Tannin binding of kafirin and its effects on kafirin films

by

Mohammad Naushad Emmambux

Submitted in partial fulfilment of the requirements for the degree

PhD Food Science

in the

Department of Food Science
Faculty of Natural and Agricultural Sciences
University of Pretoria
Pretoria
Republic of South Africa

March 2004

© University of Pretoria
DECLARATION

I hereby declare that the thesis submitted at the University of Pretoria for the award of PhD degree is my work and has not been submitted by me for a degree at any other University or institution of higher education.

Mohammad Naushad Emmambux
January 2004
TO MY CREATOR
TO MY SUSTAINER
FOR GIVING ME KNOWLEDGE, PATIENCE, GOOD HEALTH,
CARING PARENTS, WIFE AND FAMILY
Tannin binding of kafirin and its effects on kafirin films

By

Mohammad Naushad Emmambux

Supervisor: Prof J.R.N. Taylor
Co-Supervisor: Dr M. Stading

Kafirin, the prolamin protein of sorghum grain, could be extracted from the by-products of the sorghum processing industry and used to make films and coatings for food packaging, in particular to extend the shelf-life of fruits and nuts. Protein-based films can be an environment-friendly alternative to synthetic plastic packaging systems. However, the properties of protein-based films are generally inferior to those of synthetic plastics. Modification can alter the properties of protein-based films. In this project, the interaction between phenolic compounds and kafirin was investigated in relation to their potential to modify kafirin films.

A range of phenolic compounds was tested in terms of their ability to bind and complex with kafirin in an in vitro binding assay. The protein-phenolic compound interaction was quantified by haze formation and colorimetric determination of total polyphenol bound. Ferulic acid, catechin and extracted flavonoids from condensed tannin-free sorghum did not complex with kafirin. Tannic acid (TA) and sorghum condensed tannins (SCT) complexed kafirin and formed haze. Thus, TA and SCT were selected as potential modifying agents for kafirin films.

TA and SCT were added at up to 20% (w/w tannin to protein basis) during kafirin film casting. Both TA and SCT bound to kafirin in the film. Scanning electron microscopy showed that TA modified films were less porous; and the SCT modified films appeared more globular in structure than unmodified film. Modification with both tannins increased the tensile stress and Young's modulus and decreased the tensile strain of the kafirin films. Oxygen permeability of the modified films was decreased, but no change in the apparent water vapour permeability. The T_g of the films increased with increased modification level.
SDS-PAGE, FT-IR and Raman spectroscopy were used to study TA and SCT interaction with kafirin. SDS-PAGE revealed a high M_r band for kafirin-SCT complexes which did not enter the separating gel. FT-IR of kafirin complexed tannins and tannin modified films showed a decrease in the absorbance at the frequency of about 1620 cm\(^{-1}\), suggesting a decrease in \(\beta\)-sheet structures. FT-IR results also suggested that the \(\beta\)-sheets of kafirin in dry form were probably changed into random coils during kafirin dissolution to make films. Raman spectra showed a shift in the TA peak at about 1710 cm\(^{-1}\) to about 1728 cm\(^{-1}\) in the kafirin-TA complexes, suggesting participation of the carbonyl groups of TA in TA-kafirin interaction.

It is proposed that hydroxyl groups of tannin can form hydrogen bonds with carbonyl groups of random coils of kafirin during film casting. Thus, the carbonyl groups are probably not available to be reorganized into \(\beta\)-sheets. The other possible mode of interaction can be hydrophobic interaction between the aromatic rings of tannins and the pyrrolidine rings of proline. Because tannins have numerous aromatic rings with hydroxyl groups, it is also proposed that they can bind with more than one polypeptide chain at the same time to cross-link kafirin. This cross-linking probably produces a high M_r kafirin-tannin complex that leads to haze. The cross-linking would also lead to lower molecular mobility of modified kafirin films. This could decrease oxygen permeability, probably as a result of decreased free volume. Cross-linking could also be responsible for the increased tensile stress and decreased tensile strain of modified kafirin films.

