AGRICULTURAL RECYCLING OF SEWAGE SLUDGE FOR MAIZE AND OATS CULTIVATION

by

Barend Johannes Henning

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF MAGISTER SCIENTIAE: BOTANY

DEPARTMENT: Botany

In the

FACULTY OF NATURAL AND AGRICULTURAL SCIENCES
UNIVERSITY OF PRETORIA
PRETORIA

November 2000
DECLARATION

These studies have not been submitted in any form to another University and, except where acknowledged in the text, are results of my own work

Barend Johannes Henning
SUMMARY

Sewage sludge can be a valuable resource if used as a fertilizer and soil conditioner. South African farmers using sewage sludge as a fertilizer amendment reported a 20% increase in the yield of cultivated maize and 40% saving on inorganic fertiliser (du Preez et al., 1999). The major benefits of sludge application are; increased supply of major plant nutrients; provision of some of the essential micronutrients (Zn, Cu, Mo, and Mn) and; improvement in the soil physical properties, i.e. better soil structure, increased water holding capacity, and improved soil water transmission characteristics (Korentajer, 1991).

Toxic compounds such as heavy metals and pathogens could compromise the beneficial use of sewage sludge. To minimise the risk of toxic effects and environmental contamination a “Guide: Permissible utilization and disposal of sewage sludge” (WRC, 1997) was developed. It is therefore critical to establish the safe application rate of sewage sludge in different environmental conditions. Furthermore, with repeated sludge applications as soil conditioner, these heavy metals may accumulate in the soil to phytotoxic concentrations for crops (Schmidt, 1997), although at certain concentrations the metals may be deficient for crop growth (Alloway, 1995). The potential impact of the four main sludge-borne metals (Pb, Cd, Zn and Cu) was monitored in the research (glasshouse and field experiments) when sludge was amended to agricultural soils, taking into consideration the current S.A. guidelines interpreted as total metal content.
Research was done in glasshouses on maize (*Zea mays* L.) (summer crop) and oats (*Avena sativa* L.) (winter crop), grown on different soil types (clay, loam, and sand) at a specific sewage sludge application rate (24 t ha\(^{-1}\)) using two different sludge types (low metal and high metal) over a period of 28 days. Poor sample homogenisation caused invariable results. Availability of sludge-borne metals differed between sludge types. The heavy metals were less available in the high metal industrial sludge compared to the low metal domestic sludge. The accumulation of sludge-borne metals in soil could not be proven to be in excess, even at a high application rate (24 t ha\(^{-1}\)). Furthermore, accumulation of heavy metals in seedlings did not reach phytotoxic levels. A significant increase in certain yield aspects was seen after sludge amendment to the different soil types, especially in the low metal sludge treatment.

Field experiments on maize and oats using different total application rates (4 t ha\(^{-1}\) and 8 t ha\(^{-1}\) dry sludge for oats cultivation; and 12.5 t ha\(^{-1}\) and 25 t ha\(^{-1}\) for maize cultivation) of the low metal sludge was also completed. Difficulty in sampling was evident and possible errors in sample taking and/or analyses caused results that were difficult to interpret. No phytotoxic levels of metal accumulation were seen in different plant parts of the crops. The sludge treatment plots compared well with plots where inorganic fertilizer (positive control) was added, when yield differences were calculated.

In the field experiments, no significant differences in yield were found between sludge-amended plots and the control treatments, although the amount of ears per plant was significantly increased for maize plants after sludge amendment at 4 t ha\(^{-1}\). The
insignificance in yield between treatments was possibly due to the varying environmental conditions (e.g. hail during maize field experiment, and drought during oats field experiment) and change in soil conditions (e.g. soil pH controls availability of metals and nutrients). However, under more stable conditions in the glasshouse, a significant increase in yield (dry mass and shoot length) of crop seedlings was found. This was possibly due to the increased organic and nutrient status of the soil. A 50 and 20% increase in the yield of maize seedlings occurred when grown in the low metal and high metal sludge-amended soils, respectively, when compared to the positive (soil amended with inorganic fertilizer) and negative controls (soil left unamended). However, when yield of oats seedlings was calculated on the sludge-amended soils, compared to the control treatments, the increase was 20 and 48% for the low metal sludge treatment compared to the positive control and negative control, respectively. No significant increase occurred in the yield of oats seedlings grown in the high metal sludge-amended soil compared to the controls. Insignificant differences occurred in the yield of seedlings between soil types, although the yield of seedlings in the loamy soil was higher.

