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Chapter 1

A Brief History of PDEs

1.1 From Newton to Schwarz

The advent of the Differential and Integral Calculus in the later half of the seven-
teenth century heralded the start of a new age in Mathematics. This is true both
in regards to the applications of Mathematics to other sciences, notably to Physics,
Economics, Chemistry and lately also Biology, and also in respect of the develop-
ment of Mathematics as such. Indeed, in connection with the second aspect of these
new developments, we may note that from the Differential and Integral Calculus,
and the new point of view it introduced in so far as mathematical functions are
concerned, the vast and powerful field of Mathematical Analysis developed. On the
other hand, and parallel to the above mentioned development of abstract Mathe-
matics, Newton’s Calculus provides powerful new tools with which to solve so called
“real world problems”. Indeed, it was exactly the consideration of physical prob-
lems, namely, The Laws of Motion, which lead Newton to the conception of the
Calculus.

With respect to the above mentioned power of the Calculus when it comes to the
mathematical solution of physical problems, we need only note the following. Prior
to the invention of the Differential Calculus, the only type of motion that could be
described in a mathematically precise way was that of a particle moving uniformly
along a straight line, and that of a particle moving at constant angular momentum
along a circular path. In contradistinction with this rudimentary earlier state of
affairs, and as is well known, Newton’s Differential and Integral Calculus provides the
appropriate mathematical machinery for the formulation, in precise mathematical
terms, and solution of the basic laws of nature, thus going incomparably farther
than the mentioned simple motions.

The mentioned mathematical expressions of these laws, using the Calculus, typi-
cally take the form of systems of ordinary differential equations (ODEs), or systems
of partial differential equations (PDEs). At first, such systems of equations were
mostly of a particular form, namely, linear and at most of second order. However,
with the emergence of increasingly sophisticated physical theories, and the devel-
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CHAPTER 1. A BRIEF HISTORY OF PDES 3

opment of state of the art technologies, in particular during the second half of the
twentieth century, the need arose for more complex mathematical models, which
typically take the form of systems of nonlinear ODEs or PDEs. As such it is clear
that the theoretical treatment of nonlinear PDEs, in particular in connection with
the existence of the solutions to such equations, and the properties of these solutions,
should such solutions exists, is of major interest.

In this regard, and for over a century by now, there have been general and type
independent results on the existence and regularity of the solutions to both systems
of ODEs and systems of PDEs. In particular, in the case of systems of ODEs, one
may recall Picard’s Theorem [125].

Theorem 1 *[125] Consider any system of K ODEs in K unknown functions
u1, ..., uK of the form

dy

dt
= F (t, y1 (t) , ..., yK (t)) , (1.1)

where F : R×RK → RK is continuous on a neighborhood V of the point (t0, (y1,0, ..., yK,0)) ∈
R × RK. Then there is some δ > 0 which depends continuously on the initial data
(t0, (y1,0, ..., yK,0)), and a solution y ∈ C1 (t0 − δ, t0 + δ)K to (1.1) that also satisfies
the initial condition

y (t0) = (yi,0) .

Furthermore, if F is Lipschitz on V , then the solution is unique.

In modern accounts of the theory of ODEs, Theorem 1 is typically presented as an
application of Banach’s fixed point principle in Banach spaces. This might lead to
the impression that this result is obtained as an application of functional analysis.
However, and as mentioned, Picard’s proof [125] of Theorem 1 predates the formu-
lation of linear functional analysis, which culminated in Banach’s similar work [17].
In fact, Picard’s proof is based on techniques from the classical theory of functions,
notably integration of usual smooth functions. One may also note that, around the
same time that Picard proved Theorem 1, Peano [123] gave a proof of the existence
of a solution of (1.1), which is based on the Arzellà-Ascoli Theorem.

In the case of systems of PDEs, the first comparable general and type indepen-
dent existence and regularity result is due to Kovalevskaia [86]. It is interesting, in
view of the common perception that ODEs are far simpler objects than PDEs, to
note that the Cauchy-Kovalevskaia Theorem precedes Picard’s Theorem by about
twenty years, and as such is not, and in fact could not at the time, be based on more
advanced mathematics.

Theorem 2 *[86] Consider the system of K nonlinear partial differential equations
of the form

Dm
t u (t, y) = G

(
t, y, ..., Dp

tD
q
yui (t, y) , ...

)
(1.2)
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with t ∈ R, y ∈ Rn−1, m ≥ 1, 0 ≤ p < m, q ∈ Nn−1, p + |q| ≤ m and with the
analytic Cauchy data

Dp
t u (t0, y) = gp (y) , 0 ≤ p < m, (t0, y) ∈ S (1.3)

on the noncharacteristic analytic hypersurface

S = {(t0, y) : y ∈ Rn−1}.

If the mapping G is analytic, then there exists a neighborhood V of t0 in R, and an
analytic function u : V × Rn−1 → CK that satisfies (1.2) and (1.3).

It should be noted that the two general and type independent existence and regu-
larity results, namely, Theorem 1 and Theorem 2, for systems of ODEs, respectively
PDEs, predates the invention of functional analysis by nearly fifty years. Moreover,
and as all ready mentioned in connection with Theorem 1, these results are based on
some comparatively elementary mathematics. In particular, the only so called “hard
mathematics” involved in the proof of Theorem 2 is the power series expansion for
an analytic function, and certain Abel-type estimates for these expansions.

Both of the existence results, Theorem 1 and Theorem 2, are local in nature.
That is, the solution cannot be guaranteed to exists on the whole domain of definition
of the respective systems of equations. Furthermore, and as can be seen from rather
simple examples, this is not due to the limitations of the particular techniques used
to prove these results, but may instead be attributed to the very nature of nonlinear
ODEs and PDEs in such a general setup.

The mentioned local nature of Theorems 1 and 2 is unsatisfactory in at least
two respects. In the first place, in many of the physical problems that are supposed
to be modeled by the respective system of ODEs or PDEs, we may be interested
in solutions which exists on domains that are larger than that delivered by the
respective existence results in Theorem 1 and Theorem 2, respectively. Secondly,
and as can be seen from rather elementary examples, classical solutions, such as
those obtained in the mentioned existence results, will in general fail to exists on
the entire domain of physical interest. In this regard, a particularly simple, yet
relevant, example is the conservation law

Ut + UxU = 0, t > 0, x ∈ R (1.4)

with the initial condition

U (0, x) = u (x) , x ∈ R. (1.5)

If we assume that the function u in (1.5) is smooth enough, then a classical solution
U , in fact an analytic solution, of (1.4) to (1.5) is given by the implicit equation

U (t, x) = u (x− tU (t, x)) , t ≥ 0, x ∈ R. (1.6)
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According to the implicit function theorem, we can obtain U (s, y) from (1.6) for s
and y in suitable neighborhoods of t and s, respectively, whenever

tu′ (x− tU (t, x)) + 1 6= 0. (1.7)

For t = 0 the condition (1.7) is clearly satisfied. As such, there is a neighborhood
Ω ⊆ [0,∞)× R of the x-axis R so that U (t, x) exists for (t, x) ∈ Ω. However, if for
some interval I ⊆ R

u′ (x) < 0, x ∈ I (1.8)

then for certain values t > 0, the condition (1.7) may fail, irrespective of the domain
or degree of smoothness of u. It is well known that the violation of the condition
(1.7) may imply that the classical solution U fails to exists for the respective values
of t and x. That is, the domain of existence Ω of the solution U will be strictly
contained in [0,∞) × R. As such, for certain x ∈ R, the solution U (t, x) does not
exist for sufficiently large t > 0 so that the equation (1.4) fails to have a classical
solution on the whole of its domain of definition.

From a physical point of view, however, it is exactly the points (t, x) ∈ ([0,∞)× R)\
Ω where the solution fails to exist that are of interest, as these points may repre-
sent the appearance and propagation of what are called shock waves. Under rather
general conditions, see for instance [96] and [143], it is possible to define certain
generalized solutions U for all t ≥ 0 and x ∈ R, which turn out to be physically
meaningful, and which are in fact classical solutions everywhere on [0,∞)×R except
a suitable set of points Γ ⊂ [0,∞)×R, where Γ consists of certain families of curves
called shock fronts.

As a clarification of the above mentioned lack of global smoothness of the solu-
tions to (1.4) and (1.5), let us consider the example

u (x) =


1 if x ≤ 0

1− x if 0 ≤ x ≤ 1

0 if x ≥ 1

. (1.9)

In this case, the shock front Γ is given by

Γ =

{
(t, x)

1) t ≥ 1
2) x = t+1

2

}
, (1.10)

while the solution U (t, x) is given by

U (t, x) =


1 if x ≤ 0

x−1
t−1

if 0 ≤ x ≤ 1

0 if x ≥ 1

(1.11)
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when 0 ≤ t ≤ 1 and

U (t, x) =


1 if x < t+1

2

0 if x > t+1
2

(1.12)

when t ≥ 1. For (t, x) ∈ Γ one may define U (t, x) at will. In this example, the
failure of the initial value u to be sufficiently smooth at x = 0 and x = 1 does not in
any way contribute to the nonexistence of a solution U (t, x) which is classical on the
whole domain of definition of the equations. Rather, the lack of global smoothness
of the solution U (t, x) is due to the fact that the initial condition u satisfies (1.8)
on the interval (0, 1) ⊂ R.

In view of the local nature of the existence results in Theorem 1 and Theorem
2, as well as the occurrence of singularities in the solutions of nonlinear PDEs as
demonstrated in the above example concerning the nonlinear conservation law (1.4),
it is clear that there is both a physical and theoretical interest in the existence of
solutions to such systems of PDEs that may fail to be classical on the whole domain
of definition of the respective system of PDEs.

The interest in such generalized solutions to PDEs is the main motivation for
the study of generalized functions, that is, objects which retain certain essential
features of usual real valued functions. In this regard, there have so far been two
main approaches to constructing suitable spaces of generalized functions which may
contain suitable generalized solutions to systems of PDEs, namely, the sequential
approach and the functional analytic approach.

The sequential approach, introduced by S L Sobolev, see for instance [148] and
[149], is based on the concept of a weak derivative, which had been applied by
Hilbert, Courant, Riemann and several others in the study of various classes of
ODEs and PDEs. In this regard, we recall that a Lebesgue measurable function
u : Ω → R is square integrable on Ω whenever∫

Ω

u (x)2 dx <∞ (1.13)

where the integral is taken in the sense of Lebesgue. The set of all square integrable
functions on Ω is denoted L2 (Ω), and carries the structure of a Hilbert space under
the inner product

〈u, v〉L2 =

∫
Ω

v (x)u (x) dx.

For u ∈ L2 (Ω) and α ∈ Nn, a measurable function v : Ω → R is called a weak
derivative Dαu of u whenever

∀ K ⊂ Ω compact :
∀ ϕ ∈ D (K) :∫

K
u (x)Dαϕ (x) dx = (−1)|α|

∫
K
v (x)ϕ (x) dx

(1.14)
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where D (K) is the set of C∞-smooth functions ϕ on K such that the closure of the
set

{x ∈ K : ϕ (x) 6= 0}

is compact and strictly contained inK, or some other suitable space of test functions.

In this sequential approach, generalized solutions to a nonlinear, or linear, PDE

T (x,D)u (x) = 0, x ∈ Ω ⊆ Rn (1.15)

are obtained by constructing a sequence of approximating equations

Ti (x,D)ui (x) = 0, x ∈ Ω, i ∈ N (1.16)

where the operators Ti (x,D) are supposed to approximate T (x,D) in a prescribed
way, so that each ui is a classical solution of (1.16), and the sequence (ui) converges
in a suitable weak sense to a function u, for instance∫

Ω

(ui (x)− u (x))ϕ (x) dx→ 0 (1.17)

for suitable test functions ϕ. The weak limit u of the sequence (ui) is interpreted as
a generalized solution of (1.15).

In this regard, Sobolev introduced the space H2,m (Ω), with m ≥ 1, which is
defined as

H2,m (Ω) =

{
u ∈ L2 (Ω)

∀ |α| ≤ m :
Dαf ∈ L2 (Ω)

}
. (1.18)

That is, the Sobolev space H2,m (Ω) consists of all square integrable functions u on
Ω with all weak partial derivatives Dαu up to order m in L2 (Ω). An inner product
may be defined on H2,m (Ω) through the formula

〈u, v〉m =
∑
|α|≤m

〈Dαu,Dαv〉L2 . (1.19)

so that the Sobolev space H2,m (Ω) is a Hilbert space. In particular, a sequence (ui)
in H2,m (Ω) converges to u ∈ H2,m (Ω) if and only if∑

|α|≤m

∫
Ω

(Dαu (x)−Dαui (x))
2 dx→ 0

which, in particular, implies that the sequence (ui) converges weakly to u, in the
sense that

∀ ϕ ∈ D (Ω) :∑
|α|≤m

∫
Ω

(u (x)− ui (x))D
αϕ (x) dx→ 0
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The definition of the Hilbert space structure on H2,m (Ω) is the essential feature
introduced by Sobolev. Indeed, the concept of a weak derivative, and that of weak
solution, had been used by many authors prior to Sobolev. However, the main dif-
ficulty in applying the techniques of modern analysis, in particular those connected
with function spaces and topological structures on such spaces, to ODEs and PDEs,
respectively, is that the differential operators on such spaces are typically not con-
tinuous with respect to the mentioned topological structures. In the case of the
Sobolev spaces H2,m (Ω), and in view of (1.19), it is clear that

∀ |α| ≤ m :
∀ u ∈ H2,m (Ω) :

〈Dαu,Dαu〉L2 ≤ 〈u, u〉m

so that each such differential operator

Dα : H2,m (Ω) → L2 (Ω) (1.20)

is continuous with respect to the inner products on H2,m (Ω) and L2 (Ω), respec-
tively. As such, the powerful tools of analysis, and in particular linear functional
analysis, may be applied to the study of such PDEs which admit a suitable weak
formulation in terms of H2,m (Ω) or other associated spaces. At this point it is
worth noting that this sequential approach has as of yet not received any suitable
general theoretic treatment. Nevertheless, it has resulted in a wide range of effective,
though somewhat ad hoc, solution methods for both linear and nonlinear PDEs, see
for instance [100].

The second major approach to establishing generalized solutions to PDEs within
a suitable framework of generalized functions, namely, the functional analytic ap-
proach introduced by L Schwartz [144], [145] in the late 1940s is based on the the
idea of generalizing the concept of a weak derivative through the machinery of linear
function analysis.

In this regard, recall that any open subset Ω of Rn may be expressed as the union
of a countable and increasing family of compact sets. That is, there is some family
{Ki ⊂ Ω compact : i ∈ N} so that

∀ i ∈ N :
Ki ⊂ Ki+1

and

Ω =
⋃
i∈N

Ki

For each i, j ∈ N so that i < j we may define the injective mapping

fi,j : D (Ki) → D (Kj)
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through

fi,ju : Kj 3 x 7→


u (x) if x ∈ Ki

0 if x /∈ Ki

. (1.21)

Furthermore, and in the same way as in (1.21), for each i ∈ N we may define the
mapping

fi : D (Ki) → D (Ω)

where

D (Ω) =

{
ϕ ∈ C∞ (Ω)

∃ K ⊂ Ω compact :
ϕ ∈ D (K)

}
so that the diagram

D (Ki) - D (Kj)

D (Ω)

fi,j

@
@

@
@

@
@

@
@

@
@R

fj fj

�
�

�
�

�
�

�
�

�
�	

(1.22)

commutes whenever i < j. As such, and in view of the injectivity of the mappings
fi,j and fi, we may express D (Ω) as the strict inductive limit of the inductive system
(D (Ki) , fi,j)i,j∈N.