The higher tensile stress of modified kafirin films suggests that they can have the potential to form stronger coatings around fruit such as litchi fruit to possibly reduce pericarp microcracking as an example, and thus may reduce the pericarp browning of litchi. The lower oxygen permeability of the modified films and the potential antioxidant activity of the tannins suggest that these films can be a good coating to prevent rancidity of nuts.
ACKNOWLEDGEMENTS

My sincere gratitude goes to my supervisor, Prof JRN Taylor for his expertise guidance, challenging ideas, constructive criticism, keen interest and cheerful encouragement throughout the course of this work. I am very thankful to Dr M Stading as my co-supervisor, from the Swedish Institute for Food and Biotechnology, Sweden for all his help and great contribution towards this project. My special thanks also go to Prof A Minnaar, head of the Department of Food Science, University of Pretoria for her contribution in the initial phase of this project as a co-supervisor.

I gratefully acknowledged the financial supporters of this project. This work was conducted within European Commission INCO-DEV contract ICA4-CT-2001-10062. The National Research Foundation, South Africa and the Mellon Foundation Mentoring Program from the University of Pretoria also financially sponsored me during the project.

I am thankful to the SIK institute, Sweden to give me the opportunity to do some of the rheology works on the modified kafirin films. I thank Prof P Belton from the University of East Anglia, UK; and Dr C Gao and Dr N Wellner at the Institute of Food Research (IFR), Norwich, UK for helping me in the spectroscopy work during this project. Mr A Hall and Mr C Van der Merwe from the laboratory for microscopy and microanalysis, University of Pretoria, are acknowledged for their contribution in microscopy analysis of the films.

My special thanks go to the members of the academic and non-academic staff and the postgraduate students of the department of Food Science, University of Pretoria for their support in fulfilling the research project.

A great thanks to the colleagues of this EU projects, Mrs Janet Taylor, Mrs L Da Silva, Miss H M Van Eck, and Mr Y Byaruhanga for their team spirit.

Finally, my special thanks go to my parents, wife, brothers and sisters for their moral support.
TABLE OF CONTENTS

ABSTRACT .. III

ACKNOWLEDGEMENTS ... V

LIST OF TABLES .. IX

LIST OF FIGURES ... X

LIST OF ABBREVIATIONS .. XIII

1. INTRODUCTION .. 1

1.1 Statement of the problem ... 1

1.2 Literature review .. 3

1.2.1 Sorghum kafirin ... 3

1.2.1.1 Chemistry of kafirin ... 3

1.2.2 Protein-based films .. 6

1.2.2.1 Formation of protein-based films ... 7

1.2.2.2 Mechanical and barrier properties of protein-based films 9

1.2.2.3 Modification of protein-based films ... 12

1.2.2.3.1 Plasticization ... 12

1.2.2.3.2 Compositing films ... 13

1.2.2.3.3 Enzymatic modification .. 14

1.2.2.3.4 Physical treatments .. 14

1.2.2.3.5 Chemical modification .. 16

1.2.3 Phenolic compounds .. 19

1.2.3.1 Chemistry of phenolic compounds ... 19

1.2.3.2.1 Mechanisms of phenolic-protein interaction ... 24

1.2.3.2.2 Chemical interactions between protein and phenolic compounds 29

1.2.3.2.3 Factors affecting protein-phenolic interaction 30

1.2.4 Phenolic compounds and sorghum proteins ... 33

1.2.5 Conclusions .. 34

1.3 Objectives and hypotheses .. 35

1.3.1 Objectives .. 35

1.3.2 Hypotheses ... 35
1.3.2 Hypotheses ... 35

2. RESEARCH .. 37

2.1 Sorghum kafirin interaction with various phenolic compounds ... 38
 2.1.1 Abstract ... 38
 2.1.2 Introduction ... 39
 2.1.3 Experimental .. 40
 2.1.3.1 Materials .. 40
 2.1.3.2 Analyses ... 41
 2.1.3.2.1 Binding Assay .. 41
 2.1.3.2.2 Determination of Haze 42
 2.1.3.2.3 Determination of total polyphenols bound to protein 42
 2.1.3.2.4 Statistical analyses 43
 2.1.4 Results and discussion ... 43
 2.1.5 Conclusions .. 57
 2.1.6 References .. 58

