is dlC lise of Illu1tiple DIl1C windows, 

i.e. the customer can specify more than one time period available for 

delivery. 

• Thc \Thiele can return to d1e dcpot and have enough tlll1e for anodlcr 

route before the maximum allowed time is up. Tlus will allow double 

scheduling, which will result in a cost saving, as the second rOllte utilize 

the same vehicle and reduce the number of veludes required to service all 

the custOlners. 
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• 11,e tra\"cl time can vary between customers depending on the time o f 

day. Tlus implies peak and off-peak travel times. 

• The fleet is not necessarily homogeneous, i.e. vehicles can differ in 

capacity and cost. Tlus might result in a good solution to usc the vehicles 

with a large capacity to pick up customers d1at is far away f01111 the depot. 

• A vehicle can have a specified available time. This allows for certain 

,"chicles to be out in the field longer to cater for long routes. The 

implementation will add time window constraints [0 a vehiclc. 

We need to redefine the mathematical model for our problem. We will make usc 

of the base model widl the following changes: 

• Constraint (2) is now invalid and will be replace by 

N 

.l>ijk 5, Pk for i = 0; k E [0, K - I J (2) 
j=d 

where h is d,e maximum number of routes allowed for velucle k. 

The nWl1ber of routes going out of the depot for a specific velucle arc 

constrained to a tnaxitn um of PI , which implies that a vehicle can now have 

multiple routes done in a day. 

• \VJe inlpose nnlc windows at a stop 

I" = 0 (9) 
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(11) 

• \'(.le redefine the service rime at each stop as 

J: = Fixed Time + (Variable Time * tJli ) 

• \'('c also redefine the meaning of travel timc 

1'1 = Travel Time at (I, + J: + 1/1) 

which calculates the travel time from i to j depending on d,C departw-e 

tin1C at i. 

• Wc just make a note d,at 1, is not necessarily the same for cach vehicle. 

• The monetary cost of a route can be calculated as follows 

N 

CCR,,) = (F, ('5.>", ) +(D, * V, ) for i = O;kE [0, K - 1] 
j=l 

where the first tcnn is d,e fixed cos t of the veh.icle di,~ded into the 

number of routes and the second term is the distance of the routc 

multiplied by d,e running cost of the vehiclc. 

2.2. Meta Heuristics 

The implementation of an algoridlm that can efficiendy and in reasonable time 

solves thc aforementioned problem has not been successfully implemented 

before. To embark on a journey to find a sufficient algorithm reguires 

investigation of existing problems and solutions as well as inventing new 

methods. Se,·eral papers have been presented that solve the VRP widl additional 

side constraints. They mainly focus on solving the basic VRP widl one or twO 
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additional side constraints. Some of the most popular problems include d,e VRP 

with timc windows and me VRP wim pickup and delivery. 

Hcuristic methods play an important role in solving problems widl this 

complexity. Most solutions include a heuristic medlod, or a hybrid of heuristic 

me mods at d,C heart of d,e solution. In me next section, we will discuss some of 

me more popular heuristic methods. 

Meta-heuristics, or global optimization heuristics, have a C01111110n feature: they 

guidc a subordinate heUlistic in accordance widl a concept derived from artificial 

intelligcnce, biology, narute or physics to improve d,eir perfOlll1ance. 

Meta-heutistics succeed in lCa\·ing me local optimum by tcmporarily accepting 

exchanges that decrease the objective function value. 1\ [era-heuristics use 

info1111ation of the problem environment and d,e nature of the objective function 

to direct d,e search process to regions d,at promise better solutions. I t is possible 

mat mc meta-heuristic will rerutn to me local optimum without finding a better 

solution. 111is is caUed cycling and can be avoidcd by adjusting the heuristic's 

settings to allow more degrading moves for longer. 

The concept of a hcutistic being trapped at a local optimum can be demonstrated 

in Figure 2. J f a heuristic finds a solution S, widl objective function reS), where S 

is close to point C, d,en it will only improve until it gcts to local optimum C. No 

further improvements in d,e objective fimction will be achievable, because aU 

moves will reduce the objective fW1Crion. However, if a 111cta-heulistic finds a 

solution close to point B, degrading moves will be aUowed d1at may direct the 

search to d,e global optimUln, point A. 
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Figure 2: Global and Local Optima 

Meta-heuristics will be successful on a given optimisation problem if it can 

provide a balance between the exploitation of the accumulated search expelience 

and the exploration of the search space to identify regions with high quality 

solutions in a problem specific, near optimal way. The various o1cta-hcUlistics arc 

classified according to the following clitena: 

• Traject01y methods vs. discontinuous methods: Trajectory methods 

like SA and TS follow one single search trajectory corresponding to a 

closed walk on the neighbourhood graph. Discontinuous methods allows 

larger jump in the neighbourhood graph. 

• Populated-based vs. single-point search: In single-point search only 

one single solution is manipulated at each iteration of the algotithm. TS 
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and SA are single-point search methods. GA and ant colony algOlithms is 

Population-based. 

• M emory usage vs. memoryless methods: l\Icta-heuristics with 

memory are the TS, GA, SS and ant systcms. According to TaiJlard et al. 

[48] these meta-heuristics with memory can be viewed as adaptive 

memory programming (AMP) heuristics. The term "memory" was used 

explicitly for 1'S, but other meta-heUlistics usc mechanisms that can be 

considered as mClTIories. There are tneta-hcU1istics that canllot be entered 

into the AMP methods, such as SA. I lowever dley may be included in the 

improvement procedure of AMP. 

• One vs. va rious neighbourhood structures : SA and 1'S algOlitluns are 

based on one single neighbourhood structure. Other algorithms such as 

Iterated Local Search typically use at least two different neighbourhood 

structures. 

• Dynamic vs . static Objective flmction: Some algOliduns modify the 

evaluation of tl,e single search states during the mn of d,e algoritlun. In 

the use of a dynamic objective fi.lI1ction penalties for d,e inclusion of 

ccrtrun solution aruibutes that nlodi~' the objective function arc 

introduced. TS may be interpreted as using dynamic objective fi.l11ction, as 

some point in t11e search is forbidden, corresponding to infinitely high 

objective function values . The ot11er algoLidullS usc static objective 

functions. 

Evaluation of hCUlisric methods consists of comparing criteria such as lunning 

time, quality of solution, case of implementation, flexibility and robustness. For 

the purpose of our algorit11m, flexibility is an important consideration. The 

algo,idun should be able to handle changes in the data patterns, side constraints 
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and objective function, as each client has his own specific requirement. We arc 

not working on a predetennined set of data with a specified objective function. 

Working in such an em~ronment make it possible to find a method that is 

effective for that specific em"ironment by making use of the kilOwledge about the 

problem. 

Because the heuristic methods arc non dctenTunistic, i.c. we cannot predict rhe 

result even if we apply the same algorithm on the same data with the same 

number of iterations, the algoritlun should not perf 01111 poorly on any instance, 

as well as being able to produce a good solution each time it is applied to the 

satnc l11stancc. 

We will also ny to validate ti,e applicability of the metllod on our problem by 

discussing the design of the method is well as what we see as its advantages and 

disadvantages. With this approach we will filter out certain methods. 

Comparisons discussed in this paper are from existing papers, which mainly 

present the best results found for the metllod. Compatison is also made difficult 

because solutions were not all implemented on the satne computer (ulIlning 

rinlc), and have not all use dlC saIne number of iterations. Existing methods is 

also not designed for our specific problem and thus we cannot really compare 

methods outright to decide on a method to implement for our problem. 

Using only ti,e best results of a non-detenninistic heuristic, as is often done in the 

literanlre, may create a false picture of its real perfonnance. We considered 

avcrage results based on multiple executions on each problem an important basis 

for the comparison of non-deterministic methods. Furtheml0re, it would also be 

important to report the worst-case pcrfonnance. 

Moreover, an algorithm should be able to produce good solutions eyery time it is 

applied to a given instance. This is to be highlighted since any heuristics are non-
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dctenninistic) and contain SOine random components such as ranclolnly chosen 

parameter values. TIle output of separate executions of these non-dctenruniscic 

methods on the sanle probleln is in practice never the sanle. 'nus makes it 

difficult to analyze and compare results. 

Heuristic methods 

An algorithnl is said to be efficient when it fllns in polynomjal titnc, i.e., its 

mnning time is not longer than a polynomial function of the size of the problem. 

An a1goritlun is said to be effective if it produces high-quality solutions, 

preferably in less time tllan any efficient a1goritllm for the problem. The most 

preferred algorithms arc both efficient and effective. If ti,e algoritlun produces 

the mathematically best solution it is called optimal (or exact) if it produces a 

good but not necessarily best solution it is caB cd heuristic. r\ construcrion 

algotithlTI constructs a solution to a problem, whereas an ilnprovemcnt algolitiUll 

works on an existing solution to obtain better levels performance measures. 

According to Laporte [33], heuristics belong to two broad classes: classical 

heuristics and modem heuristics (or meta heuristics). Classical heuristics can be 

broadly classified into three categories. Constructive heuristics gradually build a 

feasible solution wIllie keeping an eye on solution cost, but do not contain an 

improvement phase per se. In two-phase heuristics, ti,e problem is decomposed 

into its two natural components: clustering of vertices into feasible routes and 

actual route construction, with possible feedback loops between the two stages. 

Two-phase heuristics can be divided into twO classes: cluster-first, route-second 

methods and route-first, cluster-second t1lethods. In the first casc) verticcs are 

first organized into feasible clusters, and a vehicle route is constructed for each of 

them. Tn the second case, a tOur is fmt built on all vertices and is then segmented 

into feasible vehicle routes. Finally, improvement methods attempt to upgrade 

any feasible solution by perfonning a sequence of edge or vertex exchanges 
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within or between vehicle routes. The distinction between constnlCtive and 

improven1ents methods is, howcvcr, often blurrcd since tTIost constructive 

algorithtTIS ll1cotporate improycmcnts steps at various stages. 

As far as we arc awarc, six lnaln types of 111etaheUlistics have been applied to the 

VRP: 

1) Simulated r\nnealing (SA), 

2) Detenninistic r\nnealing (DA), 

3) Tabu Search (fS), 

4) Genetic AlgOritlullS (GA), 

5) Ant Systems (AS), and 

6) Neural Networks (NN). 

The first three algorithms, SA, DA and TS, start from an initial solution x, , and 

move at each iteration / from x, to a solution x,+l in the neighborhood N(x,) of 

Xn until a stopping condition is satisfied. If J(x:) denotes the cost of x, tJ,en J(y,+ I) 

is not necessarily less than )(x). As a result, care must be taken to avoid cycling. 

Put paragraph in bullets 

GA exatnines at each step a population of solutions. Each population is de11ved 

from the preceding one by combining its best clements and discarding tbe worst. 

AS is a constnlCtive approach in which several new solutions are crcated at each 

iteration using some of the information gathered at previous iterations. r\S was 

pointed out by Taillard et al. [48], TS, GA and AS arc methods that record, as the 

search proceeds, infonnarion on solutions encountered and use it to obtain 

improved solution. NN is a learning mechanism that gradually adjusts a set of 
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weights until an acceptable solution is reached. "11,e rules governing the search 

differ in each case and these must also be tailored to the shape of d,e problem at 

hand. Also, a fair an10unt of creativity and experimcntarion is required. 

The following sections discuss the most applicable methods. 

2.2.1. simlilated Allllealillg (5/1) 

Simulated Annealing searches the solution space by simulating the atUlealing 

process in metallurgy (Qili et aI [39]). The algorithm jumps to distant location in 

d,e search space initially. 11,e size of d,e jumps reduces as time goes on or as the 

temperature "cools" down. Eventually the process \V~ll tum into local search 

descent 111cthocL 

One of its characteristics is d1at for vcry high temperatures, each state has almost 

equal change to be the current state. At low temperatures only states widl low 

energy have a high probability of being d,e current state. These probabilities are 

derived for a never ending executing of the metropolis loop. The aCI\·antages of 

d,e scheme is: 

• SA can deal with arbitrary systems and cost functions. 

• SA Statistically guarantees fmcli.ng an optimal solution 

• SA is relatively easy to code, even for complex problems. 

• SA generally gives a good solution. 

However this original version from SA has some drawbacks 
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• Repeated annealing with a l /log k schedule is very slow, especially if the 

cost function is expensive to compute, which will be the case for Ollr 

problem. 

• Por problenls where the energy landscape is smoocil, or there afC few 

local minima, SA is an overkill - simpler faster methods works better. 

But usually one does not know what the energy landscape is. 

• Normal heuristic methods, which arc problem specific or take advantage 

of extra information about the system, will often be better than general 

methods. But SA is often comparable to hCUlistics. 

• The method cannot tell if it has found and optimal solution. 

2.2.2. Tabll Sean/} ([5) 

The word Tabu (or taboo) comes from Tongan, a languagc of Polynesia, wherc it 

was used by thc aborigines of Tonga Island to indicate things that cannot be 

touched because dley are sacred.3 According to \X/ebster's Dictionary, the word 

now also means !la prohibition imposed by social custOtTI as a protective 

ll1casurc" or of S0l11Cthing !!banncd as constituting a risk.!! These current lncre 

pragmatic senses of the word accord well with the theme of Tabu search. The 

risk to be avoided in this case is that of following a counter-productive course, 

including one, which may lead to entrapment without hope of escape. On the 

other hand, as in the broader social context where "protective prohibitions" are 

capable of being superseded when the occasion demands, the "taboos" of Tabu 

search are to be overruled when evidence of a preferred alternative beconles 

compelling. 

J Source: Tabu Search Network 1311 
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Tabu Search (rS) is a local search metaheuristic introduced by Glover (1986). TS 

explores the solution space by moving at each iteration from a solution to the 

best solution in a subset of its neighbourhood N(s). Conwuy to classical descent 

methods, the current solution may deteriorate froln one iteration to the next. 

Thus, to avoid cycling, solutions possessing some attributes of recently explored 

solutions arc temporarily declared Tabu or forbidden. The duration that an 

attribute remains Tabu is called its Tabu-tenure and it can vary over different 

intervals of rill1C. The Tabu stanIS can be overridden if certain conditions are mer; 

this is called the aspiration criterion and it happens, for exrunple, when a Tabu 

solution is bettcr than any previously seen solution. Finally, various techniques 

arc often clnployed to diversify or to intensify the search process. 

The 111QS[ important association with traditional usage, however, steIns from the 

fact that taboos as nomlally conceived arc transmitted by means of a social 

Inemory, which is subject to modification over tiJnc. This creates the fundatnental 

link to the meaning of "taboo" in Tabu search. The forbidden elements of Tabu 

search recei\'e dlCir status by reliance on an evolving memory, which allows this 

starns to shift according to time and OrcUInstance. 