Each of the spaces D (Ki) carries in a natural way the structure of a Frechét
space. Indeed, the family of seminorms {ρα}α∈Nn defined through

ρα : D (Ki) 3 u 7→ sup{|Dαu (x) | : x ∈ Ki},

where ‖·‖K denotes the uniform norm on C0 (K), defines a metrizable locally convex
topology τi on D (Ki). As such, and in view of the construction of D (Ω) as the
strict inductive limit of the inductive system (D (Ki) , fij), the space D (Ω) may be
equipped with the locally convex strict inductive limit of the family of Fréchet spaces
(D (Ki) , τi)i∈N. An intuitive feeling for this topology on D (Ω) may be obtained by
considering convergent sequences. A sequence (ϕn) in D (Ω) converges to ϕ ∈ D (Ω)
if and only if

∃ K ⊂⊂ Ω :
∀ n ∈ N :

suppϕn ⊆ K
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and

∀ α ∈ N :
‖Dαϕ−Dαϕn‖K → 0

The concept of weak derivative, such as in the sense of Sobolev [148], [149], is
incorporated in the above functional analytic setting by associating with each u ∈
L2 (Ω) a continuous linear functional

Tu : D (Ω) → R

through

Tu : ϕ 7→
∫

Ω

u (x)ϕ (x) dx. (1.23)

As such, one obtains the inclusion

L2 (Ω) ⊆ D′ (Ω) =

{
T : D (Ω) → R 1) T linear

2) T continuous

}
In particular, if u ∈ H2,m (Ω), then for each |α| ≤ m, we have

TDαu : ϕ 7→
∫

Ω

Dαu (x)ϕ (x) dx = (−1)|α|
∫

Ω

u (x)Dαϕ (x) dx. (1.24)

Identifying with each u ∈ H2,m (Ω) and every |α| ≤ m the functional DαTu ∈ D′ (Ω)
which is defined as

DαTu : ϕ 7→ TDαuϕ (1.25)

it is clear that D′ (Ω) also contains each weak partial derivative, up to order m, of
functions in H2,m (Ω). Generalizing the formula (1.24) to arbitrary continuous linear
functionals in D′ (Ω), one may define generalized partial derivatives in D′ (Ω) of all
orders for each T ∈ D′ (Ω) through

DαT : D (Ω) 3 ϕ 7→ (−1)|α| T (Dαϕ) ∈ R (1.26)

Not each continuous linear functional on D (Ω) can be described through (1.23).
Indeed, suppose that Ω = Rn, and consider the linear functional δ, called the Dirac
distribution, defined as

δ : D (Rn) 3 ϕ 7→ ϕ (0) ∈ R. (1.27)

Clearly (1.27) defines a continuous linear functional on D (Rn). However, there is
no locally integrable function u on Rn so that

δ : ϕ 7→
∫

Ω

u (x)ϕ (x) dx.
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In this regard, for a > 0, consider the function ϕa ∈ D (Rn) which is defined as

ϕa (x) =

 e−
1

1−|x|/a if |x| < a

0 if |x| ≥ a

Suppose that there is an integrable function u on Ω that defines δ through (1.23).
For each a > 0 we have

e−1 = δ (ϕa) =

∫
Rn

u (x)ϕa (x) dx→ 0

which is absurd. The space D′ (Ω) of continuous linear functionals on D (Ω) is called
the space of distributions on Ω and is denoted D′ (Ω). In view of the above example
involving the Dirac distribution, it is clear that D′ (Ω) contains not only each of the
Sobolev spaces H2,m (Ω), for m ≥ 1, but also more general generalized functions.
Indeed, every locally integrable function u, that is, every Lebesgue measurable func-
tion that satisfies

∀ K ⊂ Ω compact :∫
K
|u (x) |dx <∞

may be associated with a suitable element Tu of D′ (Ω) in a canonical way.

The Schwartz linear theory of distributions has a rather natural position within
the context of spaces of generalized functions which contain C0 (Ω). In this regard,
we should note that the main objective of the linear functional analytic approach
of Schwartz [144] is the infinite differentiability of generalized functions, something
that the sequential approach of Sobolev [148], [149] fails to achieve. In this regard,
and in view of (1.26), it is clear that this aim is achieved within the setting of D′

distributions. In fact, from the point of view of the existence of partial derivatives,
the space D′ (Ω) posses a canonical structure. Indeed, in the chain of inclusions

C∞ (Ω) ⊂ ... ⊂ Cl (Ω) ⊂ ... ⊂ C0 (Ω) ⊂ D′ (Ω)

only C∞ (Ω) is closed under arbitrary partial derivatives in the classical sense. How-
ever, identifying u ∈ C0 (Ω) with Tu ∈ D′ (Ω) through (1.23), we may again perform
indefinite partial differentiation on u, with the partial derivatives defined as in (1.26),
which, however, are no longer classical. Obviously, in view of (1.24) and (1.25), if
u ∈ Cl (Ω), then for |α| ≤ l, the partial derivative Dαu is the classical one, that is,
the weak and classical derivatives coincide for sufficiently smooth functions.

The mentioned canonical structure of D′ (Ω) is the following:

∀ T ∈ D′ (Rn) , K ⊂ Ω compact :
∃ u ∈ C0 (Ω) , α ∈ Nn :

T|K = Dαu|K

(1.28)
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Here Dα is the weak partial derivative (1.26). In other words, D′ is a minimal exten-
sion of C0 in the sense that locally, every distribution is the weak partial derivative
of a continuous function.

The linear theory of distributions, as shortly described above, as well as certain
generalizations of it, see for instance [75], has proved to be a powerful tool in the
study of PDEs, in particular in the case of linear, constant coefficient equations.
Indeed, in view of the fact that D′ (Ω), as the dual of the locally convex space
D (Ω), is a vector space with the usual operations, and since D′ (Ω) contains C∞ (Ω)
as a dense subspace, each constant coefficient linear partial differential operator

P (D) : C∞ (Ω) 3 u 7→
∑
|α|≤m

aαD
αu ∈ C∞ (Ω) (1.29)

may be extended to the larger space D′ (Ω) through

P (D) : D′ (Ω) 3 T 7→
∑
|α|≤m

aαD
αT ∈ D′ (Ω)

In this regard, the first major result is due to Ehrenpreis [52] and Malgrange [103].
Namely, for each linear, constant coefficient partial differential operator (1.29), the
generalized equation

P (D)T = δ

admits a solution T ∈ D′ (Ω). From this it follows that, for any ϕ ∈ D (Ω), the
equation

P (D)u (x) = ϕ (x) , x ∈ Ω

with P (D) defined as in (1.29), has a solution in D′ (Ω). This result alone justifies
the use of the D′-distributions in the study of linear, constant coefficient PDEs, and
it has a variety of useful consequences and applications, see for instance [62] and
[71].

In spite of the above mentioned canonical structure of the D′-distributions in
terms of partial differentiability, as well as the power of the linear theory of distri-
butions in the context of linear, constant coefficient PDEs, the Schwartz distribu-
tions suffer from two major weaknesses. In the first place, we note that, for each
u ∈ C∞ (Ω) and each T ∈ D′ (Ω), we can define the product of u and T in D′ (Ω) as

u× T : ϕ 7→ T (u× ϕ) (1.30)

That is, each distribution T ∈ D′ (Ω) can be multiplied with any C∞-smooth function
u. As such, and in view of the extension of the differential operators (1.26), every
linear partial differential operator, say of order m, of the form

P (D)u (x) =
∑
|α|≤m

aα (x)Dαu (x)
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where each coefficient aα is C∞-smooth, may be extended to the space D′ (Ω) of
distributions on Ω. Indeed, in view of the linearity of the operator P (D), we may,
for any T ∈ D′ (Ω), define the distribution P (D)T as

P (D)T : ϕ 7→
∑
|α|≤m

aαD
αT (ϕ)

As such, the partial differential equation

P (D)u (x) = g (x) ,

with g ∈ C∞ (Ω), defined by the operator P (D), may be extended to a generalized
equation in terms of distributions

P (D)T = Tg (1.31)

where Tg is the distribution associated with the C∞-smooth function g. Whenever
the coefficient functions aα are constant, that is,

∀ |α| ≤ m :
∃ aα ∈ R :

aα (x) = aα, x ∈ Ω
,

and the righthand term g has compact support, the generalized equation (1.31)
admits a solution in D′ (Ω). Moreover, the existence of a solution holds also if
the right hand term in (1.31) is any distribution with compact support. However,
this result cannot be generalized to equations with nonconstant coefficients. In this
regard, we may recall Lewy’s impossibility result [97], see also [88]. Lewy showed
that for a large class of functions f1, f2 ∈ C∞ (R3), the system of first order linear
PDEs

− ∂
∂x1
U1 + ∂

∂x2
U2 − 2x1

∂
∂x3
U2 − 2x2

∂
∂x3
U1 = f1

− ∂
∂x1
U2 + ∂

∂x2
U1 + 2x1

∂
∂x3
U1 − 2x2

∂
∂x3
U2 = f2

, (1.32)

which may be written as a single equation with complex coefficients, has no distribu-
tional solutions in any neighborhood of any point of R3. The most interesting aspect
of the example (1.32) is that it is not the typical, esoteric, counterexample type of
equation, but appears rather naturally in connection with the theory of functions of
several complex variables, see for instance [88]. In view of the rather natural, not
to mention simple, form of Lewy’s example, and as will be elaborated upon further
in the sequel, the Schwartz distributions prove to be insufficient from this point of
view for large classes of equations.

Over and above the mere insufficiency of the Schwartz distributions from the
point of view of the existence of generalized solutions to systems of PDEs, the
space D′ (Ω) suffers from serious structural deficiencies. In particular, and since
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the early 1950s, it is known that D′ (Ω) does not admit any reasonable concept of
multiplication that extends the usual pointwise multiplication of smooth functions.
Indeed, Schwartz [145], see also [140], proved the following result.

Let A be an associative algebra so that C0 (R) ⊂ A, and uv is the usual product
of functions for each u, v ∈ C0 (R). If D : A → A is a differentiation operator,
that is, D is linear and satisfies the Leibnitz rule for product derivatives, so that
D restricted to C1 (Ω) ⊂ A is the usual differentiation operation, then there is no
δ ∈ A, δ 6= 0, so that

xδ = 0. (1.33)

This result is usually interpreted as follows. If δ ∈ D′ (R) is the Dirac delta
distribution, then, in view of (1.30), for any u ∈ C∞ (R) we have

uδ : D (R) 3 ϕ 7→ δ (uϕ) = u (0)ϕ (x) (1.34)

Therefore, if we let x ∈ C∞ (R) denote the identity function on R, then from (1.34)
it follows that

xδ : D (R) 3 ϕ 7→ δ (xϕ) = 0.

That is, xδ is the additive identity in D′ (R). Therefore, in view of (1.33), it follows
that δ = 0. But δ 6= 0 ∈ D′ (R), and hence there cannot be a suitable multiplication
on D′ (R). In particular, this has the effect that one cannot formulate the concept
of solution to nonlinear PDEs, such as (1.4) for instance, in the framework of the
D′ distributions.

In view of the above impossibility, in order to multiply arbitrary distributions in
a consistent and meaningful way, it is necessary to find an embedding

D′ (R) ↪→ A (1.35)

where A is a suitable algebra wherein multiplication may be performed. However,
in this regard, there typically occur misinterpretations of the mentioned Schwartz
impossibility. Indeed, Schwartz’s result is usually interpreted as stating that there
cannot exists convenient algebras A such as in (1.35), and that a convenient multi-
plication of arbitrary distributions is not possible [71].

Furthermore, in view of the perceived impossibility of multiplying distributions
in a convenient and meaningful way, it is widely believed that there can not be a
general and convenient nonlinear theory of generalized functions. In particular, one
cannot hope to obtain any significantly general and type independent theory for
generalized solutions of nonlinear PDEs. It will be shown over and again in the
sequel that this is in fact a misunderstanding, and suitable nonlinear theories of
generalized functions can easily be constructed, see for instance [135] through [142],
theories which deliver general existence and regularity results for large classes of
systems of nonlinear PDEs.
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Over and above the mentioned deficiencies of the Schwartz linear theory of dis-
tributions, both from the point of view of existence of generalized solutions to PDEs,
as well as in terms of its capacity to handle also nonlinear problems, the space D′ (Ω)
suffers from several other serious weaknesses. In this regard, we mention only that
D′ (Ω) fails to be a flabby sheaf [140], a property that is fundamental in connection
with the study of singularities, and that the use of the D′ distributions is not con-
venient, from the point of view of exactness, to deal with sequential solutions, even
to linear PDEs [140].

And now, taking into account the various weaknesses and deficiencies of the D′

distributions, when it comes to the study of generalized solutions to both linear and
nonlinear PDEs, there appears to be only two possible ways forward. In the first
place, and as is commonly believed, it may seem that there cannot be a general
and convenient framework for such generalized solutions, and instead various ad
hoc methods may be applied to different equations. On the other hand, a suitable
extension of the theory of distributions may be pursued, such as may be provided
by suitable embeddings of D′ (Ω) into convenient algebras of generalized functions,
such as in (1.35). These two alternatives have been pursued for the last five decades,
as will be explained in the subsequent sections.

However, there is a third, if largely overlooked, possibility in pursuing a system-
atic account of generalized solutions to linear and nonlinear PDEs. In view of the
above mentioned difficulties presented by the Schwartz distributions, in particular
in connection with nonlinear PDEs, why should any theory of generalized solutions
to systems of PDEs be restricted by the requirement that it must contain the D′

distributions as a particular case? Indeed, one may start from the very beginning
and ask what exactly are the requirements of such a theory? In this regard, there
have lately been two independent attempts at such a completely new theory of
generalized solutions to systems of PDEs, namely, the Order Completion Method
[119], and the Central Theory for PDEs [115] through [118]. Both these theories,
although approaching the subject of generalized solutions to PDEs from rather dif-
ferent points of view, have delivered general and type independent existence and
regularity results for generalized solutions of large classes of systems of nonlinear
PDEs.

1.2 Weak Solution Methods

In view of the deficiencies of the linear theory of D′-distributions, in particular the
impossibility of defining nonlinear operations on D′ (Ω), and the insufficiency of the
D′ framework of generalized functions in the context of the existence of generalized
solutions of PDEs, it is widely held that there cannot be a convenient nonlinear
theory of generalized functions and, moreover, a general and type independent the-
ory for the existence and regularity of generalized solutions of systems of nonlinear
PDEs is impossible [12].
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In view of the above remarks concerning the failures of the linear theory of
distributions, rather than pursuing the essential features that are at work in regards
to the existence of generalized solutions to linear and nonlinear PDEs, perhaps
within a context other than the usual functional analytic one, the typical approach
to the problems of existence and regularity of generalized solutions of nonlinear
PDEs consists of a collection of rather ad hoc methods, each developed with a
particular equation, or at best a particular type of equation, in mind.

At this point it is worth noting that, ever since Sobolev [148], [149], the main,
and to a large extent even exclusive, approach to solving linear and nonlinear PDEs
has been that of functional analysis. In this regard, and as mentioned above, this
approach consists of a collection of ad hoc methods, each applying to but a rather
small class of equations. Furthermore, in particular in the case of nonlinear equa-
tions, this often leads to ill founded concepts of a solution of such equations.

In this section we will briefly discuss the general framework of the more popular
such methods for solving linear and nonlinear systems of equations, namely, the
mentioned weak solution methods, see for instance [54] or [99], [100]. Furthermore,
those particular difficulties that arise when applying such methods to nonlinear
equations will be indicated [140].

In this regard, let us, at first, consider a linear partial differential equation of
order m

L (D)u (x) = f (x) , x ∈ Ω (1.36)

where f : Ω → R is, say, a continuous function, and the partial differential operator
is of the form

L (D)u (x) =
∑
|α|≤m

aα (x)Dαu (x) , (1.37)

where aα : Ω → R are sufficiently smooth functions, for instance aα ∈ C0 (Ω). With
the partial differential operator L (D) one associates a mapping

L : A → B (1.38)

where A is a vector space of sufficiently smooth functions on Ω, such as A = Cm (Ω),
and B is an appropriate linear space of functions which contains the righthand term
f .

The essential idea behind the so called weak solution methods is to construct an
infinite sequence of partial differential operators Li (D) which approximate (1.37) in
a suitable sense, so that each of the infinite sequence of PDEs

Li (D)ui (x) = f (x) , x ∈ Ω (1.39)

admits a classical solution

ui ∈ A, i ∈ N (1.40)
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With a suitable choice for the approximate partial differential operators {Li : i ∈ N}
in (1.39), and solutions {ui : i ∈ N} to (1.39), as well as appropriate linear space
topologies on A and B, one has

(Lui) converges to f in B. (1.41)

Furthermore, using some compactness, monotonicity or fixed point argument, one
may often extract a Cauchy sequence from the sequence (ui) ⊂ A, which we denote
by (ui) as well. Thus, we have now obtained a sequence (ui) in A so that

(ui) converges to u] ∈ A] (1.42)

and

(Lui) converges to f ∈ B, (1.43)

where A] denotes the completion of A in its given vector space topology. Now, in
view of (1.42) and (1.43), u] ∈ A] is considered a generalized solution to (1.36).