2.2 Sorghum kafirin film property modification with hydrolysable and condensed tannins .. 63
 2.2.1 Abstract ... 63
 2.2.2 Introduction ... 64
 2.2.3 Experimental .. 65
 2.2.3.1 Materials .. 65
 2.2.3.2 Film preparation .. 65
 2.2.3.3 Analyses ... 66
 2.2.3.3.1 Tannin bound by kafirin 66
 2.2.3.3.2 Scanning electron microscopy (SEM) 66
 2.2.3.3.3 Tensile properties of films 66
 2.2.3.3.4 Water uptake by films 67
 2.2.3.3.5 Barrier properties of films 67
 2.2.3.3.6 Dynamic mechanical analysis (DMA) 68
 2.2.3.3.7 Statistical analysis of data 68
 2.2.4 Results and discussion ... 69
 2.2.5 Conclusions .. 85
 2.2.6 References .. 85
2.3 Effects of tannins on the secondary structure of kafirin and kafirin films

2.3.1 Abstract

2.3.2 Introduction

2.3.3 Materials and methods

2.3.3.1 Materials

2.3.3.2 Preparation of kafirin complexed with tannins and kafirin films

2.3.3.3 Analyses

2.3.3.3.1 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS PAGE)

2.3.3.3.2 FT-IR spectroscopy

2.3.3.3.3 Raman spectroscopy

2.3.4 Results and discussion

2.3.5 Conclusions

2.3.6 References

3. GENERAL DISCUSSION

3.1 Methodological considerations

3.2 Kafirin interaction with phenolic compounds

3.3 Modification of kafirin films with tannins

4. CONCLUSIONS AND RECOMMENDATIONS

5. REFERENCES

SCIENTIFIC CONTRIBUTIONS
LIST OF TABLES

Table 1.1 Partial amino acid composition of total, α-, β-, and γ- kafirin 4
Table 1.2 Mechanical properties of protein-based and synthetic films 10
Table 1.3 Water vapour permeability (WVP) and oxygen permeability (OP) of protein-based films and synthetic films 11

Table 2.1 Haze of kafirin protein as affected by sorghum condensed tannins at 4 °C and 30 °C 54
Table 2.2 Mole ratio of proline from kafirin and bovine serum albumin bound by tannic acid or sorghum condensed tannin as determined from the total polyphenol binding assay 57
Table 2.3 Effect of tannic acid (TA) and sorghum condensed tannin (SCT) modification on the water absorbed (%) by kafirin films 80

Table 3.1 Mechanical and barrier properties of kafirin films modified with tannins and other protein-based films modified by various methods, and synthetic film. 133
LIST OF FIGURES

Figure 1.1 A structural model of zein ... 5
Figure 1.2 Schematic representation of film formation from protein by the wet and dry process ... 8
Figure 1.3 Possible reaction of an aldehyde with an amino group in the presence or absence of a reducing agent. The side R can be an aliphatic chain (attaching hydrophobic groups) or an aliphatic chain end capped by another functional group (cross-linking) ... 17
Figure 1.4 Basic structure of phenolic acids ... 20
Figure 1.5 Flavonoid type phenolics (a) The basic structure of flavonoids and (b) some examples ... 21
Figure 1.6 The chemical structure of gallotannins ... 22
Figure 1.7 Chemical structure of condensed tannins 23
Figure 1.8 Schematic representation of polyphenol complexation and co-precipitation mechanism ... 25
Figure 1.9 Cross-linking mechanism of the interaction between polyphenol and gelatin at different ratios ... 26
Figure 1.10 Three stages in the cross-linking mechanism between salivary proline rich protein and phenolic compounds 27
Figure 1.11 Proposed mechanisms of phenolic and protein interaction 28