TS is the only metaheuristic that has been explicicly devcJoped witll a memory. In 

a sense this metllod imitates the human being looking for a good solution of a 

combinatoliaJ optimization problem. Glover proposed a number of strategies to 

guide the search and make it more efficient. TS is open for any strategy weU 

adapted to the problem on which it is applied. 

rV[ore particularly, Tabu search is based on ti,e premise that problem solving, in 

order to qualify as intelligent, must incorporate adaptive nlcmory and responsive 

exploration. The adaptivc memory fearurc of TS aUows the lll1plenlcntacion of 

procedures that are capable of searching cl,e solution space economically and 

effectively. Since local choices are guided by information collected during the 
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search, TS contrasts with memo11,less designs that heavily rely on semi random 

processes that implement a fonn of sampling. Examples of memoryless methods 

include sen1i greedy heuristics and the prolnlnenr "generic" and "annealing" 

approaches inspired by metaphors of physics and biology. Adaptive memOlY also 

contrasts with rigid memOlY designs typical of branch and bound strategies. (It 

can be argued that some rypes of evolutionalY procedures that operate by 

combining solutions, such as genetic algori t1uns , embody a foml of implicit 

111cmory. 11owcver, this fann of memory is not sufficient to embrace many 

aspects of what we nomlally conceive to be a hallmark of 'intelligent' problem 

solving. Tabu search also has implicit memory features that offer opportunities 

for establishing more effective variants of evolutionary approaches.) 

The cn1phasis on responsive e;"'l Jloration in Tabu search, whether in a 

deterministic or probabilistic implementation, derives from the supposition that a 

bad strategic choice can yield Inore infonnatio n than a good random choice. In a 

system that uses memory, a bad choice based on strategy can provide useful clues 

about how the strategy may profitably be changed. (Even in a space with 

significant randonmess a purposeful design can be more adept at uncove.ing the 

imprint of structure.) 

Responsive eA1Jloration integrates the basic principles of intelligent search, i.e., 

exploiting good solution features while explOling new promising regions . Tabu 

search is concerned with finding new and more effective ways of taking 

advantage of the mechanisms associated with both adaptive memory and 

responsive exploration. TI,e development of new designs and strategic mi~es 

makes TS a fertile area for research and empirical study. 

The main advantage o f the basic version is its aggressiveness: the search 

converges toward the local 0pUmmn and examines the neighbourhood of this 

local optimum very quickly. ((owever, it can easily get trapped in a sub-space 
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containing only solutions of pOOt quality. To diversity the search and force it to 

visit solutions with different characteristics, one basic idea was to increase the 

number of forbidden components when perfollning local modifications to a 

solution. So, the discussion quickly turned around the OptitlllUll tabu list size, 

SillCe the shorr list allows a thorough examination of the neighbourhood of a 

good solution while a long list facilitates the escape from a local optimum to 

explore new regions of the search space. The reactive Tabu search proposed by 

Battiti and Teccruolli (1994) (in Braysy [5J, p. 4) was designed to automatically 

adapt the Tabu list size and avoid the fastidious task of explicitly managing the 

Tabu list. 

The main difficulty with TS is thus to efficiently incorporate diversification and 

intensification lnecharuS111s. The use of a memory that stores good solutions 

visited during the search and ti,e design of a procedure to create pro,~sional 

solutions frotn it is a way to achieve this goal. Indeed, solutions contained in 

memory during ti,e initial search phase present different characteristics, thus 

leading to a diversified search. Later, solutions contained in 111emory are mostly 

representative of one or a few good regions of a solution space. The resL~t is that 

ti,e search gradually shifts from diversification to intensification. 

2.2.3. Cellelic Algorit/;mJ (CA) 

The Genetic Algoritlun (GA) is an adaptive helUistic search method based on 

population genetics. The basic concepts were developed by I1o11and (1975) (in 

Ombuki et al, [39], p.3), wIllie ti,e practicality of using the Gf\ to solve complex 

problems was demonstrated in De Jong (1975) and Goldberg (1989) (in Braysy 

and Gendreau, [8], p. 10). 

GA evolves a population of individuals encoded as chromosomes by creating 

new generations of offspring through an iterative process until some convergence 

32 

 
 
 



criteria arc nlet. Such critetia might, for instance, refer to a maximum number of 

generations, or cl,e convergence to a homogeneous population composed of 

slrniJal· individuals. Thc best Chr0t110S01ne generated is then decoded, providing 

cl,e corresponding solution. 

The creation o f a new generation of individuals involves three major steps or 

phases: selection, recolllbinatioll and mutation . The selection phase consist of 

randomly choosing two parent individuals from cl,e population for mating 

pill1Joses. T'he probability of selecting a population member is generally 

propo rtional to its fltness in order to emphasize genetic quality while mai ntaining 

genetic diversity. Here, fitness refers to a measure of profit, utility or goodness to 

be maximized while exploring the solution space. The recombination or 

reproduction process makes use of genes of selected parents to produce offspring 

that will form the next generation. As for nlutarion, it consists of randomly 

modifying some gene(s) of a single indi\~dual at a time to furcll er explore the 

solution space and ensure, or preserve, genetic diversity. The occurrence of 

mutation is generally associated wim a low probability. 11 new generation is 

created by repeating the selection, reproduction and mutation processes until all 

chromosomes in me new population replace cl,ose from cl,e old one. r\ proper 

balance between genetic quality and diversity is cllerefore required within the 

population in order to support efficient search. 

Although dleoretical results mat characterize the behaviour of d,e G r\ have been 

obtained for bit-string chromosomes, not all problems lend themselves easily to 

this representation. This is the casc, in particular, for sequencing problet11s, such 

as the vehicle routing problem, where an integer representation is more often 

appropriate. Therefore, in most applications to VlU'T\'(', me genetic operators 

are applied clirecdy to solutions, represented as integer strings, thus avoiding 
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coding issues. In most cases d1C aud10rs use delimiters to separate customers 

served by different routes. 

The genetic algoritbm is very simple, yet it performs well on many different types 

of problcn1s. There are many ways to 1110dify the basic algoti thn1, and many 

parameters that can be \ tweaked". Basically, if the objective funcrion, rhe 

representation and the operators are all right, then va.tiations on the genetic 

algoridun and its parameters will result in only nunor improvements in the overalJ 

resulrs. 

For any GA, there are five important parameters that determine the performance 

of its application: representation of solution, initial population, selection, 

reproduction, and population improvements (Qili, [39], p. 72) . 

.r\dvantages 

• GA is very flexible with a lot of parameters to adjust for different needs; 

• Gr\ generally explores a larger neighbour hood than local search 

heuristics; 

• With proper parameters, GA practices a global optimization that bypasses 

the local optimwn problem; 

• Given enough time, GA usually gives good solution. 

Disadvantages 

• GA is one of d1e slowest algOlitlu11S in finding the optimum; 

• It has no termination criteria o ther than a nwnber of generations; 
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• GA can be trapped in a local plateau, as the movement of the population 

is limited by the crossover operations, if that plateau is big and at enough. 

Coding a solution with a binary vector is not natural and can significancly impact 

cl,e performance. Hence, binary coding was replaced by a more natural 

representation of solutions. TIle dassical cross over operators does not 

correspond to logical operations on solutions. Furthermore, the use of othet 

representations and binary vectors naturally led to the design of specialized 

operators, well adapted to the solution representation and capable of generating 

new feasible solutions. Gr\ can easily identity different solution sub spaces with 

good characteristics, but they lack the "killer instinct" that would allow them to 

intensify the search into these areas. To alleviate this weakness, the mutation 

operation was replaced by repair procedures and local search. 

2.2.4. A III Systems rAS) 

The idea of imitating the beha\~our of ants to fOld solutions to combinatorial 

optimization problems was initiated by Colomi, Dorigo and l\laniezzo (in 

Bullnheimer et ai, [12], p. 1). "n,e metaphor comes from the way ants search for 

food and find a way back to the nest. Initially ants explore the atea surrounding 

their nest in a random manner. £\s soon as an ant finds a source of food, it 

evaluates the interest of the source (quantiry and qualiry) and carries some of 

food to the nest. During the return trip, the ant leaves on the ground a chemical 

pheromone trail whose quantiry depends on the qualiry of the source. The role of 

this pheromone trail is to guide other ants toward the source. After a wIllie, the 

path to a good source of food will be indicated by a large pheromone trial, as a 

trial grows with nUinber of ants that reach the source. Since source is that are 

close to the nest are visited tnore frequently than those that are far way, 

pheromone trials leading to the nearest sources grow faster. The final result of 

this process is that ants are able to optimize their work. 
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·n,c transposition of this food scarching the area into an algorithm framcwork for 

soh·ing combinatorial optimization problems is octane through an analogy 

between: 

• the search area of the real ants and thc set of feasible solutions to thc 

combinatorial problem; 

• the aiTIount of food associated with the source and the objective flUlccion; 

• the pheromone trial and an adaptivc memory. 

The lTIOst i.mportant component of an ant systenl is the 111anagcmcnt of the 

pheromone trials. In a standard ant system, phcrolnone trials arc used in 

conJuncoon with the objective function to guide the construction of new 

solutions. Once a solution has been produced, a standard ant system updates the 

pheromone trials as follows: first all trials are a weakened to simulate the 

evaporaoon of pheromone; then, phcroll1one tlials that correspond to 

components that were used to construct the resulting solurion arc reinforced, 

taking into consideration the quality of this solution. 

Based on the pre\~ous general scheme differcnt £\S implementations have been 

proposed where pheromone updating is perfonned in different wavs. Different 

ways of modifying pheromone values generate different types of search 

mechanisms. Recently it has been shown that j\S based algorithms are being 

powerful in cot11binarion with local search procedures. In these SlU1aOons 

pheromone infollnation is used to produce solutions (diversification phase) that 

are optimized by a local search (intensification phase). Optimize solutions are 

then used to update pher0l110ne infon11ation and new solutions are successively 

generated by the ants. 
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Like GA, early implementations of the ant system converged too slowly toward 

high-guality solutions. 11,erefore, intensification mechanisms were gradually 

introduced. The most recent implementations lncorporate local search 

mechanisms to improve the solutions produced by the ants. 

2.3. Existing Methods and Implementations 

The vehicle routing problem has many variants that have been attempted by 

many people with different criteria and different methods. 11,e guestion arises on 

how could another study on the problem be feasible. In the following section we 

will discuss some of the existing implementations of the VRP. 11lis section will 

discuss some inlplementations which will enable us to derive methods already 

tested, or show incOlllpleteness in there implenlcntarion for our usc. 1.t must be 

noted that certain methods were not considered as feasible because it was 

deemed too slow. We can reconsider these methods because of the improvement 

in computing power in recent years. 
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Table 1 is a present st:me of work done of the sUldy to denye a feasible solution 

fo r our problem. 'The model indicates the model implemented by the author that 

is of interest to us. 11,e following section will discuss the methods in detail. 

Present State 

/lulbor Year Problem Model 

Amberg, Domschke and Vo~ 2000 ~[-CARP Cluster First Route Second 

-hillard, Laporte and Gendreau 1995 VRPM 
Tabu Search, generating and 

c01nbining protnising solutions. 

Two-staged heulistic, 
Lau and Liang 2000 PDPT,\V ConstnlCtion and Tabu Search, 

working with job pairs 

SaHli et aI 1992 VFM 
Unw,,jrcd vehicles, best vehicle 

selection 

Taillard 1996 VRPHE ColwTIn generation method 

De Backer and Furnon 1997 VR PTW 
Constraint programming, 
routes top has next stop 

Xu and Kelly 1999 VRPT\,! 
T5 with independent tabu 

tenure per opera non 

Ombuki, Nakamura and Osamu 2002 VRPTW H ybrid GA and TS 

Van Schalkwyk 2002 VRPT\\! 
Time Window Compatibility, 

selective nc.igbour List 

Table 1: Present State 

2.3.1. iVlllllip!e depol 

Although we do not focus on a multiple depot implementation of the VRP, it is 

important to understand the methods available for solving this problem. In our 

problem we make use of the cluster first route second (CFRS) method. CFRS 

methods are more suitable for node routing problems. ] l,e clustering method is 
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left to the specific client, i.e. the nodes will be clustered with an algoritlun selected 

by the client before we receive the data. 

Tn the capacitated arc routing problem with multiple centres the objective is to 

find routes starting from the given depots or centres such that each required arc 

is selved, capacity and usually additional constraints are satisfied and total travel 

cost is minimised. The paper of Amberg et aI, 11) consider a heurisric 

rransfonnation of the multiple cenrre arc rouring problems into a ITIultiple centre 

capacitated minunum spanning [rec problcln with arc constraints. f\rc routing 

applications referred to problems where the distribution or collection of goods is 

bound up witll traversing a distance such as mail delivery, snow removal, garbage 

disposal, street sweeping and police patrols. Thus, the customers are modelled as 

arc or edges, whereas in node routing prob1ctns the CListOtners correspond with 

ti,e nodes as, e.g. in ti,e travelling salesman problem. The well-known Chinese 

postman problem (CPP) is the basic arc routing problem was named after the 

Chinese scientist Mei-Ko Kwan (1962) who was the first to publish on this 

problem. 

Introducing additional constraints even in undirected or (lirected graphs usually 

yields N P-hard problems such as the capacitated Chinese pOSU11an problem, 

where ti,e capacity of the posUllan is resuicted, or the rural posUllan problem 

(R.PP) where ti,e set of required arcs (i.e. those arcs which need serving) need not 

be connected and has to be linked using non-required arcs. \'(lith respect to 

developing solution methods, it is ilnponant to notc rl,at capacitated arc routing 

problems consist of two interdependent sub problems: The assignment problem 

which [omls subsets or clusters of tequired arcs served by the same vehicle and 

the sequencing or routing problem which detetlnines ti,e sequence of serving the 

arcs. 
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2.3.2. Pickllp alld Delivery 

We consider existing pickup and delivery problems to determine the similarit), 

between it and multiple routes per vehicle. The Pickup and Delivery Problem 

with Time Windows (pOPT\XI) models the situation in which a fleet of vehicles 

111ust service a collection of transportation requests. Each request specifies a 

pickup and delivery location. The multiple routes per vehicle problem can be 

seen as a pickup from the depot and delivery to d,e customer. The route can stop 

se,'eral times at the depot to pickup goods for more customers. '11,e depot must 

now also have a se1'\~ce time. While VRPT\V is weU studied, there is relatively less 

literature on POPTW. Moreover, no one has developed comprehensive 

benchmark POPT\\1 instances that facilitate e:'1Jerimentation of new approaches . 

Lau and Liang [35J presented a two-staged method to solve the pickup and 

delivery problem with time windows (POPT\XI). In d,e first phase, they apply a 

novd consttuction heuristics to generate an initial solution. In the second phase, 

a tabu search method is proposed to improve the solution. In their model, they 

assume there is an unlimited number of vehicles and all vehicles have the same 

capacity. Lau and Liang implement a partitioned insertion heuristic, which is a 

hybrid helllistic combining d,e advantages of the standard insertion heuristic and 

sweep heuristic. The stops are inserted into d,e route as pairs, ensuring dlat a 

pickup stop is always on same route as the delivery route. They introduce three 

different neighbourhood moves, namely, Single Pair Insertion (SP!), Swap Pairs 

between Routes (SBR) and Widoin Routes Insertion (\\IRJ). 