Note that, in view of the typical difficulties involved in the steps (1.39) to (1.43),
in particular when initial or boundary value problems are associated with the PDE
(1.36), one ends up with very few Cauchy sequences in (1.42), if in fact not with a
single such sequence. Furthermore, based solely on the very few, if in fact not the
single Cauchy sequence in (1.42) and (1.43), the partial differential operator (1.37)
is extended to a mapping

L (D) : {u]} ∪ A → B. (1.44)

As such, this customary method for finding generalized solutions to PDEs amounts
to nothing but an ad hoc, pointwise extension of the partial differential operator
L (D).

The deficiency of the above solution method is clear. Indeed, the extension (1.44)
of the partial differential operator L (D) is based on only very few Cauchy sequence
(1.42) in A. Moreover, the sequence in (1.42), and therefore also the generalized
solution u] of (1.36), is often obtained by an arbitrary subsequence selection from
(1.40).

In the case of linear PDEs such as (1.36), the rather objectionable construction of
a generalized solution to such an equation may, to some extend, be justified. Indeed,
in this case, with the coefficients aα in (1.37) sufficiently smooth, it happens that
due to the phenomenon of automatic continuity of certain classes of linear operators,
the above construction of a generalized solution to (1.36) is valid. Indeed, suppose
that we obtain a Cauchy sequence (ui) in A so that

(ui) converges to u] ∈ A] (1.45)

and

(L (D)ui) converges to f ∈ B. (1.46)
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Given now any sequence (vi) in A so that

(vi) converges to 0 ∈ A

we may define the Cauchy sequence in A

(wi) = (ui + vi) .

From the linearity of the operator L (D) we now obtain

(L (D)wi) = (L (D)ui) + (L (D) vi) (1.47)

If, as most often happens to be the case, the mapping L (D) is continuous, we have

(L (D) vi) converges to 0 ∈ B. (1.48)

Now, in view of (1.47) and (1.48), it follows that

(L (D)wi) converges to f ∈ B

Therefore, based solely on the single Cauchy sequence in (1.45) and (1.46), we have

∀ (ui) ⊂ A :
(ui) converges to u] ∈ A] ⇒ (L (D)ui) converges to f

. (1.49)

The relationships (1.47) to (1.49) affirms the interpretation of u] ∈ A] as a general-
ized solution to (1.36).

In contradistinction with the case of linear PDEs, when the procedure (1.39)
through (1.43) for establishing the existence of weak solutions is applied to a non-
linear PDE

T (D)u (x) = f (x) , x ∈ Ω (1.50)

one critical point is often overlooked, namely, the nonlinear operator T (D) is typi-
cally not compatible with the vector space topologies on A and B. In this case the
claim that u] ∈ A] is a generalized solution to (1.50) is rather objectionable. Indeed,
in the case of a nonlinear PDE (1.50) there is in fact a double breakdown in (1.45)
to (1.49). In this regard, note that in case the linear partial differential operator
L (D) in (1.36) is replaced with a nonlinear operator, such as in (1.50), both the
crucial steps in (1.47) and (1.48) will in general break down. In that case, then, we
cannot in general deduce from very few, if not in fact one single Cauchy sequence
(ui) ⊂ A such that

(ui) converges to u] ∈ A] (1.51)

and

(T (D)ui) converges to f ∈ B, (1.52)
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that

∀ (ui) ⊂ A :
(ui) converges to u] ∈ A] ⇒ (L (D)ui) converges to f

.

In view of this double breakdown in the customary weak solution methods, when
applied to nonlinear problems, it is clear that such methods are typically ill founded
when applied to such nonlinear problems.

It is exactly this double breakdown which, for a long time, was usually overlooked
when applying solution methods for linear PDEs to nonlinear ones. In part, this
oversight is perhaps due to the fact that, in the particular case of linear PDEs, the
method (1.39) to (1.43) happens to be correct. However, and in view of the above
remarks, it is clear that the extension of linear methods to nonlinear problems often
require essentially new ways of thinking. For an excellent survey of the difficulties
of several such well known extensions can be found in [140] or [165].

The careless application of essentially linear methods such as in (1.39) to (1.43)
to nonlinear problems can, and in fact often does, lead to absurd conclusions, see
for instance [140]. In this regard, a most simple example is given by the zero order
nonlinear system of equations

u = 0

u2 = 1
(1.53)

which, using the customary weak solution method (1.39) to (1.43), admit both weak
and strong solutions, so that, apparently, we have proven the blatant absurdity

0 = 1 in R.

Indeed, if we set A = C∞ (R) with the topology induced by D′ (R), and we take
B = D′ (R), then the sequence (vi) defined as

vi (x) =
√

2 cos (ix) , i ∈ N

is Cauchy in A and

(vi) converges to u = 0

both weakly and strongly in A] = D′ (R). Furthermore, we shall also have(
v2

i

)
converges to v = 1

both weakly and strongly in B = D′ (R). That is, the sequences (vi) and (v2
i ) converge

to their respective limits with respect to the usual topology on D′ and

∀ ϕ ∈ D (R) :
1) Tvi

(ϕ) → 0 in R
2) Tv2

i
(ϕ) → 1 in R

. (1.54)
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As such, according to the typical weak solution method (1.39) to (1.43), the sequence
(vi) defines both a weak and strong solution to (1.53).

Let us now take a closer look at how the above nonlinear stability paradox,
namely, the existence of both weak and strong solutions to (1.53), effects the cus-
tomary sequential approach (1.39) to (1.43). In this regard, consider the nonlinear
partial differential operator given by

T (D)u = L (D)u+ u2

where L (D) is a linear partial differential operator such as in (1.37). Suppose that
the system (1.53) has a solution in A, that is,

∃ (vi) ⊂ A a Cauchy sequence :
1) (vi) converges to 0 in A
2) (v2

i ) converges to 1 in B
. (1.55)

Let (ui) be the Cauchy sequence in (1.51) and (1.52). Define the Cauchy sequence
(wi) in A as

wi = ui + λvi, i ∈ N,

for an arbitrary but fixed λ ∈ R. In view of (1.51) and (1.55) we have

(wi) converges to u] ∈ A]. (1.56)

Hence the sequence (wi) defines the same generalized function as (ui) in (1.51). Now
in view of (1.52) it follows that

T (D)wi = T (D)ui + λL (D) vi + 2λuivi + λ2v2
i .

Hence, assuming that (uivi) is a Cauchy sequence in A with limit v] ∈ A], (1.52)
and (1.55) yield

(T (D)wi) converges to f + λ2 + 2λv] in B (1.57)

if, as it often happens, (L (D) vi) converges to 0 in B, such as for instance in the
topology of D′ (Ω) when L (D) has C∞-smooth coefficients.

Since λ ∈ R is arbitrary, (1.56) and (1.57) yields

T (D)u] 6= f (1.58)

In this way, the same u] ∈ A] that is a generalized solution to the equation T (D)u =
f according to the customary interpretation of (1.51) and (1.52), now, in view of
(1.58), no longer happens to be a solution to this equation.

In view of the above example, it is clear that, as far as nonlinear partial dif-
ferential equations are concerned, the extension of the concept of classical solution
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to that of the concept of generalized solution along the lines (1.39) to (1.43), is
an improper generalization of various classical extensions, such as for instance the
extension of the rational numbers into the real numbers.

Over the last thirty years or so, there has been a limited awareness among the
functional analytic school concerning the difficulties involved in extending linear
methods to nonlinear problems, see for instance [14], [44], [48], [127], [147] and
[151]. However, the techniques developed to overcome these difficulties, such as the
Tartar-Murat compensated compactness and the Young measure associated with
weakly convergent sequences of functions subject to differential constraints on an
algebraic manifold, can deal only with particular types of nonlinear PDEs and se-
quential solutions. The effect of this limited approach is an obfuscation of the basic
underlying reasons, whether these are of an algebraic or topological nature, for such
problems as the nonlinear stability paradox discussed in this section. Not to men-
tion that there is no attempt to develop a systematic nonlinear theory of generalized
functions that would be able to accommodate large classes of nonlinear PDEs.

1.3 Differential Algebras of Generalized Functions

As we have mentioned at the end of Section 1.1, and as demonstrated in Section
1.2, in order to solve large classes of linear and nonlinear PDEs, it is necessary to go
beyond the usual functional analytic methods for PDEs, including the Schwartz D′

distributions. In particular, the Schwartz impossibility result places serious restric-
tions on use of distributions in the study of nonlinear PDEs. As such, in order to
obtain a theory of generalized functions that would be able to handle large classes of
nonlinear PDEs, and at the same time contain the D′ distributions, the underlying
reasons for the mentioned Schwartz impossibility result, reasons that turn out to be
rather algebraic than topological [140], should be clearly understood.

In this regard [140], the difficulties involved in establishing a suitable framework
of generalized functions for the solutions of nonlinear partial differential equations
may be viewed as a consequence of a basic algebraic conflict between the trio of
discontinuity, multiplication and differentiation. In order to illustrate how such a
conflict might arise, we consider the most simple discontinuous function, namely,
the Heaviside function H : R → R given by

H (x) =


0 if x ≤ 0

1 if x > 0
(1.59)

When a discontinuous function such as H in (1.59) appears as a solution to a non-
linear PDEs, this function will necessarily be subjected to the operations of differ-
entiation and multiplication. As such, a natural and intuitive setting for a theory of
generalized functions that would include, in particular, the discontinuous function
in (1.59), would be a ring of functions

A ⊆ {u : R → R} (1.60)
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so that

H ∈ A. (1.61)

Furthermore, there should be a differential operator

D : A → A (1.62)

defined on A. That is, D is a linear operator that satisfies the Leibniz rule for
product derivatives

D (uv) = uDv + vDu (1.63)

Already within this basic setup (1.60) through (1.63) we encounter rather surprising
and undesirable consequences.

Indeed, in view of (1.59) and (1.60), it follows that

∀ m ∈ N, m ≥ 1 :
Hm = H

(1.64)

Furthermore, it follows from (1.60) that A is both associative and commutative.
Hence (1.63) and (1.64) implies the relation

∀ m ∈ N, m ≥ 2 :
mH ·DH = DH

. (1.65)

From (1.65) it now follows that

∀ p, q ∈ N, p, q ≥ 2 :

p 6= q ⇒
(

1
p
− 1

q

)
DH = 0 ∈ A

which implies

DH = 0 ∈ A. (1.66)

However, in view of the fact that our theory should contain the D′ distributions we
have that

D′ (R) ⊂ A (1.67)

and the differential operator D on A extends the distributional derivative. In par-
ticular, it follows from (1.67) that

δ ∈ A

where δ is the Dirac distribution. Furthermore, since H ∈ D′ (R) and

DH = δ ∈ D′ (R) ,
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it follows by (1.66) that

δ = 0 ∈ A (1.68)

which is of course false.

It is now obvious that if we wish to define nonlinear operations, in particular un-
restricted multiplication, on generalized functions that contain the D′ distributions
in a consistent and useful way, some of the assumptions (1.60) to (1.63) must be
relaxed. This can be done in any of several different ways.

Indeed, while the algebra A should contain functions such as the Heaviside func-
tion H in (1.59), it need not be an algebra of functions from R to R. That is, A
may contain elements that are more general than such functions u : R → R. Fur-
thermore, the multiplication in A need not be so closely related to multiplication of
real valued functions. As such, (1.60) need not necessarily hold.

Regarding the differentiation operator D in (1.63), it is important to note that
the requirement (1.62) is of highly restrictive assumption. Indeed, (1.62) implies
that each u ∈ A is indefinitely differentiable. That is,

∀ m ∈ N, m ≥ 1 :
∀ u ∈ A :

Dmu ∈ A
.

Of course, this is the case if A ⊆ C∞ (R), which, in view of (1.61), is not possible.
As such, one may also want to keep in mind the possibility that the differential
operator may rather be defined as

D : A → A

where A is another algebra of generalized functions. In this case, the Leibniz Rule
(1.63) may be preserved in this more general situation by assuming the existence of
an algebra homomorphism

A 3 u 7→ u ∈ A

and rewriting (1.63) as

D (u · v) = (Du) · v + u · (Dv) (1.69)

where the product on the left of (1.69) is taken in A, and the product on the right
is taken in A.

The above two relaxations, namely, on the algebra A and the derivative oper-
ator D are sufficient in order to obtain generalized functions which extend the D′

distributions and admit generalized solutions to large classes of linear and nonlin-
ear PDEs. Furthermore, the arguments leading to (1.66) are purely of an algebraic
nature, and do not involve calculus or topology. This is precisely the reason for

 
 
 



CHAPTER 1. A BRIEF HISTORY OF PDES 24

the power and usefulness of the so called ‘algebra first’ approach, [140]. We will
shortly describe such an approach to constructing generalized functions, initiated
by Rosinger [135], [136] and developed further in [137], [138] and [140].

In this regard, it is helpful to recall that generalized solutions to linear PDEs
are typically constructed as elements of the completion of a suitably chosen locally
convex topological, in particular metrizable, vector space A of sufficiently smooth
functions u : Ω → R, see Section 1.2. From a more abstract point of view, the
completion A] of the metrizable topological vector space A may be constructed as

A] = S/V (1.70)

where

V ⊂ S ⊂ AN (1.71)

with AN the set of sequences in A and S is the set of all Cauchy sequences in A.
With termwise operations on sequences, AN is in a natural way a vector space, while
S and V are suitable vector subspaces of AN. Therefore, the quotient space S/V is
again a vector space.

In the case of nonlinear PDEs, we shall instead be interested in a suitable algebra
of generalized functions. In this regard, the above construction in (1.70) to (1.71)
may be adapted for that purpose. Indeed, we may choose a suitable subalgebra of
smooth functions

A ⊆ Cm (Ω) (1.72)

and

I ⊂ S ⊂ AN (1.73)

where S is a subalgebra in AN, while I is an ideal in S. Then the quotient algebra

A] = S/I (1.74)

can offer the representation for our algebra of generalized functions. Furthermore,
when

A ⊆ C∞ (Ω) ,

then for suitable choices of the subalgebra S ⊂ AN and the ideal I ⊂ S in (1.72) to
(1.74), there is a vector space embedding

D′ (Ω) → A] (1.75)

However, in general the embedding (1.75) cannot be achieved in a canonical way, as
can be seen by straightforward ring theoretic arguments connected with the existence
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of maximal off diagonal ideals [140]. Colombeau [39], [40] constructed such an
algebra of generalized functions that admits a canonical embedding (1.75).

Now it should be noted that, in view of (1.72), the algebra A is automatically
both associative and commutative. Therefore, with the termwise operations on se-
quences, AN is also associative and commutative so that the algebraA] of generalized
functions in (1.74) will also be associative and commutative.

At first glance it may appear that the construction in (1.72) to (1.74) is rather
arbitrary. However, see for instance [140], such concerns may be addressed and
clarified to a good extent. In particular, the following points may be noted.

First of all, it is a natural condition to impose on the differential algebra A that

A ⊂ A]. (1.76)

In particular, this addresses the issue of consistency of usual classical solutions to a
nonlinear PDEs with generalized solutions in A]. In this regard, the purely algebraic
neutrix condition will particularize the above framework (1.72) to (1.74) so as to
incorporate (1.76). This purely algebraic condition characterizes the requirement
(1.76), yet it has proven to be surprisingly powerful.

In this regard, recall that in the case of a general vector spaceA of usual functions
u : Ω → R we have taken vector subspaces V ⊂ S ⊂ AN and have defined A] = S/V
as a space whose elements u] ∈ A] generalize the classical functions u ∈ A. As such,
one should have a vector space embedding

A ⊂ A] = S/V (1.77)

which is defined by a linear injection

ιA : A 3 u 7→ ιA (u) = (u) + V ∈ A] (1.78)

where (u) is the constant sequence with all terms equal to u ∈ A.

