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Supply Chain Management could be defined as the practice of analysing all
aspects of acquiring, storing, moving, and delivering materials from the time they
are acquired through any conversion or production processes through to the time
final products are used or sold. Due to the expansion of online retail and online
Business To Business (B2B) transactions, there is a great need for companies to
invest in effective solutions that will aid them in ensuring that their supply chains,
and particularly the distnibution side of the supply chain, work as effectively and
seamlessly as possible. A company will battle to be successful if it has the best
products but a poor fulfilment side to its business. It is evident that there are at
present a number of shortfalls within the fulfilment environment. There is thus
scope for an etfective, all-encompassing order fulfilment engine that addresses all

problems, and ensures that all the positive aspects are maintained.

There exist a need in the industry for an affordable service, which can assist with
the optimization of distribution routes. Not all businesses have a large enough
fleet to verify the costs associated with a fleet management system that includes
optimization. Such a system normally requires a skilled operator, that add to the

cost. A solution to this problem is the implementation of an optimization server
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in public domain. This is done by implementing a routing engine on an
Application Service Provider (ASP). The ASP is a web-enabled distribution and
tulfilment planning and optimization system that assist its users in the fulfilment
of their customers’ orders. This allows the provider to manage the system from
one centralised server that allows other users to access the system via the

Internet.

The Vehicle Routing Problem (VRP) is an important problem occurring in many
distribution systems. VRP can be described as the problem of designing least cost
routes from one depot to a set of geographically scattered points. The basic VRP
is not sufficient enough for implementng in distribution systems. Additional
constraints such as multiple time windows, heterogeneous fleet, double

scheduling, stop priority and route length must be added to the basic problem.

Designing an algorithm that is efficient to solve the VRP with the required
additdonal constraints, as well as effective in an ASP environment involves the
extension of existing methods as well as designing new ones. This research
implements a Tabu Search heuristic in a two-stage process to solve the problem.

The Tabu Search was selected because of its memory capabilities.

Key words: Fulfilment; V'ehicle Routing Problem; Application Service Provider; Tabu Search;
Multiple constraints; Multiple Time Windows; Heterogeneous fleet; Double scheduling; Supply

Chain Management; Business to Business.
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Chapter 1

1 INRODUCTION

1.1, Overview

Supply Chain Management could be defined as the practice of analysing all
aspects of acquiring, storing, moving, and deliveting matenials from the time they
are acquired through any conversion or production processes through to the time
final products are used or sold. A company’s supply chain may consists of
geographically dispersed facilities where raw matenals, intermediate products, or
finished products are acquired, transformed, stoted, or sold, and transportation

links connecting the facilities along which products flow.

Supply Chain Management thus involves whatever an organisation does to plan,

source, make and deliver its products.

There 1s a distinction between manufacturing faciliges and distnibution centres.
In manufacturing facilities, physical product transformations take place and at
distribution centres, products are received, sorted, put into inventory, then picked

from inventory and dispatched. These products are not physically transformed.

The company’s goal is to add value to its products as they pass through its supply
chain and transport them to geographically dispersed markets in the correct
quantities, with the correct specifications, at the correct time, and at a competitive

COST.

Supply chain management crystallises those concepts of integrated business

lanning that have been espoused for many years by logistics experts, strategists,
8 ¥ ] y log
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and operations research practtioners. Today, integrated planning is possible due

to advances in Information Technology (I'T).

Due to the expansion of online retail and online Business To Business (B2B)
transactions, there is a great need for companies to nvest in effective solutions
that will aid them in ensuring that their supply chains, and particularly the
distribution side of the supply chain, work as effectvely and seamlessly as
possible. A company will bartle to be successful if it has the best products but a
poor fulfilment side to its business. Without effectve fulfilment, customers will
not be satisfied and hence all confidence in that particular company will be lost.
Many online retailing ventures have failed solely due to the fact that their
fulfilment systems were not effective enough and traditional brick and mortar
companies have under-optimized fulfilment systems where great improvements

are possible.

Current predictions are that business-to-business (B2B) online trading will grow

from US$336 billion in 2001 to US$6.3 trllion 1in 2005.

There is an indication that online supply chains will dominate the B2B commerce
arena, swelling from 3% currently to 42% of the total B2B USA trade over the
next 5 years. Specifically, five major industres — aerospace and defence,
chemicals, computer and telecommunications equipment, electronics, and motor
vehicles and parts — will conduct more than half of the B2B transactions online
by 2004. Computers and telecommunications will become the biggest online B2B
market, with sales soaring past US$1 trillion by 2005. The other four areas will

each top US$500 billion by 2005. *

! Source: Jupiter Rescarch [24] (p. 13)
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From the above statistics, this market is destined for phenomenal growth and
hence there is great scope for any products or business ventures related to

ensuring that this environment operates optimally.

The focus of this thesis is on fulfilment operations, specifically routing and
distribution, but other factors that influence fulfilment must be taken into

account.

The following diagram illustrate fulfilment within the supply chain and factors

that influence it:

Can we optimize only this section, or
do we have to logk at the entire
supply chain?

OPTIMIZE?

o o P = PROOF OF

| ORrRDER | _ PICKING AND
RECEIVING —=|ceNsoLIpATION =" Z R s INVOICING |~ /[DISTRIBUTION | DE(;L;‘S:N
= - <EE 5
> i’
e - -
@ it ‘

- =

Figure 1: What part of the supply
chain to optimize

The above diagram (Figure 1) depicts a typical supply chain from order receiving
through to proof of delivery. The idea behind the development of this order
fulfilment system is to optimise the supply chain from picking and packing
through to distribution. Many packages focus entirely on the distribution side

without looking at other affecting factors like picking and packing.



It is evident that there are at present a number of shortfalls within the fulfilment
environment. There is thus scope for an effective, all-encompassing order
fulfilment engine that addresses all problems, and ensures that all the positive

aspects are maintained.

What is needed is an “order fulfilment engine” that provides companies with the
tools they need to get the correct product to the correct place, at the correct time
and cost, in the most optimal way — for every order and every customer. In order
to develop such a fulfilment engine specific market requirements and information

are essential.
1.2, Application Service Provider

There exist a need in the industry for an affordable service, which can assist with
the optimization of distribution routes. Not all businesses have a large enough
fleet to verify the costs associated with a fleet management system that includes
optimization. Such a system normally requires a skilled operator, that add to the
cost. A\ solution to this problem is the implementation of an optimization server
in public domain. This is done by implementing a routing engine on an
Application Service Provider (ASP). The ASP is a web-enabled distribution and
fulfilment planning and optimization system that assist its users in the fulfilment
of their customers’ orders. This allows the provider to manage the system from
one centralised server that allows other users to access the system via the
Internet. This approach reduces infrastructure costs and speeds up the process as
a powerful server instead of the computers of individual users manages the

system.

Implementing software that enables you to optimize vehicle routes can result in
major cost savings for a company. Unfortunately the costs associated with

implementing such a system prevent companies to take this step. The
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environment we are proposing is an e-fulfilment engine that is a web-enabled

distribution and fulfilment planning and optimization system that is hosted in the

form of an ASP (Application Service Provider). This means that a company no

longer hosts and maintains its own computer software, but access the system via

the Internet in real-ume.

The implementation of the system on the ASP results in huge saving in terms of

capital-, operational- and maintenance costs. To implement a sufficient solution,

the system must incorporate

An effective optimization engine. This will ensure that the client
receives useful results. The engine is the heart of the system and is the
topic of our discussion. The requirements of the engine are motivated
from the implementation method, ie. the engine must be able to
handle different scenarios because it is located in an ASP

environment, which is in essence a multi-user environment.

The ability to handle multiple clients. This is the goal of the
system, to provide cost effective solutions to clients that cannot
afford the capital layout required to implement such a system. Each
client has its own set of customers and depots, which the system
cannot predict. It is therefore important for the engine to be robust

and effective across different input scenarios.

Geographic locations of the customers. This has a cost advantage
for the clients because they do not need to keep geographic data on
their systems. They can benefit from experts as well as additional data
that will allow for professional maps as output. They can also benefit
from an up to date road network on which the optimization is done.
The service provider can ensure that the network used in the routing

is representing the current status in the road network, e.g. peak and
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off-peak travel times, road segments that is closed due to accidents or
maintenance, as well as the addidon of new segments. The
optimization engine operates from a time and distance matrix
between customers, which imply that these matrices must be up to
date with the network and the engine must be able to handle multiple

time matrices.

¢ A management console. To allow the user to specify certain
parameters. These parameters can include the maximum route length
or time, the open and close times of the depots, etc. The optimization

engine must be able to enforce these constraints.

® An easy operation interface. This is not in the scope of this
discussion, but form part of a successful ASP implementation. This
include the ability to upload and download data to and from the
system, which consists of customers with their order detail that must
be uploaded from the client, and routes in the form of reports or

maps that must be downloaded to the client.

Implementing the VRP with additional constraints has been defined as a complex
problem. Implementing the VRP with additional constraints in an environment
as described above, adds to the already complex problem. The algorithm cannot
be designed to function well in one specific known environment, but must be
able to adapt to the environment as specified by the client. This environment, or
characteristics thereof, is not known at implementation time and the algorithm
must be able to produce good results independent of the specific environment.
The designed algorithm must be able to perform stable and reliable under these

conditions, as well as producing acceptable results.

6
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1.3. VRP and its Origin.

Vehicle Routing Problems (VRP) are an extension to the well-known Travelling
Salesperson Problem. A number of visits being given, the goal is to perform these
visits with vehicles, using a set of minimal-cost tours, each of which must start
and end at the same posidon. The VRP is like the TSP, an NP-hard problem. If
no extra constraints on the capacity or vehicles is given and a maximum driving
tdme or tour length is not given, the solution to a VRP would be a single tour.
However, real-life VRP comes precisely with these kinds of constraints, or even

more complex ones.

Vehicle routing problems are all around as in the sense that many consumer
products such as soft drinks, beer, bread, gasoline and pharmaceuticals are
delivered to retail outlets by a fleet of trucks whose operations fits the vehicle
routing model. In practice, the VRP has been recognized as one of the great
success stories of operations research and it has been studied widely since the late
fifties. Public services can also take advantage of these systems in order to
improve their logistics chain. Garbage collection, or town cleaning, takes an ever-

increasing part of the budget of local authorities.

The VRP was introduced by Dantzig and Ramser (1959) more than four decades
ago. There has been since then a steady evolution in the design of solution
methodologies, both exact and approximate, for this problem. The VRP is an
NP-hard problem that is exceedingly difficult to solve to optimality. Yet, no
known exact algorithm is capable of consistently solving to optimality instances
involving more than 50 customers® and often requires relative few side

constraints.

* Source: Golden etal,, 1998; Naddef and Rinaldi, 2002 in [14], p. 3
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Besides being one of the most important problems of operations research in
practical terms, the vehicle routing problem is also one of the most difficult
problems to solve. It is quite close to one of the most famous combinatorial
optimization problems, the Travelling Salesperson Problem (ISP), where only
one person has to visit all the customers. The TSP is an NP-hard problem. It is
believed that one may never find a computational technique that will guarantee
optmal solutions to larger instances for such problems. The vehicle routing
problem is even more complicated. Even for small fleet sizes and a moderate
number of transportation requests, the planning task is highly complex. Hence, it
1s not surprsing that human planners soon get overwhelmed, and must turn to

simple, local rules for vehicle routing.

In the m-TSP problem, » salesmen has to cover the cides given. Each city must
be visited by exactly one salesman. All salesmen start from the same city (the
depot) and must end their journey in this city again. We now want to minimize
the sum of distances of the routes. The VRP is the m-TSP where a demand is
associated with each city, and each salesmen/vehicles has a certain capacity (not
necessarily identical). The sum of demands on a route cannot exceed the capacity
of the vehicle assigned to this route. As in the m-TSP we want to minimise the
sum of distances of the routes. Note that the VRP is not purely geographic since
the demand may be constraining. The VRP is the basic model for a large number

of different vehicle routing problems.

Many new side constraints have been added to meet real life needs. If we add a
time window to each customer in the VRP we get the vehicle routing problem
with time windows. In addition to the capacity constraint, a vehicle now has to
visit the customer within a certain time frame. The vehicle may atrive before the

time window opens. It is not allowed to arrive after the time window has closed.
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Some models allowed for eatly or late servicing but with some form of addidonal

cost or penalty.
14. Success of automated methods

Researchers often use models exhibiting some, but not all of the charactenstics of

real-world problems in order to test and evaluate their ideas.

The Vehicle Routing Problem (VRP) is no exception. The class of Vehicle
Routing Problems is an intensive research area because of its usefulness to the
logistics and transportation industry. For distribution companies, the
transportation cost is the perfect target. Toth and Vigo (2002) (in Cordeau and
Laporte [14], (p. 3)) report that the use of computerized methods in distribution
processes often results in savings ranging from 5% to 20% in transportation
costs. It is estimated that distribution costs account for almost half of the total
logistics costs and in some industries, such as in the food and drnk business;
distribution costs can account for up to 70% of the value added costs of goods.
This share has experienced a steady increase, since smaller, faster, more frequent,
more on time shipments are required as a result of trends such as increased
variability in consumer's demands, quest for total quality management, near-zero

inventory production and distribution systems, sharp global-size competition.
15, Problem Environment

Knowledge of the problem environment can assist in developing a more effective
algorithm. The problem environment consists of the constraints imposed on the
problem, the input data that we have to work with and the objective function to

minimise on.

This thesis considers a set of additional constraints added to the basic VRP.

Although the ASP environment allow flexibility for the client to use these

9
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constraints or not, the design does implement a different method for each
possible combination of constraints. The design treats the omission of a
constraint as a simple implementation of the constraint, e.g. if the client does not
have heterogeneous fleet, the scenario can stll be executed because
homogeneous fleet is a subset of heterogeneous fleet. Thus a client with
homogeneous fleet has a special case of the heterogeneous fleet problem. A client
with single time windows has a special case of the multiple time windows
problem. This implementation of a solution for an ASP ready algorithm will not
include pre-processing of data to determine such special cases, but the guidance

algorithm will handle the effectiveness of the algorithm.

Working in the ASP environment results in an unpredictable data environment.
The input can differ from client to client. The objective of this study is to develop
a solution that can operate in such surroundings. The thesis will provide a
method to solve the problem efficiently, and is the first step towards providing a
solution in the ASP environment that 1s flexible enough to provide a feasible
solution. Although the primary goal of the ASP is to provide an affordable
solution to the South African market, we cannot limit the input data efficientdy.

We can define the following basic scenarios:
e Short hauls with time window complexity —
e Short hauls with weight restriction
® Long hauls with ime window complexity
e Long hauls with weight restriction
e Random located stops

e Cluster located stops

10
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We must also take into account the driving conditions between the stops. The
goal 1s to provide the algorithm with as much as possible data that simulates the
practical environment. We simulate the travelling between stops with different
travel times depending on the time of day, i.e. simulating peak and off-peak travel

times.
1.6. Summary

Practical Vehicle Routing Problems come with additonal constraints; for
example, multiple capacity constraints can be expressed in several units and
dimensions (weight, volume, length, number of pellets, etc.). Some problems
involved constraints where the total capacity of the vehicle cannot be used;
instead, the loading after vehicle must follow specific rules or legislation. This is

for example the case in Europe with oil tanks.

The Application Service Provider environment allows the sharing of data and
utilities via the Internet. This results in a cost-effective way to implement utilities
that require specialized data and procedures. For a routing engine to function in
this environment, it must be stable and flexible, and be able to handle the

diversity of requests from multiple clients.

11
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Chapter 2

2 PROBLEM BACKGROUND: VRP WITH MULTIPLE
CONSTRAINTS

2.1. The Vehicle Routing Problem

Logistics can be defined as the provision of goods and services from a supply
point to various demand points. The transportation of raw materials from the
suppliers to the factory, from the factory to the depots, and the distribution to
customers can be described as a complete logistic system. With an effective
logistic system, cost can be reduced due to less penalties for late delivery, lowered
trucking cost, shorter distances and effective use of capacity of the vehicle. One
of the most significant measures of a logistic system is effective vehicle routing.