'l1,e study of this medlod indicates that the VRPT\,' was adapted to wotk in 

pairs. Implementing the VRPTW widl multiple routes per vehicle is less complex 

dlan the POPT\V This thesis presents a similar approach as was presented by 

Lau et 0.1 [35]. From the results of Lau et al [35] study we conclude that some 

minor changes to d,e operators in our problem would be sufficient to solve the 
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additional constraint of allowing multiple rolltes per vehicle. Where rhe PDPT\V 

needs to check for pairs, we will be force to check the affect o f route alterations 

on subsequent routes. 

2.3.3. V RP ,pitb MII/lip/e lise 0/ wbides 

·ll,e Vehicle routing problem wirh multiple use of vehicles is a Valiant of the 

standard vehicle routing problem in which the same vehicle may be assigned to 

several routes during a given planning peliod. TailJard et al, 149] presented a tabu 

search heUlistic for this problem. 

One drawback of rhe standard VRP definition is that it implicitly assumes each 

vehicle is used only once over a planning period of duration M. For example, M 

could correspond to an eight-hour working day. In several contexts, once the 

vehicle routes have been designed, it may be possible to assign several of them to 

rhe same vehicle and rhus use fewer vehicles. When m is given a priori and Q is 

relatively small, tlus will often be the only practical option. However, tlus 

possibility is not directly accounted for in rhe problem statement and more often 

tllan not, an efficient " packing" of tl,e routes into working days will be hard to 

aclueve. Desigtung routes with multiple uses o f the velucles is rather important in 

practice, but this problem (denoted by the abbreviation VRPM) has received vcry 

little attention in the Operational Research literature. 

I.n recent years, several powerful tabu search algorithms have been proposed for 

tl,e VRP. ,\s a rule, these algolirhms produce very good and sometimes optimal 

solutions. Rochat and TailJard presented an algorithm that allows diversification 

of the search process to take place by generating and combilung pronlising 

solutions, not unlike what is done in genetic algorithms. More precisely, the route 

generation procedure first produces several good VRP solutions using tabu 

search. It then extracts single velucle routes from tlUs population of solutions, 
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and combines some of these routes to defme a partial starting solution for 

another application of tabu search. This process is repeated a number of times 

and some of the veh.icle routes generated are selected as candidates for the final 

VRJ) solution. Note that each application of tabu search has the effect of 

producing a flill VRP solution starting from a limited set of routes and it may also 

modify these seed routes through the local search process. 

Taillard et al [49] proposed a beuristic for the VRPM based on the algorithm of 

Rochat and Taillard. 11,e proposed heuristic is made up of du:ee parts. It fust 

generates a large set of good vehicle routes satisfying the VRP constraints . It then 

tnakcs a selection of a subset of these routes using an enumerative algolidlm. 

Finally, it assembles the selected routes into feasible working days using several 

applications of a bin packing heuristic. 

2.3.4. H ele/vgeneolls Fleet 

We considered work done on beterogeneous fleet for ob\~ous teasons. Tbe 

vebicle routing problem with a heterogeneous fleet of vehicles (VRPHE) is a 

major opUlTIlzanon problem. Indeed, most companies that have to deliver or 

collect goods own a heterogeneous fleet of vehicles. We will not consider 

composition of vehicles, although it is relevant to some of the problems in the 

industly. 

The problem of composition of vehicles includes the additional problem of 

decicling which trailer goes with which vehicle. We solve this problem by building 

a vehicle set beforehand, and checking the vehicle capacity after routing. I f the 

capacity is enough for the vehicle alone, the trailer is left at home and the total 

route cost is reduced. 
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Tne VRPf-IE has amacted much less attention than the VR.P or VRPT\,\'. This is 

mainly due to the fact that the VRPI-I E is much harder to solve than the classical 

VRP. Taillard 146] propose a heuristic column generation method for the 

VIU) [ IE. 

Taillard [46] defines the heterogeneous fleet as follows: In d,e heterogeneous 

problems, we have a set IIJ = {I, ... , K} of c1ifferent vehicle t)1)es. A vehicle of 

type k E V/ has a carrying capaciry Q,. The nwnber of vehicles of type k available 

is "k. The cost of the travcJ from customer i to j (i,j = 0, ... , II) wid1 a vehicle of 

rype k is d" . 11,e use of one vehicle of rype k in1plies a fixed cost J,. Our 

implementation defines a fleet in a similar way. 

r\ special case of VRPl-lE is the fleet size and mix vehicle routing problem 

(Golden et a1., 1984 in Taillard [46]) also caLled d,e fleet size and composition 

VIU> or the vehicle fleet mix (VFM, Sall-u et aI., 1992 in Taillard [46]). The goal of 

d1.is problem is to detennine a fleet of ve1-ucles such that the swn of fixed costs 

and travcJ costs is tnininlized. This problem is a particular VRPl-lE for which: 

1) T1,e travel costs are the same for all vcJ-ucle rypes (dif, = d'Jk ' k, k· E VI) . 

2) The number "k of vehicles of each rype is not limited (11, = 00, k E V/) . 

We \~ew tl-us kind of problem as a strategic optitnization and it will not be 

considered. Our problem is more concerned wid1 the current situation at the 

depot, i.e. d,e fleet is already there, we cannot make major alterations on d,e fleet, 

but we mUSt still try and optin1.ise d,e vehicle use as best as we can. Tf results 

continuously show d1at a certain vehide is not necessary, it can be considered [0 

remove the vel-ucle from the system and detennine if the a1gorid1ll1 still rentrns 

feasible solutions. 
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Another special case of the VRPI-IE is the VFM with variable unit running costs 

(VFl\IVRC, Salhi et al., 1992 in Taillard [46]). The VFMVRC is a particular 

VRPf-lE for which (II, = 00, k E 11/). Several papers on the VFl\[ have been 

published. Golden et al. (1984) were among the first to address tlus problem. 

This problem's goal is sirnilar to the VFM and is also strategic. \'( 'e will not 

consider this implementation. Much less work has been done for the VRPf-lE. 

Let us quote the taboo searches of Semet and TaiJlard (1993) and Rochat and 

Semet (1994) (in Taillard [46]) for real-life problems including many other 

constraints. 

"For homogeneous VRPs, many heuristic methods have been proposed. r\mong 

the most efficient ones, are the adaptive memory procedure (AMP) of Rochat 

and Taillard (1995) and the taboo search ofTaillard (1993). This last metllod uses 

a local search ll1CchamS111 based on tbe tll0Ve of one customer from one tow' [0 

anotl,er or the exchange of two customers that belong to different tours. Since 

tloe vehicles arc identical, it is easy to check the feasibility of a move and to 

evaluate its cost. For the VRPJ-lE, the feasibility check or ti,e evaluation of a 

ITIOVe requires finding a new assignment of the vehicles to the new solution's 

tours. In Semet and TaiJlard (1993), several techniques h,,-e been proposed to 

sinlplify and accelerate the re-assignment of velucles to tours. However, ti,e re­

assignment problem is very simple in the case of the VFM: each tour is 

perfomled with the cheapest vehicle type that is able to carry all the orders of the 

tours. This is certainly a reason d,at ti,e VFM has been more studied tllan the 

VRPHE." 

-nle above quote is a watlung on d,e addition of heterogeneous fleet to our VRP, 

especially if we do not apply it in the sense of the VFM. We will show, however, 

that tile methods used in our implementation are sufficient enough and effective 

in a reasonable time period. 
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Taillard presents a heuristic calmnn generation method for solving the VRPIIE. 

The column generation is based on the Mv[P of Taillard (1994), which uses an 

embedded taboo search. Taillard proposes to treat the VRPf IE by sohong a 

succession of homogeneous VlU)s, since the solution methods for homogeneous 

VRl's arc becoming more and more efficient. For each type of vehicle, they solve 

a homogeneous VR.P (witilout limitation on tile nwnber of vehicles available) 

with an Al'vIP. The tours of the homogeneous VRP solutions are then combi.ned 

to produce a solution to ti,e VIU)HE. 

The AMP first generates a set of good solutions using ti,e taboo search. It ti, en 

extracts single ,-elude tours from this set of solutions, and cot11bincs some of 

ti,ese tours to define a partial starting solution for another application of taboo 

search. This process is repeated a t1U1nber of times and the tours arc ll1cmorized 

as candidates for tile fmal VRP HE solution. Once the homogeneous VlU)s are 

solved for each vehicle type, one has a set T of tours tilat have been memorized. 

The useless tours o f T are removed: only one capy of each tour is kept in T; tile 

dotlnnarcd [ours are elin1inated (a [OUf is dotmnared if it is more expansive than 

another tour of T servicing tile same customers). In the case of the VFl\ I, the 

algOritlull always produces a feasible solution if ti,e iterative search used to solve 

tile homogeneous VRP succeeds i.n fmding feasible solutions. 

In our objective, the proposed solution is not considered for the followi ng 

reasons: 

• In ti,e case of the VFM, an unlimited number of vehicles exist to solve 

the problem. Whatever feasible tour is selected from tile homogeneous 

solution list is possible, as the vehicle exist. In our instance, it might 

happen that the selected vchicle route cannot be used, as the ntunbcr of 

routes for the type of verucle already equals the I1lU11ber of vehicles 

45 

 
 
 



available. Another vehicle must be selected for this route, which might 

not result in the best solution. 

• If we start to make alterations to the selection of vehicles, it might 

happen d1at d,e routes in the list for a specific vehicle on a specific stop 

arc exhausted by the othet ,'elucles. Al d,e routes, which included dlis 

stop, is removed from the possible route list. This can result in stops not 

being visited, because there is no vehicle available, or so it seems. \,\/e can 

build up a route, which consist o f the unrouted stops ro insure a feasible 

solution, but this will result in a solution that is not the best. 

• As mentioned previously, we cannot guarantee that Taillard's method will 

result in the best solution. If we add to that d,e additional complexity of 

our problctTI, it can really get time consunung to rebuild the solution 

from a set of feasible homogeneous vehicle rolltes. This inlplies dut the 

heuristic method applied on the homogeneous vehicle solution wiU be 

applied a few times. With the a,'ailable computer power as weU as the 

complexity of the data sets we work widl, it wi ll be more effective to 

implement the vehicle selection method into d,e heuristic. Taillard found 

d,at for problem instances involving very few vehicles, there was a higher 

probability that a nm would not produce a good or even a feasible 

solurion. 

2.3.5. Ti1lle IVi"dolvs 

The Vehicle Routing Problem with Tinle Windows (VRPT\XI) is by far d,e most 

popular inlplementation of d,e VRP. Our problem implements various 

extensions on the oliginal idea o f a rime window. The cust01l1CrS to be visited can 

have multiple time windows. The vehicles to be used will also have available time 

windows d,at will allow the user to schedule certain vehicles for long hauls where 
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necessaty. 11,ere exist a wide variety of implementation methods for the 

VRPIW. 

A rIy brid Searcb Based On Genetic AIgoriduDs And Tabu Search For 

Vehicle Routing 

Ombuki et ai, (39) ptesented a hybrid search technique based on meta-heuristics 

for approximately soh~ng the VIUJT\V The approach is two phased; a global 

customer clustering phase based on genetic algOlithms (Gr\s) and a post­

optimiza tion local search technique based on Tabu search ( f5). 'Illey also de\~sed 

a new crossovet opetator for rhe VRPT\,(! and compare its performance wirh two 

well-known crossover operators for VRPT\'i! and related problems. 

Computational experiments show that the GA is effective in setting the number 

of vehicles to be used while the Tabu search is better suited for reducing the total 

11lU11ber of clistance travelled by rhe vehicles. Through rhei..t· sirm~ations, they 

conclude rhat the hybrid search technique is more suitable for rhc mwti-objective 

optimization for rhe VRPT\'(1 than applyirlg ciuler U1C Gr\ or Tabu search 

independenuy. We definitely take this from uleir research and \~ll also implement 

a hybrid approach. 

In uus paper a hybrid search technique is proposed wluch is suitable for multi­

objecti\'e optimization. Thcir approach is two phased; a global customer 

clustering phase based on genetic algOlithm and a post-optimization local search 

technique based on Tabu search. The objectivc function statcs ulat costs showd 

be milumized. Tn this case the objective is to mini.mizc the ntullber of vehicles 

used and ule clistance travelled to meet ule demand of all the customers while not 

exceecling capacity of the vehicle and the latest time for serving each customer. 

'I1ms ulis problem can be treated as a mwti-objective optimization problem. 

In rhe GA, each chromosome in ule popwation pool is transfOlmed into a cluster 

of routes. The chromosomes are thcn subjected to an iterativc evolutionary 
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process until a minimum possible nU1nber of clusters are attained or the 

termination condition is tnet. The transfotmation process is achieved by the 

routing scheme whereas the evolutionary part is carried out like in ordinary GAs, 

that is, in each generation, genetic operations, crossover and selection are applied 

upon ciuolnosolnes. We represent each chrOtnoson1c as scguence of cluster of 

routes. A route is composed of a sequence of nodes (customers). Each 

chromosome represents a possible solution for the VRPT\V 

The following figure shows the performance of the genetic algoritlml compared 

to tI,at of the Tabu search rechnique. In the case of Figure 3, ti,e main objective 

under scrutiny is how GA and Tabu search perfonns respectively in defirting the 

final number of vehicles to be used to service the customers for ti,e VRPTwr. 

Likewise, Figurc 4 demonstrates their perfonnance when the main objective 

obsetvation is to minunize distance travelled. The vertical axis U1 both figures 

shows the nU111ber of customers not served. The more custOlners served, the 

better. From Figure 3 we observe tint GA perfonns better than the Tabu search 

in searching the Itoptimat nmnber of vehicles to service the customers. As the 

figure shows, the GA manages to employ a smaller number of vehicles and also 

to serve 1110re customers than the Tabu search approach. 
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On the other hand, Figure 4 depicts that the Tabu search outperfOlms the GA 

when it comes to minimizing the total distance travelled. Clearly, this is a case of 

conflicting objectives. In-order (0 reduce d1e travelled distance; one would need 

to increase the number of vehicles. On the other hand, to reduce the cost of 

enlploying more vehicles, one needs to increase tJle distance travelled per vehicle 

(which does not necessarily solve the problem as the cost of gas and other 

resources comes into playas well). 
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In our problctll we are not concerned about reducing vehicles as a lTIall1 

objective, ald10Ugh we would like to utilise a vehicle as good as possible. Tnstead 

of making use of GA for vehicle reduction, we implement med10ds to handle 

heterogeneous fleet, as well as multiple scheduling. . 111e G A memod in dus 

implctnentation as a heuristic and not a meta-heuristic. \\fhat we are looking for is 

a med10d to handle me meta of our algoridun. 
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Although they do not specify the side constraints, except fo r the time windows, 

additional side constraints can be implemented and will affect Ole algorimm in 

testing for feasibility. We can expect similar results for our problem as in this 

lI1stancc. 

A Network Flow-Based Tabu Search Heuristic for the VRP 

AU and Kelly [54] introduced a network flow model as a general local search 

strategy to solve the VRP. They used a straightforward model by relaxing the 

hard side constraints and introducing a dynamic penalty system, and efficiently 

update and frequenoy solve the network £Jow model to fmd Ole best cllstomers 

to insert into new toutes wiOlout the usc of the generalized assignment problem. 

The penalt), parameters arc changed such Olat Ole feasibilit)· of the search is 

controlled. 