We may reformulate (1.77) to (1.78) in the following more convenient way. Let
O ⊂ AN denote the null vector subspace, that is, the subspace consisting only of
the constant zero sequence, and let

UA,N = {ιA (u) : u ∈ A} (1.79)

be the vector subspace in AN consisting of all constant sequences in A. That is,
UA,N is the diagonal in the cartesian product AN. Then (1.77) to (1.78) is equivalent
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to the commutative diagram

V - - ANS
⊂⊂

6 6

O UA,N

⊂ ⊂

-
⊂

(1.80)

together with the co called off diagonal condition

V ∩ UA,N = O (1.81)

which is called the neutrix condition [140], the name being suggested by similar ideas
introduced in [153] within a so called ‘neutrix calculus’ developed in connection with
asymptotic analysis. Following the terminology in [153], see also [140], a sequence
(ui) ∈ V is called V-negligible. In this sense, for two functions u, v ∈ A, their
difference u − v ∈ A is V-negligible if and only if ιA (u) − ιA (v) = ιA (u− v) ∈ V ,
which in view of (1.81) is equivalent to u = v. As such, the neutrix condition
(1.81) simply means that the quotient structure S/V distinguishes between classical
functions in A.

Now, as mentioned, in the case of nonlinear PDEs we may be interested in
constructing algebras of generalized functions such as is done in (1.72) to (1.74). In
particular, (1.79) to (1.81) may be reproduced in this setting, given an algebra A of
sufficiently smooth functions u : Ω → R, a subalgebra S of AN, and an ideal I ⊂ S,
such that the inclusion diagram

I - - ANS
⊂⊂

6 6

O UA,N

⊂ ⊂

-
⊂

(1.82)
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satisfies the off diagonal or neutrix condition

I ∩ UA,N = O. (1.83)

It follows that, similar to (1.77) through (1.78), for every quotient algebra A] = S/I
we have the algebra embedding

ιA : A 3 u 7→ ιA (u) = (u) + I ∈ A] (1.84)

Furthermore, the conditions (1.80) to (1.83) are again necessary and sufficient for
(1.84).

The neutrix condition, although of a simple and purely algebraic nature, turns
out to be highly important and powerful in the study of such algebras of generalized
functions. In particular, variants of this condition characterize the existence and
structure of so called chains of differential algebras [138], [140]. Furthermore, the
neutrix condition determines the structure of ideals I which play an important role
in the stability, exactness and generality properties of the algebras of generalized
functions.

The algebras of generalized functions A] constructed in (1.72) to (1.74) may be
further particularized by introducing the natural requirement that nonlinear partial
differential operators should be extendable to such algebras. In this regard, let us
consider a polynomial type nonlinear partial differential operator

T (D) : C∞ (Ω) 3 u 7→
h∑

i=1

ci

ki∏
j=1

Dpiju ∈ C∞ (Ω) (1.85)

where for 1 ≤ i ≤ h we have ci ∈ C∞ (Ω). For convenience, we shall consider the
problem of extending the partial differential operator (1.85) to a differential algebra

P (D) : A] → A] (1.86)

where the original algebra of classical functions satisfies

A ⊆ C∞ (Ω) . (1.87)

In this regard, we note that in order to obtain an extension (1.86), it is sufficient
to extend the usual partial differential operators to mappings

Dp : A] → A], p ∈ Nn. (1.88)

This can easily be done by making the assumption

∀ p ∈ Nn :
1) DpI ⊂ I
2) DpS ⊂ A

(1.89)
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In this case (1.86) can be defined as

DpU = Dps+ I ∈ A] = A/I, p ∈ Nn (1.90)

for each

U = s+ I ∈ A] = S/I

where for every sequence s = (un) ∈ AN we define

Dps = (Dpun) , p ∈ Nn. (1.91)

The extension (1.86) of the nonlinear partial differential operator (1.85) can now
be obtained as follows. For a given

U = s+ I ∈ A] = S/I, s = (un) ∈ S

we define

T (D)U = T (D) t+ I ∈ S/I = A]

where

t = (vn) ∈ S, t− s ∈ I. (1.92)

The construction (1.88) to (1.92) of the extension (1.88) may be replicated within
a far more general setting. Indeed, the nonlinear operations, such as multiplication,
are performed only in the range of the partial differential operator (1.85). As such,
only the range need be an algebra, while we are more free in choosing the domain.
In particular, we can replace the extensions (1.88) with

Dp : E ] → A], p ∈ Nn

where E ] is a suitable vector space of generalized functions constructed in (1.77) to
(1.78).

Furthermore, since the partial differential operator (1.85) is of finite order, say
m, one may relax the condition (1.87) by only requiring

A ⊆ Cm (Ω)

while the assumption (1.89) must now obviously be replaced with

∀ p ∈ Nn, |p| ≤ m :
1) DpI ⊂ I
2) DpS ⊂ A

. (1.93)

The algebras of generalized functions can be further particularized in connection
with the important concepts of generality, exactness and stability [140].
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The method described in this section for constructing algebras of generalized
functions turns out to be particularly efficient in the study of nonlinear PDEs. In
this regard, the particular version of this theory, developed in [39], [40] has proved
to be highly successful, both in connection with the exact and numerical solutions
to nonlinear PDEs. However, the more general version of the theory developed
by Rosinger [135], [136], [137], [138] and [140] provides a better insight into the
structure of what may be conveniently called all possible algebras of generalized
functions. Furthermore, the more general theory in [140] has delivered deep results
such as a global version of the Cauchy-Kovalevskaia Theorem [141]. Such a result
cannot be replicated within the more specific framework of the Colombeau Algebras.
This is due to the polynomial type growth conditions imposed on the generalized
functions in Colombeau’s algebras. In particular, in this case the subalgebra in
(1.73) is not equal to AN. As such, one cannot define arbitrary smooth operations
on generalized functions, since an arbitrary analytic function may grow faster than
any polynomial.

1.4 The Order Completion Method

We have already mentioned the well known but often overlooked, if in fact not
ignored, fact that the Schwartz distributions, and other similar spaces of generalized
functions, suffer from certain structural weaknesses, and that these spaces fail to
contain generalized solutions to a significantly general class of systems of PDEs. In
particular, one may recall the Schwartz Impossibility Result, the Lewy Impossibility
Result, as well as the nonlinear stability paradox discussed in Section 1.2. In view of
such weaknesses, and as mentioned earlier, in order to develop a general framework
for generalized solutions to PDEs, it is crucial that one goes beyond the usual
distributions and related linear spaces that are customary in the study of nonlinear
PDEs.

In this regard, one may then chose to construct spaces in such a way as to ex-
tend the Schwartz distributions. On the other hand, in view of the insufficiency
and structural weaknesses of the distributions, one may start all over, and construct
convenient spaces of generalized solutions which do not necessarily contain the dis-
tributions. The approach mentioned first is pursued in its full generality through
Rosinger’s Algebra First approach, as developed in [135] through [142], and dis-
cussed in Section 1.3, as well as the particular, yet highly important, case of that
theory developed by Colombeau [39], [40]. The second possibility, that is, to define
spaces of generalized functions without reference to the Schwartz distributions and
other customary linear spaces of generalized functions, was pursued in a systematic
and general way for the first time in [119], where spaces of generalized solutions are
constructed through the process of Dedekind Order Completion of spaces of usual
smooth functions on Euclidean domains.

The advantage of this approach, in comparison with the usual functional ana-
lytic methods, in particular as far as its generality and type independent power is
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concerned, comes from the fact that it is formulated within the context of the more
basic concept of order. In this regard, we may note that present day mathematics
is a multi layered science, with successive and more sophisticated layers constructed
upon one another, such as, for instance, is illustrated in the diagram below.

Set Theory
↓

Binary Relations
↓

Order
↓

Algebra
↓

Topology
↓

Functional Analysis etc

Traditionally, see also Sections 1.1 and 1.2, the problem of solving linear and nonlin-
ear PDEs, is formulated in the context of the most sophisticated two levels, namely,
that of topology and functional analysis. As a consequence of the almost exclu-
sive use of the highly specialized tools of functional analysis, the basic underlying
concepts involved in solving PDEs are only perceived through some of their most
complicated aspects.

Furthermore, the Order Completion Method, in contradistinction with the usual
methods discussed in Section 1.2, applies to situations which are far more general
than PDEs alone. Indeed, the method is based on general results on the construc-
tion of Dedekind order complete partially ordered sets, and the extension of suitable
mappings between such ordered sets. This is exactly the reason for its type inde-
pendent power.

Now, as mentioned, the Order Completion Method goes far beyond the usual
methods of functional analysis when it comes to the existence of generalized solutions
to both linear and nonlinear PDEs. What is more, this method also produces a
blanket regularity result for the solutions constructed. Furthermore, in view of the
intuitively clear nature of the concept of order, one also gains much insight into
the mechanisms involved in the solution of PDEs, as well as the structure of such
generalized solutions. In this regard, the deescalation from the level of topology and
functional analysis to the level of order proves to be particularly useful and relevant.
However, when it comes to further properties of the solutions, such as for instance
regularity of the solutions, functional analysis, or for that matter any mathematics,
may yet play an important, but secondary role.

As mentioned, the theory of Order Completion is based on rather basic construc-
tions in partially ordered sets. In this regard, let (X,≤X) and (Y,≤Y ) be partially
ordered sets. A mapping

T : X 3 x 7→ Tx ∈ Y (1.94)
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which is injective, but not necessarily surjective, is an order isomorphic embedding
whenever

∀ x0, x1 ∈ X :
Tx0 ≤Y Tx1 ⇔ x0 ≤X x1

(1.95)

A partially ordered set is called Dedekind Order Complete [101] if every set A ⊂ X
which is bounded from above has a least upper bound, and every set which is
bounded from below has largest lower bound. That is,

∀ A ⊆ X :

1)

(
∃ x0 ∈ X :

x ≤X x0, x ∈ A

)
⇒
(
∃ u0 ∈ X :

(x ≤X x0, x ∈ A) ⇒ u0 ≤X x0

)

2)

(
∃ x0 ∈ X :

x0 ≤X x, x ∈ A

)
⇒
(
∃ u0 ∈ X :

(x0 ≤X x, x ∈ A) ⇒ x0 ≤X u0

) .(1.96)

With every partially ordered set (X,≤X) one may associate a Dedekind Order Com-
plete set

(
X],≤X]

)
and an order isomorphic embedding ιX : X → X], see [101],

[102] and [119, Appendix A], such that

∀ x] ∈ X] :
1) L

(
x]
)

= {x ∈ X : ιXx ≤X] x]} 6= ∅
2) U

(
x]
)

= {x ∈ X : x] ≤X] ιXx} 6= ∅
3) supL

(
x]
)

= inf U
(
x]
)

= x]

. (1.97)

Furthermore, if
(
X]

0,≤X]
0

)
is another partially ordered set, and ιX,0 : X → X]

0

an order isomorphic embedding that satisfies (1.97), then there is a bijective order
isomorphic embedding

T : X] → X]
0,

or shortly an order isomorphism, so that the diagram

X] - X]
0

T

@
@

@
@

@
@

@
@@I

�
�

�
�

�
�

�
���

X

ιX ιX,0
(1.98)
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commutes. That is, the Dedekind Order Completion of a partially ordered set is
unique up to order isomorphism.

Also, see [119, Appendix A], if T : X → Y is an order isomorphic embedding,
then T extends uniquely to an order isomorphic embedding

T ] : X] → Y ]

so that the diagram

X - Y
T

? ?

X]
T ]

Y ]-

ιX ιY

commutes. Moreover, for any y0 ∈ Y , we have(
∃! x] ∈ X] :

T ]x] = y0

)
⇔
(
∃ A ⊆ X :

y0 = sup{Tx : x ∈ A}

)
(1.99)

It is within this general context of partially ordered sets and order isomorphic em-
beddings that the Order Completion Method [119] for nonlinear PDEs is formulated.

These basic results on the completion of partially ordered sets and the extensions
of order isomorphisms, may be applied to large classes of nonlinear PDEs in so far as
the existence, uniqueness and basic regularity of generalized solutions are concerned.
In this regard we consider a general, nonlinear PDE

T (x,D)u (x) = f (x) , x ∈ Ω nonempty and open (1.100)

of order m ≥ 1 arbitrary but fixed. The right hand term f : Ω → R is assumed to be
continuous, and the partial differential operator T (x,D) is supposed to be defined
through a jointly continuous mapping

F : Ω× RM → R (1.101)

by the expression

T (x,D)u (x) = F (x, u (x) , ..., Dpu (x) , ..) , x ∈ Ω (1.102)
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where p ∈ Nn satisfies |p| ≤ m. As is well known, see for instance Sections 1.1 and
1.2, a general nonlinear PDE of the form (1.100) through (1.102) will in general
fail to have classical solutions on the whole domain of definition Ω. However, a
necessary condition for the existence of a solution to (1.100) on a neighborhood of
any x0 ∈ Ω may be formulated in terms of the mapping (1.101) in a rather straight
forward way.

In this regard, suppose that for some x0 ∈ Ω there is a neighborhood V of x0

and a function function u ∈ Cm (V ) that satisfies (1.100). That is,

∃ V ∈ Vx0 nonempty, open :
∃ u ∈ Cm (Ω) :

T (x,D)u (x) = f (x) , x ∈ V
, (1.103)

where Vx0 denotes set of open neighborhoods of x0. Then, in view of (1.103), it is
clear that

∀ x ∈ V :
∃ (ξp (x))|p|≤m ∈ RM :

F (x, ..., ξp (x) , ...) = f (x)

. (1.104)

Now, in view of (1.103) and (1.104) it is clear that the condition

∀ x ∈ Ω :

f (x) ∈
{
F (x, ξ) ξ = (ξp)|p|≤m ∈ RM

}
(1.105)

is nothing but a necessary condition for the existence of a classical solution u ∈
Cm (Ω) to (1.100). Many PDEs of applicative interest satisfies (1.105) trivially.
Indeed, in this regard we may note that, since the mapping F is continuous, the set{

F (x, ξ) ξ = (ξp)|p|≤m ∈ RM
}

must be an interval in R which is either bounded, half bounded or equals all of R.
In the particular case of a linear PDE

T (x,D)u (x) =
∑
|α|≤m

aα (x)Dαu (x) , x ∈ Ω

that satisfies

∀ x ∈ Ω :
∃ α ∈ Nn, |α| ≤ m :

aα (x) 6= 0

we have {
F (x, ξ) ξ = (ξp)|p|≤m ∈ RM

}
= R. (1.106)
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This is also the case for most nonlinear PDEs of applicative interest, including large
classes of polynomial nonlinear PDEs. As a mere technical convenience, we shall
assume the slightly stronger condition

∀ x ∈ Ω :

f (x) ∈ int
{
F (x, ξ) ξ = (ξp)|p|≤m ∈ RM

}
(1.107)

In view of (1.106) it follows that (1.107) is also satisfied by the respective classes of
linear and nonlinear PDEs.

Subject to the assumption (1.107) one obtains the local approximation result

∀ x0 ∈ Ω :
∀ ε > 0 :
∃ δ > 0 :
∃ u ∈ C∞ (Ω) :

‖x− x0‖ ≤ δ ⇒ f (x)− ε ≤ T (x,D)u (x) ≤ f (x)

(1.108)

Indeed, from (1.107) it follows that, for ε > 0 small enough, there is some ξε ∈ RM

so that

F (x0, ξ
ε) = f (x0)−

ε

2
. (1.109)

Choosing u ∈ C∞ (Ω) in such a way that

∀ |p| ≤ m :
Dpu (x0) = ξε

p

,

the result follows.

At this junction we should note that, in contradistinction with rather difficult
techniques of the usual functional analytic methods, the local approximation condi-
tion (1.108) follows by from basic properties of continuous functions on Euclidean
space. Furthermore, a global version of (1.108) is obtained as a straightforward ap-
plication of (1.108) and the existence of a suitable tiling of Ω by compact sets, see
for instance [58]. In this regard, we have

∀ ε > 0 :
∃ Γε ⊂ Ω closed nowhere dense :
∃ uε ∈ C∞ (Ω \ Γε) :

x ∈ Ω \ Γε ⇒ f (x)− ε ≤ T (x,D)uε (x) ≤ f (x)

(1.110)

The singularity set Γε in (1.110) is typically generated as the union of countably
many hyperplanes. As such, each of the singularity sets Γε has zero Lebesgue mea-
sure, that is, mes (Γε) = 0.