Optimising of routes is the basis of vehicle routing problems.

The VRP originated from the Travelling Salesmen Problem (TSP). According to
Winston [53] (p. 519) the TSP can be define as a problem where a salesperson
must visit each of ten cities once before returning to his home. The cities need to

be selected to minimise the total distance the salesmen travels.

According to Barbarosoglu et al. [3] (p. 256) the VRP can be described as the
problem of designing optimal delivery or collection of routes from one or several
depots to a number of customers subject to side constraints. Thus, the basic VRP
can be described as vehicles that depart from the depot, visit one or more

customers and return to the depot.
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The VRP has a finite number of feasible solutions. The VRP solution space
increase exponentially as the number of customers increases. Thus the VRP is

known as a non-polynomial hard (NP-hard) problem.

The basic VRP is today no more than a classical problem. The advance of science
has prompted the industry to ask for more real life solutdons The basic VRP is
given by a set of identcal vehicles, a depot, a set of customers to be visited and a
directed network connecting the depot and customers. Let us assume there are K
vehicles, V = {0,1,2,3,...K-1}, and N+1 customers, C = {0,1,2,3,...N}. We
denote the depot as customer 0, or C. Each arc in the network corresponds to a
connection between two nodes. A route is defined as starting from the depot,
going through a number of customers and ending at the depot. A cost ¢, and a

travel ime /, are associated with each arc of the network.

The problem is to find tours for the vehicles in such a way that:

® The objective function is minimized. The objective function can be the
total travel distance, the number of vehicles used, or any cost related

function.
Several constraints must be applied on the basic VRP:

e Only one vehicle handles the deliveries for a given customer. We will not
split deliveries across multiple vehicles. A customer can only be visited

once a day.

e The number of vehicles is equal to the number of routes, meaning that a

vehicle can only complete one route per day.
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The VRP has a finite number of feasible soludons. The VRP solution space
increase exponentially as the number of customers increases. Thus the VRP is

known as a non-polynomial hard (NP-hard) problem.

The basic VRP is today no more than a classical problem. The advance of science
has prompted the industry to ask for more real life solutions The basic VRP is
given by a set of identical vehicles, a depot, a set of customers to be visited and a
directed network connecting the depot and customers. Let us assume there are K
vehicles, V = {0,1,2,3,...K-1}, and N+1 customers, C = {0,1,2,3,...N}. We
denote the depot as customer 0, or C,. Each arc in the network corresponds to a
connection between two nodes. A route is defined as starting from the depot,
going through a number of customers and ending at the depot. A cost ¢; and a

travel tme /, are associated with each arc of the network.

The problem is to find tours for the vehicles in such a way that:

¢ The objective function is minimized. The objective function can be the
total travel distance, the number of vehicles used, or any cost relared

function.
Several constraints must be applied on the basic VRP:

e Only one vehicle handles the deliveries for a given customer. We will not
split deliveries across multiple vehicles. A customer can only be visited

once a day.

® The number of vehicles is equal to the number of routes, meaning that a

vehicle can only complete one route per day.
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e The demand of the customers on every route is known with certainty.
The demand of the customers in total on one route cannot exceed the

capacity of the specific vehicle that will cover that route.

e The travelling distance between customer 7 and ;j are the same as the

travel distance between jand 7.

e The vehicles have the same capacity with the same fixed and varable

cost, thus a homogeneous fleet are assumed.

® The vehicles must complete their route within a maximum length of time,

usually the time the depot is open.

¢ The vehicle returns to the depot at the end of the route.

The VRP can be formulated as follows:
¢ A setof identical vehicles V
e A special node called the depot,
® A set of customers C to be visited

e A directed network connecting the depot and the customers

Let us assume there are K vehicles, V = {0, 1, 2,..., K — 1}, and N + 1

customers, C = {0, 1,2, ... ,N}.

e For simplicity, we denote the depot as customer 0.

e Fach arc in the network corresponds to a connection between rwo nodes.

14
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¢ A route is defined as starting from the depot, going to any number of

customers and ending at the depot.

¢ The number of routes in the traffic network is equal to the number of
vehicles used, IK. Therefore, exactly K directed arcs leave the depot and

K arcs return to the depot.
® A cost¢anda travel time 7, are associated with each arc of the network.

e Every customer in the network must be visited only once by one of the

vehicles.

e Since each vehicle has a limited capacity ¢,, and each customer has a
varying demand 7, ¢, must be greater than or equal to the summation of

all demands on the route travelled by vehicle £.

e Vehicles are also supposed to complete their individual routes within a

total route time, which is essentially the dme window of the depot.

There are two types of decision variables in a VRP.

® The decsion varable x, (i,/=0,1,2.N;k=0,1,2.K:i#j) 1s 1 if

vehicle £ travels from node 7 to node /, and 0 otherwise.

e The decision variable 7. denotes the tme a vehicle starts service at node 7
The triangular inequality, ie. ¢; <c,+c, and 1, <t, +1,Vhi, jeN

need not apply.

The objective is to design a set of cost-minimizing routes that service all the
customers while all the constraints stated above are satisfied. The model can be

mathematically stated as follows:

15



UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
Que® YUNIBESITHI YA PRETORIA

Notation:

K = total number of vehicles.

N = total number of customers.

¢, = customer 7, where/= 1,2, ... N.

:

¢, = the depot.

[l

cost incurred on arc from node 7 to /.
¢, = travel time between node 7 and /.

., = demand at node 7.

g, = capacity of vehicle 4.

¢, = open time at node z.

/.= close time at node 7

£ = ardval time at node 2

[ = service time at node 7.

7, = maximum route time allowed for vehicle £.

p; = polar coordinate angle of customer 7, 7= 1,2, ..., N.
R, = vehicleroute £, £ =1, 2, .., K.

0, = total overload for vehicle £, £=1,2, .., K

‘2
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T, = total tardiness for vehicle £, £=1, 2, ..., K.

D, = tortal travel distance for vehicle £, £=1,2, ..., K

W, = total travel time for vehicle £, £=1, 2, ..., K.

C(R,) = cost of the route R, based on a cost function.

C(5) = sum total cost of individual routes C(R,).

o = weight factor for the total distance travelled by a vehicle.
B = weight factor for the latest arrival ime of a customer.

y = weight factor for the difference in polar coordinate angles.
= weight factor for the travel total time of a vehicle.

7 = penalty weight factor for an overloaded vehicle.

K = penalty weight factor for the total tardy time in a vehicle route.

Principle decision variable: x, =1{0,1}: 0 if there is no arc between node 7

and jand 1 otherwise.

N N K-l
Min Z ()% (1
i=0 j=0 k=

Subject to:

i't"" =K fori=0 &)
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_—

N

.‘V
Dox=.x, <l fori=0ke[0,K-1] (3)
j=1

/=1

K=1 N
szw =1 fori=12.N )
k=0 j=l
N N
D Xu— Y %, =0 Vhe[LN];ke[0,K-1] (5)
i=0.=h J=1,5=h
u,—u,+Nx, SN-1 forie[lLN]:je[LN];i#j (6)
N N
Yom Y x,<q, Yke[0,K-1] 0
i=0 J=0,j=i
N N

> x,(t,+ f+w)<r, Vke[0,K-1] @)
=0 j=0,j=i

The objective function of the problem is given in (1).

Constraint (2) specifies that there are exactly K routes going out of the

depot.

The third constraint (3) makes sure that each route leaves the depot and

return to the depot

Constraints (4) and (5) make sure exactly one vehicle goes to and leaves a

customer.

Constraint (6) ensures that there are no sub-tours in the solution. A sub-

tour is a route that does not pass through the depot.
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(7) 1s the capacity constraint.

Maximum travel ntme for each vehicle 1s assured in Eq. (8).

The model described in this section is a standard mathematcal model for a basic

VRP problem. When additional constraints are needed, they must be added to

the existing constraints in the model or some of the existing constraints must be

relaxed.

The industry requires additonal constraints on the basic VRP. Additional

constraints that we will address include:

The limitation of the length, duration or cost of each individual tour. This
restricts a route for running too long, which can result in overtime costs,

insufficient fuel, etc.

The addition of a service time for each customer. The volume of the
stock to be delivered can have an influence on the service time at a
customer. The delivery ime will have an influence on the total route time

and must be taken into account.

The addition of time windows during which the customers have to be
visited. The problem we will discuss is the use of multiple time windows,
i.e. the customer can specify more than one time period available for

delivery.

The vehicle can return to the depot and have enough time for another
route before the maximum allowed time is up. This will allow double
scheduling, which will result in a cost saving, as the second route utilize
the same vehicle and reduce the number of vehicles required to service all

the customers.

19



® The travel ime can vary between customers depending on the tme of

day. This implies peak and off-peak travel times.

e The fleet is not necessarily homogeneous, ie. vehicles can differ in
capacity and cost. This might result in a good solution to use the vehicles

with a large capacity to pick up customers that is far away form the depot.

e A vehicle can have a specified available time. This allows for certain
vehicles to be out in the field longer to cater for long routes. The

implementation will add time window constraints to a vehicle.

We need to redefine the mathematical model for our problem. We will make use

of the base model with the following changes:

o Constraint (2) is now invalid and will be replace by
P ]

i.\',ﬂ: <p, fori=0;ke [0, X~ l] (2

j=
where p, is the maximum number of routes allowed for vehicle £.

The number of routes going out of the depot for a specfic vehicle are
constrained to a maximum of p, , which implies that a vehicle can now have

multiple routes done in a day.
o We impose time windows at a stop
=0 9)

L+x, 0+ f+w)<t, i, je[LN];i# j;ke[0.K-1]  (10)
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e st sk (11)
® We redefine the service time at each stop as
/= Fixed Time + ( Variable Time * #z,)
e We also redefine the meaning of travel tme
t,= Travel Time at (£, + f + w)

which calculates the travel time from 7 to ; depending on the departure

dme at 7.

e We just make a note that g, is not necessarily the same for each vehicle.

® The monetary cost of a route can be calculated as follows
N
C(R,)=(F, /qu,c)+(D,‘ *V,) fori=0ke [O,K —l]
f=1
where the first term is the fixed cost of the vehicle divided into the
number of routes and the second term is the distance of the route
multiplied by the running cost of the vehicle.
2.2, Meta Heuristics

The implementation of an algorithm that can efficiently and in reasonable ome
solves the aforementioned problem has not been successfully implemented
before. To embark on a journey to find a sufficient algorithm requires
investigation of existing problems and solutions as well as nventing new
methods. Several papers have been presented that solve the VRP with additional

side constraints. They mainly focus on solving the basic VRP with one or two
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additional side constraints. Some of the most popular problems include the VRP

with tme windows and the VRP with pickup and delivery.

Heuristic methods play an important role in solving problems with this
complexity. Most solutions include a heuristic method, or a hybrid of heunstic
methods at the heart of the solution. In the next section, we will discuss some of

the more popular heuristic methods.

Meta-heuristics, or global optimizaton heuristics, have a common feature: they
) ’ P,
guide a subordinate heuristic in accordance with a concept derived from artificial

intelligence, biology, nature or physics to improve their performance.

Meta-heuristics succeed in leaving the local optimum by temporarily accepting
exchanges that decrease the objective function value. Meta-heuristics use
information of the problem environment and the nature of the objective function
to direct the search process to regions that promise better solutions. It is possible
that the meta-heuristic will return to the local optimum without finding a better
solution. This is called cycling and can be avoided by adjusting the heuristic’s

settings to allow more degrading moves for longer.

The concept of a heuristic being trapped at a local optimum can be demonstrated
in Figure 2. If a heuristic finds a solution S, with objective function I'(S), where S
is close to point C, then it will only improve until it gets to local optimum C. No
further improvements in the objective function will be achievable, because all
moves will reduce the objective function. However, if a meta-heuristic finds a

solution close to point B, degrading moves will be allowed that may direct the

search to the global optimum, point A.



e

3

\ 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

F(S)

Global optimum

e

Local optima

v

Figure 2: Global and Local Optima

Meta-heuristics will be successful on a given optimisation problem if it can
provide a balance between the exploitation of the accumulated search expenence
and the exploration of the search space to identify regions with high quality
solutions in a problem specific, near optimal way. The various meta-heunstics are

classified according to the following criteria:

® Trajectory methods vs. discontinuous methods: Trajectory methods
like SA and TS follow one single search trajectory corresponding to a
closed walk on the neighbourhood graph. Discontinuous methods allows

larger jump in the neighbourhood graph.

e Populated-based vs. single-point search: In single-point search only

one single solution is manipulated at each iteration of the algorithm. TS

23



&

3

A 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

and SA are single-point search methods. GA and ant colony algotithms is

Populaton-based.

Memory usage vs. memoryless methods: Meta-heuristics with
memory are the TS, GA, SS and ant systems. According to Taillard et al.
[48] these meta-heuristics with memory can be viewed as adaptive
memory programming (AMP) heuristics. The term “memory” was used
explicitly for T'S, but other meta-heuristics use mechanisms that can be
considered as memories. There are meta-heuristics that cannot be entered
into the AMP methods, such as SA. However they may be included in the

improvement procedure of AMP.

One vs. various neighbourhood structures: SA and TS algorithms are
based on one single neighbourhood structure. Other algorithms such as
Iterated Local Search typically use at least two different neighbourhood

structures.

Dynamic vs. static objective function: Some algorithms modify the
evaluation of the single search states during the run of the algorithm. In
the use of a dynamic objective function penalties for the inclusion of
certain solution attributes that modify the objective function are
introduced. TS may be interpreted as using dynamic objective function, as
some point in the search is forbidden, corresponding to infinitely high
objective function values. The other algorithms use static objective

functons.

Evaluation of heuristic methods consists of comparing criteria such as running

tme, quality of solution, ease of implementation, flexibility and robustness. For

the purpose of our algorithm, flexibility is an important consideration. The

algorithm should be able to handle changes in the data patterns, side constraints
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and objective function, as each client has his own specific requirement. We are
not working on a predetermined set of data with a specified objective function.
Working in such an environment make it possible to find a method that is
effective for that specific environment by making use of the knowledge about the

problem.

Because the heuristic methods are non deterministic, i.e. we cannot predict the
result even if we apply the same algonithm on the same data with the same
number of iterations, the algorithm should not perform poorly on any instance,
as well as being  able to produce a good solution each time it is applied to the

same 1nstance.

We will also try to validate the applicability of the method on our problem by
discussing the design of the method is well as what we see as its advantages and
disadvantages. With this approach we will filter out certain methods.
Comparisons discussed in this paper are from existing papers, which mainly
present the best results found for the method. Comparison is also made difficult
because solutions were not all implemented on the same computer (running
time), and have not all use the same number of iterations. Existing methods is
also not designed for our specific problem and thus we cannot really compare

methods outright to decide on a method to implement for our problem.

Using only the best results of a non-deterministic heuristic, as is often done in the
literature, may create a false picture of its real performance. We considered
average results based on multiple executdons on each problem an important basis
for the comparison of non-deterministic methods. Furthermore, it would also be

important to report the worst-case performance.

Moreover, an algorithm should be able to produce good solutions every time it is

applied to a given instance. This is to be highlighted since any heuristics are non-
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deterministic, and contain some random components such as randomly chosen
parameter values. The output of separate executions of these non-deterministic
methods on the same problem is in practice never the same. This makes it

difficult to analyze and compare results.
Heuristic methods

An algorithm is said to be efficient when it runs in polynomial time, Le., its
running time is not longer than a polynomial function of the size of the problem.
An algorithm is said to be effectve if it produces high-quality solutions,
preferably in less time than any efficient algorithm for the problem. The most
preferred algorithms are both efficient and effective. If the algorithm produces
the mathematcally best solution it is called optimal (or exact) if it produces a
good but not necessarily best solution it is called heunstic. A construction
algorithm constructs a solution to a problem, whereas an improvement algorithm

works on an existing solution to obtain better levels performance measures.