The network £Jow model implements Tabu Search restriction to prevent the 

method from getting trapped in local oprin1a. TS restrictions wiol randomly 

generated tabu tenures are applied to olem three neighbourhood moves: 

dropping a customer frol11 its current route, inserting a cust0l11Cr i.nto a different 

route and swapping two customers between routes. For the swap, in addition to 

Tabu resttictions on future swaps, the associated ejections and insertions are also 

subject to tabu restrictions. \X'hen a customer is 1110ved to a new rOllte, a tabu 

rcsrncrion that prevents its removal from that route is only activated when there 

are only a few customers Ocss than a prc-dctennined I1lunber) in thc route. 

rrOlTI their in1plementarion wc conclude that each operation can have its own 

tabu tenure. Ideally we would like to set Ole tabu tenure during execution for each 

operation. \Y/e also conclude that the execution of an operation might result in 

tabu moves for other operations. We must identify the dependencies of 

operations beforehand. 
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Xu and Kelly [54] also implement an intensification strategy that we inhelit from 

them based on advanced restart/recovery procedure. The set of best feasible 

solutions produced by the search are defined as elite solutions. A repositOlY of 

elite solutions is maintained. Ad"anced restart is executed perioclically during the 

late stages of the search. \Xfhcn restarting, the em-rent solution is obtained frOl1l 

the repository and all tabu restrictions are released. This strategy is based on the 

assumption that there may exist short relinking paths in the search process from 

the restart points to new local or global optima. However, these padls may not be 

detected during prior search due to the tabu restrictions. The advanced 

res tart/ recovelY strategy may find dlese paths and dlereby lead the search to new 

local or global optima. 

Vebicle R OUtiJlg in Constraint Progranlming 

De Backer and Furnon [18] consider constraint programming for solving VRPs. 

However, this raises many problctTIs. Search in constraint prograrruning is usually 

based on depth-first search. This means that the domains of each vatiable arc 

monotonically reduced by propagation dming dle search. r\ldl0Ugh dus approach 

can be usen.ll for finding a first solution for the VRP, it is not practicable when an 

optimized solution is sought. This is dle reason why much research has been 

devoted to dle design and dle implementation of local search techniques in the 

context of routing problems. 

The paper presents basic principles for implementing local search techniques and 

meta-heuristics in constraint ptogramming. These principles have been applied to 

Tabu Search. \\'e consider the basic VRP ,vidl additional side constraints. 

Expressing such constraints as what we arc considering, can be tediolls, and yield 

problems with huge models, especialll' in dle case of traditional linear 

programming (LP) models, or make programs sohcing VRP very complex and 

difficult to maintain. 
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In standard LP models, decision variables usually belong to a set of Boolean 

variables x~ which take dlC value 1 if the vchicle k is used to travel from visit i to 

j. ll1crcfo rc, these 1110dcls usc 0{1Jl11d decision variables, where III is the number 

of vehicles and 11 is the nUlnbcr of visits to perfonn. 

\'(Ie implement the VRP with a number of variables that is linear (instead of 

quadratic) with respect to the number of visits. Each \isit i is associated with twO 

finite-domain variables next, and I/Cb" representing respectiycly the possible visits 

following i and the vehide sen~ng visit i. 'Ilus method allows us to quickly access 

the feasibility of a route by traversing only a part of the route depending on 

where the alteration took place. 

D e Backer and Furnon [18] devise a genetic way of taking into accowlt 

constraints on dimensions that can be a diverse as weight, time, or vollllnc. They 

introduce rhe notion of a path constraint, which arc similar to the way that we 

implement constraints on a route. Path constraints are able to propagate 

accwnulatcd quantities such as tlll1 C and weight along a vehicle tour. 

We implement a similar method to tcst for feasibility of a route. Constrainrs arc 

prioritised according to ease of calculation and importance on failing, e.g. to 

insert a node in a route, the ve!ucJe capacity must be sufficient to accept the new 

node as weU. It is quick to tcst the current capacity of the route plus the new load 

of the stop against the capacity of the velude. 

Time Window Compatibility 

Time Window Compatibility (T\'(IC) rcfers to d,e compatibility of the time 

\vindow(s) of onc stop \vith regards to another. r\ good TWC figure inclieates 

that the two nodes are likely to be inserted in sequence on the sam e ro ute. In 

many cases two customers can be located next to each adler, but their time 
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windows is not compatible. The trade-off between distance (i.e. cost) and time 

(i.e. customer delight) is an inherent part of the problem. 

Inscrrion of stOps in a heuristic fashion requires a selection process d1ar result in a 

possible next stop. The T\VC can assist us in ruling out infeasible stops from the 

start. We define the te1111 neighbour for a stop. A neighbom is a stop that can be 

visited frolll the current stop. If we know that a stop is not a neighbour of rhe 

current stop, we do not even waste time of trying to implclnenr that stop as a 

next stop. The neighbours of a stop are made up of all the time window 

compatible stops. We utilise the T\'VC principle as proposed by Van Schalkwyk 

[52], but we implement it in a different fashion . II discussion of the T\'iIC follows 

and Chapter 3 will discuss the implementation of this concept in our solution. 

The figure below illustrates a scenario where we evaluate the time adjacency of 

node i and node j. This scenario assumes that there will be a defuute overlap in 

time windows between the two nodes. Other scenarios will subsequently be 

discussed. 
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Figure 5: The basic TWC calculation -
Scenario 0 

Scenario 0: iF a;' > ej AND a; < Ij 

s;heduling period 

~ time 

Customer i specified a time window (e,'/,) bet\veen 8:00 and 12:00, and 

customer j requires service bet\vcen 9:00 and 16:00 (e i,lJ. If sclviccd started 

at node i at e, (the earliest feasible time), its anival at j would bc: 

a? =e,+ s'+; /j 

In this scenatio equals 11 :00. 

Similarly, al would be the arrival at j if service started at node i at the latest 

possible time (I,): 

In this scenario equals 15:00. 
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The difference between a;' and a;- will yield the amount of time overlap between 

i and j : 

I n this scenario it equals 4 hours. 'll,e significance of this value is that the bigger 

the overlap, the better we can insert the two nodes in seguence. This also 

enSilles that the customer with a big overlap is routed first (more flexible). 

A number of different scenarios will be illustrated in the following figures. 

Scenario 1: If aj > I J 

If the earliest arrival time at nodej is inside the acceptable time window, but the 

latest an;val time is outside of the acceptable time window of node j, the two 

CUStomers only partly overlap. The TWCij is tl,en calculated by the following 

e'Juanon: 

node i 

I ej~ I 
I 

), 
node j 

I ta ~i (. 
I I a ' 
I I ) I J 
I I I 

I I 
TWCij 

I 

I S; + t ij I I 

( )~ ~ g;heduling period 

~----+-----------+-------~------------------+----..~ time 
06:00 08 :00 11 :00 13:00 18:00 

F ig ure 6: Sce nar io 1 TWe calcula tion 
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Scenario 2: If a? < ej 

If the vehicle arrives at the earliest feasible rime and this is before the acceptable 

rime window of node j, and the arrival of the latest feas ible rime at node j is 

inside the acceptable rime window, the two customers only partly overlap. The 

\Thicle has to wai t to service customet j. TI,e TWC ij is tl,en calculated by the 

following equation: 

e 1 

r~~, 
I a ei' I I , . a " I ) I I ., 

, " i , 
I 1 I I 
, S;+fu' , TWC;; J 

~~~'(~~~~Y~~~~~~'~7~~~~~~~ g;heduling period 

~ time 

node j 

06:00 08:00 11 :00 15:00 18:00 

Figure 7: Scenario 2 TWC calculat ion 
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Scen ario 3: If a;' < e} and aj < e} 

If Ole latest arri,'al rime at node) is earlier olan the start of the acceptable rime 

window at node), the vehicle always waits at node j, lrrespectable of the arrival 

tim e at node i. The arrival at j is always before its acceptable smrt rime. This 

!£heduling period 

~----~----------+--------------+------------+---~.. t ime 
18:00 

Figure 8: Scenado 3 TWe calculation 
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Scenario 4: If G, > I
J 

and G , > I
J 

If the arrival time at j is always bigger than the latest acceptable time at j, the 

node-combination is infeasible. 11,e nodes fOnTullg part of tills combination will 

typically be clinlinated before starting the algOlithm, as they can ob\~ous ly not be 

included in dle current route under constrllction. 

node} 
e f). ~ 
11=) ===1==1 ae, 

I . 
I ) 
I 
I 

node i 

ai, 
) 

~~~~~~~~,(~s~; ~+~t;ij~)::~~N~O~T~W~C~ij ~~~~::~ s:heduling period 

~ time 

06:00 10:00 12:00 16:30 18:00 

Figure 9: Scenario 4 - infeas ible 
combination 
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Cbapler 3 

3 PROBLEM SOLVING METHODOLOGY 

Solving the vehicle routing problem in its basic fonnat is already an NP-hard 

problem. Exact medlods have proved to be inefficient and time-consuming in 

tryIng to solve dus problem. Previous attempts on solving dle VRP have 

indicated that heuristic methods result in dle best feasible solution in an 

acceptable time. When we add additional constraints to dle basic VRJ>, we 

increase dle difficulty of the solution exponentially. We must also consider the 

size of the data set their needs to be optin1ised. 

Heuristic methods search only part of the solution space. Tlus result in the 

quicker termination of the algotidU1l, but does not guarantee a best solution. 

Previous results have shown that heuristic methods can ach ieve optin1al or ncar 

optimal results repeatedly. The meta-heuristic method has a guidance procedure 

of some sort to help it traversing through the solution space. The guidance 

procedure is dependent on the type of helllistic selected for the solution, as well 

as additional knowledge from dle problems space implemented by the algotithm. 

Tlus additional infotTI1ation about dle problem beforehand can assist the 

algorithm in more effective search pad,s. A meta-heluistic is dle implementation 

of a hernistic medlod with a guidance procedure. 
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Figure 10: Solution Space 

Figure 10 explains the methodology of heuristic methods for soh-ing the 

particular problem. -Il,e solution space consists of all possible solutions for the 

specific problem. Theoretically we can develop an algOLithm that has the abili ty to 

generate all of the possible solutions such as branch and bound methods . , \ s we 

have already seen, tlus method will take an etenuty on ti,e complex problem that 

we are Ir)"ng to solve. A meta-heuristic can search effectiYe1y tllIough the 

solution space. 

r\ circle which size reflects the total cost of the solution represents a solution. 

The smaller the circle, the better the solution. This indicates tI"t there arc 

possible solutions that is not cost-effecti ve and wluch we do not want to consider 

as an end result. 

Let S be a set of solutions ro a particular problem, and let f be a cost function 

tI"t measures ti,e quality of each solution in S. 11,e neighbourhood N(s) of a 
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solution s in S is defined as the set of solutions which can be obtained from s by 

perfomling simple modifications. Roughly speaking, a local search algoritlml 

starts off with an initial solution in S and then continually tries to find better 

solutions by searching neighbourhoods. A local search process can be viewed as a 

walk in a directed graph G=(S,.iI) where the vertex set S is tl,e set of solutions 

and there is an arc (s,s) in A if and only if s' is in N (s). By considering rhe cosr 

function as an altirude, one gets a topology on G=(S,A). 

The efficiency of a local search method depends mostly on the modelling. A fine­

tuning of parameters will never balance a bad definition of tl,e solution set, of the 

neighbourhood, or of the cost function. 

,[1,e topology induced by tl,e cost function on G=(S"iI) should not be too flat. 

The cost function can be considered as an altitude, and it therefore induces a 

topology on G=(S,A) with mountains, valleys and plateaus. It is difficulr for a 

local search to escape from large plateaus since any solution tl,at is nor in the 

boarder of such a plateau has the same cost value as irs neighbours, and ir is 

therefore i.mpossible to guide the search towards an oprilnal solution. r\ C0111.111on 

way to avoid tlus kind of topology on G=(S,A) is to add a component ro tl,e cost 

function which discritninates between solutions having the Saine value according 

to the original cost function. 

OUf evolutionary metahewistic tnakes use of the well-known two-stage and 

multi-start local search (MLS) frameworks. In two-stage framework rhe ilutial 

solution created in the first stage is subsequently improved in tl,e second one. 

In the first stage we generate an initial solution with the help of a construction 

heUllstic, in rhis case we make use of the sequential insertion heuristic (SII-l) . Tlus 

method results in a solution thar is feasible but not necessarily the best. The 
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feasibility of the solution ensures that it existing our solution space (sec the initial 

solution in Figure 10). 

TI1e inlprovcrnent stage traverse from our current position to a neighbour1s 

solution. Because solutions do not truly exist in OUf enviromnent, we need to 

generate a new feasible solution. This is done by applying an operation on the 

current solution. As we progress it can happen widlout an already existing 

solution is generated by an operation. This can result in cycles in our search path, 

which leads to revisiting existing solutions and result in unnecessary 

computational time. One of our objectives will be to prevent such cycling. r\fter a 

specified nWllber of iterations we have visited a number of solutions from which 

the best solution is kept. "l1,e solution is not necessatily d,e best solution for the 

problem, but represents the besr-\~sited solution. Our goal is to guide me search 

path in such a way dlat we cover as wide as possible area of dle solution space. 

From the figure we can see that d,e pam to d,e best solution might have to go 

through a not so good solution before d,e best solution is reached. Operations 

applied on a solution can result in a not feasible solution. \~'e can consider this as 

a stepping-stone towards the next solution, or it can be seen as a waste of 

cOlnputationai time. 

The improvement phase is implemented wid1 me Tabu Search Method. Tabu 

search has a rationale d,at is transparent and natural: its goal is to emulate 

intelligent uses of memory, particularly for exploiting structure. Since we are 

creatlU"es of memory ourselves, who use a variety of ll1ClTIOC)' functions to help 

thread our way through a tnaze of problem-solving considerations, it would sectn 

reasonable to try to endow our solution mcd10ds with similar capabilities. 

The following sections will discuss in more detail d,e specific methods used to 

traverse through the solution space. It will also point out where knowledge about 
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the problem beforehand can have an effect on the implementation of the 

solution. The sections consist of d1C problem representation in objects, the 

approach of the solution, a discussion on the cOnstnlCOon hClUiscic and 

improvctnent heuristic. 

3.1. Objects . 

In the previous chapter we presented the problem in a mathematical model. This 

model has the pUlvose of describing the parameters of the problem as well as the 

conditions it has ro meet. Implementing a solution for the problem is not as easy 

as describing it. This section will explain the components we utilise for solving 

d,e problem. The solution was designed in an object Otlentated way. 

The object model is di"ded into two areas. Model will desClibe the problem 

objects or the input data. The second model will desClibe the alterations on the 

problem objects and the additional objects required to produce a solution. An 

object consists of properties, methods and relations. 

3.1.1. PlVbl'1lI objetls. 

11,is section will discuss d,e mapping from d,e input data to the objects in the 

solution. We need to identify all the objects represented in the input data. Let us 

consider the vehicle routing problem again. 