From a topological point of view, the approximation result (1.110) is extraordi-
narily versatile. Indeed, since the singularity set Γε, for ε > 0, may be constructed
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so that mes (Γε) = 0, the sequence (un) of approximating functions, corresponding
to the sequence

(
εn = 1

n

)
of real numbers, satisfies

∃ E ⊆ Ω :
1) Ω \ E is of First Baire Category
2) mes (Ω \ E) = 0
3) x ∈ E ⇒ T (x,D)un (x) → f (x)

(1.111)

Over and above the mere pointwise convergence almost everywhere, the sequence
(un) also satisfies the stronger condition

∃ E ⊆ Ω :
1) Ω \ E is of First Baire Category
2) mes (Ω \ E) = 0
3) (T (x,D)un) converges to f uniformly on E

(1.112)

Furthermore, since the singularity set Γ 1
n

associated with each function un in the

sequence (un) is of measure 0, each such function is measurable on Ω. Moreover,
one may construct each of the functions un in such a way that

∀ K ⊂ Ω compact :∫
K
|un (x) |dx <∞ (1.113)

Then, in view of (1.112) and (1.113) it follows by rather elementary arguments in
measure theory that

∀ K ⊂ Ω compact :∫
K
|T (x,D)un (x)− f (x) |dx→ 0

(1.114)

The Order Completion Method, as developed in [119] and presented here, oper-
ates on a far more basic level than the respective topological interpretations (1.111)
to (1.114) of the Global Approximation Result (1.110). In this regard, and in view
of the closed nowhere dense singularity sets Γε associated with the approximations
(1.110), the family of spaces

Cm
nd (Ω) =

{
u : Ω → R ∃ Γu ⊂ Ω closed nowhere dense :

u ∈ Cm (Ω \ Γu)

}
(1.115)

prove to be particularly useful. Indeed, in view of the continuity of the mapping F
in (1.102) one may associate with the nonlinear partial differential operator T (x,D)
a mapping

T : Cm
nd (Ω) → C0

nd (Ω) (1.116)

with the property

∀ u ∈ Cm
nd (Ω) :

∀ Γ ⊂ Ω closed nowhere dense :
u ∈ Cm (Ω \ Γ) ⇒ Tu ∈ C0 (Ω \ Γ)
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The space C0
nd (Ω) contains certain pathologies. In particular, consider the simple

example when Ω = R. For different values of α ∈ R, the functions

uα : R 3 x→
{

0 if x 6= α
1 if x = α

each corresponds to a different elements in C0
nd (Ω), although any two such functions

are the same on some open and dense set. In order to remedy this apparent flaw,
one may introduce an equivalence relation on the space C0

nd (Ω) through

u ∼ v ⇔

 ∃ Γ ⊂ Ω closed nowhere dense :
1) u, v ∈ C0 (Ω \ Γ)
2) x ∈ Γ ⇒ u (x) = v (x)

 (1.117)

The quotient space C0
nd (Ω) / ∼ is denoted M0 (Ω), and a partial order is defined

on it through

U ≤ V ⇔


∃ u ∈ U , v ∈ V :
∃ Γ ⊂ Ω closed nowhere dense :

1) u, v ∈ C0 (Ω \ Γ)
2) x ∈ Ω \ Γ ⇒ u (x) ≤ v (x)

 (1.118)

It should be noted that with the order (1.118) the space M0 (Ω) is a lattice. Since

∀ u, v ∈ Cm
nd (Ω) ⊂ C0

nd (Ω) :
u ∼ v ⇒ Tu ∼ Tv

one may associate with the mapping (1.4) in a canonical way a mapping

T : Cm
nd (Ω) →M0 (Ω) (1.119)

so that the diagram

Cm
nd (Ω) - C0

nd (Ω)
T

@
@

@
@

@
@

@
@
@R

�
�

�
�

�
�

�
�

�	

M0 (Ω)

T q∼ (1.120)

commutes, with q∼ the quotient map associated with the equivalence relation (1.117).
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The equation

Tu = f, (1.121)

which is a generalization of the PDE (1.100), does not fit in the framework (1.100)
through (1.94). In particular, the mapping T is, except in extremely particular
cases, neither injective, nor is it monotone. One may overcome these difficulties by
associating an equivalence relation with the mapping T through

∀ u, v ∈ Cm
nd (Ω) :

u ∼T v ⇔ Tu = Tv
(1.122)

We denote the quotient space Cm
nd (Ω) / ∼T by Mm

T
(Ω), and order it through

∀ U, V ∈Mm
T

(Ω) :

U ≤T V ⇔
(
∀ u ∈ U , v ∈ V :

Tu ≤ Tv

)
(1.123)

Clearly, one may now obtain, in a canonical way, an injective mapping

T̂ : Mm
T

(Ω) →M0 (Ω) (1.124)

so that the diagram

Cm
nd (Ω) - C0

nd (Ω)
T

? ?

MLm
T

(Ω)
T̂

M0 (Ω)-

qT q∼ (1.125)

commutes, with qT the quotient mapping associated with the equivalence relation

(1.122). In particular, the mapping T̂ may be defined as

∀ U ∈Mm
T

(Ω) :

T̂ : U 7→ Tu, u ∈ U (1.126)

The mapping T̂ clearly also satisfies (1.95) so that it is an order isomorphic embed-
ding, and the setup (1.95) through (1.99) applies to the generalized equation

T̂U = f , U ∈Mm
T

(Ω) (1.127)
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which, in view of the commutative diagrams (1.120) and (1.125), is equivalent to
(1.121). In this regard, applying (1.110) and (1.99) leads to the fundamental exis-
tence and uniqueness result

∀ f ∈ C0 (Ω) that satisfies (1.107) :

∃! U ] ∈Mm
T

(Ω)] :

T̂ ]U ] = f

(1.128)

where Mm
T

(Ω)] and M0 (Ω)] are the Dedekind completions of Mm
T

(Ω) and M0 (Ω),
respectively, and

T̂ ] : Mm
T

(Ω)] →M0 (Ω)]

is the unique extension of T̂ .

It should be noted that, in contradistinction with the usual functional analytic
and topological methods, the arguments leading to the above existence and unique-
ness result are particularly clear and transparent. Moreover, these arguments remain
valid in a far more general setting. Furthermore, and as we have mentioned, in view
of the transparent and intuitively clear way in which the Dedekind order completion
of a partially ordered set is constructed, the structure of the generalized solution
U ] ∈Mm

T
(Ω)] to (1.100) is particularly clear.

In this regard, we recall the abstract construction of the completion of a partially
ordered set [101], [102], [119]. Consider a nonvoid partially ordered set (X,≤X)
which, for convenience, we assume is without top or bottom. Two dual operations
on the powerset P (X) of X may be defined through

P (X) 3 A 7→ Au =
⋂
a∈A

[a〉 ∈ P (X)

and

P (X) 3 A 7→ Al =
⋂
a∈A

〈a] ∈ P (X)

where [a〉 and 〈a] are the half bounded intervals

[a〉 = {x ∈ X : a ≤X x},

〈a] = {x ∈ X : x ≤X a}.

That is, Au is the set of upper bounds of A, and Al is the set of lower bounds of A.
It is obvious that

Au = X ⇔ Al = X ⇔ A = ∅ (1.129)
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while

Au = ∅ ⇔ A unbounded from above

Al = ∅ ⇔ A unbounded from below. (1.130)

A set A ∈ P (X) is called a cut of the poset X if

A = Aul = (Au)l .

The set of all cuts of X is denoted X̃, that is,

X̃ = {A ∈ P (X) : Aul = A}.

In view of (1.129) and (1.130) we have

∅, X ∈ X̃

so that X̃ 6= ∅. Furthermore, for each A ∈ P (X) we have

A ⊂ Aul ∈ X̃ (1.131)

and (
Aul
)ul

= Aul (1.132)

so that, in view of (1.131) and (1.132) we have

X̃ = {Aul : A ∈ P (X)}.

In particular, for each x ∈ X the set 〈x] belongs to X̃. Furthermore, it is clear that

∀ x0, x1 ∈ X :
〈x0] ⊆ 〈x1] ⇔ x0 ≤ x1

so that the mapping

ιX : X 3 x 7→ 〈x] ∈ X̃ (1.133)

is an order isomorphic embedding when X̃ is ordered through inclusion

A ≤ B ⇔ A ⊆ B.

The main theorem in this regard, due to MacNeille, is the following.

Theorem 3 *[102] Let X be a partially ordered set without top or bottom, and X̃
the set of cuts in X, ordered through inclusion. Then the following statements are
true:
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1. The poset
(
X̃,≤

)
is order complete.

2. The order isomorphic embedding ιX in (1.133) preserves infima and suprema,
that is,

∀ A ⊆ X :
1) x0 = supA⇒ ιXx0 = sup ιX (A)
2) x0 = inf A⇒ ιXx0 = inf ιX (A)

3. For A ∈ X̃, we have the order density property X in X̃, namely

A = supX̃{ιXx : x ∈ X ,〈x] ⊆ A}

= infX̃{ιXx : x ∈ X ,〈x] ⊇ A}

An easy corollary to MacNeille’s Theorem 3 is the following Dedekind Completion
Theorem.

Corollary 4 Suppose that the partially ordered set X is a lattice. Then the partially
ordered set

X] = X̃ \ {X, ∅}

ordered through inclusion is a Dedekind complete lattice. Furthermore, the mapping

ιX : X 3 x 7→ 〈x] ∈ X]

is an order isomorphic embedding which preserves infima and suprema. Further-
more, the order density property

A = supX̃{ιXx : x ∈ X ,〈x] ⊆ A}

= infX̃{ιXx : x ∈ X ,〈x] ⊇ A}

also holds.

Now, in view of the above general construction, we may interpret the existence
and uniqueness result (1.128) for the solutions to continuous nonlinear PDEs of the
form (1.100) through (1.102), subject to the assumption (1.107) as follows. From
the approximation result (1.110) and the definition (1.126) it follows that

f = sup{T̂U : U ∈Mm
T

(Ω) , T̂U ≤ f}

Then, in view of the definition (1.123) of the partial order on Mm
T

(Ω), as well as

Corollary 4, the generalized solution U ] to (1.100) may be expressed as

U ] = {U ∈Mm
T

(Ω) : T̂U ≤ f}
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Finally, recalling the structure of the quotient space, and in particular the equiva-
lence relation (1.122) one has

U ] = {u ∈ Cm
nd (Ω) : Tu ≤ f}

The unique generalized solution to (1.100) may therefore be interpreted as the to-
tality of all subsolutions u ∈ Cm

nd (Ω) to (1.100) which includes also all exact classical
solutions, whenever such solutions exist, and all generalized solutions in Cm

nd (Ω). In
this regard, we may notice that the notion of generalized solution through Order
Completion is consistent with the usual classical solutions as well as with generalized
solutions in Cm

nd (Ω).

The Order Completion Method also provides a blanket regularity, see [8] and [9],
for the solutions to nonlinear PDEs, in the following sense, which is a consequence
of the fact that the Dedekind completion of the space M0 (Ω) may be represented
as the set Hnf (Ω) of all nearly finite Hausdorff continuous interval valued functions.
In this regard, there is then an order isomorphism

F0 : M0 (Ω)] → Hnf (Ω) (1.134)

Then, since the mapping

T̂ ] : Mm
T

(Ω) →M0 (Ω)]

is an order isomorphic embedding, it follows that

T̂ ] ◦ F0 : Mm
T

(Ω) → Hnf (Ω)

is an order isomorphic embedding. In this way, the generalized solution to (1.100)
may be seen as being assimilated with usual Hausdorff continuous functions.

At this point we have only considered existence and uniqueness of generalized
solutions to free problems. That is, we have only solved the equation (1.100) with-
out imposing any addition boundary and / or initial conditions. It is well know
that, in the traditional functional analytic approaches to PDEs, in particular those
that involve weak solutions and distributions, the further problem of satisfying such
additional conditions presents difficulties that most often require entirely new and
rather difficult techniques. This is particularly true when distributions, their restric-
tions to lower dimensional manifolds and the associated trace operators are involved.
In contrast to the well known difficulties caused by the presence of boundary and
/ or initial conditions in the customary methods for PDEs, the Order Completion
Method incorporates such conditions in a rather straight forward and easy way, as
demonstrated by several examples, see for instance [119, Part II]. This is achieved
by first obtaining an appropriate version of the global approximation result (1.110)
that incorporates the respective boundary and / or initial value problem. The key is
what amounts to a separation of the problem of satisfying the PDE and that of satis-
fying the additional condition. In this way, boundary and / or initial value problems
are solved, essentially, by the same techniques that apply to the free problem.
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As a final remark concerning the theory for the existence and regularity of the
solutions to arbitrary continuous nonlinear PDEs, as we have sketched it in this
section, we mention certain possibilities for further enrichment of the basic theory.
In particular, the following may serve as guidelines for such an enrichment.

(A) The space of generalized solutions to (1.100) may depend on the PDE

operator T (x,D)

(B) There is no differential structure on the space of generalized solutions

In order to accommodate (A), one may do away with the equivalence relation (1.122)
on Cm

nd (Ω), and instead consider

u ∼ v ⇔

 ∃ Γ ⊂ Ω closed nowhere dense :
1) u, v ∈ Cm (Ω \ Γ)
2) x ∈ Ω \ Γ ⇒ u (x) = v (x)


to obtain the quotient space Mm (Ω). Furthermore, one may consider a partial
order other than (1.123), which does not depend on the partial differential operator
T (x,D). Indeed, in the original spirit of Sobolev spaces, one may consider the
partial order

∀ U, V ∈Mm (Ω) :

U ≤D V ⇔
(
∀ |α| ≤ m :

DαU ≤ DαV

)
which could also solve (B). However, such an approach presents several difficulties.
In particular, the existence of generalized solutions in the Dedekind completion of
the partially ordered set (Mm (Ω) ,≤D) is not clear. In fact, the possibly nonlinear
mapping T associated with the PDE (1.100) cannot be extended to the Dedekind
completion in a unique and meaningful way, unless T satisfies some additional and
rather restrictive conditions. We mention that the use of partial orders other than
(1.123) was investigated in [119, Section 13], but the partial orders that are con-
sidered are still in some relation to the PDE operator T (x,D). Regarding (B),
we may recall that there is in general no connection between the usual order on
Mm (Ω) ⊂M0 (Ω) and the derivatives of the functions that are its elements.

One possible way of going beyond the basic theory of Order Completion is mo-
tivated by the fact that the process of taking the supremum of a subset A of a
partially ordered set X is essentially a process of approximation. Indeed,

x0 = supA (1.135)

means that the set A approximates x0 arbitrarily close from below. Approximation,
however, is essentially a topological process. In this regard, the various topological
interpretations (1.111) through (1.114) of the global approximation result (1.110)
present a myriad of new opportunities. Therefore, and in connection with (1.135),
perhaps the most basic approach, and the one nearest the basic Theory of Order
Completion would comprise a topological type model for the process of Dedekind
completion of M0 (Ω).
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1.5 Beyond distributions

Ever since Schwartz [145] proved the so called Schwartz Impossibility Result, and
Lewy [97] gave an example of a linear, variable coefficient PDE with no distributional
solution, and in particular over the past four decades, there has been an increasing
awareness that the usual methods of linear functional analysis, which are quite
effective in the case of linear PDEs, in particular those with constant coefficients,
cannot be reproduced in any general and consistent way when dealing with nonlinear
PDEs.

As such, a number of other methods, mostly based on linear functional analysis,
were introduced. Many of these theories, it should be mentioned, depend far less
on the sophisticated tools of functional analysis than is the case, for instance, with
the D’ distributions. In this regard, we mention here the Theory of Monotone
Operators [31], and the theory of Viscosity Solutions, see for instance [42]. These
methods, however, were developed with particular types of equations in mind, and
their powers are therefore limited to those particular types of equations for which
they were designed. It should be noted that, in those cases when these methods
do apply, they have proven to be effective beyond the earlier functional analytic
methods.