Figure 2.1 Schematic representation of the research parts .. 37
Figure 2.2 Haze formation of kafirin (■) and bovine serum albumin (▲) as affected by phenolic compounds

a) Ferulic acid ... 45
b) Catechin ... 46
c) Sorghum flavonoids ... 47
d) Tannic acid .. 48
e) Sorghum condensed tannin .. 49

Figure 2.3 Quantity (——) and percentage (------) phenolic compounds bound to kafirin (■) and bovine serum albumin (▲)

a) Catechin ... 50
b) Sorghum flavonoids ... 51
c) Tannic acid .. 52
d) Sorghum condensed tannin 53

Figure 2.4 Quantity (---) and percentage (-----) of tannin bound to kafirin film
a) Tannic acid .. 70
b) Sorghum condensed tannin 71

Figure 2.5 Scanning electron micrographs of freeze fracture surfaces of unmodified and modified kafirin film .. 72

Figure 2.6 Effect of tannic acid (■) and sorghum condensed tannin (●) on tensile properties of kafirin films
a) Stress at maximum force 74
b) Stress at break .. 75
c) Strain at break ... 76
d) Young’s modulus ... 77

Figure 2.7 Effect of tannic acid (■) and sorghum condensed tannin (●) on the oxygen permeability (---) and apparent water vapour permeability (-----) of kafirin films ... 81

Figure 2.8 Effect of tannic acid (■) and sorghum condensed tannin (●) on the glass transition temperature, T_g (---) and moisture content (-----) of kafirin films ... 82

Figure 2.9 Storage modulus E' of unmodified (control) and modified kafirin films with tannic acid (TA) and sorghum condensed tannins (SCT) at 10% and 20% (w/w of protein) during DMA under changing RH 84

Figure 2.10 SDS-PAGE under non-reducing condition of kafirin and complexed kafirin ... 97

Figure 2.11 FT-IR spectra of kafirin in dry form (a), tannic acid (b), sorghum condensed tannins (c) and kafirin solution (d) ... 98

Figure 2.12 FT-IR spectra of kafirin-tannin complexes
a) Tannic acid .. 100
b) Sorghum condensed tannin 101

Figure 2.13 FT-IR spectra of kafirin films modified with tannins
a) Tannic acid .. 103
b) Sorghum condensed tannin 104
Figure 2.14 Raman spectra of tannic acid and kafirin-tannic acid complexes

Figure 2.15 Raman spectra of sorghum condensed tannin and kafirin-sorghum condensed tannin complexes

Figure 3.1 Potential molecular interactions between the tannins and kafirin polypeptide chains to show the possible binding sites

Figure 3.2 Cross-linking of two polypeptide chains of kafirin by tannic acid through hydrogen bonds

Figure 3.3 Hydrophobic interactions between galloyl rings of tannic acid and proline residues of different polypeptide chains of kafirin

Figure 3.4 Schematic model for kafirin monomers and oligomers from the Argos et al. (1982) model showing the proposed form of kafirin in dry state and kafirin in solution

Figure 3.5 Cross-linking of the kafirin molecules by tannins
LIST OF ABBREVIATIONS

ASBC, American Society of Brewing Chemists
ASTM, American Society for Testing and Materials
σ_b, stress at break
σ_y, stress at maximum force
BSA, Bovine Serum Albumin
DM, dry mass
DMA, dynamic mechanical analysis
E', storage modulus
E, Young's modulus
FT-IR, Fourier transform infrared
FTU, Formazin Turbidity Units
OP, Oxygen permeability
PEG, polyethylene glycol
PRP, proline rich protein
PVPP, polyvinyl polypyrroidone
RH, relative humidity
SCT, sorghum condensed tannins
SDS-PAGE, Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
SEM, Scanning electron microscopy
TA, tannic acid
T_g, glass transition temperature
WVP, water vapour permeability
ε_b, strain at break