11,e basic VRP consist mainly of a depot, stops and vehicles. A depot can be seen 

as a specific stop \,vith certain properties. 
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Stops 

llStop 

-Volume: double LlNode 
-TimeWindows : LL TimeWindowUst -to: jnt 
-Name: string ..)', -x: double 
-Fixed Service : double v 

-y : double 
-Variable Service : double 
-Neighbours 

Figure 11: Problem objec t Stop 

The above object represents a stop. r\ stop must comply with the basic 

functionality of a graph node. The figure indicates that a stop inherits all the 

properties and methods of a node. The properties of a stop is as follows: 

• ID - a unique value to identify the stop. 

• X, Y - the spatial representation of the node 

• Volume - the vollllne that a stop will utilise on a vehicle 

• Time Windows - a list of available time ,v;ndows that a stop can be 

visited in. 

• Name - a descriptive name for the stop for display and report pwposes 

• Fixed Service - the fixed service rinlC for a stop in minutes. This 

represents dle stopping time required at a stop \Vidlout loading or 

unloading anydung. 

• Variable Service - t1us represents the volume per minute rate of loading 

or unloading goods at dle stop. The total service time at the stop consist 

of the fixed service time + (volwne * variable service time) 
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• Neighbours - this is a list of neighbours that a vehicle can visit from a 

stop. In the basic VRP this list will consist of all the other stops. [n our 

problem that includes time windows, it might happen that it will never be 

feasible for a vehicle to travel from one stop to another because of time 

window compatibility (sec description of time window compatibility), 

which basically means that the following stop has time windows that ends 

before the current stop's rime windows begin. Science has shown that we 

cannot tra,ycl back in time and thus we will not consider this stop as a 

neighbour. 

Operations required by d,e problem model for stops can be defIned as followed: 

• Travel Tinle - working with the restliction of time widows, we need to 

know that rune it will take to travel from one stops to another to ensure 

that we arrive at a feasible tUnc. \'{,Ie unplcmcnt travel rime between stops 

in a matrix. One of the adrlitional constraints to om problem is the 

requirement to calculate d,e travel time depenrling on d,e time of the day. 

The travel time hmction accepts d,e two stops in the travelling sequence 

and the time of departure from the fIrst stop. See dus section on d,e cost 

matl1x for furdler detail. 

• Distance - distance is calculated in a similar way as travel titne. Dist::tnce is 

also dependent on time of day because the travel time between two stops 

dete111Unes the route between the stops. T lus means basically that a 

quicker route might not be d,e shortest. 
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Depot 

The properties and methods of a depot is exactly tl,e same as for a stop. In 

defIning a depot, we define a single stop. Travel time and distance calculations 

applied on the depot in the same manner as for a stOp. 

Our solution considers only one depot, which inlplies tllat all the existing vehicles 

and stops belong to that depot. Extending this problem to a multi- depot 

problem would require tl,e depot object to be reconstmcted by adding a stop list 

as well as vehicle list to tl,e depot object. 

Vehicle 

LLVehicle 

-ID: int 
-Name : string 
-Capacity: double 
-FixedCost : double 
-VariableCost : double 
-TimeWindows : LL TimeWindowLisl 

F igure 12: Problem object Vehicle 

The vehicle object in our implementation consist of the following properties: 

• TO - a unique key for identifying tl,e vehicle 

• Name - a descriptive name for display and reporting purposes 

• Capacity - tl,e to tal volume tllat a vehicle is capable to hanrlle 

• Fixed Cost - the cost of utilising this vehicle without even travelling 

• VaLiable Cost - the running cost of tI,e vehicle. Part of the cost of the 

route is calculated by I'ixed Cost + (Variable Cost * Distance). 
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• Time Windows - a list of available time widows that the vehicle can be 

utilised. 

There docs not exist specific operations for a vehicle in the problem object 

model. 

Tim e WIndows 

LLTimeWindowlist 

-TimeWindow : LL TimeWindow 

+AddTimeWindow(in TimeWindow : LL TimeWindow) : bool 
+lsTimeCompatible(in Time: double) : bool 
+GetCompatibleTime(in Time: double) : double 

Fig ure 13: Problem object T ime 
Window 

LL TimeWindow 

-Open Time : OateTime 
-Close Time : DateTime 
+DoubJeOpenTime(): double 
+DoubleCloseTime(): double 
+SpanTimeO : int 

Time widows play an important role in the problem. r\U o f the problem objects, 

natl1ely depot, stops and vehicles, arc associated with a rllllC window list to 

indicate availability for the object's specific function. 

Tune window consist basically of an open and close time. ~nus rime is saved in a 

datetime fonnat to allow for implementing problems that span across multiple 

days. Operations on Ole time window includes: 

• D oubleOpenTime - returns the number of minutes after specific date 

time from a fixed time. 'This is done to allow the algorithm to work in a 

linear reference environment. Let us for example say that the open tUnc is 

07:00 on today's date. Calculating the linear time consist of the difference 

between the open time and today at midnight, which results in 7 hours. 

Converting the hours to minute's results in a linear open time of 7 * 60 = 

420. r f the open time was specified as yesterday at 07:00 the difference 

between today at midnight and the open time is -17 hours. Converting 
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the hours to minute's results in a linear open time of -17 * 60 =: -1020. 

Although the value is negative is stili valid for a linear scale. 

• DoubleCioseTime - returns the nwnber of minutes after a specific date 

time, same as DoubleOpenTime. 

• SpanTul1c - rCUlrns the difference betwcen the open and close tJnlC in 

rrunutes. 

\'(fhar we can see from the tinlC window properties is that our linear timescale 

consists of minutes. ·The fixed point on the scale to calCl~ate the linear values 

from is today's date. 

The time window List object consists of a list of time windows. Operations on 

cllls list include: 

• TsTimeCompatible - tllls function accepts a time and detelmines jf there 

exists a tirne window that include the tUlle, i.c. the rime is after the open 

time and before the close time for a specific time window in the li st. 

• GetCompatibleTime - tills function accepts a time and calculates the 

earliest ,,"ailable time according to the time window list. If no such time 

exists, an exception is thrown, which indicates incompatible orne. 

3.1.2. S OlllliOIl Objects 

This section will give an overview of cl,e solution objects used in cl,e algorithm. It 

is important to understand tills basic building blocks in order to sec how the 

algmithm functions. Solution objects consist of extensions of problem objects to 

handle new information required by the solution, as well as help objects that play 

a role in solving ti,e problem. 
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R oute Vehicle 

The inlpicmcnrcd solution foclls on detcnrunisnc data, i.c. all the demands and 

vehicles are available and known before the start of the solution. In tenns of the 

vehicles the algorithm will not propose a best-suited fleet from a set of vehicles, 

but accept the vehicles as existing and ready to use according to their 

specifications. It can be simplified by allocating a route to a vehicle before we 

even start. The solution is therefore made up of a set of vehicles that contain 

routes. 

One of the adrlitional requirements of the problem is to allow for multiple routes 

on it vehicle. A vehicle can thus have multiple routes. 

1\ vehicle with routes will be the main output of the system. r\ route "ehicle is the 

input vehicle with routes associated to it. 

ROlltes 

j \ route can be seen as a sequence of stops that is visited by a particular vehicle at 

a specific time. 

1.1.2.3 Route Stops 

The detennining of a best solution relies mainly on the handling of the stops. I r\ 
route stOP consist of a stop with additional info such as: 

• Anivru Time - the time a vehicle arrives at a stop 

• \Xi'ait Tinlc - the tUlle a vchicle tllUS! wait at a stop before it can start 

sen~cing the stop. 

• Sen~ce Time - as specified by the stop sen,ice time. 

70 

 
 
 



• Departure Time - the time the vehicle leave a stop for its next stop. This 

must be equals to the Arrival Time + \'('ait Time + Service Time. 

• Next Stop - An indication on where to go next in the toute. This method 

is the principle method of providing information on the route. Adding or 

deleting a stop ftom a route is made easy by just replacing the next stop. 

Adding a new stop requires replacing the current stop's next stop with 

the new stop and the new stop'S next stop to the current stop's next stop. 

Deleting is as easy as setting the previous stop's next stop value to the 

current stop's next stop value. This only indicates the method of 

inserting and deleting a stop from a route and not the validity of the 

move. 

VRPBase 

The ma.in purpose is to solve the VRP. There exist several ways to solving a VRP. 

This object is the base object for the solution. The object contains all the 

necessary data and manipulates all the necessary methods applied on the data. 

]l,e end result of the algorithm is the VRP object, which contains multiple 

solutions. 

Cost 

Cost is defined as the cost in terms of distance and travel time from one stop to 

anod1cr. A cost matri. ... is llsed for storing the values. 

The solution implements a cost function with time \vindows to represent the 

difference of cost on a link depending on the time. This basically tesult in a cost 

function that is a function of the time of day. When the algorithm requests a 

travel time from the cost function, the function first determines the cost mau-ix 

to use. This is done by [Ulding a cost mau1x, which time windows will contain the 

time prov-idcd. The cost for that time is returned. 
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It is inlponant to noticc the influence of such rune dependent cost function in 

the solution. '111c advantage is that a more accurate route can now be constnlCted, 

which is very imponant for tile success of me algmitilm. \'\'hen a vehicle travels 

from point A to point B, it will definitely take him longer dming traffic peak 

petiods. The use of an average travel time on a link will no be sufficient to take 

care of rhis problem. \Vhen a vehicle travels dming peak time, his acnlal arrival 

time at tile customer will be later man planned. r\ltil0ugh tile ,-ehicle lTught make 

up tilis time during me off-peak time, the use of multiple time windows can result 

in a lateness that fall betwcen two time windows, which result in additional wait 

time, which makes it more difficult to make up dming rhe off-peak times. 
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07:00 .~ 
08:00 
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11 :00 
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13:00 
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~ 
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Fig ure 14: Peak and Off- Peak travel 
time influence 
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Figure 14 explains the importance of a time dependent cost function in the 

solving of the VRI>. 11,e figure represents a typically delivel)' day with stops that 

has sitnilar rime windows. The patterned areas represent peak tJ'affic tinle . ..A 

route is constmcted from the depot on the left back to the depot on the right. 

The green arrow line represents the rOllte makjng use of an average travel time on 

a link. Thc red line represents the actual travel time. Starting of, we can 

immccliately see that d,e average route departs later that the actual route. 'nus is 

because d,e departure time from d,e depot is detelmined by the open time of the 

fust stop. The slope of the red line is steeper than the !,'Teen one, which inclicates 

a longcr time to tra,"el from the depot to thc first stop in the actual rollte. 

The algorithm will ensure that the arrival time at the fust stop is as early as 

possible. Tn the above case, both routes arrive at d,e open time of d,C fust stop. 

The selvice time is not affected by the cost flUlction and both routcs depart from 

d,e first stop at the same time. 

During the peak travel time, the actual route requires a bit more time to travel 

than the average travel ntne. At stop 3, the acrual tin1C arrives too late to be 

serviced in the fust time window and has to wait for d,e second time window to 

take effect. Aldlough d,e actual travel time is quickcr d,an the average time 

dUl;ng off-peak periods, d,e aggregated loss due to lateness cannot be recovered. 

This is mainly due to d,e synchronisation of the stop time windows. 

The example above is proof that we need to implement a timc dependent cost 

function in thc algorithm to produce more realistic results. 

The VRI> is a NP-hard problem, wluch suggest d,at it is clifficult to solve. 

I Jeuristic medlods can provide feasible solutions in reasonable time, but 

additional constraints will increase computational time. The addition of a time 
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dependent cost function requires the algotitlun to recalculate ti,e travel time 

between two stops every arne a new stop is added to the route or a stop is 

removed from the rOute. This is neceSSalY for all srops after ti,e added or 

removed stop, as the addition of a stop will alter ti,e arrival time of all subsequent 

stops. 

Solution 

A solution object represents a possible solution ro ti,e VRP problem. The 

solution contains route vehicles and thei.l' corresponding routes and stops, as well 

as an orphan Jjst of stops. A solucion object is used to generate 1110rc solutions 

from tlllough an operation. 

Although the algotithm considers all ti,e main influential parameters, we cannot 

ignore ti,e human factor. There might still exist a preference from the user 

regarding a specific solution. During the execution of the algolitlU11 ti,e proposed 

metl10dology requires a list of solutions to be able to traverse through the 

solutions space. \)(Ie propose tllat the algoritlun does not only present ti,e user 

with the best to solution found, but provide ti,e option of selecting one of the 

best solutions. Practical implementation has shown that the best calculated 

solution might not always be the mOSt feasible for the client. This might be 

because of the customer driver relationships, driver knowledge of areas, etc. 

COl1s truction HelJristic 

11,e proposed solution requires some possible solution to start working ftom. 

There exist multiple metl10ds of constructing an initial solution. In a later section 

the selected construction heuristic namely the Sequential Insertion Heuri stic 

(Sill) will be discussed. The algOritlU11 can function from an existing solution. In 

those cases, the constlucnon heuristic would not be necessaly. 

74 

 
 
 



Working in the I\SP environment implies dynamic acquisition of data from 

clients. The solution has to take into consideration the possible extension of the 

current implen1cnrarion, i.e. there Hlight exist a better construction heuristic for 

the specified problem. For that specific reason we propose the implementation of 

a construction heuristic in the main algOlithm. This will allow the addition of 

other COnSll'1.lCtion heuristics in dle funrrc . The current construction heuristic 

already produces tnultiple solutions for the improvement heuristic to work 011. 

Improvem ent Heuris tic 

The implementation of an improvement heuristic is the focus area of this 

research topic. The VR.P object contains an Improvement Helilistic method. As 

in the case of the construction heuristic, the VRP is force the existence of such a 

method, but does not detennine the impiemenL1tion detail. 

3.1.3. Problem Helper Methods 

Tlus section will discuss the systematic approach in solving Ole problem. 

f\lthough the focus of ous thesis is on desigtung a new VR.P solution, we cannot 

ignore dle ilnplementation environment. 11le J-\SP env1.rOnnlCnr has a major 

influence on the line and implementation of the solution algorithm. The main 

reason is because of Ole unpredictability of Ole data . 

The next paragraphs will discuss infonnation flow and manipulation dlrough the 

process. 

Input DElta Elnd Object GenerEltiol1 

The first step towards a feasible solution is to acquire data from the client. There 

exist multiple methods of transfening data from Ole client information service to 

Ole ASP server. This is Ole topic of anooler srudy. 
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\'iI1,at is important is that the data must be complete. This means that the 

incoming data OlLIst contain all the necessruy infonnation. In addition, we must 

know where the incoming data is headed for, e.g. the client must specify which 

value from a stop is the demand and wruch is the tlll lC windows etc. 

The client data must now be constructed ill the defined objects. The algmithm 

requires data that is relevant to one depot and one instance of a routing schedule. 

Th.is means that a stop will only be visited once dUling the time windows 

specified. 

r\fter this step, the a1g01ithm will contain all me necessary data. 

Sollltion methods 

f\S explained in previous sections, a route consists of a sequence of stops. The 

tnanner in which the suucturc is maintained is important i.n the tnanipulation 

procedures of the algorithm. 'ntis paragraph describes basic actions allowed on a 

solution. The itnplenlcntacion of the constnlCtion and impro\"ement heuristics 

\ViU depend on me stability of these actions. 