Recently, a general and type independent theory for the existence and regularity
of generalized solutions of systems of nonlinear PDEs, based on techniques from
Hilbert space, was initiated by J Neuberger, see [115] through [118]. This theory
is based on a generalized method Steepest Descent in suitably constructed Hilbert
spaces. Since this theory is not restricted to any particular class of nonlinear PDEs,
that is, it is general and type independent, it bears comparison with methods de-
veloped in Part II of this work. As such, we include below a short account of the
underlying ideas involved.

In this regard, let H be a suitable Hilbert space of generalized functions, for
instance, H might be one of the Sobolev spaces H2,m (Ω). For a given nonlinear
PDE

T (x,D)u (x) = f (x) , (1.136)

the method is supposed to produce a generalized solution in H. In order to obtain
such a generalized solution, a suitable real valued mapping

φT : H → R (1.137)

is associated with with the nonlinear partial differential operator T (x,D) such that
the critical points u ∈ H of φT correspond to the solutions of (1.136) in H.

In this regard, recall that the derivative of a mapping

φ : H → R
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at u ∈ H is a continuous linear mapping

φ′u : H → R

that satisfies

lim
v→0

|φ (u+ v)− φ (u)− φ′u (v) |
‖v‖

= 0.

We may associated with the function φ a mapping

Dφ : H 3 u 7→ φ′u ∈ H ′ (1.138)

where H ′ is the dual of the Hilbert space H. The mapping φ is C1-smooth on H
whenever the mapping (1.138) is continuous. For such a C1-smooth mapping φ, the
gradient of φ is the mapping

∇φ : H → H

such that

∀ u, v ∈ H :
φ′u (v) = 〈v,∇φ (u)〉H

. (1.139)

The gradient mapping ∇φ exists since Dφ is continuous. A critical point of φ is any
u ∈ H such that (∇φ) (u) = 0.

Neuberger’s method involves techniques to show the existence of critical points
to mappings (1.137) associated with a nonlinear PDE, as well as effective numerical
computation of such critical points. This involves, inter alia, the adaptation of the
gradient mapping (1.139), as well as modifications of Newton’s Method of Steepest
Descent to the particular problem at hand.

It should be noted that the underlying ideas upon which these methods are based
do not depend on any particular form of the nonlinear partial differential operator
T (x,D). As such, the theory is, to a great extent, general and type independent.
However, the relevant techniques involve several highly technical aspects, which
have, as of yet, not been resolved for a class of equations comparable to that to
which the Order Completion Method applies. On the other hand, the numerical
computation of solutions, based on this theory, has advances beyond the scope of
analytic techniques. In this regard, remarkable results have been obtained, see for
instance [118].

 
 
 



Chapter 2

Topological Structures in Analysis

2.1 Point-Set Topology: From Hausdorff to Bour-

baki

Topology, generally speaking, may be described as that part of mathematics that
deals with shape and nearness without explicit reference to magnitudes. The first
results of a topological nature date back to Euler, who solved the now well known
‘Bridges of Köningstad’ problem. Cantor, however, gave the first description of the
topology on R in the modern spirit of the subject. Namely, Cantor introduced the
concept of an open set in R. It was only in 1906 when a general framework was
introduced in which to describe such concepts as distance, nearness, neighborhood
and convergence in an abstract setting.

In this regard Fréchet [59] introduced the concept of a metric space, which gen-
eralizes the Euclidean spaces

Rn =

{
x = (xi)i≤n

∀ i ∈ N, i ≤ n :
xi ∈ Rn

}
, n ≥ 1 (2.1)

with the usual Euclidean metric

d2 : Rn × Rn 3 (x, y) 7→

(∑
i≤n

(xi − yi)
2

) 1
2

∈ R+ ∪ {0} (2.2)

which, in the case n = 3, coincides with our everyday experience of the distance
between two points in space. The concept of a metric space is a generalization of
(2.1) to (2.2) in two different, yet equally important ways.

In the first place, the set Rn of n-tuples of real numbers is replaced by an ar-
bitrary, nonempty set X. Furthermore, the mapping d2 : Rn × Rn → R+ ∪ {0} is
replaced by a suitable real valued mapping

dX : X ×X → R+ ∪ {0} (2.3)

45
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where for each x, y ∈ X, the real number dX (x, y) is interpreted as the distance
between x and y. The properties that the metric dX in (2.3) is supposed to satisfy
are suggested by our everyday experience with the distance between two points in
three dimensional space, which may be expressed in mathematical form through
(2.2). In particular, any two points in space are at a fixed, nonnegative distance
from each other, which is expressed as the relation

∀ x, y ∈ X :
dX (x, y) ≥ 0

. (2.4)

Furthermore, the distance between any two distinct points is positive, that is,

∀ x, y ∈ X :
d (x, y) = 0 ⇔ x = y

. (2.5)

Moreover, distance, as we commonly experience it, is a symmetric relation. That
is, moving from point A to point B in three dimensional space along a straight line,
one traverses the same distance as if we were moving from B to A. In general, this
may be expressed as

∀ x, y ∈ X :
dX (x, y) = dX (y, x)

. (2.6)

The fourth and final condition has rather strong geometric antecedents, as well
as consequences. In this regard, consider two distinct points A and B in three
dimensional space. The shortest path that can be traced out by a particle moving
from the point A to the point B is the straight line connecting A and B. This may
be generalized by the condition

∀ x, y, z ∈ X :
dX (x, y) ≤ dX (x, z) + dX (z, y)

. (2.7)

Within such a general framework it is possible to describe a variety of concepts
that are of importance in analysis. In this regard, one may formulate the notion
of convergence of a sequence without reference to the particular properties of the
elements of the underlying set X. Furthermore, Cantor’s concept of an open set in R
has a natural and straight forward generalization to metric spaces. Moreover, within
the setting of metric spaces, one may define the fundamental concept of continuity
of a function

u : X → Y

in far more general cases than had previously been considered.

However, the way in which metric spaces are defined in (2.3) to (2.7) places
rather serious limitations on the possible structures that may be conceived of in this
way. A most simple example will serve to illustrate the limitations of the concept
of a metric space.
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Example 5 Consider the set RR of all functions u : R → R. A sequence (un) in
RR converges pointwise to u ∈ RR whenever

∀ x ∈ R :
∀ ε > 0 :
∃ N (x, ε) ∈ N :

n ≥ N (x, ε) ⇒ |u (x)− un (x) | < ε

. (2.8)

There is no metric d on RR for which (2.8) is equivalent to

∀ ε > 0 :
∃ N (ε) ∈ N :

n ≥ N (ε) ⇒ d (u, un) < ε
. (2.9)

In this regard consider the function

u : R 3 x 7→


0 if x /∈ Q

1 if x ∈ Q

Write the set Q in the form of a sequence Q = {q1, q2, ...}. For each n ∈ N let
Qn = {q1, ..., qn}. For each n ∈ N, define the function un as

un : R 3 x 7→


0 if x /∈ Qn

1 if x ∈ Qn

Clearly the sequence (un) converges pointwise to u.

Let C0 (R,R) denote the subspace of RR consisting of all continuous functions
u : R → R. Suppose that there exists a metric d on RR so that (2.9) is equivalent to
(2.8). Let C0 (R)c denote the closure of C0 (R) in RR with respect to the metric d,
that is,

C0 (R)c =

{
u ∈ RR ∃ (un) ⊂ C0 (R) :

(un) converges to u w.r.t. d

}
Each function un is the pointwise limit of a sequence of continuous functions. As
such, un ∈ C0 (R)c for each n ∈ N, and consequently u ∈ C0 (R)c. Therefore there
exists a sequence (vn) of continuous functions that converges pointwise to u. Then
u is continuous everywhere except on a set of First Baire Category [121], which is
clearly not the case.

In view of Example 5 it is clear that, even though Fréchet’s theory of metric
spaces provides a useful framework in which to formulate some problems in analysis,
there are certain rather basic and important situations that cannot be described in
terms of metric spaces. Furthermore, the axioms (2.4) through (2.7) of a metric
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are all based on our geometric intuition, an intuition which is most typically based
solely on our experience of the usual three dimensional space we believe ourselves
to reside in. As such, it turns out to fail in capturing other, more general notions
of space.

In order to obtain more general structures than metric spaces, one may replace
the conditions (2.3) to (2.7) on the mapping d : X ×X → R that defines the metric
space structure with less stringent ones to obtain, for instance, a pseudo-metric
space. This, however, would miss the essence of the matter.

F Hausdorff was the first to free topology from our geometric intuition. In
particular, the fundamental concept in Hausdorff’s view of topology is not that of
‘distance’, but rather a generalization of Cantor’s definition of open set. Moreover,
this is done in purely set theoretic terms, and, in general, is does not involve any
notion of magnitude.

In this regard, we recall what it means for two metrics d0 and d1 on a set X to
be equivalent. Namely, d0 and d1 are considered equivalent whenever

∀ x0 ∈ X :
∃ αx0,0, αx0,1 > 0 :

αx0,0d0 (x0, x) ≤ d1 (x0, x) ≤ αx0,1d0 (x0, x) , x ∈ X
. (2.10)

That is, every open ball with respect to d0 contains an open ball with respect to
d1 and, conversely, every open ball with respect to d1 contains an open ball with
respect to d0. Then it is clear that, for any two metrics d0 and d1 on X we have(

∀ U ⊆ X :
U open w.r.t. d0 ⇔ U open w.r.t. d1

)
⇔ d0 equivalent to d1 (2.11)

In view of the equivalence of (2.10) through (2.11), we may describe a metric
space (X, d) uniquely by either specifying the metric explicitly, or by specifying
the collection τ of open sets. Therefore, in order to generalize the concept of metric
space, one may, as mentioned, relax some of the conditions (2.4) to (2.7), or consider
a suitable family of mappings. On the other hand, one may generalize the concept
of ‘open set’. Not only is the structure of the metric space uniquely and equivalently
specified in terms of either one of these two concepts, but, and equally importantly,
the continuous functions

u : X → Y,

where Y is another metric space, are also uniquely and equivalently specified.

As mentioned, Hausdorff’s concept of topology is based on a generalization of
the concept of an open set. In this regard, one may deduce, from the definition of
an open set in a metric space, and the axioms of a metric (2.3), certain properties
of open sets which may be stated without reference to the metric. First of all, for
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some metric space (X, dX), we note that, both the entire space X and the empty
set ∅ are open. That is,

X, ∅ ∈ τXd
, (2.12)

where τXd
denotes the collection of open subsets of X, with respect to the metric

dX . Indeed,

∀ x0 ∈ X :
∀ δ > 0 :

Bδ (x0) ⊆ X

and x0 ∈ ∅
∀ δ > 0 :
∃ x /∈ ∅ :

dX (x0, x) < 0

 = ∅

Furthermore, the collection of open sets are closed under the formation of finite
intersections. That is,

∀ U1, ..., Un ∈ τdX
:

U =
⋂n

i=1 Ui ∈ τdX

(2.13)

Indeed, is U either empty, or nonempty. In case U is nonempty, we have

∀ x0 ∈ U :
∀ i = 1, ..., n :
∃ δx0,i > 0 :

Bδx0,i
(x0) ⊆ Un

Hence, upon setting δx0 = inf{δx0,i : i = 1, ..., n}, it is clear that Bδ (x0) ⊆ U , so
that U ∈ τdX

. Moreover, the union of any collection of open sets is open, so that

∀ {Ui : i ∈ I} ⊆ τdX
:

U =
⋃
i∈I

Ui ∈ τdX
(2.14)

It is these three properties (2.12), (2.13) and (2.14), together with the so called
Hausdorff property

∀ x0, x1 ∈ X :
∃ U0, U1 open sets :

1) U0 ∩ U1 = ∅
2) x0 ∈ U0, x1 ∈ U1

(2.15)

that Hausdorff [70] set down as the axioms of his topology. In particular, Hausdorff
defined a topology on a set X to be any collection τ of subsets of X that satisfies
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(2.12), (2.13), (2.14) and (2.15), and termed the pair (X, τ) a topological space.
With the minor revision of omitting the Hausdorff Axiom (2.15), this definition
has remained unchanged for nearly a century. Hausdorff’s theory was subsequently
developed by several authors, chief among these being Kuratowski [93], [94], and
the Bourbaki group [30].

In particular, the Bourbaki group, and most notably A Weil [160], introduced the
highly important concept of a uniform space as a generalization of that of a metric
space, within the context of topological spaces. The concept of uniform space allows
for the definition of Cauchy sequences, or more generally Cauchy filters, as well as
the associated concepts of completeness and completion.

Hausdorff’s concept of topology, although rather abstract, proved extraordinarily
useful, in particular in analysis. By the middle of the 20th century, mathematicians
realized that Hausdorff’s topology could provide the framework within which Ba-
nach’s powerful results on normed vector spaces [17] could be generalized. With
the subsequent development of the theory of locally convex spaces, the much sought
generalizations were, to a limited extent, fulfilled. However, even at this early stage
of development of topology, and its applications to mathematics in general, in par-
ticular analysis, certain deficiencies in general topology became apparent.

2.2 The Deficiencies of General Topology

As mentioned, Hausdorff’s concept of topology proved to be particularly useful in
generalizing classical result in analysis, for instance the powerful tools of linear
functional analysis developed by Banach [17] within the setting of metric linear
spaces. In spite of the great utility of these techniques, several serious deficiencies of
General Topology had emerged by the middle of the twentieth century. In particular,
the most important failure of the category of topological spaces is that it is not
Cartesian closed, which is as much as to say that there is no natural topological
structure for function spaces.

In this regard, recall that if X, Y and Z are sets, then one has the relation

ZX×Y '
(
ZX
)Y
. (2.16)

That is, there is a canonical one-to-one correspondence between functions

f : X × Y → Z (2.17)

and functions

g : Y → ZX = {h : X → Z}. (2.18)

Indeed, with any function (2.17) we may associate the function

f̃ : Y 3 y → f (·, y) ∈ ZX . (2.19)
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That is,

f̃ (y) : X 3 x 7→ f (x, y) ∈ Z (2.20)

Conversely, with a function (2.18) we can associate the mapping

g : X × Y 3 (x, y) 7→ g (y) (x) ∈ Z (2.21)

Within the context of topological spaces (2.16) is naturally formulated in terms
of continuous functions. In this case, the exponential law (2.16) may be expressed
as

C (X × Y, Z) ' C (Y, C (X,Z)) , (2.22)

In general, (2.22) is not satisfied. That is, there are plenty of topological spaces X,
Y and Z, that are of significant interest, such that there is no topology τ on the
spaces of continuous functions in (2.22) for which (2.22) holds.

Indeed, let

f : X × Y → Z. (2.23)

be a continuous map. With the mapping (2.23) we may associate a mapping

Ff : Y 3 y 7→ Ff (y) ∈ C (X,Z) (2.24)

defined as

Ff : X 3 x 7→ f (x, y) ∈ Z

Conversely, with a mapping

F : Y → C (X,Z) (2.25)

we may associate a mapping

fF : X × Y → Z (2.26)

defined as

fF : X × Y 3 (x, y) 7→ (F (y)) (x) ∈ Z

Suppose that C (X, Y ) is equipped with the compact-open topology, which is speci-
fied by the subbasis {

S (K,U)
1) K ⊆ X compact
2) U ⊆ Y open

}
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where

S (K,U) = {f ∈ C (X, Y ) : f (K) ⊆ U}.

In view of the continuity of the mapping (2.23), it follows that the associated map-
ping (2.24) must also be continuous. Conversely, if X is locally compact and Haus-
dorff, then the mapping (2.26) associated with the mapping (2.25) is continuous
whenever the mapping (2.25) is continuous. Therefore, in case X is locally compact
and Hausdorff, (2.23) through (2.26) specifies a bijective mapping

χ : C (X × Z, Y ) 3 f 7→ Ff ∈ C (Z, C (X, Y )) (2.27)

Moreover, if Y and Z are also locally compact, the mapping (2.27) is a homeomor-
phism, which is as much as to say that the exponential law (2.22) holds for locally
compact spaces X, Y and Z, and the compact open topology on the relevant spaces
of continuous functions.

This is known as the universal property of the compact open topology, within the
class of locally compact spaces. However, when the assumption of local compactness
on any of the spaces X, Y or Z is relaxed, then, in general, either the mapping (2.26)
associated with (2.25) fails to be continuous, or the mapping (2.27) is no longer a
homeomorphism, see for instance [110]. In particular, unless all the spaces X, Y
and Z are locally compact, there is no topology on C (X,Y ) so that the above
construction holds.