The value of sludge amended to soils as a soil conditioner and fertilizer was seen in the experiments although long term experiments under field conditions still need to be done to assess possible accumulation of heavy metals in agricultural soils.
ACKNOWLEDGEMENTS

I wish to thank:

- Dr. H. G. Snyman and Prof. T. A. S. Aveling for support, encouragement and guidance in the execution of this project
- The following staff of the Institute of Soil, climate and Water, Agricultural Research Council, Pretoria:
 - Mr. A. Loock for help with soil analyses and advice
 - Mrs. N. Van Vliet for help with plant analyses
- The East Rand Water Care Company for financing the project and supplying the farm at Hartbeesfontein for field experiments
- Mr. A Swanepoel for performing farming practices during field experiments, as well as for help and guidance in the execution of these experiments
- The department of Botany for providing glasshouses for glasshouse experiments
- My friend Quenton Kritzinger for support and encouragement
- My parents for making my studies possible and for their tremendous support
- God for life and the strength to work
TABLE OF CONTENTS

DECLARATION

SUMMARY

ACKNOWLEDGEMENTS

TABLE OF CONTENTS ... i

ABBREVIATIONS .. viii

CHAPTER 1

INTRODUCTION ... 1

1.1 STATEMENT OF PROBLEM 1

1.2 OBJECTIVE OF THE STUDY 2

1.3 MOTIVATION .. 2

1.4 SCOPE AND STRUCTURING OF THIS THESIS 4

REFERENCES .. 6

CHAPTER 2

LITERATURE REVIEW .. 8

2.1 INTRODUCTION ... 8

2.2 SOURCES AND CHARACTERISTICS OF SEWAGE

SLUDGE .. 9
2.3 AGRICULTURAL UTILISATION OF SEWAGE SLUDGE

2.3.1 Sludge as a soil conditioner and fertilizer

2.3.1.1 Benefits of sludge as a soil conditioner and fertilizer

i. Nutrients

ii. Soil physical properties

2.3.1.2 Limitations of sludge as a soil conditioner and fertilizer

i. Human pathogens

ii. Nutrients

iii. Toxic organic pollutants

iv. Social acceptability

v. Heavy metals

2.3.1.3 Heavy metals in sewage sludge and soil

i. Zinc

ii. Copper

iii. Cadmium

iv. Lead

2.3.1.4 Plant-soil relationships of metals

2.4 EFFECT OF SEWAGE SLUDGE ON MAIZE

(ZEA MAYS L.) CULTIVATION

2.4.1 Heavy metal accumulation in maize tissue
CHAPTER 3

PLANT-SOIL INTERACTIONS OF SLUDGE-BORNE HEAVY METALS AND THE EFFECT ON MAIZE (*ZEA MAYS* L.)

SEEDLING GROWTH ... 48

ABSTRACT ... 48

INTRODUCTION ... 49

MATERIALS AND METHODS .. 50

Collection, treatment and analysis of
dewatered sewage sludge .. 50

Experimental layout ... 51

Soil analyses ... 51

Plant material analyses ... 52

RESULTS AND DISCUSSION .. 53

Analysis of dewatered sewage sludge 53
CHAPTER 4

THE CULTIVATION OF MAIZE (ZEA MAYS L.) ON HIGH SEWAGE SLUDGE DOSAGES AT FIELD SCALE

ABSTRACT

KEYWORDS

INTRODUCTION

MATERIALS AND METHODS

Collection, treatment and analysis of
dewatered sewage sludge

Experimental layout

Soil analyses

Plant material analyses

RESULTS AND DISCUSSION
CHAPTER 5

PLANT-SOIL INTERACTIONS OF SLUDGE-BORNE HEAVY METALS AND THE EFFECT ON OATS

(AVENA SATIVA L.) SEEDLING GROWTH

SUMMARY

INTRODUCTION

MATERIALS AND METHODS

Collection, treatment and analysis of
dewatered sewage sludge

Experimental layout

Soil analyses

Plant material analyses

RESULTS AND DISCUSSION

Analysis of dewatered sewage sludge.