According to Laporte [33], heuristics belong to two broad classes: classical
heuristics and modern heunistics (or metaheunstics). Classical heuristics can be
broadly classified 1nto three categories. Constructive heurstics gradually build a
feasible solution while keeping an eye on solution cost, but do not contain an
improvement phase per se. In two-phase heuristics, the problem is decomposed
into its two natural components: clustering of vertices into feasible routes and
actual route construction, with possible feedback loops between the two stages.
Two-phase heuristics can be divided into two classes: cluster-first, route-second
methods and route-first, cluster-second methods. In the first case, veroces are
first organized into feasible clusters, and a vehicle route is constructed for each of
them. In the second case, a tour is first built on all vertices and is then segmented
into feasible vehicle routes. Finally, improvement methods attempt to upgrade

any feasible solution by petforming a sequence of edge or vertex exchanges
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within or between vehicle routes. The distinction between constructive and
improvements methods is, however, often blurred since most constructive

algorithms incorporate improvements steps at various stages.

As far as we are aware, six main types of metaheuristics have been applied to the

VRP:
1) Simulated Annealing (SA),
2) Deterministic Annealing (DA),
3) Tabu Search (T8S),
4) Genetic Algonthms (GA),
5) Ant Systems (AS), and
6) Neural Networks (NN).

The first three algorithms, SA, DA and TS, start from an initial solution x;, , and
move at each iteration 7 from x; to a solution x;+1 in the neighborhood N(x;) of
x;, until a stopping condition is satisfied. If f{x) denotes the cost of x; then ffx,+7)
is not necessarily less than f{x). As a result, care must be taken to avoid cycling.

Put paragraph in bullets

GA examines at éach step a population of solutions. Each population is derived
from the preceding one by combining its best elements and discarding the worst.
AS is a constructive approach in which several new solutions are created at each
iteration using some of the information gathered at previous iterations. As was
pointed out by Taillard et al. [48], TS, GA and AS are methods that record, as the
search proceeds, information on solutions encountered and use it to obtain

improved solution. NN is a learning mechanism that gradually adjusts a set of
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weights untl an acceptable solution is reached. The rules governing the search
differ in each case and these must also be tailored to the shape of the problem at

hand. Also, a fair amount of creativity and experimentation is required.
The following sections discuss the most applicable methods.
2.2.1. Simntated Annealing (5A)

Simulated Annealing searches the solution space by simulating the annealing
process in metallurgy (Qili et al [39]). The algorithm jumps to distant location in
the search space initially. The size of the jumps reduces as time goes on or as the
temperature “cools” down. Eventually the process will turn into local search

descent method.

One of its characteristics is that for very high temperatures, each state has almost
equal change to be the current state. At low temperatures only states with low
energy have a high probability of being the current state. These probabilities are
derived for a never ending executing of the metropolis loop. The advantages of

the scheme is:
® SA can deal with arbitrary systems and cost functions.
e SA staustically guarantees finding an optimal solution
e SA s relatively easy to code, even for complex problems.
e SA generally gives a good solution.

However this onginal version from SA has some drawbacks
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® Repeated annealing with a 1/log k schedule is very slow, especially if the
cost function is expensive to compute, which will be the case for our

problem.

e [or problems where the energy landscape is smooth, or there are few
local minima, SA is an overkill — simpler faster methods works better.

But usually one does not know what the energy landscape is.

* Normal heunistic methods, which are problem specific or take advantage
of extra information about the system, will often be better than general

methods. But SA is often comparable to heuristics.

¢ The method cannot tell if it has found and optimal soluton.
2.2.2. Tabu Search (IS)

The word Tabu (or taboo) comes from Tongan, a language of Polynesia, where it
was used by the aborigines of Tonga Island to indicate things that cannot be
touched because they are sacred.” According to Webster's Dictionary, the word
now also means "a prohibidon imposed by social custom as a protective
measure'" or of something "banned as constituting a risk." These current more
pragmatic senses of the word accord well with the theme of Tabu search. The
risk to be avoided in this case is that of following a counter-productive course,
including one, which may lead to entrapment without hope of escape. On the
other hand, as in the broader social context where "protective prohibitions" are
capable of being superseded when the occasion demands, the "taboos" of Tabu
search are to be overruled when evidence of a preferred alternative becomes

compelling.

3 Source: Tabu Search Network |31]
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Tabu Search (TS) 1s a local search metaheuristic introduced by Glover (1986). TS
explores the solution space by moving at each iteration from a solution to the
best solution in a subset of its neighbourhood N(s). Contrary to classical descent
methods, the current solution may deteriorate from one iteration to the next
Thus, to avoid cycling, solutions possessing some attributes of recently explored
solutions are temporarily declared Tabu or forbidden. The duraton that an
attribute remains Tabu is called its Tabu-tenure and it can vary over different
intervals of ime. The Tabu status can be overridden if certain conditions are met;
this is called the aspiration criterion and it happens, for example, when a Tabu
solution is better than any previously seen solution. Finally, various techniques

are often employed to diversify or to intensify the search process.

The most important association with tradidonal usage, however, stems from the
fact that taboos as normally conceived are transmitted by means of a social
memory, which is subject to modification over time. This creates the fundamental
link to the meaning of "taboo" in Tabu search. The forbidden elements of Tabu
search receive their status by reliance on an evolving memory, which allows this

status to shift according to time and circumstance.

TS 1s the only metaheuristic that has been explicitly developed with a memory. In
a sense this method imitates the human being looking for a good solution of a
combinatorial optimization problem. Glover proposed a number of strategies to
guide the search and make it more efficient. TS is open for any strategy well

adapted to the problem on which it is applied.

More particularly, Tabu search is based on the premise that problem solving, in
order to qualify as intelligent, must incorporate adaptive memory and responsive
exploration. The adaptive memory feature of TS allows the implementation of
procedures that are capable of searching the solution space economically and

effectively. Since local choices are guided by information collected during the
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search, TS contrasts with memoryless designs that heavily rely on semi random
processes that implement a form of sampling. Examples of memoryless methods
include semi greedy heuristics and the prominent "genetic" and "annealing"
approaches inspired by metaphors of physics and biology. Adaptive memory also
contrasts with rigid memory designs typical of branch and bound strategies. (Tt
can be argued that some types of evolutionary procedures that operate by
combining solutions, such as genetic algorithms, embody a form of implicit
memory. However, this form of memory is not sufficient to embrace many
aspects of what we normally conceive to be a hallmark of 'intelligent' problem
solving. Tabu search also has implicit memory features that offer opportunities

for establishing more effective varants of evolutionary approaches.)

The emphasis on responsive exploration in Tabu search, whether in a
deterministic or probabilistic implementation, derives from the supposition that a
bad strategic choice can yield more information than a good random choice. In a
system that uses memory, a bad choice based on strategy can provide useful clues
about how the strategy may profitably be changed. (Even in a space with
significant randomness a purposeful design can be more adept at uncovering the

imprint of structure.)

Responsive exploration integrates the basic principles of intelligent search, i.e.,
exploiting good solution features while exploring new promising regions. Tabu
search 1s concerned with finding new and more effecive ways of taking
advantage of the mechanisms associated with both adaptive memory and
responsive exploration. The development of new designs and strategic mixes

makes TS a fertile area for research and empirical study.

The main advantage of the basic version is its aggressiveness: the search
converges toward the local optimum and examines the neighbourhood of this

local optimum very quickly. However, it can easily get trapped in a sub-space
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containing only solutions of poor quality. To diversify the search and force it to
visit solutions with different characteristics, one basic idea was to increase the
number of forbidden components when performing local modifications to a
solution. So, the discussion quickly turned around the optimum tabu list size,
since the short list allows a thorough examination of the neighbourhood of a
good solution while a long list facilitates the escape from a local optimum to
explore new regions of the search space. The reactive Tabu search proposed by
Battiti and Tecchiolli (1994) (in Briysy [5], p. 4) was designed to automatically
adapt the Tabu list size and avoid the fastidious task of explicitly managing the
Tabu list.

The main difficulty with TS is thus to efficiently incorporate diversification and
intensification mechanisms. The use of a memory that stores good solutions
visited during the search and the design of a procedure to create provisional
solutions from it is a way to achieve this goal. Indeed, solutions contained in
memory during the imitdal search phase present different characteristics, thus
leading to a diversified search. Later, solutions contained in memory are mostly
representative of one or a few good regions of a solution space. The result is that

the search gradually shifts from diversification to intensification.
2243 Genetic Algorithms (GA)

The Genetic Algorithm (GA) is an adaptive heuristic search method based on
population genetics. The basic concepts were developed by Holland (1975) (in
Ombuki et al, [39], p.3), while the practicality of using the GA to solve complex
problems was demonstrated in De Jong (1975) and Goldberg (1989) (in Braysy
and Gendreau, [8], p. 10).

GA evolves a population of individuals encoded as chromosomes by creating

new generations of offspring through an iterative process until some convergence
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criteria are met. Such criteria might, for instance, refer to a maximum number of
generations, or the convergence to a homogeneous population composed of
similar individuals. The best chromosome generated is then decoded, providing

the corresponding solution.

The creation of a new generation of individuals involves three major steps or
phases: selection, recombination and mutation. The selection phase consist of
randomly choosing two parent individuals from the populaton for mating
purposes. The probability of selecting a population member 1s generally
proportional to its fitness in order to emphasize genetic quality while maintaining
genetic diversity. Here, fitness refers to a measure of profit, utility or goodness to
be maximized while exploring the solutdon space. The recombination or
reproduction process makes use of genes of selected parents to produce offspring
that will form the next generation. As for mutation, it consists of randomly
modifying some gene(s) of a single individual at a time to further explore the
solution space and ensure, or preserve, genetic diversity. The occurrence of
mutation is generally associated with a low probability. A new generation is
created by repeating the selection, reproduction and mutation processes until all
chromosomes in the new population replace those from the old one. A proper
balance between genetic quality and diversity is therefore required within the

population in order to support efficient search.

Although theoretical results that characterize the behaviour of the GA have been
obtained for bit-string chromosomes, not all problems lend themselves easily to
this representation. This is the case, in particular, for sequencing problems, such
as the vehicle routing problem, where an integer representation is more often
appropriate. Therefore, in most applications to VRPTW, the genetic operators

are applied directly to solutions, represented as integer strings, thus avoiding
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coding issues. In most cases the authors use delimiters to separate customers

served by different routes.

The genetic algorithm is very simple, yet it performs well on many different types
of problems. There are many ways to modify the basic algorithm, and many
parameters that can be \tweaked". Basically, if the objective function, the
representation and the operators are all right, then varations on the genetic
algorithm and its parameters will result in only minor improvements in the overall

results.

For any GA, there are five important parameters that determine the performance
of its application: representaion of solution, initial population, selection,

reproduction, and population improvements (Qili, [39], p. 72).
Advantages
® GA is very flexible with a lot of parameters to adjust for different needs;

® GA generally explores a larger neighbour hood than local search

heuristics;

e With proper parameters, GA practices a global optimization that bypasses

the local optimum problem;
e Given enough tme, GA usually gives good solution.
Disadvantages
® GAis one of the slowest algorithms in finding the optimum;

® It has no termination criteria other than a number of generations;
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® GA can be trapped in a local plateau, as the movement of the populaton

is limited by the crossover operations, if that plateau is big and at enough.

Coding a solution with a binary vector is not natural and can significantly impact
the performance. Hence, binary coding was replaced by a more natural
representation of solutions. The classical cross over operators does not
correspond to logical operations on solutions. Furthermore, the use of other
representations and binary vectors naturally led to the design of specialized
operators, well adapted to the solution representation and capable of generating
new feasible solutions. GA can easily identify different solution sub spaces with
good characteristics, but they lack the "killer instinct” that would allow them to
intensify the search into these areas. To alleviate this weakness, the mutation

operation was replaced by repair procedures and local search.
2.24. Ant Systems (AS)

The idea of imitating the behaviour of ants to find solutions to combinatorial
optimization problems was initiated by Colorni, Dorigo and Maniezzo (in
Bullnheimer et al, [12], p. 1). The metaphor comes from the way ants search for
food and find a way back to the nest. Initially ants explore the area surrounding
their nest in a random manner. As soon as an ant finds a source of food, it
evaluates the interest of the source (quantity and quality) and carries some of
food to the nest. During the return trip, the ant leaves on the ground a chemical
pheromone trail whose quantity depends on the quality of the source. The role of
this pheromone trail is to guide other ants toward the source. After a while, the
path to a good source of food will be indicated by a large pheromone trial, as a
trial grows with number of ants that reach the source. Since source is that are
close to the nest are visited more frequently than those that are far way,
pheromone trials leading to the nearest soutces grow faster. The final result of

this process 1s that ants are able to optimize their work.
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The transposition of this food searching the area into an algorithm framework for
solving combinatorial optimization problems is octane through an analogy

between:

e the search area of the real ants and the set of feasible solutions to the

combinatorial problem;
e the amount of food associated with the source and the objective function;
e the pheromone trial and an adaptive memory.

The most important component of an ant system is the management of the
pheromone trials. In a standard ant system, pheromone trials are used in
conjunction with the objective function to guide the construction of new
solutions. Once a solution has been produced, a standard ant system updates the
pheromone trals as follows: first all trials are a weakened to simulate the
evaporation of pheromone; then, pheromone trials that correspond to
components that were used to construct the resulting solution are reinforced,

taking into consideration the quality of this solution.

Based on the previous general scheme different AS implementations have been
proposed where pheromone updating is performed in different ways. Different
ways of modifying pheromone values generate different types of search
mechanisms. Recently it has been shown that AS based algorithms are being
powerful in combination with local search procedures. In these situations
pheromone informadon is used to produce solutions (diversification phase) that
are optimized by a local search (intensification phase). Optimize solutions are
then used to update pheromone information and new solutions are successively

generated by the ants.
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Like GA, early implementations of the ant system converged too slowly toward
high-quality solutions. Therefore, intensification mechanisms were gradually
introduced. The most recent implementations incorporate local search

mechanisms to improve the solutions produced by the ants.
2.3. Existing Methods and Implementations

The vehicle routing problem has many variants that have been attempted by
many people with different criteria and different methods. The question arises on
how could another study on the problem be feasible. In the following section we
will discuss some of the existing implementations of the VRP. This section will
discuss some implementations which will enable us to derive methods already
tested, or show incompleteness in there implementation for our use. It must be
noted that certain methods were not considered as feasible because it was
deemed too slow. We can reconsider these methods because of the improvement

In computing power in recent years.
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Table 1 1s a present state of work done of the study to derive a feasible solution

for our problem. The model indicates the model implemented by the author that

1s of interest to us. The following section will discuss the methods in detail.

Present State

Author Year Problem  |Model
Amberg, Domschke and Vof | 2000 [ M-CARP | Cluster First Route Second
—_ 5 . Tabu Search, generating and
l'aillard, Laporte and Gendreau| 1995 | VRPM - S &
combining promising solutions.
Two-staged heuristic,
Lau and Liang 2000 | PDPIW |Construction and Tabu Search,
working with job pairs
Stk bl 1992 VEM Unlimited vchiclc::s, best vehicle
selection
Taillard 1996 | VRPHE Column generation method
De Backer and Furnon 1997 | VRPTW Gonseeaint programming,
routestop has next stop
] ) TS with indene -
Xu and Kelly 1990 | e | TO M mdependent tabu
: tenure per operation
Ombuki, Nakamura and Osamu| 2002 [ VRPTW Hybrid GA and TS
Van Schalkwyk ot | wrprey | s Wiidaw Compabii,

selective neigbour list

Table 1: Present State

271 Multiple depot

Although we do not focus on a multiple depot implementation of the VRP, it is

important to understand the methods available for solving this problem. In our

problem we make use of the cluster first route second (CFRS) method. CFRS

methods are more suitable for node routing problems. The clustering method is
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left to the specific client, i.e. the nodes will be clustered with an algorithm selected

by the client before we receive the data.

In the capacitated arc routing problem with multiple centres the objective is to
find routes starting from the given depots or centres such that each required arc
is served, capacity and usually additional constraints are satisfied and total travel
cost is minimised. The paper of Amberg et al, [1] consider a heuristic
transformation of the multiple centre arc routing problems into a multiple centre
capacitated minimum spanning tree problem with arc constraints. Arc routing
applications referred to problems where the distribution or collection of goods is
bound up with traversing a distance such as mail delivery, snow removal, garbage
disposal, street sweeping and police patrols. Thus, the customers are modelled as
arc or edges, whereas in node routing problems the customers correspond with
the nodes as, e.g. in the travelling salesman problem. The well-known Chinese
postman problem (CPP) is the basic arc routing problem was named after the
Chinese scientist Mei-Ko Kwan (1962) who was the first to publish on this

problem.