ROllle .ftop additioll 

r\ S mentioned pre"iously in the discussion of me time dependent cost function, 

the addition of a stop on a route has several consequences on the subsequent 

stops. 

The addition of a stOP in a route results in this sh.ift of the arrival time of 

subsequent stops, which can result in nnlc window incolnpatibility, i.c. the arrival 

nIne is nor sufficient anymore to be able to serve dlC stop in its available time 

windows. r\n action of inserting a stop in a route mat result in incompatible time 

windows must flag the route as illvalid. 
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The removal of a stop on a route has less dramatic results, i.e. if a route was valid 

before the removal of a stop, it can still be valid. I t might not be as efficient, but 

it will still exist in the solution space. 

'11,e addition of a stop on a route also has an effect on the vehicle volume. 

r\dding a stop increase the volume required on the vehicle. TI,e addition of a srop 

can result in a route that exceeds the vehicle capacity. This action must flag the 

route as invalid. 

'T'he removal of a stop result in the decrease in the required volu111c for the 

vehicle. The removal of a stop from a route cannot result in a vchicle that 

exceeds capacity. 

It is important to know that the weight and arrival time calculations have to be 

executed on each insertion and rClTIOval of a stop in a route. The implementation 

of these methods must be effective. 

Vebide slop addi/ioJl. 

The addition of a stop on a route has an effect on the overall routes associated 

with the vehicle. 

\'\",en a stop is added on a route, the route's departure and ani val time from the 

depot change. 'Ibis can result in a delay in the departure of a next route from the 

depot. The new departure time for the next route can result in incompatible time 

windows at stops, o r even an incompatible rune window for the route \'chicle. 

The addition of a stop on a route can result in the invalidity of subsequent routes 

and the route must be flagged accordingly. 

Tltlle 117iJldol/! Compa/ibility 

The concept of a time window compatibility matrix as proposed by van 

Schalkwyk, [52] has not been proven, but has a logic sense to it. The calculation 
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of such a matrix can be done at the beginning of the algorithm, which adds to the 

scnlp rune, but not the running rime. 

An aspect not catered for in the proposal of the T\X1CM is the variation in the 

travel rime depending on the rime of the day. The addition of variable travel time 

adds some complexity to the problem. In Figure 15 we show effect of the 

\'ariable travel rime. 
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From the figure we can depict the effect of the variable travel rime. In this 

i..mplclllcntarioll, the travel tinlC function is not a continuous function, but a 

disjunctive function consisting of consta nt tUlles at specific intervals. I n ow: 

calculation of the T\'(!C, we need to overlay the travel tUnc function's rime 

windows with that of the source stop. \X1e determine tra\Tel tlll1C froln the source 

stop'S departure UnlC. 
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3.2. Approach 

"Il,e approach consists of different phases, which will be discussed in more detail 

in the following paragraphs. "l1,e first phase consist of the generation of the 

required distance and time matrices for spccific time periods. The second phase is 

the generation of an initial solution through a construction heU11stic. This is 

necessary for the imprm'ement heurisric that follo\\·s. The improvement heuristic 

will follow the guidelines of the Tabu Search. The hcuristic will search for a good 

solution by di,.ersifying and intensifying the solution area. ,\ fter a predetellTuned 

nW11ber of iterations, or if a tennination paranlcrer is met, d1C post optimization 

phase will ensure that the current best solution is oprinused to its local m.inimutn. 

Generate distance and time matrices for 
specified time periods 

I 

Creating an inrtlal solution through 51H . 

Apply tabu with mulitple moves. 

I 

Determine next 
tabu move 

,--------

Finishing criteria met? >-------.;. 

Optimize Solution to local minimum 

Figure 16: Algorithm Phases 
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3.3. Initial Solution 

Higb quality initial hewistics often allow local searcbes and metaheLUistics to 

achieve better solutions more quickly. i\Iarius SolO1TIon was onc of the first 

researcbers to consider the VIU)TW. J Ie designed and analysed a number of 

algOlithms to find initial feasible solutions for the VRJ>T\V (Solomon, 1987). His 

sequential insertion heuristic (SIll) gave very good results in most environnlcnts, 

and most current heuristic methods tnake usc of this heuristic (or a variation 

thereof) to effectively find a feasible starting solution. 

Each customer i has a known demand q; to be serviced (either for pickup or 

dclivclY) at timc V, chosen by the carrier. Becausc time windows are hard, V, is 

chosen within a rime windo\\", starring at the earLiest rime ei and ending at the 

latcst time I, tbat customer i permits thc start of service. A vebicle arriving too 

early and customer j, has to wait until ' j. 1 f I,; represents the direct travel time from 

cllstomers i to customer j, and 51 dle service rune add CLlstolner i, then the 

moment at which service begins at customer J~ bp equals max {e" v/ + I, + /'1 } and 

dle waiting time w)s equal to max{O, e;- (bi + Sf + I;)}. 

r\fter initialising the route, the insertion criterion '., (i, II,)) determines tbc cheapest 

insertion place for all remaining, un routed custon1ers between two adjacent 

cus tomers i and) in the Cllirent partial route (iO! ill "" l~). Each route is assumed 

to start and end at the depot in::: 1~, TI1e indices p::: I, ... ,Ill are used to denote a 

customer's position in the route, ]be insertion cost is a weightcd avcrage of the 

additional distancc and rin1c needed to insert thc custOmer in the route. The 

parameters a" a" JI and A arc used to guide the heuristic. 

Inserting customer /I between i and j increases the length of thc route by the 

distance 111sera0l1, (~" + r/,,/ - /JI ~I ~ \fter inserting a CllstOlner u between the 
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adjacent customers; and j, a push forward can bc calculated for each consecutive 

node k, 

I'F, = b/~' - b, 

in which u, (b,"~) denotes the beginning of service at customer k in the route 

before (after) inserting customcr u. The value of PI", is maximal for the direct 

Sllccessor k = j of /I. ~nle sequential insertion hCU1;SOC uses the maximal push 

forward to measure the rime needed to insert custo111cr II in the route, the so 

caDee! rime insertion. 

Thc next step of the sequential insertion heuristic decides on which customer to 

insert the route. 111C selection criterion t'z (l~ //,)) selects the customer for which 

the cost difference between insertion in the current or a new route is the largest. 

This custolllcr is inserted in its cheapest insertion position in the current route. If 

all remaining unrouted custotners have no feasible InsertIon posmons, a new 

route is initialised and identified as rhe current route. 

We extend the Solomon Clltclla by utilising the neighbour stop infolmation in 

testing for a suitable stop to add to the route. Using only stops that have a time 

window cOll1paribiliry value, reduce the nutnbcr insertion positions to test for 

each stop. When testing for the insertion position in the current route fails 

because of the TWC, inserting customer u between adjacent nodes for the rest of 

the route will fail as wclJ. Tbis method will increase the speed of tile construction 

heU11stic witi,out diminish the quality of the result. 

We also extend the criteria by a Push Back'ward if a customer is inserted between 

tile depot and the first customer as proposed by Dullaert and Braysy (2003) [21]. 

If customer u is inserted between the depot ill = i and the first customer i, = j, a 

push backward is introduced in ti,e schedule. Since all vehicles arc assumed to 
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leave the depot at the earliest possible time ei, and travelling from i ro j takes I, 

units of time, a waiting titne of Inax{O, e.,. - !!J } is generated atj = i/o Unlike the 

waiting Onle at all other CUS[01ners ir , P < r :s; In in the route, it is fictitious. £\fter 

finishing the route, it can be eliminated by adjusting the depot departure time. 

High waiting times stored at customers that used to be scheduled at the flIst 

position during the solution construction, cannot be removed tlus easily. By 

assunung all velucles leave ti,e depot at eo and by equalling the time insertion to 

the lllaXUTlUm push forward, the tUne needed to insert a cust0t11Cr before i, = J 

can be underestimated. It may even be wrongly equalled to zero. 

We also extend the Push Back"ward to incorporate ti,e vehicle time windows . 

Inserting a customer u as ti,e first stop in ti,e route advances the departure time 

at the depot depending on ti,e open time of ti,e depot, ti,e best available time of 

ti,e vehicle and ti,e open time of ti,e customer II. 11,e velucle would leave Ole 

depot at max{bi=O, bk, ~. - I;.) where bi=O is ti,e open time of the depot, bk the 

open time of the velucle and bj - I, the open time of u retracting ti,e travel time 

from ito). 

3.4 . Improvement Heuristic 

Chapter 2 discussed heuristic techniques we considered for inlplementing a 

solution for ti,e specified VRP problem. It suggested the use of a meta-heUli stic 

technique. Meta-hcutistics use info1111ation of the problem envir0l1111enr and the 

nature of ti,e objective flmction to direct the search process ro regions that 

promise better solutions. 

Although there exist many alternatives in selecting the appropriate tool, the 

success of these methods depends on many factors, like tI,eir ease of 

inlplementation, their ability to consider specific constraints tI,at arise in practical 

applications and ti,e lugh quality of solutions tlley produced. 
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r\ distinguishing feature of Tabu search is its exploitation of adaptive fonns of 

memory, which eguips it to penetrate complexities that often confound 

altemative approaches. The rich potential of adaptive mem01), strategies is onl)' 

begit111.ing to be tapped, and the discoveries that lie ahead promise to be as 

important and exciting as those 111ade to date. Principles that have emerged from 

the TS framework give a foundation to create practical systems whose capabilities 

markedly exceed those available earlier. Conspicuous features of Tabu search are 

its dynamic growth and evolving character, which are benefiting from important 

contributions by many researchers. 

Tabu search provides a range of strategic options, invoh~ng vaJ.ious levels of 

short tenn and long-tenl1 lnemory. Consequently, it can be inlp]emenred 111 

corresponding levels ranging [rom the simpler to d,e more advanced. Generally, 

the more advanced versions exhibit the greatest problem solving power, though 

simple ones often afford good results as well. The convenience of building 

additional levels in a modular design, allowing a TS procedure to be evoked from 

the "ground up," is a feature that also pro\~des a way to see and understand the 

relevant contributions of different memory based strategies . 

Implementing a specific strategy for the specified problem is complicated by the 

fact we cannot or should nOt rely on the manner of the problem . 1\S mentioned 

in d,e introduction, input data can vary from long haul to short haul, long time 

windo\vs or shorr 111ulciple oIne windows, heterogeneous £leer of silnilar HeeL To 

solve the YRP with aU its side constraints and unpredictable in put data, we 

implelnenr new operacions and add S0t11C statistical selection method in the 

guidance alg011dun. 
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3.4.1. Opera/iolls 

Ills-ert Operator 

The insert operator tries to insert an orphan stop into an exisring route. The 

method loops through the orphan list of the current solution and calculates a best 

insertion position . The orphan stop's neighbours are tested for insertion cost. 

Tlus is done by selecting a neighbour, detennining the route d,e neighbour 

belongs to and calculates the cost of inserting the oq)han stop afte r the 

neighbour. If the neighbour is an orphan itself, d,e test is not clone. The medlod 

locates a set of closest geograpluc neighbours from d,e stop and test the validity 

of the insertion of the orphan stop after the neighbour stop. The move is 

accepted if d,e insertion is valid. 

S1 

Tour depletioll operator 

y - . 
, , 

• 

• , 

, , , , , 

• 
r Un routed Stops 

• 

Figure 17: Insert Operation 

• E1 

The purpose of tlus move is to reduce d,e number of vehicles required to serve 

all the stops. If it is possible to remove a velucle, the probability tI,at total 

distance will decrease is high. It l1ught not be the result in some simations, but the 

hCluistic also depends on diversification. 
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The procedure looks for the vehicle that contains the least number of stops 

allocated to routes for the vehicle and is not Tabu. We qualify the routes of a 

vehicle for rCI110val if the number of stops is less ci1an a percentage of me average 

number of stOps in all the vehicle routes. This is done on the assumption that 

stOps and vehicles have similar characteristics. The difference between stops 111 

tenns of volwne is assumed to be in a reasonable tolerance. 

The first step is to select a tour for depletion according to the nltella specitled. 

Figure 18: Tour Depletion Step 1 

The tour is removed from the solution and the stopS belonging to the tour is 

added to the orphan list. 
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• 

Figure 19: Tour Depletion Step 2 

The insert operator is executed to insert the newly created orphans into existing 

routes. 

Figure 20: Tour Depletion Step 3 

An additional cntelia for the tour depletion operator to execute is the non­

existence of olvhans in dle solution. W/e inlp1cmcnt dle logic before we even start 

with actions on the operator, as we aSSUlne that if an orphan exists, the current 

solution is aheady in such a state that the current route vehicles cannot service all 
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the stops. The meta-heuristic guidance algorithm must execute other operations 

to optimise the solution that tour depletion is possible. 

Reloca te operaror 

·The relocate operator (Or-opt) removes one stop from a route and inserts it into 

another route. The itnplementation group routes to a vehicle and therefore we 

randomly select a vehide to add a stop to. Next we randomly select one of the 

vehicle routes. For each stop on dle current vehicle route, an attenlpt IS made to 

insert a neighbour of the current stop on d,e current vehicle route. The 

neighbour is relocated fron1 its route to the current route. 

The relocate operator can relocate a stop from the saIne route to another 

poslOon. 

s 

E 

Figure 21: Relocate on same route 

Or relocate a stop from one route to another. 
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S1 E1 

S2 E2 

Figure 22: Relocate between routes 

Exchange Operator 

"n1e exchange operator randomly selects a vehicle and corresponding route. The 

neighbours of the selected route's stops are tested for exchange between the 

corresponding routes. The operator acts on single stops &om different or same 

routes only. 

S 

E 

Figure 23: Exchange on single route 

The exchange from one route to another simulates a relocate fron1 the one route 

to the other and vice versa. 
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S1 E1 

S2 E2 

Figure 24: Exchange between routes 

Cross operator 

This operator cuts two routes at a position and swaps the second pan of the 

routes. 11us is done by selecting a source vehicle and a source route randomly. 

Each stop in d,e source route is tested for d,e move. 11,e stop's neighbours are 

tested for validity by checking if d,e StOp is not on the same route. If not, the 

SOLlrce route consisting of d,e stOps up to the selected stop is combined widl the 

target route consisting of the stOpS from the neighbour stop to the end to fom1 a 

new route. The second new route consist of d,e target route from the beginning 

to d,e stop before the neighbour stOp and the source route from the stOps after 

d,e selected stop to the end. If the swap is valid in the current Tabu enviroJUnent, 

it will be accepted. 

S1 E1 

S2 E2 

Figure 25: Cross operation 
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Vehic1eFit 

This operator exchange vehicles on routes. The operation is added to handle the 

heterogeneous fleet optimization problem. A vehicle can be swapped between 

routes if the capacity and time windows allow for the routes qualit),. 

If there exist vehicles that have not been used, the vehicles can be tested on 

eXlsang routes to result in better opritnization. Tour depletion can result in a 

more effective vehicle to become available, and dlC vehicle fit operator will 

reinsert an available vehicle in the solution. 

D ouble Fit 

The operation nics [0 fit routes or segments of routes as additional routes on a 

vehicle. -nus action will result in the use of fewer velucles. 