Soil and plant material analyses

Soil pH

Zinc
CHAPTER 6

THE CULTIVATION OF FIELD-GROWN OATS

(AVENA SATIVA L.) ON DIFFERENT SEWAGE SLUDGE

DOSAGES .. 107

ABSTRACT .. 107

KEYWORDS ... 107

1. INTRODUCTION ... 108

2. METHODS .. 108

 2.1 Collection, treatment and analysis of
dewatered sewage sludge 108

 2.2 Experimental layout 109

 2.3 Soil analyses ... 109

 2.4 Plant material analyses 109

3. RESULTS AND DISCUSSION 110

 3.1 Analysis of dewatered sewage sludge 110

 3.2 Soil analyses ... 111
CHAPTER 7
INTEGRATED DISCUSSION

7.1 INTRODUCTION

7.2 SLUDGE AND THE HEAVY METAL GUIDELINES

7.3 SOIL ANALYSES: DIFFICULTIES AND CONTAMINATION ASSESSMENT

7.4 HEAVY METAL UPTAKE

7.4.1 Effect of crop type on heavy metal uptake

7.4.2 Glasshouse versus field uptake

7.4.3 Effect of soil type on heavy metal uptake

7.4.4 Phytotoxicity

7.5 YIELD ASPECTS

7.5.1 Glasshouse experiments

7.5.2 Field experiments

7.6 THE WAY FORWARD

REFERENCES
ABBREVIATIONS
(Excluding SI units)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>B</td>
<td>Beginning</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation Exchange Capacity</td>
</tr>
<tr>
<td>Cv.</td>
<td>cultivar</td>
</tr>
<tr>
<td>d.</td>
<td>days</td>
</tr>
<tr>
<td>E</td>
<td>End</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>exp.</td>
<td>experiment</td>
</tr>
<tr>
<td>fig.</td>
<td>figure</td>
</tr>
<tr>
<td>ISCW</td>
<td>Institute for Soil, Climate and Water</td>
</tr>
<tr>
<td>HI</td>
<td>Harvest Index</td>
</tr>
<tr>
<td>kg ha⁻¹</td>
<td>kilograms per hectare</td>
</tr>
<tr>
<td>kg t⁻¹</td>
<td>kilograms per ton</td>
</tr>
<tr>
<td>kg m⁻³</td>
<td>kilograms per cubic metre</td>
</tr>
<tr>
<td>l ha⁻¹</td>
<td>litres per hectare</td>
</tr>
<tr>
<td>m/m</td>
<td>mass per mass</td>
</tr>
<tr>
<td>mg kg⁻¹</td>
<td>milligrams per kilogram</td>
</tr>
<tr>
<td>mol dm⁻³</td>
<td>mol per cubic decimetre</td>
</tr>
<tr>
<td>N/a</td>
<td>Not analysed for</td>
</tr>
<tr>
<td>N/s</td>
<td>Not specified</td>
</tr>
</tbody>
</table>

viii
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-EDTA</td>
<td>Di-ammonium ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>PTE</td>
<td>Potentially Toxic Element</td>
</tr>
<tr>
<td>S.A.</td>
<td>South Africa, South African</td>
</tr>
<tr>
<td>STD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>t ha⁻¹</td>
<td>tons per hectare</td>
</tr>
<tr>
<td>US EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>WRC</td>
<td>Water Research Commission</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater Treatment Plant</td>
</tr>
</tbody>
</table>