Other rather unsatisfactory consequence of the mentioned categorical failure of
topology, namely, that the category of topological spaces is not Cartesian closed,
appears in connection with quotient mappings. Recall that a topological quotient
map is a surjective map

q : X → Y

between topological space X and Y that satisfies

∀ U ⊆ Y :
U open in Y ⇔ q−1 (U) open in X

(2.28)

Such maps appear frequently in topology, as well as in its applications to analysis.
However, as mentioned, several irregularities appear in connection with quotient
mappings [11], of which we mention only the following.

Quotient maps are not hereditary. That is, if q : X → Y is a quotient mapping,
and A a subset of Y , then the surjective, continuous mapping

qA : q−1 (A) → A

obtained by restriction q to q−1 (A) in X, is, in general, not a quotient map with
respect to the subspace topologies on A and q−1 (A). To see that this is so, consider
the following example [126].
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Example 6 Consider the sets X = {0, 1, 2} and Y = {0, 1, 2, 3}. On X consider
the topology τX = {{0, 2}, {1, 3}, X, ∅}, and equip Y with the topology τY = {Y, ∅}.
Then the mapping

q : X 3 x 7→


0 if x = 0

1 if x = 1

2 if x ∈ {2, 3}

is continuous and surjective. In particular, q is a quotient map. Now consider the
subset A = {0, 1} of Y , so that B = q−1 (A) = {0, 1}. The subspace topology on A is
τA = {A, ∅}, while the subspace topology on B is τB = {{0}, {1}, B, ∅}. Clearly the
mapping qA, which is simply the mapping q restricted to B, is not a quotient map.

Furthermore, quotient maps are not productive. That is, if {Xi : i ∈ I} and
{Yi : i ∈ I} are families of topological spaces, and for each i ∈ I, the mapping

qi : Xi → Yi

is a quotient map, then the product of the family of mappings {qi : i ∈ I}, which is
defined as

q :
∏
i∈I

Xi 3 x = (xi)i∈I 7→ q (x) = (qi (xi))i∈I ∈
∏
i∈I

Yi, (2.29)

is not a quotient map with respect to the product topologies on
∏
Xi and

∏
Yi.

Indeed, consider the following example [126].

Example 7 On R consider the equivalence relation ∼ defined through

∀ x0, x1 ∈ R :
x0 ∼ x1 ⇔ x0 = x1 or {x0, x1} ⊂ Z (2.30)

Let q∼ : R → R/ ∼ denote the canonical map associated with the equivalence relation
(2.30), and equip R/ ∼ with the quotient topology

∀ U ⊆ R/ ∼π :
U ∈ τω ⇔ q−∼ (U) open in R

so that q∼ is a quotient map. Let idQ denote the identity mapping on the rational
numbers Q. Then the mapping

q∼ × idQ : R×Q 3 (x, r) 7→ (q∼x, r) ∈ R×Q

is continuous and surjective. If q∼ × idQ were a quotient map, then it would map
saturated closed sets onto closed sets. Recall that a closed set is saturated if it is
the inverse image of a subset of R/ ∼ ×Q under q∼ × idQ. Let (an) be a sequence
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of irrational numbers converging to 0. For each n ∈ N, let (rn,m) be a sequence of
rational numbers converging to an. Set

A =

{(
n+

1

m
, rn,m

)
: n,m ∈ N and m > 1

}
.

A is closed and saturated in R×Q, but (q∼ × idQ) (A) is not closed in R/ ∼ ×Q.

As we have mentioned, the lack of a ‘universal topological structure’ for function
spaces, as well as the well known difficulties that appear in connection with quotient
mappings, is in fact only a concrete manifestation of the fundamental categorical flaw
in Hausdorff’s topology. Namely, that the category TOP of all topological spaces
with continuous mappings is not Cartesian closed. This flaw of TOP manifests
itself even in the relatively simple setting of locally convex linear topological spaces.
In particular, if E is a locally convex space with topological dual E∗, then, unless
E is a normable space, there is no locally convex topology on the dual E∗ so that
the simple evaluation mapping

ev : E × E∗ 3 (x, x∗) 7→ x∗ (x) ∈ K (2.31)

is continuous, with K the scalar field R or C. To see that this is so, suppose that E
is a locally convex space so that the evaluation mapping (2.31) is continuous with
respect to some vector space topology τLE on LE. Since (2.31) is continuous at
(0, 0), there is a zero neighborhood W in LE, and a convex zero neighborhood U
in E such that W (U) is contained in the unit disc in K. Since W is absorbing, U
is bounded in the weak topology and therefore bounded in E. Since E contains a
bounded zero neighborhood, it is normed.

In view of the remarks above, it is clear that Hausdorff’s concept of ‘topological
space’ is not a satisfactory one. In particular, due to the categorial failures of the
category TOP, there is no natural structure on function spaces. One solution to
this problem is provided by the theory of convergence spaces [26].

2.3 Convergence Spaces

As was observed in Section 2.2, the Hausdorff-Kuratowski-Bourbaki concept of
topology suffers from serious deficiencies, which manifest themselves even in the
relatively simple setting of locally convex topological vector spaces. Over and above
these basic flaws, this notion of topology is rather restrictive, which may be seen
from the fact that several useful modes of convergence cannot be adequately de-
scribed in terms of the usual topology. In this regard, one may recall the following
examples, see [120], [126] and [154].

Example 8 Consider on the real line R the usual Lebesgue measure mes, and denote
by M (R) the space of all almost everywhere (a.e.) finite, measurable functions on
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R, with the conventional identification of functions a.e. equal. A natural notion of
convergence on M (R) is that of convergence a.e. That is,

∀ (un) ⊂M (R) :
∀ u ∈M (R) :

(un) converges a.e. to u⇔
(
∃ E ⊂ R, mes (E) = 0 :

x ∈ R \ E ⇒ un (x) → u (x)

) (2.32)

There is no topology τ on M (R) so that a sequence converges with respect to τ if
and only if it converges a.e. to the same function. To see this, suppose that such a
topology, say τae, exists, and let (un) be a sequence which converges in measure to 0,
but fails to converge a.e.. Then there is a τae neighborhood V of the constant zero
function, and a subsequence (unm) of (un) so that

∀ nm ∈ N :
unm /∈ V (2.33)

Since (un) converges to 0 in measure, so does the subsequence (unm). A well know
theorem, see for instance [85], states that the subsequence (unm) contains a further
subsequence

(
unmk

)
that converges a.e. to 0. Therefore the sequence

(
unmk

)
is

eventually in V , which contradicts (2.33).

Example 9 Consider on the space C0 (R) of all continuous, real valued functions
on R the pointwise order

u ≤ v ⇔
(
∀ x ∈ R :

u (x) ≤ v (x)

)
(2.34)

With respect to this order, and the usual vector space operations, the space C (R) is
an Archimedean vector lattice [101]. A sequence (un) in C0 (R) order converges to
u ∈ C0 (R) whenever

∃ (λn) , (µn) ⊂ C0 (R) :
1) λn ≤ λn+1 ≤ un ≤ µn+1 ≤ µn, n ∈ N
2) sup{λn : n ∈ N} = u = inf{µn : n ∈ N}

(2.35)

There is no topology τo on C0 (R) so that a sequence converges to u ∈ C0 (R) with
respect to τo if and only if it order converges to u. To see this, consider the sequence
(un) defined as

un (x) =


1− n|x− qn| if |x− qn| < 1

n

0 if |x− qn| ≥ 1
n

Here Q ∩ [0, 1] = {qn : n ∈ N} is the set of rational numbers in the interval [0, 1],
ordered as usual, so that the complement of any finite subset of Q ∩ [0, 1] is dense
in [0, 1]. For any N0 ∈ N, we have

sup{un : n ≥ N0} (x) = 1, x ∈ R
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and

inf{un : n ≥ N0} (x) = 0, x ∈ R

so that this sequence does not order converge to 0. Suppose that there exists a topol-
ogy τo on C0 (R) that induces order convergence. Then there is some τo-neighborhood
V of 0, and a subsequence (unm) of (un) which is always outside of V . Let (qnm) de-
note the sequence of rational numbers associated with the subsequence (unm). Since
this sequence is bounded, there is a subsequence

(
qnmk

)
of it, and some real number

q ∈ [0, 1] so that
(
qnmk

)
converges to q. Let

(
unmk

)
be the subsequence of (unm)

corresponding to the sequence of rational numbers
(
qnmk

)
. Then it is clear that

∀ ε > 0 :
∃ Nε ∈ N :

nmk
> Nε ⇒ unmk

(x) = 0, |x− q| > ε

Set εl = 1
l

for each l ∈ N. Define the sequence
(
µnmk

)
in C0 (R) as

µnmk
(x) =


0 if |x− q| ≥ 2εl

1 if |x− q| ≤ εl

|q−x|
εl

+ 2 if εl < |x− q| < 2εl

whenever Nεl
< nmk

< Nεl+1
. The sequence

(
µnmk

)
decreases to 0, and

unmk
≤ µnmk

, nmk
∈ N

so that
(
unmk

)
order converges to 0. Therefore, it must eventually be in V , a con-

tradiction. Therefore the topology τo cannot exists.

We have given two useful and well known examples of concepts of sequential
convergence that cannot be described in terms of the usual Hausdorff-Kuratowski-
Bourbaki formulation of topology. Note that the concept of order convergence as
introduced in Example 9 may be formulated in terms of an arbitrary partially or-
dered set (X,≤). In particular, if X is the set M (R) of usual measurable functions
on R, modulo almost everywhere equal functions, with the pointwise a.e. order,
then (2.32) is identical with the order convergence. The order convergence is widely
used, particularly in the theory of vector lattices, where, for instance, it appears in
connection with σ-continuous operators, and in particular integral operators [163].

In view of Examples 8 and 9, as well as the lack of a natural topological structure
for function spaces discussed in Section 2.2, a more general notion of topology may
be introduced. In this regard, we recall that a given topological space (X, τ) may
be completely described by specifying the convergence associated with the topology
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τ . More precisely, for each x ∈ X, we may specify the set λτ (x) consisting of those
filters on X which converge to x with respect to τ . That is,

λτ (x) = {F a filter on X : Vτ (x) ⊆ F} (2.36)

where Vτ (x) denotes the τ -neighborhood filter at x ∈ X. In particular, if (xn) is a
sequence in X, then we may associate with it its Frechét filter

〈(xn)〉 = [{{xn : n ≥ k} : k ∈ N}].

If (xn) converges to x ∈ X with respect to the topology τ on X, that is,

∀ V ∈ Vτ (X) :
∃ NV ∈ N :

n ≥ NV ⇒ xn ∈ V
, (2.37)

then we must have

Vτ (x) ⊆ 〈(xn)〉

Conversely, if Vτ (x) ⊆ 〈(xn)〉, then we must have (2.37). As such, the definition
(2.36) of filter convergence in a topological space is nothing but a straight forward
generalization of the corresponding notion for sequences.1

Remark 10 Recall that a filter F on X is a nonempty collection of nonempty
subsets of X such that

∀ F ∈ F :
∀ G ⊆ X :

F ⊆ G⇒ G ∈ F

and

∀ F,G ∈ F :
F ∩G ∈ F .

A filter base for a filter is any collection B ⊆ F so that

[B] =

{
F ⊆ X

∃ B ∈ B :
B ⊆ F

}
= F .

An ultrafilter on X is a filter which is not properly contained in any other filter. In
particular, for each x ∈ X, the filter

[x] = {F ⊆ X : x ∈ F}

is an ultrafilter on X. The intersection of two filters F and G on X is defined as

F ∩ G =

{
H ⊆ X

∃ F ∈ F , G ∈ G :
F ∪G ⊆ H

}
and it is the largest filter, with respect to inclusion, contained in both G and F . A
filter F is finer than G, or alternatively G is coarser than F , whenever G ⊆ F .

1In the sequel, we will make no distinction between a sequence and its associated Frechét filter.
As such, we will denote both entities by (xn). The meaning will be clear from the context.
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More generally, a convergence structure [26] on a set X is defined as follows.

Definition 11 A convergence structure on a nonempty set X is a mapping λ from
X into the powerset of the set of all filters on X that, for each x ∈ X, satisfies the
following properties.

(i) [x] ∈ λ (x)

(ii) If F , G ∈ λ (x) then F ∩ G ∈ λ (x)

(iii) If F ∈ λ (x) and F ⊆ G then G ∈ λ (x).

The pair (X,λ) is called a convergence space. When F ∈ λ (x) we say that F
converges to x and write “F → x”.

Concepts of convergences and convergence spaces that are more general than topo-
logical spaces were introduced and developed by several authors, see for instance
[33], [37], [38], [51], [57], [78], [79] and [89]. The above Definition 11 is widely used
and has proved to be a rather convenient one.

It is clear that the mapping λτ associated with a topology τ on a set X through
(2.36) is a convergence structure. However, the concept of a convergence structure
is far more general than that of a topology. Indeed, convergence almost everywhere
of measurable functions, and the order convergence of sequences in C (R) discussed
in Examples 8 and 9, respectively, are induced by suitable convergence structures,
but cannot be induced by a topology. The most striking generalization inherent in
Definition 11 may be formulated as follows. For every x ∈ X, the set of filters λτ (x)
that converge to x ∈ X with respect to the topology τ on X has a least element with
respect to inclusion. Namely, the neighborhood filter Vτ (x) at x ∈ X. In particular,
for each x ∈ X we have

Vτ (x) =
⋂

F∈λτ (x)

F =

{
V ⊆ X

∀ F ∈ λτ (x) :
V ∈ F

}
. (2.38)

More generally, for every subset {Fi : i ∈ I} of λτ (x), the filter

⋂
i∈I

Fi =

 F ⊆ X
∀ i ∈ I :
∃ Fi ∈ Fi :

∪i∈IFi ⊆ F


 (2.39)

converges to x with respect to the topology τ . Clearly this need not be the case for
a convergence space in general, see for instance [26]. However, topological concepts
such as open set, closure of a set and continuity generalize to the more general
context of convergence spaces in a natural way.

In this regard, if X and Y are convergence spaces with convergence structures
λX and λY , respectively, then a mapping

f : X → Y
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is continuous at x ∈ X whenever

F ∈ λX (x) ⇒ f (F) = [{f (F ) : F ∈ F}] ∈ λY (f (x))

and f is continuous on X if it is continuous at every point x of X. Furthermore,
such a continuous mapping f is an embedding if it is injective with a continuous
inverse defined on its image, and it is an isomorphism if it is also surjective.

The open subsets of a convergence space X are defined through the concept of
neighborhood. Note that in the topological case, it follows from (2.38) that for any
x ∈ X, a set V ⊆ X is a neighborhood of x if and only if

F ∈ λτ (x) ⇒ V ∈ F . (2.40)

The definition of a neighborhood of a point x in an arbitrary convergence space is
a straightforward generalization of (2.40). Namely,

V ∈ VλX
(x) ⇔

(
∀ F ∈ λX (x) :

V ∈ F

)
where VλX

(x) denotes the neighborhood filter at x ∈ X with respect to the conver-
gence structure λX .2 A set V ⊆ X is open if and only if it is a neighborhood of each
of its elements.

The generalization of the closure of a subset A of a topological space X within
the context of convergence spaces is the adherence. In the case of a topological space
X, the closure of a subset A of X consists of all cluster points of A, that is,

clτ (A) =

{
x ∈ X ∀ V ∈ Vx :

V ∩ A 6= ∅

}
. (2.41)

Therefore, for each x ∈ cl (X), the filter

F = [{A ∩ V : V ∈ Vx}]

converges to x, and A ∈ F . Conversely, if there is a filter F ∈ λτ (x) so that A ∈ F ,
then in view of (2.36) it follows that A meets every neighborhood of x, so that
x ∈ cl (A). That is, the closure of A consists of all points x ∈ X so that A belongs
to some filter F ∈ λτ (x). The generalization of (2.41) to convergence spaces gives
rise to the concept of adherence. The adherence of a subset A of a convergence space
X is the set

aλX
(A) =

{
x ∈ X ∃ F ∈ λX (x) :

A ∈ F

}
. (2.42)

The set A is called closed if aλX
(A) = A.3

2If the convergence structure or topology is clear from the context, we will use the simplified
notation Vx for the neighborhood filter at x ∈ X.