Introducing additonal constraints even in undirected or directed graphs usually
yields NP-hard problems such as the capacitated Chinese postman problem,
where the capacity of the postman is restricted, or the rural postman problem
(RPP) where the set of required arcs (i.e. those arcs which need serving) need not
be connected and has to be linked using non-required arcs. With respect to
developing solution methods, it is important to note that capacitated arc routing
problems consist of two interdependent sub problems: The assignment problem
which forms subsets or clusters of required arcs served by the same vehicle and
the sequencing or routing problem which determines the sequence of serving the

arcs.
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232 Pickup and Delivery

We consider existing pickup and delivery problems to determine the similarity
between it and multiple routes per vehicle. The Pickup and Delivery Problem
with Time Windows (PDPTW) models the situation in which a fleet of vehicles
must service a collection of transportation requests. Each request specifies a
pickup and delivery location. The multiple routes per vehicle problem can be
seen as a pickup from the depot and delivery to the customer. The route can stop
several times at the depot to pickup goods for more customers. The depot must
now also have a service time. While VRPTW is well studied, there is relatively less
literature on PDPTW. Moreover, no one has developed comprehensive

benchmark PDPTW instances that facilitate experimentation of new approaches.

Lau and Liang [35] presented a two-staged method to solve the pickup and
delivery problem with time windows (PDPTW). In the first phase, they apply a
novel construction heuristics to generate an initial solution. In the second phase,
a tabu search method is proposed to improve the solution. In their model, they
assume there is an unlimited number of vehicles and all vehicles have the same
capacity. Lau and Liang implement a partitioned insertion heuristic, which is a
hybrid heuristic combining the advantages of the standard insertion heuristic and
sweep heuristic. The stops are inserted into the route as pairs, ensuring that a
pickup stop is always on same route as the delivery route. They introduce three
different neighbourhood moves, namely, Single Pair Insertion (SPI), Swap Pairs

between Routes (SBR) and Within Routes Insertion (WRI).

The study of this method indicates that the VRPTW was adapted to work in
pairs. Implementing the VRPTW with multiple routes per vehicle is less complex
than the PDPTW. This thesis presents a similar approach as was presented by
Lau et al [35]. From the results of Lau et al [35] study we conclude that some

minor changes to the operators in our problem would be sufficient to solve the
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additional constraint of allowing multiple routes per vehicle. Where the PDPTW
needs to check for pairs, we will be force to check the affect of route alterations

on subsequent routes.
233, V'RP with Multiple use of vehicles

The Vehicle routing problem with muldple use of vehicles is a variant of the
standard vehicle routing problem in which the same vehicle may be assigned to
several routes during a given planning period. Taillard et al, [49] presented a tabu

search heuristic for this problem.

One drawback of the standard VRP definition is that it implicitly assumes each
vehicle is used only once over a planning period of duration M. For example, M
could correspond to an eight-hour working day. In several contexts, once the
vehicle routes have been designed, it may be possible to assign several of them to
the same vehicle and thus use fewer vehicles. When m is given a prion and Q is
relatively small, this will often be the only practical option. However, this
possibility is not directly accounted for in the problem statement and more otten
than not, an efficient “packing” of the routes into working days will be hard to
achieve. Designing routes with multiple uses of the vehicles is rather important in
practice, but this problem (denoted by the abbrevianon VRPM) has received very

little attention in the Operational Research literature.

In recent years, several powerful tabu search algorithms have been proposed for
the VRP. As a rule, these algorithms produce very good and sometimes optimal
solutions. Rochat and Taillard presented an algorithm that allows diversificaion
of the search process to take place by generating and combining promising
solutions, not unlike what is done in genetic algorithms. More precisely, the route
generation procedure first produces several good VRP solutions using tabu

search. It then extracts single vehicle routes from this population of solutions,
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and combines some of these routes to define a partial starting solution for
another application of tabu search. This process is repeated a number of times
and some of the vehicle routes generated are selected as candidates for the final
VRP solution. Note that each application of tabu search has the effect of
producing a full VRP solution starting from a limited set of routes and it may also

modify these seed routes through the local search process.

Taillard et al [49] proposed a heuristic for the VRPM based on the algorithm of
Rochat and Taillard. The proposed heuristic is made up of three parts. It first
generates a large set of good vehicle routes satisfying the VRP constraints. It then
makes a selection of a subset of these routes using an enumerative algorithm.
Finally, it assembles the selected routes into feasible working days using several

applications of a bin packing heuristic.
2.34. Heterogeneons Fleet

We considered work done on heterogeneous fleet for obvious reasons. The
vehicle routing problem with a heterogeneous fleet of vehicles (VRPHE) 1s a
major optimization problem. Indeed, most companies that have to deliver or
collect goods own a heterogeneous fleet of vehicles. We will not consider
composition of vehicles, although it is relevant to some of the problems in the

industry.

The problem of compositon of vehicles includes the addinonal problem of
deciding which trailer goes with which vehicle. We solve this problem by building
a vehicle set beforehand, and checking the vehicle capacity after routing. It the
capacity is enough for the vehicle alone, the trailer is left at home and the total

route cost 1s reduced.
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The VRPHE has attracted much less attention than the VRP or VRPTW. Thus 15
mainly due to the fact that the VRPHE is much harder to solve than the classical

VRP. Taillard [46] propose a heuristic column generation method for the
VRPHE.

Taillard [46] defines the heterogeneous fleet as follows: In the heterogeneous
problems, we have a set ¥ = {1, ..., K} of different vehicle types. A vehicle of
type k €y has a carrying capacity Q,. The number of vehicles of type £ available
1s #;. The cost of the travel from customer 7 to / (1, / = 0, ..., #) with a vehicle of
type £ is d,. The use of one vehicle of type £ implies a fixed cost f,. Our

implementation defines a fleet in a similar way.

A special case of VRPHE is the fleet size and mix vehicle routing problem
(Golden et al,, 1984 in Taillard [46]) also called the fleet size and composition
VRP or the vehicle fleet mix (VFM, Salhi et al., 1992 in Taillard [46]). The goal of
this problem is to determine a fleet of vehicles such that the sum of fixed costs

and travel costs is minimized. This problem is a particular VRPHE for which :

1) The travel costs are the same for all vehicle types (d, = dy,k. gk ew).

2) The number #, of vehicles of each type is not limited (n, =%,k ey).

We view this kind of problem as a strategic optimization and it will not be
considered. Our problem is more concerned with the current situation at the
depot, i.e. the fleet is already there, we cannot make major alterations on the fleet,
but we must still try and optimise the vehicle use as best as we can. If results
continuously show that a certain vehicle is not necessary, it can be considered to
remove the vehicle from the system and determine if the algorithm sull returns

feasible solutions.
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Another special case of the VRPHE is the VFM with variable unit running costs
(VEMVRC, Salhi et al., 1992 in Taillard [46]). The VFMVRC is a particular
VRPHE for which (n, =0,k ey). Several papers on the VFM have been
published. Golden et al. (1984) were among the first to address this problem.
This problem’s goal is similar to the VFM and is also strategic. We will not
consider this implementation. Much less work has been done for the VRPHE.
Let us quote the taboo searches of Semet and Taillard (1993) and Rochat and
Semet (1994) (in Taillard [46]) for reallife problems including many other

constraints.

“For homogeneous VRPs, many heuristic methods have been proposed. Among
the most efficient ones, are the adaptive memory procedure (AMP) of Rochat
and Taillard (1995) and the taboo search of Taillard (1993). This last method uses
a local search mechanism based on the move of one customer from one tour to
another or the exchange of two customers that belong to different tours. Since
the vehicles are identical, it 1s easy to check the feasibility of a move and to
evaluate its cost. For the VRPHE, the feasibility check or the evaluation of a
move requires finding a new assignment of the vehicles to the new solution’s
tours. In Semet and Taillard (1993), several techniques have been proposed to
simplify and accelerate the re-assignment of vehicles to tours. However, the re-
assignment problem is very simple in the case of the VFM: each tour is
performed with the cheapest vehicle type that is able to carry all the orders of the
tours. This is certainly a reason that the VFM has been more studied than the

VRPHE.”

The above quote is a warning on the addition of heterogeneous fleet to our VRP,
especially if we do not apply it in the sense of the VFM. We will show, however,
that the methods used in our implementation are sufficient enough and effectve

in a reasonable time period.
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Taillard presents a heuristic column generation method for solving the VRPHE.
The column generation is based on the AMP of Taillard (1994), which uses an
embedded taboo search. Taillard proposes to treat the VRPHE by solving a
succession of homogeneous VRPs, since the solution methods for homogeneous
VRPs are becoming more and more efficient. For each type of vehicle, they solve
a homogeneous VRP (without limitation on the number of vehicles available)
with an AMP. The tours of the homogeneous VRP solutions are then combined

to produce a solution to the VRPHE.

The AMP first generates a set of good solutions using the taboo search. It then
extracts single vehicle tours from this set of solutions, and combines some of
these tours to define a partial starting solution for another application of taboo
search. This process is repeated a number of times and the tours are memorized
as candidates for the final VRPHE solution. Once the homogeneous VRPs are
solved for each vehicle type, one has a set T of tours that have been memorized.
The useless tours of T are removed: only one copy of each tour is kept in T} the
dominated tours are eliminated (a tour is dominated if it is more expansive than
another tour of T servicing the same customers). In the case of the VFM, the
algorithm always produces a feasible solution if the iterative search used to solve

the homogeneous VRP succeeds in finding feasible solutions.

In our objective, the proposed solution is not considered for the following

reasons:

e In the case of the VFM, an unlimited number of vehicles exist to solve
the problem. Whatever feasible tour is selected from the homogeneous
solution list is possible, as the vehicle exist. In our instance, it might
happen that the selected vehicle route cannot be used, as the number of

routes for the type of vehicle already equals the number of vehicles
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available. Another vehicle must be selected for this route, which might

not result in the best solution.

If we start to make alterations to the selection of vehicles, it mught
happen that the routes in the list for a specific vehicle on a specific stop
are exhausted by the other vehicles. Al the routes, which included this
stop, 1s removed from the possible route list. This can result in stops not
being visited, because there is no vehicle available, or so it seems. We can
build up a route, which consist of the unrouted stops to insure a feasible

solution, but this will result in a solution that is not the best.

As mentioned previously, we cannot guarantee that Taillard’s method will
result in the best soluton. If we add to that the additonal complexity of
our problem, it can really get tme consuming to rebuild the solution
from a set of feasible homogeneous vehicle routes. This implies that the
heuristic method applied on the homogeneous vehicle solution will be
applied a few tmes. With the available computer power as well as the
complexity of the data sets we work with, it will be more effective to
implement the vehicle selecdon method into the heuristic. Taillard found
that for problem instances involving very few vehicles, there was a higher
probability that a run would not produce a good or even a feasible

solution.

Time Windows

The Vehicle Routing Problem with Time Windows (VRPTW) is by far the most

popular implementation of the VRP. Our problem implements various

extensions on the original idea of a ime window. The customers to be visited can

have multple time windows. The vehicles to be used will also have available ame

windows that will allow the user to schedule certain vehicles for long hauls where
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necessary. There exist a wide varety of implementaton methods for the

VRPTW.

A Hybrid Search Based On Genetic Algorithms And Tabu Search For
Vehicle Routing

Ombuki er al, [39] presented a hybrid search technique based on meta-heuristics
for approximately solving the VRPTW. The approach is two phased; a global
customer clustering phase based on genetic algorithms (GAs) and a post-
optimization local search technique based on Tabu search (TS). They also devised
a new crossover operator for the VRPTW and compare its performance with two
well-known crossover operators for VRPTW and related problems.
Computational experiments show that the GA is effective in setting the number
of vehicles to be used while the Tabu search is better suited for reducing the total
number of distance travelled by the vehicles. Through their simulations, they
conclude that the hybrd search technique is more suitable for the multi-objective
optimization for the VRPTW than applying either the GA or Tabu search
independenty. We definitely take this from their research and will also implement

a hybrid approach.

[n this paper a hybrid search technique is proposed which is suitable for multi-
objective optimization. Their approach is two phased; a global customer
clustering phase based on genetic algorithm and a post-optimization local search
technique based on Tabu search. The objective function states that costs should
be minimized. In this case the objective is to minimize the number of vehicles
used and the distance travelled to meet the demand of all the customers while not
exceeding capacity of the vehicle and the latest ime for serving each customer.

Thus this problem can be treated as a multi-objective optimization problem.

In the GA, each chromosome in the population pool is transformed into a cluster

of routes. The chromosomes are then subjected to an iterative evolutionary
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process untl a minimum possible number of clusters are attained or the
termination condition is met. The transformation process is achieved by the
routing scheme whereas the evolutionary part is carried out like in ordinary GAs,
that is, in each generation, genetic operadons, crossover and selection are applied
upon chromosomes. We represent each chromosome as sequence of cluster of
routes. A route is composed of a sequence of nodes (customers). FHach

chromosome represents a possible solution for the VRPTW.

The following figure shows the petrformance of the genetic algorithm compared
to that of the Tabu search technique. In the case of Figure 3, the main objective
under scrutiny is how GA and Tabu search performs respectively in defining the
final number of vehicles to be used to service the customers for the VRPTW.
Likewise, Figure 4 demonstrates their performance when the main objective
observation is to minimize distance travelled. The vertical axis in both figures
shows the number of customers not served. The motre customers served, the
better. From Figure 3 we observe that GA petforms better than the Tabu search
in searching the "optimal" number of vehicles to service the customers. As the
figure shows, the GA manages to employ a smaller number of vehicles and also

to serve more customers than the Tabu search approach.
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Figure 3: GA vs. Tabu Search for
Minimizing Vehicles

On the other hand, Figure 4 depicts that the Tabu search outperforms the GA
when it comes to minimizing the total distance travelled. Clearly, this is a case of
conflicting objectives. In-order to reduce the travelled distance; one would need
to increase the number of vehicles. On the other hand, to reduce the cost of
employing more vehicles, one needs to increase the distance travelled per vehicle
(which does not necessarily solve the problem as the cost of gas and other

resources comes into play as well).
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Figure 4: GA vs. Tabu Search for
Minimizing Distance

In our problem we are not concerned about reducing vehicles as a main
objective, although we would like to utilise a vehicle as good as possible. Instead
of making use of GA for vehicle reduction, we implement methods to handle
heterogeneous fleet, as well as multiple scheduling. The GA method in this
implementation as a heuristic and not a meta-heutistic. What we are looking for is

a method to handle the meta of our algorithm.
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Although they do not specify the side constraints, except for the time windows,
additional side constraints can be implemented and will affect the algorithm in
testing for feasibility. We can expect similar results for our problem as in this

instance.

A Network Flow-Based Tabu Search Heuristic for the VRP

Xu and Kelly [54] introduced a network flow model as a general local search
strategy to solve the VRP. They used a straightforward model by relaxing the
hard side constraints and introducing a dynamic penalty system, and efficiently
update and frequently solve the network flow model to find the best customers
to insert into new routes without the use of the generalized assignment problem.
The penalty parameters are changed such that the feasibility of the search is

controlled.

The network flow model implements Tabu Search restriction to prevent the
method from getting trapped in local optima. TS restrictions with randomly
generated tabu tenures are applied to them three neighbourhood moves:
dropping a customer from its cutrent route, inserting a customer into a different
route and swapping two customers between routes. For the swap, in addition to
Tabu restrictions on future swaps, the associated ejections and insertions are also
subject to tabu restricions. When a customer is moved to a new route, a tabu
restriction that prevents its removal from that route is only activated when there

are only a few customers (less than a pre-determined number) in the route.