The double fit operator has dle pll1vose of filling up a vehicle to its time window 

capacity. The operator will test form time available on a vehicle and if there exist 

a continuolls titne that is greater than a lTlinllTIlllTI nn1c specified, the operator can 

look for stops dlat fit in that time frame. If a route can be constructed to fill rhe 

open tlll1C slot, the move is accepted and results in other rOlltes that have fewer 

stops. Tlus move can now result in probable tour depletion after some 

optinUzation on dle routes. 

3.+.2. Guidance AIgoI;tb", 

Meta-heuristics use infonnation of the problem environment and the nature of 

the objective function to direct the search process to regions dlat pronuse better 

solutions. The implementation of the guidance algorithm has an important effect 

on dle effectiveness of the algoridlm. 

The implementation of the guidance algorithm utilise aspects fr0111 different 

sources. i\ simulated annealing approach is followed in an oscillating fashion. 
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Neighbourhood search medlods are also selected randomly in a statistical 

learning fashion . Each operation has its own tabulist. 

Statistical Selection 

The implcmentation of all me specified opcrations can lead to inefficient 

C0l11putationai time utilisation. Depending on the manner if the input data, some 

operations can be lnorc effective than other, or can be ineffective in situations. 

\X,11cn the input data has custotners with tight nnlc windows, the capacity of the 

vehicle docs not really play an important role in the solution, as d,e vehicle does 

not havc time to ,~sit enough stops to load d,C vehicle to capacity. The double fit 

operation will not be effcctive on mese types of data. The statistical selcction will 

eliminate thc use of this operation. 

The idea of the statistical selection is to detennine d,e success rate of an 

opcration. When we randomly select an operation, me probability of d,e selection 

of a spccific operation depends on thc succcss tate. \'(Ihen wc start the 

improvetnenr heuristic, we assign an equal value to the success rate of all the 

operations in d,e list. On the first iteration, the probability for an opetation ro be 

selected is the sanlC for all. 1 f the operation COll1plctcs successful, we increase the 

succcss ratc by a value depending on the type of success. This increase will nor 

have a major effect in d,e beginning, but aftcr a number of iterations, the more 

successful operation's success rate will increase, and that will increase the 

probability of the selection. 

Sim ulated Ann ealing 

Another control mechanism implemented by d,e guidance algorithm is derivcd 

from d,C simlJated annealing procedure. In the modified version of SA, rhe 

algorithm starts \Vim a relatively good solution rcsulting from a consuuction 

hcutistic. J nitial temperarure is set at Ts = 100, and is slowly decreased by 
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(1 ) 

\'(rt.lere Tk is the current tCIllpcrature at iteration k and I is a SIllali olne constant. 

The square root of T, is introduced in the denominatOr to speed up the cool 

process. I !ere we use a simple monotonously decreasing function to replace the 

l / log k scheme. It is found that the scheme, gives fairly good results in much less 

time. The algorithm attempts solutions in the neighbourhood of the current 

solution randomly or systematically and calculates the probability of moving to 

those solutions according to: 

P(acceplillg a lIIove) = e(-·''') (2) 

11us is a modified version of the annealing equarion, where I'> = C(S) - C(S), C(S) 

is the cost of the current solution and C(S) is the COSt of the new soluti on. J f 

6. < 0 the tnovc is always warranted. One can sec that as the temperature cools, 

the probability of accepting a non-cost-saving move is getting exponentially 

smaller. \Vhen the temperature has gone to the final temperature T = 0.001 or 

there is no more feasible moves in the neighbourhood, we reset the temperature 

to 

T, = max( T, / 2, 7',') (3) 

where Tr is the reset renlperarure, and was originally set to Tu and T b is the 

rcmperarure at which dle best current solution was found. Final temperature is 

not set at zero because as tctnperamre decreases to infirutesul1ally close to zero, 

there is virtually zero probability of accepting a non-improving move. Thus a 

final temperature not equal but close to zero is more realistic. The Tabu Search is 

used to search the local neighbourhood. 
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3.5. Conclusions 

Tlus chapter desClibe the design of a solution algoritlun that is capable to solve 

tile VRP in an ASP envirorunent. The additional constraints imposed by the r\SP 

environment arc incorporated in the design of tile algorithm. 

The problem is partially solved by the introduction of new operations on the 

solution as well as extensions of current existing operations. The guidance 

algoritlUTI in1plclnents multiple operations, which allows it to be effective on all 

types of input data. The statistical selection of operations is believed to improve 

tile effectiveness of tile algorithm. 
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Chapter 4 

4 COMPUTATIONAL RESULTS 

The VRP problem is NP-hard and making use of heuristic methods results in 

unpredictable results. HeUliscic methods are non detenmnistic which cot1uibure 

to the complexity in measUl1ng the effectiveness of the method applied on the 

problem. 

The VRP with additional side constraints is a complex problem that complicated 

basic rules specified for the guidance algorithm of the applied meta-heUl1stic. 

Depending on the distribution of data points, time windows, peak and off-peak 

travel times, vehicle capacity and demand per stop, the algorithin must adapt to 

the data enviromnent dming the execution to result in an acceptable feasible 

solution. To achieve this, we implemented a multiple operation selection method. 

We projected that there must be an effective operation in our list of operations 

on the data envirorunent. In the previolls chapter, we discussed the Inethods and 

proof theoretically that the proposed solution will be effective. In this chapter we 

will discuss the impact of the operations on the problem, as well as the additional 

advantage obtained by using these operations in c0111binations. 

The implementation of the alg011thm consist of two phases: the initial solution 

make use of the Sequential Insertion l-IeUl1stic to construct a set of initial routes 

and the improvement heU11stic consist of a hybrid method based mainly on the 

Tabu Search technique and the Simulated Annealing method. J\ltllough we are 

interested in the improvelnent heuristic, we will present the results of the 

construction heuristic to indicate the efficiency of the improvenlent heuristic. 
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Results will be presented for two types of problems: 

1. 11,e traditional Solomon benclunark problems will be solved to indicate 

the efficiency of the algoritlun with known results. 

2. r\ real-life problem will be solved and efficiency will be discussed. 

The chapter will discuss tl,e results of me initial solution, rhc cffccr of the 

individual operations of the unprovemcnt heuristic and the results of the 

ll11prO\'crncnt phase. 

4.1. Solomon's Benchmark Problems 

Solomon generated six sets of problems. Their design highlights several factors 

mat affect tbe behaviour of routing and scheduling algorithms. They are: 

geographical data; the number of customers se1viced by a vehicle; percent of 

cime~constraincd custOlners; and tightness and positioning of dlC rune windows. 

The geographical data arc randomly generated in problem sets R1 and R2, 

elustered in problem sets C1 and C2, and a mix of random and clustered 

struCllues in problem sets by RCl and RC2. Problem sets R 1, C1 and RC I haye a 

short scheduling h01izon and allow only a few customers per route 

(approximately 5 to 10). In contrast, the sets R2, C2 and RC2 hO\'e a long 

scheduling h01izon permitting many customers (more than 30) to be se,,;ced by 

dle same vchlcle. 

The customer coordinates are identical for all problems wimin one rvpe (i.e., R, 

C and RC), The problems differ with respect to the width of me time windows, 

Some have very tight rune windows, while others have time windows, whjch arc 

harrily constraining. In tenns of time window density, mat is, the percentage of 
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customers \,,~th time windows, he created problems with 25, 50, 75 and 100 % 

rime windows. 

The larger problems are 100 customer euclidean problems where travel times 

equal the corresponding distances. For each such problem, smaller problems 

have been created by consideting only cl,e first 25 or 50 customers. \~'e only 

consider cl,e larger problems. 

+.I'/' II/ilia! Jolu/ioll. 

Icbgh quality initial heuristics often allow local searches and metaheluistics to 

achieve better solutions more quickly. We implemented the sequential insertion 

heuristic (SIB) proposed by Marius Solomon. We extended cl,e Solomon criteria 

by utilising cl,e neighbours stop information in testing for a suitable stop to add 

to the route. We also extended the criteria by a push backward if a customer is 

inserted between cl,e depot and the first customer as proposed by Dullaert and 

Braysy (2003). 

When we start a route, cl,e selection of the first node can be done according to 

cl,e following criteria: 

• Selecting cl,e node cllat has cl,e latest departure tin,e. 

• Selecting the node cllat has the earliest anival time. 

• Selecting the node that is the furcllest from the depot. 

• Selecting the node cl,at is the closes to cl,e depot. 
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The seed node criteria results in a different solution set according to the seed 

selection. The selection of a seed vehicle can also result in a different solution and 

wc select the vehicle according to the following criteria: 

• 11,e vehicle with the smallest capacity. 

• The vehicle with the least running cost. 

Combining these two criteria, we result in eight possible initial solutio n 

gcneraaon methods. Although the implementation of all eight methods 

conu-ibutes to additional computation time, we can motivate the decision by the 

following: 

• The input data is unpredictable and we cannot beforehand decide which 

method will be the best for thc input data. 

• 11,e better the initial solution, the quicker the improvement phase. The 

time spend on the additional seed criteria will be made up in the 

ll11provement phase. 

• The usc of a neighbour list and the greedy nature of the scquential 

insertion heu ristic result in a fix time for th e initial solution. 

The following table shows the initial results for the 56 Solomon benchmark 

problclTIs according to the seed critclia. Because Solotnon uses h01l1ogcneous 

fleet, ooly the stop criteria are considered. The highlighted text shows the best 

result achieved. 
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Problem Lares! D eparture 

C IOI Ie 923.7e 

C I02 II 1 193.~6 

C I03 II 131 7.31 

CI04 10 1135.85 

CI05 10 878.7 

CI06 II 1073.75 

CI07 Ie 928.74 

CI08 1C 871.57 

C I09 Ie 910.2 

Problem Latest Departure 

C201 3 895.38 

C202 3 1180.34 

C203 3 1173.25 

C204 3 1235.70 

C205 3 789.79 

C206 3 934.87 

C207 3 88H4 

C208 3 815.97 

Problem Class C 

Earliest _-\rrival Furthesl 

I C 880.47 l( 

IC 997.74 II 

II 1536.23 J? 

IC 1419.31 11 

Ie 934.36 J( 

Ie 1068.9C 1C 

Ie 1066.52 I 

I e 11 22.68 I 

Ie 1152.90 10 

Earliest Arrival Furthest 

3 1023.26 3 

3 1727. 11 3 

3 1572.67 3 

3 14 98.3~ 3 

3 1318.07 3 

3 1456.09 3 

3 !O~.77 3 

1 201.1~ 3 

Table 2: So lom on Initia l Solution 
Results C lass C 

98 

Closest 

880.~7 J( 928.2 

11 5 1.06 J( 1 075.0~ 

1501.95 I 1081.~ 

1098.36 10 1059.5£ 

934.36 10 932.3 

1076.65 10 968.5 

1066.52 10 1OP.2C 
1114.62 10 11 21.5 

1285.48 II 1 188.5 

Closest 

826.15 3 8386 

1778.32 3 1774. 1" 

2091.21 3 1965.51 

1524.62 3 1509.9 

1026.28 3 11 70.9 

1413.57 3 1349.7 

1082.25 3 1140.17 

1108.66 3 1205.91 

 
 
 



Problem l,atcs! Departure 

Rl01 2C 1857.93 

RI02 19 1792.5, 

RI03 15 1553.51 

Rl 04 12 1283.2? 

R105 15 1534.4C 

R106 15 1457.51 

Rl07 13 1336.7\ 

R108 10 11 74.06 

RI09 14 1423.01 

RIlO 12 1332.6C 

Rill 13 1344.17 

R112 11 1167.7, 

Problem Lal"cst Deparrure 

R201 4 1791.78 

R202 4 1603.75 

R203 4 1325.15 

R204 3 1054.3 

R205 4 1551.95 

R206 3 1358.68 

R207 3 1205.44 

R208 3 954.38 

R209 4 1441.55 

R210 4 1384.77 

R211 3 1080.89 

Problem Class R 
Earliest j\rrival Furthest 

2 2303.99 ?" -, 
2 2095.62 2C 

17 1777.33 1, 

13 1516.91 I' 

16 1804.79 H 

1 1776.22 Ie 

14 1591.55 13 

11 1284.84 12 

14 1645.27 15 

14 1620.57 15 

15 1672.66 15 

1 1475.42 1? 

Earliest. \[rival Furthest 

5 1633.91 5 

5 1703.31 5 

4 1505.26 4 

3 1146.17 3 

4 1461.6 1 4 

3 1364.04 

3 1213.78 3 

3 985.0C 3 

4 1409.81 

1548.22 4 

3 1200.61 3 

Table 3: Solomon Initial Solution 
Results Class R 

99 

Closest 

2293.2C 2, 2301.59 

1913.25 21 1956.94 

1777.82 17 1694..1' 

1334.73 12 1358.2 

1802.51 16 1883.0 

1714.83 15 1715.21 

1488.27 14 1549.7· 

1385.20 11 1237.1C 

1641.27 1, 1696.2, 

1682.08 13 1577.~ 

1652.95 13 1606.67 

1436.07 11 1335.74 

Closest 

1822.54 5 2043.8, 

1623.01 5 1570.0 

1602.95 4 1518.0 

1183.05 3 11 07.4 

1467.55 4 1533.01 

1501.83 3 1378.2 

1272.68 3 1279.9 

908.49 3 945.31 

1339.33 4 1260.7 

1510.95 4 1478.1 

1173.58 3 1213.9 

 
 
 



Problem Class RC 
Problem Latest Departure Earliest ~-\rrival Furthest Closest 

RClOl H 1929.0? 17 2186.36 1 2065.91 16 

RC102 15 1789.2£ 16 2134.4C 17 1900.65 17 

RC103 13 1613.9£ 14 1924.3C 15 1765.69 15 

RC104 12 1363.7~ 13 1731.69 13 1524.04 13 

RCl05 16 1805.33 11 2299.15 1 2236.09 17 

RC106 1 1581.3£ 15 1940.9C 1 1932.27 16 

RC107 13 1607.96 14 1881.29 15 1896.47 14 

RC108 12 1340. J( 13 1728.31 13 1626.48 13 

Problem Latest Departure Earliest ;\rrival purthest Closest 

RC201 

RC202 

RC203 

RC204 

RC205 

RC206 

RC207 

RC208 

5 

5 

4 

3 

6 

4 

4 

3 

-1./.2. 

2213.00 

1943.42 

1727.98 

1217.8 

1940.44 

1691.69 

1731.50 

1275.21 

5 2273.59 5 

5 2203.85 5 

4 1595.85 4 

_4 1449.52 4 

- 2137.55 5 

4 1723.34 4 

4 1690.61 4 

3 1347.44 3 

Table 4: Solomon Initial Solution 
Res ults Class RC 

Improvement Pbclse 

2272.32 5 

1953.77 5 

1692.00 4 

1464.28 3 

2396.53 5 

1631.19 4 

1491.13 4 

1347.62 3 

The pre\~ous paragraph has shown the effectiveness of the individual operators . 

. rhe purpose of the improvement phase is to combine these indi~dual operators 

such that we can achieve effective improvements. The utilisation of the operators 

in randonl c0l11bination with each other result in a robust method that achieve 

results faster. 