From their implementation we conclude that each operation can have its own
tabu tenure. Ideally we would like to set the tabu tenure during execution for each
operation. We also conclude that the execution of an operation might result in
tabu moves for other operatons. We must identify the dependencies of

operations beforehand.
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Xu and Kelly [54] also implement an intensification strategy that we inhetit from
them based on advanced restart/recovery procedure. The set of best feasible
solutions produced by the search are defined as elite solutions. A repository of
elite solutions is maintained. Advanced restart is executed periodically during the
late stages of the search. When restarting, the current solution is obtained from
the repository and all tabu restrictions are released. This strategy is based on the
assumption that there may exist short relinking paths in the search process from
the restart points to new local or global optima. However, these paths may not be
detected during prior search due to the tabu restricdons. The advanced
restart/recovery strategy may find these paths and thereby lead the search to new

local or global optima.

Vehicle Routing in Constraint Programming

De Backer and Furnon [18] consider constraint programming for solving VRPs.
However, this raises many problems. Search in constraint programming is usually
based on depth-first search. This means that the domains of each varable are
monotonically reduced by propagation during the search. Although this approach
can be useful for finding a first solution for the VRP, it is not practicable when an
optimized solution is sought. This is the reason why much research has been
devoted to the design and the implementation of local search techniques in the

context of routing problems.

The paper presents basic principles for implementing local search techniques and
meta-heuristics in constraint programming. These principles have been applied to
Tabu Search. We consider the basic VRP with additional side constraints.
Expressing such constraints as what we are considering, can be tedious, and yield
problems with huge models, especially in the case of traditional linear
programming (I.P) models, or make programs solving VRP very complex and

difficult to maintain.
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In standard L.LP models, decision variables usually belong to a set of Boolean
. k : ik i v = i
variables x; which take the value 1 if the vehicle £ 1s used to travel from visit / to

J- Therefore, these models use O(mn,) decision variables, where # is the number

of vehicles and # is the number of visits to perform.

We implement the VRP with a number of variables that is linear (instead of
quadratic) with respect to the number of visits. Each visit 7 is associated with two
finite-domain variables zext, and veh, representing respectively the possible visits
following 7 and the vehicle serving visit z This method allows us to quickly access
the feasibility of a route by traversing only a part of the route depending on

where the alteration took place.

De Backer and Furnon [18] devise a generic way of taking into account
constraints on dimensions that can be a diverse as weight, time, or volume. They
introduce the notion of a path constraint, which are similar to the way that we
implement constraints on a route. Path constraints are able to propagate

accumulated quantties such as ime and weight along a vehicle tour.

We implement a similar method to test for feasibility of a route. Constraints are
prioritised according to ease of calculation and importance on failing, e.g. to
insert a node in a route, the vehicle capacity must be sufficient to accept the new
node as well. It is quick to test the current capacity of the route plus the new load

of the stop against the capacity of the vehicle.

Time Window Compatibility

Time Window Compatbility (TWC) refers to the compatbility of the time
window(s) of one stop with regards to another. A good TWC figure indicates
that the two nodes are likely to be inserted in sequence on the same route. In

many cases two customers can be located next to each other, but their time
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windows is not compatible. The trade-off between distance (Le. cost) and time

(Le. customer delight) 1s an inherent part of the problem.

Insertion of stops in a heuristic fashion requires a selection process that result in a
possible next stop. The TWC can assist us in ruling out infeasible stops from the
start. We define the term neighbour for a stop. A neighbour is a stop that can be
visited from the current stop. If we know that a stop is not a neighbour of the
current stop, we do not even waste time of trying to implement that stop as a
next stop. The neighbours of a stop are made up of all the tme window
compatible stops. We utilise the TWC principle as proposed by Van Schalkwyk
[52], but we implement it in a different fashion. A discussion of the TWC follows

and Chapter 3 will discuss the implementation of this concept in our solution.

The figure below illustrates a scenario where we evaluate the time adjacency of
node 7 and node /. This scenario assumes that there will be a definite overlap in
time windows between the two nodes. Other scenarios will subsequently be

discussed.
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scheduling period
} f + i f - time
06:00 08:00 11:00 15:00 18:00

Figure 5: The basic TWC calculation -
Scenario 0

Scenario 0: [/F (1:" >e, AND air % 2

Customer i specified a time window (e,./,) between 8:00 and 12:00, and
customer j requires service between 9:00 and 16:00 (e;..[ ; ) If serviced started

at node 7 at e, (the earliest feasible time), its arrival at j would be:
€; > o5

a; =e+s8,+1;

In this scenario equals 11:00.

Similarly, al would be the arrival at j if service started at node i at the latest
possible time (/,):

b =
ai =l 48+

In this scenano equals 15:00.
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e g T, . i
I'he difference between af and @ will yield the amount of time overlap between

i and j:
™WC, = a’f‘ ~@

In this scenario it equals 4 hours. The significance of this value is that the bigger
the overlap, the better we can insert the two nodes in sequence. This also

ensures that the customer with a big overlap is routed first (more flexible).

A number of different scenarios will be illustrated in the following figures.
Scenario 1: If ai.' g I’I.

If the earliest arrival time at node / is inside the acceptable ime window, but the
latest arrival time is outside of the acceptable time window of node j, the two
customers only partly overlap. The TWC, is then calculated by the following

equation:

WG, =1, —aj

scheduling period
——» time
06:00 08:00 11:00 13:00 18:00

Figure 6: Scenario 1 TWC calculation
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Scenario 2: If af" <,

If the vehicle arrives at the earliest feasible tme and this is before the acceptable
tme window of node j, and the arrival of the latest feasible time at node ; 1s
inside the acceptable time window, the two customers only partly overlap. The
vehicle has to wait to service customer j. The TWC, is then calculated by the
following equation:

TWC, = a_’, —e

/

€

I

'L

|

|

|

1

|

|

|

:

LS+t

v

. scheduling period

} } } } 4 - time
06:00 08:00 11:00 15:00 18:00

Figure 7: Scenario 2 TWC calculation
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; - e I
Scenario 3: If ¢} <e, and a; <e;

If the latest arrival time at node / is earlier than the start of the acceptable time

window at node j, the vehicle always waits at node j, irrespectable of the artival
time at node i. The arrival at j is always before its acceptable start time. This

value will be negative, and calculated as follows:

™WC, = a‘, =g,

€
K node |
|
|
l €; [
: , ! |:| node j
o il i
* 4 9 |
|
, | B |
& = A scheduling period
} : - : i - time
06:00 08:00 11:00 15:00 18:00

Figure 8: Scenario 3 TWC calculation
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Scenario 4: If a, >/, and a, >/,

If the arrival ime at j is always bigger than the latest acceptable time at j, the
node-combination 1s infeasible. The nodes forming part of this combination will
typically be eliminated before starting the algorithm, as they can obviously not be

included in the current route under construction.

€; :
= node
i
I
e : l,-
node _j '| - : 4i e
| | a
1 P
| |
L s+t 1 NO T,
scheduling period
: —— y ; L time
06:00 10:00 12:00 16:30 18:00

Figure 9: Scenario 4 - infeasible
combination
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Chapter 3

3 PROBLEM SOLVING METHODOLOGY

Solving the vehicle routing problem in its basic format is already an NP-hard
problem. Exact methods have proved to be inefficient and tme-consuming in
trying to solve this problem. Previous attempts on solving the VRP have
indicated that heuristic methods result in the best feasible soluton in an
acceptable time. When we add additional constraints to the basic VRP, we
increase the difficulty of the solution exponentially. We must also consider the

size of the data set their needs to be optimised.

Heuristic methods search only part of the solution space. This result in the
quicker termination of the algorithm, but does not guarantee a best solution.
Previous results have shown that heuristic methods can achieve optimal or near
optimal results repeatedly. The meta-heuristic method has a guidance procedure
of some sort to help it traversing through the solution space. The guidance
procedure is dependent on the type of heuristic selected for the solution, as well
as additional knowledge from the problems space implemented by the algorithm.
This additional information about the problem beforehand can assist the
algorithm in more effective search paths. A meta-heuristic is the implementation

of a heuristic method with a guidance procedure.
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Soiution Space -

Better Salution

Initial Solution

O

Best Solution

Operation

Possible Sclution ———

Figure 10: Solution Space

Figure 10 explains the methodology of heuristic methods for solving the
particular problem. The solution space consists of all possible solutions for the
specific problem. Theoretically we can develop an algorithm that has the ability to
generate all of the possible solutions such as branch and bound methods. As we
have already seen, this method will take an eternity on the complex problem that
we are trying to solve. A meta-heuristic can search effectively through the

solution space.

A circle which size reflects the total cost of the solution represents a solution.
The smaller the citcle, the better the solution. This indicates that there are
possible solutions that is not cost-effective and which we do not want to consider

as an end result.

Let S be a set of solutions to a particular problem, and let f be a cost function

that measures the quality of each solution in S. The neighbourhood N(s) of a
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solution s in S 1s defined as the set of soludons which can be obtained from s by
performing simple modifications. Roughly speaking, a local search algorithm
starts off with an initial solution in 8 and then continually tres to find better
solutions by searching neighbourhoods. A local search process can be viewed as a
walk in a directed graph G=(§,A) where the vertex set S is the set of solutions
and there is an arc (s,8") in A if and only if s' is in N(s). By considering the cost

function as an altitude, one gets a topology on G=(8,A).

The efficiency of a local search method depends mostly on the modelling. A fine-
tuning of parameters will never balance a bad definidon of the solution set, of the

neighbourhood, or of the cost function.

The topology induced by the cost function on G=(8,A) should not be too flat.
The cost functon can be considered as an altitude, and it therefore induces a
topology on G=(§,A) with mountains, valleys and plateaus. It is difficult for a
local search to escape from large plateaus since any solution that is not in the
boarder of such a plateau has the same cost value as its neighbours, and it is
therefore impossible to guide the search towards an optimal solution. A common
way to avoid this kind of topology on G=(§,A) is to add a component to the cost
function which discriminates between solutions having the same value according

to the original cost functdon.

Our evolutionary metaheuristic makes use of the well-known two-stage and
multi-start local search (MLS) frameworks. In two-stage framework the initial

solution created 1n the first stage is subsequently improved in the second one.

In the first stage we generate an initial solution with the help of a construction
heuristic, in this case we make use of the sequental insertion heuristic (SIH). This

method results in a solution that is feasible but not necessarily the best. The
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feasibility of the solution ensures that it existing our solution space (see the initial

solution in Figure 10).

The improvement stage traverse from our current position to a neighbour's
solution. Because solutions do not truly exist in our environment, we need to
generate a new feasible solution. This is done by applying an operation on the
current solution. As we progress it can happen withour an already existing
solution 1s generated by an operation. This can result in cycles in our search path,
which leads to revisiting existing solutions and result in unnecessary
computatonal tme. One of our objectives will be to prevent such cycling. After a
specified number of iterations we have visited a number of solutions from which
the best solution is kept. The solution is not necessarily the best solution for the
problem, but represents the best-visited solution. Our goal is to guide the search

path in such a way that we cover as wide as possible area of the solution space.

From the figure we can see that the path to the best solution might have to go
through a not so good solution before the best solution is reached. Operations
applied on a solution can result in a not feasible solution. We can consider this as
a stepping-stone towards the next solution, or it can be seen as a waste of

computational time.

The improvement phase is implemented with the Tabu Search Method. Tabu
search has a rationale that is transparent and natural: its goal is to emulate
ntelligent uses of memory, particularly for exploiting structure. Since we are
creatures of memory ourselves, who use a variety of memory functions to help
thread our way through a maze of problem-solving considerations, it would seem

reasonable to try to endow our solution methods with similar capabilities.

The following sections will discuss i1n more detail the specific methods used to

traverse through the solution space. It will also point out where knowledge about

63



4

%

O

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBE ORIA

UN
UN
Yu SITHI YA PRET

the problem beforehand can have an effect on the implementation of the
solution. The sections consist of the problem representadon in objects, the
approach of the solution, a discussion on the constructon heuristic and

improvement heuristic.
3.1, Obijects.

In the previous chapter we presented the problem in a mathematical model. This
model has the purpose of describing the parameters of the problem as well as the
conditions it has to meet. Implementing a solution for the problem is not as easy
as describing it. This section will explain the components we udlise for solving

the problem. The solution was designed in an object orientated way.

The object model is divided into two areas. Model will describe the problem
objects or the input data. The second model will describe the alterations on the
problem objects and the additional objects required to produce a solution. An

object consists of properties, methods and relations.
411, Problem objects.

This section will discuss the mapping from the input data to the objects in the
solution. We need to identify all the objects represented in the input data. Let us

consider the vehicle routing problem again.

The basic VRP consist mainly of a depot, stops and vehicles. A depot can be seen

as a specific stop with certain properties.
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Stops
LLStop
-Volume : double LLNode

-TimeWindows : LLTimeWindowList D - int
-Name : string D_x - double
-FixedService : double -y : double
-VariableService : double -
-Neighbours

Figure 11: Problem object Stop

The above object represents a stop. A stop must comply with the basic
functionality of a graph node. The figure indicates that a stop inherits all the

properties and methods of a node. The properties of a stop is as follows:
e ID - a unique value to identify the stop.
e X, Y - the spatial representation of the node
¢ Volume - the volume that a stop will utlise on a vehicle

e Time Windows — a list of available time windows that a stop can be

visited 1n.

e Name — a descriptive name for the stop for display and report purposes

e Fixed Service — the fixed service time for a stop in minutes. This
represents the stopping time required at a stop without loading or

unloading anything.

e Variable Service — this represents the volume per minute rate of loading
or unloading goods at the stop. The total service time at the stop consist

of the fixed service time + (volume * variable service tme)
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e Neighbours — this is a list of neighbours that a vehicle can visit from a
stop. In the basic VRP this list will consist of all the other stops. In our
problem that includes time windows, it might happen that it will never be
feasible for a vehicle to travel from one stop to another because of time
window compatibility (see description of time window compatibility),
which basically means that the following stop has time windows that ends
before the current stop’s ime windows begin. Science has shown that we
cannot travel back in time and thus we will not consider this stop as a

neighbour.

Operations required by the problem model for stops can be defined as followed:

e ‘Travel Time - working with the restriction of time widows, we need to
know that time it will take to travel from one stops to another to ensure
that we arrive at a feasible time. We implement travel time between stops
in a matrix. One of the additional constraints to our problem is the
requirement to calculate the travel time depending on the time of the day.
The travel time function accepts the two stops in the rravelling sequence
and the time of departure from the first stop. See this section on the cost

matnx for further detail.

e Distance - distance is calculated in a similar way as travel ime. Distance is
also dependent on time of day because the travel time between two stops
determines the route between the stops. This means basically that a

quicker route might not be the shortest.
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Depot
The properties and methods of a depot is exactly the same as for a stop. In
defining a depot, we define a single stop. Travel time and distance calculations

applied on the depot in the same manner as for a stop.

Our solution considers only one depot, which implies that all the existing vehicles
and stops belong to that depot. Extending this problem to a mult- depot
problem would require the depot object to be reconstructed by adding a stop list

as well as vehicle list to the depot object.

Vehicle

LLVehicle

-ID :int

-Name : string

-Capacity : double

-FixedCost : double

-VariableCost : double
-TimeWindows : LLTimeWindowList

Figure 12: Problem object Vehicle

The vehicle object in our implementation consist of the following properties:

e ID - aunique key for identifying the vehicle

e Name - a descriptive name for display and reporting purposes

® Capacity - the total volume that a vehicle is capable to handle

e Fixed Cost - the cost of utilising this vehicle without even travelling

e Variable Cost - the running cost of the vehicle. Part of the cost of the

route is calculated by Fixed Cost + (Variable Cost * Distance).
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o Time Windows - a list of available time widows that the vehicle can be

utilised.

There does not exist specific operations for a vehicle in the problem object

model.

Time Windows

LLTimeWindowList LLTimeWindow
-TimeWindow : LLTimeWindow -OpenTi_me : DateTi_me
+AddTimeWindow(in TimeWindow : LLTimeWindow) : bool a el P
+IsTimeCompatible(in Time : double) : bool +Double0penT|me( ) : double
+GetCompatibleTime(in Time : double) : double +DoubleCloseTime() : double
+SpanTime() : int

Figure 13: Problem object Time
Window

Time widows play an important role in the problem. All of the problem objects,
namely depot, stops and vehicles, are associated with a time window list to

indicate availability for the object’s specific function.

Time window consist basically of an open and close time. This time is saved in a
datetime format to allow for implementing problems that span across mulaple

days. Operations on the time window includes:

e DoubleOpenTime - returns the number of minutes after specific date
tme from a fixed time. This is done to allow the algorithm to work in a
linear reference environment. Let us for example say that the open time 1s
07:00 on today's date. Calculating the linear time consist of the difference
between the open time and today at midnight, which results in 7 hours.
Converting the hours to minute’s results in a linear open time of 7 * 60 =
420. If the open time was specified as yesterday at 07:00 the difference

between today at midnight and the open time is —17 hours. Converting
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the hours to minute’s results in a linear open time of -17 * 60 = -1020.

Although the value is negative is still valid for a linear scale.

DoubleCloseTime - returns the number of minutes after a specific date

time, same as DoubleOpenTime.

SpanTime - returns the difference between the open and close time in

minutes.

What we can see from the ime window properties is that our linear timescale

consists of minutes. The fixed point on the scale to calculate the linear values

from is today's date.

The time window list object consists of a list of time windows. Operations on

this list include:

312,

IsTimeCompatble - this function accepts a time and determines if there
exists 2 ime window that include the time, i.e. the ame is after the open

time and before the close time for a specific ime window in the list.

GetCompatibleTime — this function accepts a time and calculates the
earliest available ime according to the time window list. If no such tme

exists, an exception is thrown, which indicates incompatible time.

Solution Objects

This section will give an overview of the solution objects used in the algorithm. It

is important to understand this basic building blocks in order to see how the

algorithm functons. Solution objects consist of extensions of problem objects to

handle new information required by the solution, as well as help objects that play

a role in solving the problem.
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Route Vehicle

The implemented solution focus on deterministic data, 1.e. all the demands and
vehicles are available and known before the start of the soluton. In terms of the
vehicles the algorithm will not propose a best-suited fleet from a set of vehicles,
but accept the vehicles as existing and ready to use according to their
specifications. It can be simplified by allocating a route to a vehicle before we

even start. The solution is therefore made up of a set of vehicles that contain

routes.

One of the additonal requirements of the problem is to allow for multiple routes

on a vehicle. A vehicle can thus have multiple routes.

A vehicle with routes will be the main output of the system. A route vehicle 1s the

input vehicle with routes associated to it.

Routes

A route can be seen as a sequence of stops that is visited by a particular vehicle at

a specific time.
1.1.2.3 Route Stops

The determining of a best soluton relies mainly on the handling of the stops. | A

route stop consist of a stop with additional info such as:
e Arnval Time — the time a vehicle arrives at a stop

e Wait Time — the time a vehicle must wait at a stop before it can start

servicing the stop.

e Service Time — as specified by the stop service time.

70



&

2

\ 4

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

® Departure Time — the time the vehicle leave a stop for its next stop. This

must be equals to the Arrival Time + Wait Time + Service Time.

® Next Stop — An indication on where to go next in the route. This method
is the principle method of providing information on the route. Adding or
deleting a stop from a route is made easy by just replacing the next stop.
Adding a new stop requires replacing the current stop’s next stop with
the new stop and the new stop’s next stop to the current stop’s next stop.
Deleting 1s as easy as setung the previous stop’s next stop value to the
current stop’s next stop value. This only indicates the method of
inserting and deleting a stop from a route and not the validity of the

move.

VRP Base

The main purpose is to solve the VRP. There exist several ways to solving a VRP.
This object i1s the base object for the solution. The object contains all the
necessary data and manipulates all the necessary methods applied on the data.
The end result of the algorithm is the VRP object, which contains multiple

solutions.

Cost
Cost is defined as the cost in terms of distance and travel dme from one stop to

another. A cost matrix is used for storing the values.

The solution implements a cost function with time windows to represent the
difference of cost on a link depending on the time. This basically result in a cost
function that is a function of the time of day. When the algorithm requests a
travel tme from the cost function, the function first determines the cost matrix
to use. This is done by finding a cost matrix, which time windows will contain the

time provided. The cost for that time is returned.
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It 1s important to notice the influence of such dme dependent cost function in
the solution. The advantage is that a more accurate route can now be constructed,
which is very important for the success of the algorithm. When a vehicle travels
from point A to point B, it will definitely take him longer during traffic peak
periods. The use of an average travel time on a link will no be sufficient to take
care of this problem. When a vehicle travels during peak time, his actual arrival
time at the customer will be later than planned. Although the vehicle might make
up this time during the off-peak time, the use of multiple ime windows can result
in a lateness that fall berween two time windows, which result in additional wait

ume, which makes it more difficult to make up during the off-peak times.

05:00 pepot Stops
06:00— |-
07:00 | - = -

10:00

i
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12:00 [ i ] T i
13:00 \:i ]
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Figure 14: Peak and Off-Peak travel
time influence
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Figure 14 explains the importance of a time dependent cost function in the
solving of the VRP. The figure represents a typically delivery day with stops that
has similar time windows. The patterned areas represent peak traffic tme. A

route is constructed from the depot on the left back to the depot on the right.

The green arrow line represents the route making use of an average travel time on
a link. The red line represents the actual travel ume. Starting of, we can
immediately see that the average route departs later that the actual route. This is
because the departure time from the depot is determined by the open time of the
first stop. The slope of the red line is steeper than the green one, which indicates

a longer time to travel from the depot to the first stop in the actual route.

The algorithm will ensure that the arrival time at the first stop is as early as
possible. In the above case, both routes arrive at the open time of the first stop.
The service time is not affected by the cost function and both routes depart from

the first stop at the same time.

Durnng the peak travel time, the actual route requires a bit more time to travel
than the average travel time. At stop 3, the actual time arrives too late to be
serviced in the first ime window and has to wait for the second time window to
take effect. Although the actual travel time is quicker than the average time
during off-peak periods, the aggregated loss due to lateness cannot be recovered.

This is mainly due to the synchronisation of the stop time windows.

The example above is proof that we need to implement a time dependent cost

function in the algorithm to produce more realistic results.

The VRP is a NP-hard problem, which suggest that it is difficult to solve.
Heuristic methods can provide feasible solutions in reasonable time, but

additional constraints will increase computational time. The addition of a time
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dependent cost functon requires the algorithm to recalculate the travel time
between two stops every time a new stop is added to the route or a stop 1s
removed from the route. This is necessary for all stops after the added or
removed stop, as the addition of a stop will alter the arrival time of all subsequent

StOPS.

Solution

A soluton object represents a possible solution to the VRP problem. The
solution contains route vehicles and their corresponding routes and stops, as well
as an orphan list of stops. A solution object is used to generate more solutions

from through an operation.

Although the algorithm considers all the main influential parameters, we cannot
ignore the human factor. There might still exist a preference from the user
regarding a specific solution. During the execution of the algorithm the proposed
methodology requires a list of solutdons to be able to traverse through the
solutions space. We propose that the algorithm does not only present the user
with the best to solution found, but provide the option of selecting one of the
best solutions. Practical implementation has shown that the best calculated
solution might not always be the most feasible for the client. This might be

because of the customer driver relationships, driver knowledge of areas, etc.

Construction Heuristic

The proposed solution requires some possible solution to start working from.
There exist multple methods of constructing an initial solution. In a later section
the selected construction heuristic namely the Sequential Inserton Heuristic
(STH) will be discussed. The algorithm can function from an existing solution. In

those cases, the construction heuristic would not be necessary.
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Working in the ASP environment implies dynamic acquisiion of data from
clients. The solution has to take into consideration the possible extension of the
current implementation, i.e. there might exist a better construction heuristc for
the specified problem. For that specific reason we propose the implementation of
a construction heuristic in the main algorithm. This will allow the addition of
other construction heuristics in the future. The current construction heuristic

already produces multiple solutions for the improvement heuristic to work on.

Improvement Heuristic

The implementation of an improvement heuristic is the focus area of this
research topic. The VRP object contains an Improvement Heuristic method. As
in the case of the construction heuristic, the VRP is force the existence of such a

method, but does not determine the implementation detail.
313 Problem Helper Methods

This section will discuss the systematic approach in solving the problem.
Although the focus of this thesis is on designing a new VRP solution, we cannot
ignore the implementation environment. The ASP environment has a major
influence on the line and implementation of the solution algorithm. The main

reason 1s because of the unpredictability of the data.

The next paragraphs will discuss information flow and manipulation through the

process.

Input Data and Object Generation
The first step towards a feasible solution is to acquire data from the client. There
exist multiple methods of transferring data from the client information service to

the ASP server. This is the topic of another study.
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What is important is that the data must be complete. This means that the
incoming data must contain all the necessary information. In addition, we must
know where the incoming data is headed for, e.g. the client must specify which

value from a stop is the demand and which is the time windows etc.

The client data must now be constructed in the defined objects. The algorithm
requires data that is relevant to one depot and one instance of a routing schedule.
This means that a stop will only be visited once during the tme windows

specified.
After this step, the algorithm will contain all the necessary data.

Solution methods

As explained in previous sections, a route consists of a sequence of stops. The
manner in which the structure is maintained is important in the manipulation
procedures of the algorithm. This paragraph describes basic actions allowed on a
soluton. The implementation of the construction and improvement heuristics

will depend on the stability of these actions.

Route stop addition
As mentioned previously in the discussion of the time dependent cost function,
the addition of a stop on a route has several consequences on the subsequent

srops.

The addition of a stop in a route results in this shift of the arnval time of
subsequent stops, which can result in ime window incompatibility, i.e. the arrival
time is not sufficient anymore to be able to serve the stop in its available time
windows. An action of inserting a stop in a route that result in incompatible time

windows must flag the route as invalid.
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The removal of a stop on a route has less dramatic results, i.e. if a route was valid
before the removal of a stop, it can still be valid. It might not be as efficient, but

it will sall exist in the solution space.

The addition of a stop on a route also has an effect on the vehicle volume.
Adding a stop increase the volume required on the vehicle. The addition of a stop
can result in a route that exceeds the vehicle capacity. This action must flag the

route as invalid.

The removal of a stop result in the decrease in the required volume for the
vehicle. The removal of a stop from a route cannot result in a vehicle that

exceeds capacity.

It is important to know that the weight and arrival time calculations have to be
executed on each insertion and removal of a stop in a route. The implementation

of these methods must be effecave.

Vehicle stop addition.
The addition of a stop on a route has an effect on the overall routes associated

with the vehicle.

When a stop 1s added on a route, the route’s departure and arrival tme from the
depot change. This can result in a delay in the departure of a next route from the
depot. The new departure time for the next route can result in incompatible tme
windows at stops, or even an incompatible time window for the route vehicle.
The addition of a stop on a route can result in the invalidity of subsequent routes

and the route must be flagged accordingly.

Time Window Compatibility
The concept of a time window compatibility matrix as proposed by van

Schalkwyk, [52] has not been proven, but has a logic sense to it. The calculaton
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of such a matrix can be done at the beginning of the algorithm, which adds to the

setup time, but not the running time.

An aspect not catered for in the proposal of the TWCM is the variation in the
travel time depending on the time of the day. The additon of variable travel time
adds some complexity to the problem. In Figure 15 we show effect of the

variable travel time.

| "/ node /

scheduling period
f l } f + »  time
06:00 08:00 11:00 15:00 18:00

Figure 15: Variable Travel Time on
Time Window Compatibility

From the figure we can depict the effect of the variable travel time. In this
implementation, the travel time function is not a continuous function, but a
disjunctive function consisting of constant times at specific intervals. In our
calculation of the TWC, we need to overlay the travel time function’s time
windows with that of the source stop. We determine travel time from the source

stop’s departure time.
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3.2. Approach

The approach consists of different phases, which will be discussed in more detail
in the following paragraphs. The first phase consist of the generaton of the
required distance and time matrices for specific ime periods. The second phase is
the generaton of an intial solution through a constructon heuristc. This 1s
necessary for the improvement heuristic that follows. The improvement heunstc
will follow the guidelines of the Tabu Search. The heunstic will search for a good
solution by diversifying and intensifying the solution area. After a predetermined
number of iterations, or if a termination parameter is met, the post optimizatdon

phase will ensure that the current best solution is optimised to its Jocal minimum.

Generate distance and time matrices for
specified time periods.

Creating an initial solution through SIH.

: : Determine next
‘ Apply tabu with mulitple moves. —_— tabi nove

N S
Add to move weight |
Finishing criteria met? > depending on |
effectiveness.

Optimize Solution ta local minimum

4

Figure 16: Algorithm Phases
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3.3. Initial Solution

High quality initial heuristics often allow local searches and metaheuristics to
achieve better solutions more quickly. Marius Solomon was one of the first
researchers to consider the VRPTW. He designed and analysed a number of
algorithms to find initial feasible solutions for the VRPTW (Solomon, 1987). His
sequential insertion heuristic (SIH) gave very good results in most environments,
and most current heurisic methods make use of this heuristic (or a vanation

thereof) to effectively find a feasible starting solution.

BEach customer 7 has a known demand ¢, to be serviced (either for pickup or
delivery) at time &, chosen by the carrer. Because time windows are hard, 4, is
chosen within a time window, starting at the earliest time ¢ and ending at the
latest time / that customer 7 permits the start of service. A vehicle arriving too
early and customer /, has to wait until ¢, If 7, represents the direct travel ime from
customers / to customer /, and s the service time add customer 7, then the
moment at which service begins at customer /, b, equals max{e, 4, + s, + 7, } and

the waiting time »; is equal to max{0, ¢— (b, + 5, + 7)) }.

After initialising the route, the insertion critetion ¢, (, #, j) determines the cheapest
insertion place for all remaining, unrouted customers between two adjacent
customers / and / in the current partial route (4, 7, ..., ,). Each route is assumed
to start and end at the depot 7, = 7,. The indices p = 1, ... g7 are used to denote a
customer’s position in the route. The insertion cost is a weighted average of the

addiional distance and time needed to insert the customer in the route. The

parameters &,,a,, 4 and A ate used to guide the heuristic.

Inserting customer # between 7 and ; increases the length of the route by the

distance insertion, o, + d,- md, After inserting a customer u between the

1
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adjacent customers /7 and j, a push forward can be calculated for each consecutive

node £,
PF,=b"-b,

in which &, (5"") denotes the beginning of service at customer k in the route
before (after) inserting customer u. The value of PF, is maximal for the direct
successor £ = ;j of #. The sequential insertion heuristic uses the maximal push
forward to measure the ume needed to insert customer # in the route, the so

called time insertion.

The next step of the sequental insertion heuristic decides on which customer to
nsert the route. The selection criteron ¢, (7 # j) selects the customer for which
the cost difference between insertion in the current or a new route is the largest.
This customer is inserted in its cheapest insertion position in the current route. If
all remaining unrouted customers have no feasible insertion positions, a new

route is initialised and identified as the current route.

We extend the Solomon criteria by utilising the neighbour stop information in
testing for a suitable stop to add to the route. Using only stops that have a ume
window compatibility value, reduce the number insertion positions to test for
each stop. When testing for the insertion position in the current route fails
because of the TWC, inserting customer u between adjacent nodes for the rest of
the route will fail as well. This method will increase the speed of the construction

heuristic without diminish the quality of the result.

We also extend the criteria by a Push Backward if a customer is inserted between
the depot and the first customer as proposed by Dullaert and Braysy (2003) [21].
If customer u is inserted between the depot 4, = 7 and the first customer 7, = 7, a

push backward is introduced in the schedule. Since all vehicles are assumed to
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leave the depot at the earliest possible time ¢, and travelling from 7 to j takes 7,
units of time, a waiting time of max{0, ¢ — 4 } is generated at j = 7,. Unlike the
waiting time at all other customers i, p <r <m in the route, it is fictitious. After

finishing the route, it can be eliminated by adjusting the depot departure dme.
High waiting times stored at customers that used to be scheduled at the first
position during the solution construction, cannot be removed this easily. By
assuming all vehicles leave the depot at ¢, and by equalling the time insertion to
the maximum push forward, the time needed to insert a customer before 7, = ;

can be underestimated. It may even be wrongly equalled to zero.