The follO\~ng table shows the results compared to the best-published Solomon 

results as well as the initial result the imprOVCI11Cnr heuristic started frolll. 

100 

2050.2\ 

0035.9, 

1960.0' 

1677.6 

2146.3-

2135.6C 

1823.81 

1639.01 

2131.1, 

203LOC 

1758.0 

11 84.4 

2 151.3 

1595.74 

1627.0 

1564.CX 

 
 
 



Problem Class C 

Problem I runal Solution Improvement Best Publtshed 

Cl0l 10 880.47 10 828.94 5.9'~ Ie 828.94 O.O'~ 

Cl 02 Ie 997.74 l( 871.32 12.7';' Ie 828.94 5.1°;' 

C103 10 1081.5C 1 ( 916.83 15.2°;; 10 828.06 10.7';' 

C104 10 1059.51 1 911.85 13.9'10 Ie 824.71 10.6''< 

Cl05 10 878.7, 10 827.55 5.8'10 10 828.94 _0.2°;' 

Cl06 lC 968.51 10 840.1 \ 13.30;; Ie 828.94 1.4°""; 

C107 10 928.74 10 827.55 10.9% Ie 828.94 _0.2°;' 

C108 lC 87 1.57 10 827.55 S.B·-; Ie 828.94 _0.2°;; 

Cl09 10 910.2 10 829.74 8.8% 10 828.94 0. 1 ';' 

Problem I niual Solution Improvement Bcsl Published 

C201 3 826.1.1 3 588.88 28.7'10 3 591.56 _0.5°,.{ 

C202 3 1180.34 3 623.46 47.2°;; 3 591.56 5.4'10 

C203 3 11 73.25 3 625.46 46.7';' 3 591.1 7 5.8°;' 

C204 3 1235.7( 3 685.10 44.6'10 3 590. 16.0'10 

C205 3 789.79 3 617.45 21.8'10 3 588.88 4.9'10 

C206 3 934.87 3 629.63 32.7'10 3 588.49 7.0'~ 

C207 3 884.4' 3 587.89 33.5'10 3 588.29 -0. 1 '~ 

C208 3 815.97 3 592.93 27.30;'; 3 588.30 0.8'10 

Table 5: Class C Solomon Solution' 

.j Source: Solomon r-. 1. [451 
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Problem Class R 
Problem I nitial Solution I tnprovement Best Published 

R101 2C 18.17.93 20 1670.13 10.1l1/0 19 1645.79 1.5'~ 

Rl02 19 1792.59 19 1576.81 12.0% 17 1486.12 6.1'~ 

Rl03 15 1553.58 15 1316.3 1 15.3% 13 1292.68 1.8°;' 

Rl04 12 1283.22 11 1061.90 17.2% 9 1007.24 S.4% 

Rl05 15 1.134.4C 15 1455.08 5.2% 14 1377.11 S.7°;; 

Rl06 15 1457.51 14 1292.28 11.3% 12 1251.98 3.2°/( 

Rl07 13 1336.79 1~ 1174.0C 12.2°;; 10 1104.66 63'~ 

R108 10 1174.06 9 1030.87 12.2% 9 960.88 7.3% 

Rl09 14 1423.01 13 1284.32 9.7% 11 1194.73 7.5';' 

Rl10 12 1332.66 13 120.1.48 9.5% 10 1118.59 7.8'~ 

RIll 13 1344.17 13 1239.26 7.8% 10 1096.72 13.0';' 

R112 11 1167.79 11 10.19.7E 9.2°;; 9 982.1 7.9% 

Problem Initial Solution Improvement Best Published 

R201 5 1633.91 4 1335.55 18.3'~ 4 1252.37 6.6'~ 

R202 5 1570.04 4 1200.26 23.6% 3 1191.7 0.7';' 

R203 4 1325.15 3 972.59 26.6% 3 939.54 3.5';' 

R204 3 1054.39 3 842.54 20.1% 2 825.52 2.1°;' 

R205 4 1461.61 3 1133.02 22.5% 3 994.42 13.9';' 

R206 3 1358.6, 3 985.94 27.4% 3 906.14 8.8';' 

R207 3 1205.44 3 948.50 21.3% 2 893.33 6.2°;; 

R208 3 908.49 2 845.94 6.9% 2 726.75 16.4';' 

R209 4 1260.75 4 930.43 26.2% 3 909.16 2.3°;' 

R21 0 4 1384.77 3 1019.45 26.4"li 3 939.34 8.5';' 

R211 3 1080.8~ 3 862.42 20.20/< 2 892.71 · 3.4';' 

Table 6: Class R Solomon Solution 
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Problem Class RC 
Problem Inirial Solution I mpro\-emcnr Best Published 

RC101 16 1929.0? 16 1742.62 9.7'~ 14 1696.94 2.7'~ 

RC102 15 1 789.2~ 15 1625.3( 9.20;; 12 ISS-L7S 4.5'10 

RC1 03 13 1613.9~ 13 1403.99 13.0';' 11 1261.67 11.3°/c 

RC104 12 1363.74 12 1212.92 11.1 'A 10 1135.4 6.8'11 

RC105 16 1805.33 16 1706.53 5.5°;' 13 1629.44 4.7°A 

RC 106 14 1581.3 14 1502.00 S.O°;' 11 1424.73 5.4';' 

RC107 13 1607.9 12 1318.22 18.0'10 11 1230.48 7.1 'A 

RC108 12 1340.1( 12 1240.27 7 AU';; 10 1139.82 8.8';' 

Problem I nirial Solution Improvement BeST Published 

RC201 

RC202 

RC203 

RC204 

RC205 

RC206 

RC207 

RC208 

5 2131.1 4 1474.86 30.8';' 4 1406.91 4.8'11 

5 1943.4' 4 1298.28 33.2°;' 3 1367.09 ·5.0'~ 

4 1595.85 3 1081.34 32.2°""; 3 1049.62 3.0'10 

3 1184.48 3 883.53 25.4% 3 798.4 1 10.7'1< 

6 1940.44 5 13 11.93 32.4°;; 4 1297.19 1.1 °/( 

4 1595.74 4 1162.03 27.2% 3 1146.32 1.40;' 

4 1491.1' 4 1106.24 25.8';' 3 1061.14 4.2°' 

3 1275.21 3 920.1 7 27.8% 3 828. 14 I 1.1 0;; 

Table 7: Class RC Solomon Solution 

Figure 26 cbsplays the results in graphical format. The results arc within 

reasonable margin from the best-published results. We must rake into account 

that the best-published methods were achieved by various methods, i.e. for a 

specific problem instance, a specifically designed algorithm were applied on the 

problem. The comparison confirms the ability of our algorithm to perfonTI 

reasonable across cbfferent problem instances. 

In some instances our algorithm improved on the best-published result. Prom 

problem RC202 we can see a 5% improyement on the best published. [t must be 

103 

 
 
 



noted that the cost function was set only on distance for these instances, which 

could resulted in higher total cost. We can see that from the difference in number 

of vehicles in problems R21 1 and RC202. 

C1 C2 

Solomon Improvement 

R1 R2 RC1 RC2 

Figure 26: Solomon Improvement 
Comparison 

4.2. Operation Results 

-+- Initial Solution 

____ Irrproverrent 

----A- Best A.Jblished 

Our algolidlffi was designed for the specific plllpose of implementing it in the 

ASP enviromTIcI1t. This environn1enr is unpredictable in tenns of input data, as 

well as cost factors. The idea of controlling specific operations through a meta 

heuristic had to be supported by a set of effective operations. Driven by the Tabu 

medlodology, we were looking for operations d,at can assist as in both 

intensification and diversification. For this plllvose we utilised some of the 

exis ting operations and designed new operations for the specific CIlvllollllent. 
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To ensure integrity of the system we tested each operation on its own to ensure 

that the operation acts according to expectation as wcJl as resulting in useful 

neighbourhood solutions . 

4.2. 1. IlISeli Operator 

This operation was added to ensure that we have viable routes by adding all the 

orphans available on the existing routes, or by creating new routes if the first is 

not viable. The insert operator has no definite itnprovement result, but works in 

combination ,vith the tour depletion operator. 

+.2.2. TOllr depletion Operator 

This operation was addcd to ensure diversification and optinusarion by removlng 

a vehicle from the current solution. This will force the application to opom!se 

without the specific vehicle if possible, else creating a ncw route. 
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4.2.3. Relo",!e Opera/or 

lllis operation is mostly affected on optimising a current solution. Depending on 

the deterioration tolerance, it will move a stOP fr0111 onc route to another. The 

following graph shows that this operation does not have a high feasibility rate, 

even though the deterioration tolerance for tl,e specific situation was not set. This 

ITIeanS that any viable solution was acceptable [Q the problem. even if it rCsl~ts in 

a worse solution than the cw:rcnt best. Wfhat we ca n sec from d1C graph is the 

ability after this operation to optimise. 

'" " c: 

'" -.!!1 
0 

4.2.4. 

1150 

1140 

1130 -

1120 -

1110 

1100 

1090 

1080 
0 20 

Relocate operator behaviour 

5600 

5560 

5520 

5480 

5440 

5400 

t 5360 
40 60 80 100 

No of Iterations 

Figure 27: Relocate operator 
behaviour 

ExdJalige Opera/or 

'" E -+- Distance 

i= -- lime 

The purpose of tlus operation is to swap two stops from different routes or 

within the san1C route with each other. The aCDon can result in a better time 

utilisation o r distance of the route. As can be seen from the graph below, dus 

operation yields a feasible solution regularly. \'{'e can also see d,at the difference 
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in the time or distance from the previous solution is not as big as wi th the 

relocate operator. The graph indicates tilat thi s operation is important to fmding 

the local 1l1inllnwl1. 

1240 

1220 

1200 
Q) 
u 1180 " .. - 1160 .!!! 
0 

1140 

1120 

1100 
0 

Exchange operator behaviour 
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5640 

5600 

5560 
40 60 80 100 

No of Iterations 

Fig ure 28: Exchange operator 
behaviour 
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4.2.5. 2-0pera/o,. 

This operation takes two routes and cut them at specific positions and joins part 

one of route onc with part twO of route twO and pan two of route onc wi th parr 

one of route two. The llTlplcll1cntation selects a target stop on route one and 

search for at a feasible swap route by traversing through its neighbours. As we 

can sec from the graph , the move result in bigger changes from the previous 

solution, but has only a linuted set of the viable lTIOVes. Tlus can be seen in the 

latter part of the graph where d,e distance and time smys constant for long 

periods of iterations. We conclude that this is a result of the Tabu list dlat does 

not alJ ow for previous 1110VeS to be repeated and no new 1110ves exist. 

2-0p behaviour 

1180 - -.- 6200 

1170 
6000 

1160 .. 
5800 u 1150 -+- Distance " .. 

"' E - 1140 i= __ Time .!!! 5600 
0 

1130 

1120 5400 

1110 5200 
0 20 40 60 80 100 

No of Iterations 

Figure 29: 2-0perato r results 
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4.3. Application 

In the previous paragraphs we showed d,e algOlitlun's perfonnance \vith the 56 

Solomon benclunark problems. l1us was done as a proof of concept for me 

algOlidun. Tn dus paragraph we will consider the result of a real life problem and 

show that the solution is feasible. The problem was taken from a conunercial 

delivery company. AU d,e vatiables were implemented as specified by me logistics 

manager. 

Figure 30 shows d,e distribution of the stops as well as me solution. As stipulated 

in me ilutial research, the data environment is unpredictable. A quick analysis of 

the data indicates 

• Inconsistent time window sizes. 

• Random clustered stops. 

• Long haLU exceptions, relative to average stop distance from depot. Tbe 

closest stop is less dml 2 kilometres from me depot, wIllie d,e furthest 

stOP is tnote than 70 kil0111ctres away. 

• Some stops are located at me exact same position. From the figure we 

can make out some overlapping rune windows. 
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Figure 30: Application Solution 1 

+.3.1 . II/ilia! Pha.re 

FraIn the results of initial solurions for Solomon's problcI11s, we can conclude 

that using the latest departure time as criteria for a seed node will be sufficient. 

The following table shows the result of the initial solution on the real life 

problem. Because we arc working with a heterogeneous fleet, all eight possible 

criteria have been implen1ented. 
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Initial Phase 
Criteria Vehicles Dis tance 

L:t res t Departure 13 1251.9 
;;: ~ Earliest Arrival 1 1662.0 ~ "§ B ~ 

1259.0; .s 0 u Furthest 13 

'" Closest l' 1186.8 

Latest Departure 13 1251.9 
~ e-

2 '0 Earliest Arrival P 1522.5 

" ~ 

E "- Furthest 1259.0 ~ 13 or. U 

Closest J? 11 86.8 

T able 8: Application Initi al Phase 

r\lthough the latest departure entella result in a comparative distance, the number 

of vehicles is higher than for the other medlods. This confirms the decision to 

implement multiple criteria on the seed node selection. 
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-1.3.2. Improvement 

IOigure 31 indicates the movement in the distance of the solutions for an 

execution of 5000 iterations. From the figure we can depict the ability of the 

a.lgoritlun to intensify and diversify. 

Search Pattern 

1200 
1150 
1100 
1050 

~ 1000 u 
c 
5 950 -- Distance 
~ 

0 900 
850 
800 
750 
700 

0 1000 2000 3000 4000 5000 

Iteration 

Fig ure 31: Search Pattern 

The improvement heuristic started out with 12 vehicles and a distance of 1186 

kilometres. After 5000 iterations we end up with 12 vehicles and a distance of 853 

kilOlnetres. This is an itnprOVClTICnt of around 28% from the initial solution. 
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Convergence Plot 
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Figure 32: Convergence Plot 

Another indication is the llllprovement in travel time. Travel nIne consist of the 

time it takes to travel between two stops depending on the time of the day. The 

travel time improved from 5789 minutes to 4497 minutes, an improvement of 

over 22% from the initial solution. 
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\X/e also i.mplctncnted t11ultiple operations to move fr0t11 a current solution to a 

,'alid neighbour solution. By keeping track of the success of an operation, we 

statistically balance the random selection of an operation. ·nus technique results 

in the use of a better combination of opetations depending on the data 

distribution and constraints of the problem instance. }\ hybrid with the Simulated 

Annealing method allows the solution to diversify and intensify periodically, wIllie 

keeping track of moves through Tabu lists. Figure 31 inrucates d,e ability of the 

algoridlm to achieve this goal. 

I'i6'ure 32 shows the ability of the algorithm to converge. We tested d,e 56 

Solomon benchmark problems to indicate d,e ,'alidity of rhe algoritlUll. 

Solomon's problem is a simple instance of the problem we consider, but rhere 

does not exist benchmark problems for our set of problems. Table 5 shows d,at 

ti,e new algoritlun is effective on Solomon's benchmark problems. 

The results prove tllat the implemented algorithm is effective to solve rhe set of 

problems encolilltered in an 1\SP environment. \'(Iitll the knowledge gained, we 

can continue to search for new operations and methods to inlprove rhe efficiency 

of the algoritlun in d,e generic 1\SP envi.romnent. 
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