We also extend the Push Backward to incorporate the vehicle time windows.
Inserting a customer u as the first stop in the route advances the departure time
at the depot depending on the open time of the depot, the best available time of
the vehicle and the open time of the customer # The vehicle would leave the
depot at max{s=0, b,, b, — 1;} where b=0 is the open time of the depot, 4, the

open time of the vehicle and 4, — #, the open time of u retracting the travel ime

from 7 to /.
34. Improvement Heuristic

Chapter 2 discussed heuristic techniques we considered for implementing a
solution for the specified VRP problem. It suggested the use of a meta-heuristic
technique. Meta-heuristics use information of the problem environment and the
nature of the objective function to direct the search process to regions that

promise better solutions.

Although there exist many alternatives in selecting the appropriate tool, the
success of these methods depends on many factors, like their ease of
implementation, their ability to consider specific constraints that arise in practical

applications and the high quality of solutions they produced.
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A distinguishing feature of Tabu search is its exploitaton of adaptive forms of
memory, which equips it to penctrate complexities that often confound
alternative approaches. The rich potential of adaptive memory strategies is only
beginning to be tapped, and the discoveries that lie ahead promise to be as
important and exciting as those made to date. Principles that have emerged from
the TS framework give a foundation to create practical systems whose capabilities
markedly exceed those available earlier. Conspicuous features of Tabu search are
its dynamic growth and evolving character, which are benefiting from important

contributions by many researchers.

Tabu search provides a range of strategic options, involving various levels of
short term and long-term memory. Consequently, it can be implemented in
corresponding levels ranging from the simpler to the more advanced. Generally,
the more advanced versions exhibit the greatest problem solving power, though
simple ones often afford good results as well. The convenience of building
additional levels in a modular design, allowing a TS procedure to be evolved from
the "ground up," is a feature that also provides a way to see and understand the

relevant contributions of different memory based strategies.

Implementing a specific strategy for the specified problem is complicated by the
fact we cannot or should not rely on the manner of the problem. As mentioned
in the introduction, input data can vary from long haul to short haul, long time
windows or short multiple tme windows, heterogeneous fleet of similar fleet. To
solve the VRP with all its side constraints and unpredictable in put data, we
implement new operations and add some statistical selection method in the

guidance algorithm.
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341 Operations

Insert Operator

The msert operator tries to insert an orphan stop into an existing route. The
method loops through the orphan list of the current solution and calculates a best
msertion position. The orphan stop’s neighbours ate tested for inserdon cost.
This 15 done by selecting a neighbour, determining the route the neighbour
belongs to and calculates the cost of inserting the orphan stop after the
neighbour. If the neighbour is an orphan itself, the test is not done. The method
locates a set of closest geographic neighbours from the stop and test the validity
of the insertion of the orphan stop after the neighbour stop. The move is

accepted if the insertion is valid.

S1 - ) —e o | E

Y /— Unrouted Stops

Figure 17: Insert Operation

Tour depletion operator

The purpose of this move is to reduce the number of vehicles required to serve
all the stops. If it is possible to remove a vehicle, the probability that total
distance will decrease is high. It might not be the result in some situations, but the

heuristic also depends on diversification.
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The procedure looks for the vehicle that contains the least number of stops
allocated to routes for the vehicle and is not Tabu. We qualify the routes of a
vehicle for removal if the number of stops is less than a percentage of the average
number of stops in all the vehicle routes. This is done on the assumption that
stops and vehicles have similar characteristics. The difference between stops in

terms of volume is assumed to be in a reasonable tolerance.

The first step is to select a tour for depletion according to the criteria specified.

Figure 18: Tour Depletion Step 1

The tour 1s removed from the solution and the stops belonging to the tour 15

added to the orphan list.
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Figure 19: Tour Depletion Step 2

The insert operator is executed to insert the newly created orphans into existing

routes.

Figure 20: Tour Depletion Step 3

An addidonal criteria for the tour depletion operator to execute is the non-
existence of orphans in the solution. We implement the logic before we even start
with actions on the operator, as we assume that if an orphan exists, the current

solution is already in such a state that the current route vehicles cannot service all
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the stops. The meta-heuristic guidance algorithm must execute other operations

to optimise the solution that tour depletion is possible.

Relocare operator

The relocate operator (Or-opt) removes one stop from a route and inserts it into
another route. The implementation group routes to a vehicle and therefore we
randomly select a vehicle to add a stop to. Next we randomly select one of the
vehicle routes. For each stop on the current vehicle route, an attempt is made to
insert a neighbout of the current stop on the current vehicle route. The

neighbour is relocated from its route to the current route.

The relocate operator can relocate a stop from the same route to another

position.

Figure 21: Relocate on same route

Or relocate a stop from one route to another.
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Figure 22: Relocate between routes

Exchange Operator

The exchange operator randomly selects a vehicle and corresponding route. The
neighbours of the selected route’s stops are tested for exchange between the
corresponding routes. The operator acts on single stops from different or same

routes only.

Figure 23: Exchange on single route

The exchange from one route to another simulates a relocate from the one route

to the other and vice versa.
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Figure 24: Exchange between routes

Cross operator

This operator cuts two routes at a position and swaps the second part of the
routes. This is done by selectng a source vehicle and a source route randomly.
Fach stop in the source route is tested for the move. The stop’s neighbours are
tested for validity by checking if the stop is not on the same route. If not, the
source route consisting of the stops up to the selected stop is combined with the
target route consisting of the stops from the neighbour stop to the end to form a
new route. The second new route consist of the target route from the beginning
to the stop before the neighbour stop and the source route from the stops after
the selected stop to the end. If the swap is valid in the current Tabu environment,

it will be accepted.

S1jf—e—e—e

2 —e—o—o

Figure 25: Cross operation
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Vehicle Fir
This operator exchange vehicles on routes. The operation is added to handle the
heterogeneous fleet optimization problem. A vehicle can be swapped between

routes if the capacity and ime windows allow for the routes qualify.

If there exist vehicles that have not been used, the vehicles can be tested on
existing routes to result in better optimization. Tour depletion can result in a
more effective vehicle to become available, and the vehicle fit operator will

reinsert an available vehicle in the solution.

Double Fit

The operation tries to fit routes or segments of routes as additional routes on a

vehicle. This action will result in the use of fewer vehicles.

The double fit operator has the purpose of filling up a vehicle to its time window
capacity. The operator will test form time available on a vehicle and if there exist
a continuous time that is greater than a minimum tme specified, the operator can
look for stops that fit in that ime frame. If a route can be constructed to fill the
open time slot, the move is accepted and results in other routes that have fewer
stops. This move can now result in probable tour depletion after some

optimization on the routes.
342 Guidance Algorithm

Meta-heuristics use information of the problem environment and the nature of
the objective functdon to direct the search process to regions that promise better
solutions. The implementation of the guidance algorithm has an important etfect

on the effectiveness of the algorithm.

The implementation of the guidance algorithm utilise aspects from different

sources. A simulated annealing approach is followed in an oscillating fashion.
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Neighbourhood search methods are also selected randomly in a statistical

learning fashion. Each operation has its own tabulist.

Statistical Selection
The implementation of all the specified operations can lead to inefficient
computational time utilisation. Depending on the manner if the input data, some

operations can be more effective than other, or can be ineffective in situations.

When the input data has customers with tight ime windows, the capacity of the
vehicle does not really play an important role in the solution, as the vehicle does
not have time to visit enough stops to load the vehicle to capacity. The double fit
operation will not be effective on these types of data. The statistical selection will

eliminate the use of this operation.

The idea of the statistical selection is to determine the success rate of an
operation. When we randomly select an operation, the probability of the selection
of a specific operation depends on the success rate. When we start the
improvement heuristic, we assign an equal value to the success rate of all the
operations in the list. On the first iteration, the probability for an operation to be
selected is the same for all. If the operation completes successful, we increase the
success rate by a value depending on the type of success. This increase will not
have a major effect in the beginning, but after a number of iterations, the more
successful operation’s success rate will increase, and that will increase the

probability of the selection.

Simulated Annealing

Another control mechanism implemented by the guidance algorithm is derived
from the simulated annealing procedure. In the modified version of SA, the
algorithm starts with a relatively good solution resulting from a construction

heuristic. Inital temperature is set at Ty = 100, and 1s slowly decreased by
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T.)/A+7T,.) (1)

Where T, is the current temperature at iteration £ and 7 is a small time constant.
The square root of T is introduced in the denominator to speed up the cool
process. Here we use a simple monotonously decreasing function to replace the
1/log £ scheme. It is found that the scheme, gives fairly good results in much less
time. The algorithm attempts solutions in the neighbourhood of the current
solution randomly or systematically and calculates the probability of moving to

those solutions according to:

P(accepting amove) =" 2

This is a modified version of the annealing equation, where A= C(5) - C(§), C(S)
is the cost of the current solution and C'(S) is the cost of the new solution. If
A <0 the move is always warranted. One can see that as the temperature cools,
the probability of accepting a non-cost-saving move is getting exponentially
smaller. When the temperature has gone to the final temperature T = 0.001 or
there is no more feasible moves in the neighbourhood, we reset the temperature

o
T =max(T,/2,T,) ©)

where T, is the reset temperature, and was originally set to T, and T, 1s the
temperature at which the best current solution was found. Final temperature is
not set at zero because as temperature decreases to infinitesimally close to zero,
there is virtually zero probability of accepting a non-improving move. Thus a
final temperature not equal but close to zero is more realistic. The Tabu Search is

used to search the local neighbourhood.
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3.5. Conclusions

This chapter describe the design of a solution algorithm that is capable to solve
the VRP in an ASP environment. The additional constraints imposed by the ASP

environment are incorporated in the design of the algorithm.

The problem 1s partially solved by the introduction of new operations on the
solution as well as extensions of current exisung operations. The guidance
algorithm implements multiple operations, which allows it to be effective on all
types of input data. The statistical selection of operations is believed to improve

the effectiveness of the algorithm.
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Chapter 4

4 COMPUTATIONAL RESULTS

The VRP problem is NP-hard and making use of heuristic methods results in
unpredictable results. Heuristic methods are non deterministic which contribute
to the complexity in measuring the effectiveness of the method applied on the

problem.

The VRP with additional side constraints is a complex problem that complicated
basic rules specified for the guidance algorithm of the applied meta-heurstc.
Depending on the distribution of data points, time windows, peak and off-peak
travel times, vehicle capacity and demand per stop, the algorithm must adapt to
the data environment during the execution to result in an acceptable feasible
solution. To achieve this, we implemented a multiple operation selection method.
We projected that there must be an effective operation in our list of operatons
on the data environment. In the previous chapter, we discussed the methods and
proof theoretically that the proposed soluton will be effective. In this chapter we
will discuss the impact of the operations on the problem, as well as the additional

advantage obtained by using these operations in combinations.

The implementation of the algorithm consist of two phases: the initial solution
make use of the Sequential Insertion Heuristic to construct a set of initial routes
and the improvement heuristic consist of a hybrid method based mainly on the
Tabu Search technique and the Simulated Annealing method. Although we are
interested in the improvement heurstic, we will present the results of the

construction heuristic to indicate the efficiency of the improvement heuristc.
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Results will be presented for two types of problems:

1. The traditional Solomon benchmark problems will be solved to mndicate

the efficiency of the algorithm with known results.
2. A real-life problem will be solved and efficiency will be discussed.

The chapter will discuss the results of the initial solution, the effect of the
individual operations of the improvement heuristic and the results of the

improvement phase.
4.1. Solomon’s Benchmark Problems

Solomon generated six sets of problems. Their design highlights several factors
that affect the behaviour of routing and scheduling algorithms. They are:
geographical data; the number of customers serviced by a vehicle; percent of

time-constrained customers; and tightness and positioning of the time windows.

The geographical data are randomly generated in problem sets R1 and R2,
clustered in problem sets C1 and C2, and a mix of random and clustered
structures in problem sets by RC1 and RC2. Problem sets R1, C1 and RC1 have a
short scheduling horizon and allow only a few customers per route
(approximately 5 to 10). In contrast, the sets R2, C2 and RC2 have a long
scheduling horizon permitting many customers (more than 30) to be serviced by

the same vehicle.

The customer coordinates are identical for all problems within one type (Le., R,
C and RC). The problems differ with respect to the width of the tme windows.
Some have very tght time windows, while others have time windows, which are

hardly constraining. In terms of time window density, that is, the percentage of
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customers with time windows, he created problems with 25, 50, 75 and 100 %

time windows.

The larger problems are 100 customer euclidean problems where travel times
equal the corresponding distances. For each such problem, smaller problems
have been created by considering only the first 25 or 50 customers. We only

consider the larger problems.
4.1.1. Initial solution.

High quality initial heuristics often allow local searches and metaheuristics to
achieve better solutions more quickly. We implemented the sequential insertion
heuristic (SIH) proposed by Marius Solomon. We extended the Solomon criteria
by utilising the neighbours stop information in testing for a suitable stop to add
to the route. We also extended the criteria by a push backward if a customer is
inserted between the depot and the first customer as proposed by Dullaert and

Briysy (2003).

When we start a route, the selection of the first node can be done according to

the following crteria:
e Selecting the node that has the latest departure time.
® Selecting the node that has the earliest arrival time.
e Sclecting the node that is the furthest from the depot.

e Selecting the node that is the closes to the depot.
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The seed node criteria results in a different solutdon set according to the seed
selection. The selection of a seed vehicle can also result in a different solution and

we select the vehicle according to the following criteria:
® The vehicle with the smallest capacity.

® The vehicle with the least running cost.

Combining these two criteria, we result in eight possible initial solution
generation methods. Although the implementation of all eight methods
contributes to additional computation time, we can motvate the decision by the

following:

e The input data is unpredictable and we cannot beforehand decide which

method will be the best for the input data.

® The better the inital solution, the quicker the improvement phase. The
ame spend on the additional seed criteria will be made up in the

improvement phase.

® The use of a neighbour list and the greedy nature of the sequential

insertion heuristic result in a fix dme for the initial solution.

The following table shows the inital results for the 56 Solomon benchmark
problems according to the seed criteria. Because Solomon uses homogeneous
fleet, only the stop criteria are considered. The highlighted text shows the best

result achieved.
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Problem Class C
Problem Latest Departure Earliest Arrival Furthest Closest
C101 10 923.70) 1€ 880.47 1 880.47 10) 928.224
(102 11 1193.46 1( 997.74 11 1151.06 10) 1075.08
C103 11 131731 11 1536.23 12}  1501.95 10) 1081.5
C104 10) 1135.85] 10 1419.31 11 1098.36 10 1059.5¢
C105 10 878.78§] 1( 934.36 1C 034.30) 10) 032.38
C106 11 1073.75 10} 1068.90) 1 1076.65 10 968.58
C107 10f 928.74f 10 1066.52 10 1066.52 10 1017.7(
C108 10) 71.57 1( 1122.68] 1( 1114.62 10 112152
C109 10 910.28] 1( 1152.90) 10 128548 11 1188.5¢
Problem Latest Departure Earliest Arrival Furthest Closest
C201 3 895.38 3 1023.26, 3 826.15 3 838.65
C202 3 1180.34] 3 1727.11 A 1778.32 3 1774.13
C203 3 1173.25 3 1572.67 3 2091.21 3 1965.51
C204 3 1235.70 3 1498.34 3 1524.62 3 1509.96
C205 2 789.79 2 1318.07 3] 1026.28 3 1170.94
(C206 3 934.87 3 1456.09 3 1413.57 3 1349.79
C207 3 884.44/ 3 1040.77 3] 1082.25 3 1140.17
(C208 3 815.97 3 1201.14 31  1108.66 3 1205.91

Table 2: Solomon Initial Solution

Results Class C
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Problem Class R
Problem Latest Departure Earliest Arrival Furthest Closest
R101 20 1857.93 23 2303.99 25 2293.20 24 2301.59
JR102 19 1792.59 20 2095.62] 20 1913.25 21 1956.94]
IR] 03 15 1553.58 17 1777.33 19 1777.82 17 1694.45
R104 12) 1283.22 13 1516.91 12]  1334.73 12| 135823
R105 15 1534.40 10] 1804.79) 16f 1802.51 16 1883.03)
R106 15 1457.51 17 1776.22 16 1714.83 15|  1715.28
R107 13 1336.79) 14 1591.55 13 1488.27 14 1549.7
R108 10)] 1174.06 11 1284.84] 12|  1385.20 11 1237.1(
R109 14 1423.01 14 1645.27 15| 1641.27 14 1696.224
R110 12 1332.66 14 1620.57 15 1682.08 13 1577.99
R111 13] 1344.17 15 1672.66 15[ 1652.95 13 1606.67]
R112 11 1167.79 12 1475.42) 12]  1436.07 11 1335.74)
Problem Latest Departure Earliest Arrival Furthest Closest

R201 4 1791.78 5 1633.98) 5| 1822.54 5 2043.8
R202 4 1603.75 5 1703.38 51  1623.01 B 157040
R203 A 1325.15 4 1505.26 4 160295 4 1518.00]
R204 3 1054.39] 3 1146.17 3] 1183.05 3 110748
R205 4 1551.95 4 1461.61 4 1467.55 4 1533.07]
R206 3 1358.68 3 1364.04] 4  1501.83 3 1378.20
R207 3 1205.44 3 1213.78 3 1272.68 3 1279.97
R208 3 954.38 3 985.00 3 908.49 3 945.51
R209 4 1441.55] 4 1409.81 4 1339.33 4| 1260.75
R210 -4 1384.77 4 1548.22 4 1510.95 H 1478.1
R211 3| 1080.89) 3 1200.61 3] 1173.58 3 1213.9(

Results Class R
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Problem Class RC
Problem Latest Departure Earliest Arrival Furthest Closest
RC101 16 1929.02 17 2186.36 18  2065.91 16 2050.2¢
RC102 15| 1789.29| 16| 2134.40 17 1900.65] 17 2235.96
RC103 13 1613.99, 14 1924.30 15|  1765.69 15 1960.02
RC104 12 1363.74 13 1731.69 13| 1524.04 13 1677.67
RC105 16 1805.33] 18| 2299.15 190  2236.09 17 2146.35
RC106 14 1581.39] 15 1940.90 14 1932.27 16 2135.6(
RC107 13 1607.96 144 1881.29 15  1896.47 14 1823.81
RC108 12 1340.10) 13 1728.3§] 13]  1626.48 13 1639.01
Problem Latest Departure Earliest Arrival Furthest Closest
RC201 5 2213.00f 5 2273.59 5| 2272.32 5 21311
RC202 5 19434 5 2203.85 5 1953.77 5 2031.0C
RC203 4 1727.98 4 1595.85 4 169200 4 175804
RC204 3 1217.82] 4 1449.52 4 1464.28 3 1184.48
IRCZOB ) 1940.44 5 2137.55 5 2396.53 5 2151.34
RC206 4 1691.69 A 1723.34 4 1631.19 4 1595.7
RC207 4 1731.50 4 1690.61 4 149113 4 1627.06
RC208 3 J215:21 3 1347 .44 3 1347.62 3 1564.01

Table 4: Solomon Initial Solution
Results Class RC

4.1.2. Lmprovement Phase

The previous paragraph has shown the effectveness of the individual operators.
The purpose of the improvement phase is to combine these individual operators
such that we can achieve effective improvements. The udlisation of the operators
in random combination with each other result in a robust method that achieve

results faster.

The following table shows the results compared to the best-published Solomon

results as well as the initial result the improvement heuristic started from.
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Problem Class C
Problem Irutial Solution Improvement Best Published
C101 10) 880471 10 828.94 5.9% 10 828.94 0.0%9
C102 10 997.74 10 871.32 12.7%] 10 828.94 5.1%
C103 10) 1081.56] 10 016.83 15.2%( 10 828.06 10.7%
C104 10, 1059.59 1C 911.85 13.9% 10 824.78 10.6%
105 10 87878 10| | 827.55 58%| 10 82804  -0.2%
C106 10) 968.58 10 840.19 13.3% 10 828.94 1.4%
C107 10) 028.74 10} 827.55 10.9%] 10] 828.94 -0.2%
C108 10) 871.57] 108 827.55 51%| 10 828.94 -0.2%
C109 10) 910.28 10 829.74 8.8%| 10| 828.94 0.1%
Problem [nitial Solution Improvement Best Published

C201 3 826.15 '3 588.88 28.7%| 3 591.56 -0.5%4
C202 3 118034 3 623.46 7.2% 3 591.50] 5.4%
C203 X 1173.25 3 625.46 46.7% 3 591.17 5.8%9
C204 3 1235.7( 3 G85.10 44.6"% 3 590.6 16.0%
C205 3 789.79 3 617.45 21.8% 3 588.88 4.9%
I(Zl(")() 3 934.87] 3 629.63 32.7% 3 588.49 7.0%
C207 3 gsa44 3 58780  335% 3 58820  -0.1%
C208 3 815.97 3 592.03 27.3%) 3 588.32 0.85

Table 5: Class C Solomon Solution*

+ Source: Solomon M. [45]
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Problem Class R

Problem Initial Solution Improvement Best Published
R101 20 1857.931 20 1670.13 10.1%f 19 1645.79 1.5%
R102 19 1792.59% 19 1576.81 12.0%] 17 1486.12 6.1%
R103 15 1553.58 15 1316.31 15.3% 13 1292.68 1.8%
R104 12 128322 11 1061.90, 17.2% 9 1007.24] 5.4%
R105 15 153440 15 1455.08 5.2%| 14 1377.11 5.7%
R106 15 1457.51 14 1292.28 11.3%( 12 1251.98 H2%0
R107 13 1336.79) 12 1174.00 12.2%| 10 1104.66 6.3%
R108 10 1174.06 9 1030.87 12.2% 9) 960.88 7.3%
R109 14 1423.011 13 1284.32 9.7% 11 1194.73 7.5%
R110 12 1332.66] 13 1205.48 9.5% 10 1118.59 7.8%4d
R111 13 134417 13 1239.26| 7.8%| 10, 1096.72 13.0%
R112 11 1167.79) 11 1059.78 9.2%| 9 082.14 7.9%
Problem Initial Solution Improvement Best Published
R201 5 1633.98 4 1335.55 18.3% 4 125237 6.6%
R202 85 1570.04 4 1200.26 23.6% 3 1191.7 0.7%
R203 4 132515 3 972.59 26.6%)| 3 939.54 3.5%
R204 3 1054.39 3 842.54 20.1% 2 825.52 2.1%
R205 4 1461.61 3 1133.02 22.5% 3 994.42 13.9%
R206 3 1358.68 3 985.94 27.4%| 3 906.14 8.8%
R207 3 120544 3 948.50 21.3%| 2 893.33 6.2%
R208 3 908.49 2 845.94] 6.9% 2 726,75 16.4%
R209 -+ 1260.75 H 930.43 26.2%) 3 909.16 2.3%
R210 4 1384.77 3 1019.45 26.4% 3 939.34] 8.5%
R211 3 108089 3 s6242 20294 2 89271 3.4%

Table 6: Class R Solomon Solution
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Problem Class RC
Problem Initial Solution Improvement Best Published
RC101 16 1929.021 16 1742.62 9.7% 14 1696.94 2.7%
RC102 15 1789.29] 15 1625.30) 9.2% 12 1554.75 4.5%
RC103 13 1613.99] 13 1403.99 13.0%{ 11 1261.67 11.3%
IRCI(H 12 1363.74 12 1212,92] 11.1%{ 10 1135.48 6.8%
RC105 16 1805.33( 16 1706.53 55% 13 1629.44 4.7
IRC106 14 1581.39] 14 1502.00) 5.0% 11 1424.73 5.4%
RC107 13 1607.96] 12 1318.22 18.0%| 11 1230.48 7.1%
JRC108 12 1340.10 12 1240.27 7.4%| 10 1139.82 8.8%
Problem Inirial Solution Improvement Best Published
JRC201 5 213114 4 1474.86 30.8%| 4 1406.91 4.8°
RC202 5 1943428 4 1298.28 33.2% 3 1367.09 -5.0%
RC203 4 1595.85 3 1081.34 322% 3 1049.62 3.0%
RC204 3 118448 3 883.53 254%| 3 798.41 10.7%
RC205 G 1940.44 5 1311.93 32.4% 4 1297.19 1.1%
RC206 el 1595.74| +H 1162.03 27.2% 3 1146.32] 1.4%
RC207 4 1491.13 4 1106.24 25.8% 3| 1061.14 4.2%
RC208 3 1275.21 3 920.17 27.8%) o 828.14 11.1%

Table 7: Class RC Solomon Solution

Figure 26 displays the results in graphical format. The results are within

reasonable margin from the best-published results. We must take into account

that the best-published methods were achieved by various methods, ie. for a

specific problem instance, a specifically designed algorithm were applied on the

problem. The comparison confirms the ability of our algorithm to perform

reasonable across different problem instances.

In some instances our algorithm improved on the best-published result. 'rom

problem RC202 we can see a 5% improvement on the best published. It must be
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noted that the cost function was set only on distance for these instances, which
could resulted in higher total cost. We can see that from the difference in number

of vehicles in problems R211 and RC202.

‘ Solomon Improvement

A 3 -9~ —e— Initial Solution

—a— [mprovement

Distance

—a— Best Published

1 Cc2 R1 R2 RC1 RC2

Figure 26: Solomon Improvement
Comparison

4.2, Operation Results

Our algorithm was designed for the specific purpose of implementing it in the
ASP environment. This envitonment is unpredictable in terms of input data, as
well as cost factors. The idea of controlling specific operations through a meta
heuristic had to be supported by a set of effective operations. Driven by the Tabu
methodology, we were looking for operations that can assist as in both
intensification and diversification. For this purpose we utilised some of the

existing operations and designed new operations for the specific environment.
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To ensure integnty of the system we tested each operation on its own to ensure
that the operation acts according to expectation as well as resulting in useful

neighbourhood solutions.
4.2.1. Insert Operator

This operation was added to ensure that we have viable routes by adding all the
orphans available on the existing routes, or by creating new routes if the first is
not viable. The insert operator has no definite improvement result, but works in

combination with the tour depletion operator.
4.2.2. Tour depletion Operator

This operadon was added to ensure diversification and optimisation by removing
a vehicle from the current solution. This will force the application to optimise

without the specific vehicle if possible, else creating a new route.
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4.2.3, Relocate Operator

This operation 1s mostly affected on optimising a current solution. Depending on
the deterioration tolerance, it will move a stop from one route to another. The
following graph shows that this operation does not have a high feasibility rate,
even though the deterioration tolerance for the specific situation was not set. This
means that any viable solution was acceptable to the problem, even if it results in
a worse soluton than the current best. What we can see from the graph is the

ability after this operation to optimise.

Relocate operator behaviour

1150 - — 5600

1140 5560
9 1130 - 5520
£ 1120 - 5480 g —e— Distance
@ 1110 F —=— Time
o

1100 | 8440

1000 | - 5400

1080 | ; — | 5360

0 20 40 60 80 100
No of Iterations
Figure 27: Relocate operator
behaviour
4.24. Exchange Operator

The purpose of this operation is to swap two stops from different routes or
within the same route with each other. The action can result in a better ume
utilisation or distance of the route. As can be seen from the graph below, this

operation yields a feasible solution regularly. We can also see that the difference
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in the time or distance from the previous solution is not as big as with the
relocate operator. The graph indicates that this operation is important to finding

the local mimmum.

Exchange operator behaviour

1240 — — - e - 5760
o 5720
. 1200
§ 1180 5680 g —e— Distance
g 1160 5640 F —@— Time
1140
1120 - 5600

1100

5560
0 20 40 60 80 100

No of Iterations

Figure 28: Exchange operator
behaviour
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4.2.5. 2-Operator

This operation takes two routes and cut them at specific positions and joins part
one of route one with part two of route two and part two of route one with part
one of route two. The implementation selects a target stop on route one and
search for at a feasible swap route by traversing through its neighbours. As we
can see from the graph, the move result in bigger changes from the previous
solution, but has only a limited set of the viable moves. This can be seen in the
latter part of the graph where the distance and time stays constant for long
periods of iterations. We conclude that this is a result of the Tabu list that does

not allow for previous moves to be repeated and no new moves exist.

2-Op behaviour

1180 6200

Wi 6000
a 1160
% 1150 5800 g ' —e— Distance
g 1140 5600 - —m— Time

1130

1120 5400

1110 5200

0 20 40 60 80 100

No of Iterations

Figure 29: 2-Operator results
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4.3. Application

In the previous paragraphs we showed the algorithm’s performance with the 56
Solomon benchmark problems. This was done as a proof of concept for the
algonthm. In this paragraph we will consider the result of a real life problem and
show that the solution is feasible. The problem was taken from a commercial
delivery company. All the variables were implemented as specified by the logistics

manager.

Figure 30 shows the distribution of the stops as well as the solution. As stipulated
in the inital research, the data environment is unpredictable. A quick analysis of

the data indicates
e [Inconsistent time window sizes.
e Random clustered stops.

¢ lLong haul exceptions, relative to average stop distance from depot. The
closest stop is less than 2 kilometres from the depot, while the furthest

stop is more than 70 kilometres away.

® Some stops are located at the exact same position. From the figure we

can make out some ovetlapping time windows.
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Figure 30: Application Solution 1

4.3.7, Tunitral Phase

From the results of initial soludons for Solomon’s problems, we can conclude
that using the latest departure time as criteria for a seed node will be sufficient.
The following table shows the result of the initial soluton on the real life
problem. Because we are working with a heterogeneous fleet, all eight possible

criteria have been implemented.
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Initial Phase
Criteria Vehicles Distance
Latest Departure 13 1251.92
s 2
? a z Earliest Arrival 12} 1662.06
3 5 |Furthest 13 1259.07
Closest 12} 1186.82
Latest Departure 15 1251.92
2 B - } —
& g Earliest Arrival 12] 1522.54]
,;C: =3 Furthest 13 1259.07
p! I
Closest 124 1186.82)

Table 8: Application Initial Phase
Although the latest departure criteria result in a comparative distance, the number

of vehicles is higher than for the other methods. This confirms the decision to

implement multiple criteria on the seed node selection.
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4.3.2. Improvement

Figure 31 indicates the movement in the distance of the solutions for an
execution of 5000 iterations. From the figure we can depict the ability of the

algorithm to intensify and diversify.

Search Pattern

1200
1150
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1050
1000
950
800
850
800 |-
| 750
700 ===
0 1000 2000 3000 4000 5000

Iteration

— Distance

Distance

Figure 31: Search Pattern

The improvement heuristdc started out with 12 vehicles and a distance of 1186
kilometres. After 5000 iterations we end up with 12 vehicles and a distance of 853

kilometres. This is an improvement of around 28% from the initial solution.



Convergence Plot
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Figure 32: Convergence Plot

Another indication is the improvement in travel time. Travel time consist of the
time it takes to travel between two stops depending on the time of the day. The
travel time improved from 5789 minutes to 4497 minutes, an improvement of

over 22% from the initial solution.
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We also implemented multiple operations to move from a current solution to a
valid neighbour solution. By keeping track of the success of an operation, we
statistically balance the random selection of an operation. This technique results
in the use of a better combination of operations depending on the data
distribution and constraints of the problem instance. A hybrid with the Simulated
Annealing method allows the solution to diversify and intensify periodically, while
keeping track of moves through Tabu lists. Figure 31 indicates the ability of the
algorithm to achieve this goal.

Figure 32 shows the ability of the algorithm to converge. We tested the 56
Solomon benchmark problems to indicate the wvalidity of the algorithm.
Solomon’s problem is a simple instance of the problem we consider, but there
does not exist benchmark problems for our set of problems. Table 5 shows that

the new algorithm is effective on Solomon’s benchmark problems.

The results prove that the implemented algorithm is effective to solve the set of
problems encountered in an ASP environment. With the knowledge gained, we
can continue to search for new operations and methods to improve the efficiency

of the algorithm in the generic ASP environment.
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