3Whenever there is no confusion, the adherence of a set A will simply be denoted by a (A)
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Here we should point out that, although the concepts of open set, adherence and
closed set coincide with the usual topological notions whenever the convergence space
is topological, there are in general some important differences [26]. In particular,
the neighborhood filter Vx at x ∈ X need not converge to x, while the adherence
operator will typically fail to be idempotent, that is,

a (A) 6= a (a (A))

A convergence space X that satisfies

∀ x ∈ X :
Vx ∈ λX (x)

is called pretopological, and the convergence structure λX is called a pretopology [26].

The customary constructions for producing new topological spaces form given
ones, namely, initial and final structures, are defined for convergence spaces in the
obvious way. Given a set X and a family of convergence structures (Xi, λXi

)i∈I

together with mappings

fi : X → Xi, i ∈ I (2.43)

the initial convergence structure λX on X with respect to the family of mappings
(2.43) is the coarsest convergence structure on X making each of the mappings
fi : X → Xi continuous. That is, for any other convergence structure λ on X such
that all the fi are continuous, we have

λ (x) ⊆ λX (x) , x ∈ X. (2.44)

The initial convergence structure is defined as

F ∈ λX (x) ⇔
(
∀ i ∈ I :

fi (F) ∈ λXi
(x)

)
Typical examples of initial convergence structures include the subspace convergence
structure and the product convergence structure.

Example 12 Let X be a convergence space, and A a subset of X. The subspace
convergence structure λA induced on A from X is the initial convergence structure
with respect to the inclusion mapping

iA : A 3 x 7→ x ∈ X.

That is,

F ∈ λA (x) ⇔
[ {

G ⊆ X
∃ F ∈ F :

F ⊆ G

} ]
∈ λX (x) . (2.45)
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Example 13 Consider a family (Xi)i∈I of convergence spaces, and let X be the
Cartesian product of the family

X =
∏
i∈I

Xi.

The product convergence structure on X is the initial convergence structure with
respect to the projection mappings

πi : X 3 (xi)i∈I 7→ xi ∈ Xi, i ∈ I.

The convergent filters in the product convergence structure may be constructed as
follows: A filter F on X converges to x = (xi)i∈I ∈ X if and only if

∀ i ∈ I :
∃ Fi ∈ λXi

(xi) :∏
i∈I Fi ⊆ F

. (2.46)

Here
∏

i∈I Fi denotes the Tychonoff product of the filters Fi, that is,
∏

i∈I Fi is the
filter generated by{∏

i∈I

Fi
Fi ∈ Fi, i ∈ I
Fi 6= Xi for only finitely many i ∈ I

}
. (2.47)

Final structures are constructed in a similar way, and include quotient conver-
gence structures and convergence inductive limits as particular cases. In this regard,
given a set X, a family of convergence spaces (Xi)i∈I , and mappings

fi : Xi → X, i ∈ I (2.48)

the final convergence structure λX on X is the finest convergence structure making
all the mappings (2.48) continuous. That is, for every convergence structure λ on
X for which each mapping fi is continuous, one has

λX (x) ⊆ λ (x) , x ∈ X. (2.49)

In particular, the final convergence structure on X is defined through

λX (x) = {[x]}
⋃
F

∃ i1, ..., ik ∈ I :
∃ xn ∈ Xin , n = 1, ..., k :
∃ Fn ∈ λXin

(xn) , n = 1, ..., k :
1) fi (xn) = x, i = 1, ..., k
2) fi1 (F1) ∩ ... ∩ fik (Fk) ⊆ F

 . (2.50)

Example 14 Let X be a convergence space, Y a set and q : X → Y a surjective
mapping. The quotient convergence structure on Y is the final convergence structure

 
 
 



CHAPTER 2. TOPOLOGICAL STRUCTURES IN ANALYSIS 62

with respect to the mapping q. In particular, a filter F on Y converges to y ∈ Y
with respect to the quotient convergence structure λq on Y if and only if

∃ x1, ..., xk ∈ q−1 (y) ⊆ X :
∃ F1, ...,Fk filters on X :

1) Fi ∈ λX (xi) , i = 1, ..., k
2) q (F1) ∩ ... ∩ q (Fk) ⊆ F

. (2.51)

If X and Y are convergence spaces, and q : X → Y a surjection so that Y carries
the quotient convergence structure with respect to q, then q is called a convergence
quotient mapping.

Remark 15 In general, it is not true that a topological quotient mapping is a con-
vergence quotient mapping. Indeed, if X and Y are topological spaces, and

q : X → Y

a continuous mapping, then q is a convergence quotient mapping if and only q is
almost open [84], that is,

∀ y ∈ Y :
∃ x ∈ q−1 (y) :
∃ Bx a basis of open sets at x :

B ∈ Bx ⇒ q (B) open in Y

.

Within the category CONV of convergence spaces, the most striking deficiencies
of topological spaces are resolved. In particular, in contradistinction with TOP, the
category CONV is cartesian closed. As such, within this larger category, there is
a natural convergence structure for function spaces, namely, the continuous conver-
gence structure [26], [28].

If X and Y are convergence spaces, then the continuous convergence structure λc

on the set C (X,Y ) of continuous mappings fromX into Y is the coarsest convergence
structure making the evaluation mapping

ωX,Y : C (X,Y )×X 3 (f, x) 7→ f (x) ∈ Y

continuous. That is, for each f ∈ C (X, Y ) and every filter H on C (X, Y ) we have

H ∈ λc (f) ⇔

 ∀ x ∈ X :
∀ F ∈ λX (x) :

ωX,Y (H×F) ∈ λY (f (x))

 . (2.52)

For convergence spaces X, Y and Z, the mapping 4

P : Cc (X × Y, Z) → Cc (X, Cc (Y, Z))

4It is customary in the literature to denote by Cc (X, Y ) the set of continuous functions from X
into Y equipped with the continuous convergence structure.
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which is defined as

P (f) (x) : Y 3 y 7→ f (x, y) ∈ Z

is a homeomorphism, which shows that the category CONV is indeed cartesian
closed.

Other difficulties encountered when working exclusively with topological spaces,
such as for instance some of those mentioned in connection with quotient mappings,
may also be resolved by considering the more general setting of convergence spaces.
In this regard, we mention only the following.

Example 16 In the category of convergence spaces quotient mappings are heredi-
tary. Indeed, let X and Y be convergence spaces, and

q : X → Y

a surjective mapping so that Y carries the quotient convergence structure with respect
to q. Consider any subspace A of Y , and the surjective mapping

qA : q−1 (A) 3 x 7→ q (x) ∈ A. (2.53)

Clearly the subspace convergence structure on A is coarser than the quotient conver-
gence structure induced by the mapping (2.53). Let the filter F on A converge to
y ∈ A with respect to the subspace convergence structure. That is,

∃ F1, ...,Fk filters on X :
∃ x1, ..., xk ∈ q−1 (y) :

q (F1) ∩ ... ∩ q (Fk) ⊆ FY

where FY denotes the filter generated by F in Y . Equivalently, we may say

∀ F1 ∈ F1, ..., Fk ∈ Fk :
∃ F ∈ F :

q (F1) ∪ ... ∪ q (F1) ⊇ F
. (2.54)

We may assume that each filter Fi has a trace on q−1 (A). That is,

∀ Fi ∈ Fi :
Fi ∩ q−1 (A) 6= ∅ .

As such, for each i = 1, ..., k the filter Fi|A generated in q−1 (A) by the family

{Fi ∩ q−1 (A) : Fi ∈ Fi}

converges to xi in q−1 (A). From (2.54) and the fact that q−1 (A) is saturated with
respect to q, it follows that

qA
(
F1|A

)
∩ ... ∩ qA

(
Fi|A

)
⊆ F

so that F converges to y with respect to the quotient convergence structure on A.
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Example 17 In the category of convergence spaces, quotient mappings are produc-
tive. That is, if (Xi)i∈I and (Yi)i∈I are families of convergence spaces, and for each
i ∈ I the mapping

qi : Xi → Yi

is a convergence quotient mapping, then the surjective mapping

q : X =
∏
i∈I

Xi 3 (xi)i∈I 7→ (qixi)i∈I ∈ Y =
∏
i∈I

Yi

is a convergence quotient mapping. In this regard, and in view of (2.46) and (2.51)
a filter F on Y converges to y = (yi)i∈I ∈ Y if and only if

∀ i ∈ I :
∃ xi,1, ..., xi,ki

∈ q−1
i (yi) :

∃ Fi,1 ∈ λXi
(xi,1) , ...,Fi,ki

∈ λXi
(xi,ki

) :
F ⊇

∏
i∈I (qi (Fi,1) ∩ ... ∩ qi (Fi,ki

))

(2.55)

where the product of filters in (2.55) is the Tychonoff product (2.47). An elementary,
yet somewhat lengthy, computation shows that (2.55) coincides with the quotient
convergence structure with respect to the mapping q.

The theory of convergence spaces has proven to be particularly powerful in so far
as its applications to topology and analysis are concerned [26]. This effectiveness of
convergence structures is due mainly to the fact that, as we have mentioned, the cat-
egory of convergence spaces is cartesian closed, thus providing a suitable topological
structure for function spaces. In this regard, we mention only the following.

The continuous convergence structure (2.52) yields a function space representa-
tion of a large class of topological and convergence spaces. In this regard, recall [26]
that for a convergence space X, the mapping

iX : X → Cc (Cc (X)) (2.56)

defined through

iX (x) : Cc (X) 3 f 7→ f (x) ∈ R,

where Cc (X) is the set of real valued continuous functions on X equipped with the
continuous convergence structure, is continuous. The convergence space X is called
c-embedded whenever the mapping (2.56) is an embedding.

A characterization of c-embedded spaces may be obtained through the concepts
of functionally regular and functionally Hausdorff convergence spaces. Recall [26]
that a convergence space X is functionally regular if the initial topology τ on X with
respect to C (X) is regular, and it is called functionally Hausdorff if τ is Hausdorff.
The main result in this regard is the following.
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Theorem 18 * [26] A convergence space X is c-embedded if and only if X is func-
tionally regular, functionally Hausdorff and Choquet [26]. That is, a filter F con-
verges to x ∈ X whenever every finer ultrafilter converges to x.
In particular, iX (X) ⊂ Cc (Cc (X)) is the set of all continuous algebra homomor-
phisms from Cc (X) into R.

The class of c-embedded convergence spaces includes, amongst others, all Tychonoff
spaces. However, not every c-embedded topological space is a Tychonoff space.
Furthermore, products, subspaces and projective limits of c-embedded convergence
spaces are again c-embedded.

Within the setting of functional analysis, in particular the theory of locally con-
vex spaces, the theory of convergence spaces proves to be highly effective. In par-
ticular, the continuous convergence structure provides a natural structure for the
topological dual of a locally convex space. In this regard, we may recall from Section
2.2 that for a locally convex space X, there is no locally convex topology on its dual
LX so that the simple evaluation mapping

ωX : X × LX 3 (x, ϕ) 7→ ϕ (x) ∈ K (2.57)

is continuous unless X is normable.

However, within the more general framework of convergence spaces, there is a
natural dual structure available for locally convex spaces, namely, the continuous
convergence structure. In this regard, we recall [26] that a convergence structure
λX on a set X is a vector space convergence structure, and the pair (X,λX) a
convergence space, if X is a vector space over some field of scalars K, and the vector
space operations

+ : X ×X 3 (x, y) 7→ x+ y ∈ X

and

· : K×X 3 (α, x) 7→ αx ∈ X

are continuous. For a convergence vector space X, we denote by LcX the conver-
gence vector space of all continuous linear functionals on X into K equipped with the
continuous convergence structure. For any convergence vector space X, the space
LcX is a convergence vector space, and we call it the continuous dual of X. In this
regard, the main result [26] is that the evaluation mapping

ωX : X × LcX → K

is jointly continuous. Consequently, the natural mapping

iX : X → LcLcX (2.58)

from X into its second dual, which is defined as

iX (x) : LcX 3 ϕ 7→ ϕ (x) ∈ K, (2.59)
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is also continuous. In particular, in case X is a locally convex topological space,
the mapping in (2.58) to (2.59) is actually an embedding. Furthermore, if X is
complete, then this mapping is an isomorphism. Thus the continuous convergence
structure provides a natural structure for the dual of a locally convex space.

Beyond the basic duality result for locally convex spaces, convergence vector
spaces prove to be a far more natural setting for functional analysis, in comparison
with locally convex spaces. This is so even if one’s primary interest lies in the
topological, locally convex case. In this regard, we may mention that the Pták’s
Closed Graph Theorem, a technical and notoriously difficult result in locally convex
spaces, becomes a transparent and natural result when viewed in the setting of
convergence vector spaces, see [21], [22], [25] and [26]. Furthermore, the scope of
the Banach-Steinhauss Theorem is greatly expanded by formulating the problem in
terms of convergence vector spaces [24]. Moreover, common and important objects
such as the inductive limit of a family of locally convex spaces seem to be far removed
from its component spaces, when viewed in the setting of locally convex spaces.
Consequently, properties of the component spaces rarely translate to properties of
the limit, while properties of the limit is not easily lifted to that of the component
spaces, see for instance [27] for an indication of such difficulties. In contradistinction
with the locally convex topological case, when such constructions are performed
in the context of convergence vector spaces, there is a clear connection between
components and limits.

Lastly, we mention that, owing to the remarkable categorical properties of con-
vergence structures, the theory of convergence spaces has been applied with a good
deal of success to difficult problems in point set-topology. In this regard, we mention
the recent application to product theorems for topological spaces [51], [111], [112],
[113].

2.4 Uniform Structures

We may recall from Section 2.1 that Hausdorff’s topological spaces were introduced
as a generalization of Frechét’s metric spaces. Indeed, the concepts of open set,
closed set, convergence of sequences, or more generally filters and nets, are extended
in a straightforward way to this significantly more general class of spaces.

However, certain aspects of the structure of a metric space are not preserved in
this generalization, namely, the uniform structure. In this regard, recall that for a
metric space X with metric dX , a sequence (xn) on X is a Cauchy sequence if and
only if

∀ ε > 0 :
∃ Nε ∈ N :

n,m ≥ Nε ⇒ dX (xn, xm) < ε
. (2.60)
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Furthermore, if Y is a another metric space, then a f : X → Y is uniformly contin-
uous whenever

∀ ε > 0 :
∃ δε > 0 :

dX (x, y) < δε ⇒ dY (f (x) , f (y)) < ε

The space X is called complete if every Cauchy sequence in X converges to some
x ∈ X. Moreover, with every metric space X one may associate a complete metric
space X], with metric dX] , which is minimal in the following sense: There exists a
uniformly continuous embedding

ιX : X → X]

so that ιX (X) is dense in X]. Furthermore, for any complete metric space Y , and
any uniformly continuous mapping

f : X → Y,

there exists a uniformly continuous mapping

f ] : X] → Y

so that the diagram

X - X]
ιX

@
@

@
@

@
@

@
@

@R

�
�

�
�

�
�

�
�

�	
Y

f f ]
(2.61)

commutes. The above construction was given for the first time by Hausdorff [70].
The interest in such constructions may be seen from the fact that the set of real
numbers may be constructed as the completion of a metric space, namely, the metric
space of all rational numbers

Q =

{
p

q
: p, q ∈ Z

}
with the usual metric

d (x, y) = |x− y|.
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When one tries to extend the uniform concepts of Cauchy sequence, complete-
ness and uniform continuity of functions to the more general setting of arbitrary
topological spaces, there are several difficulties. These difficulties are all, to some
extent, related to the following basic fact. Namely, that the uniform structure of
a metric space, and in fact the metric itself, is defined through binary relations,
whereas a topology is defined in a unary way. These underlying issues are iden-
tified within the most general context so far considered in [132], [133] and [134].
The structures introduced in [132] to [134], however, are far more general than the
Hausdorff-Kuratowski-Bourbaki concept of topology, and contain it as a particular
case.

As a further clarification of the issue raised in the previous paragraph, let us
consider the more formal way to introduce the uniform structure of a metric space.
In this regard, we may consider the family UX,dX

of subsets of X × X specified
through

U ∈ UX,dX
⇔
(
∃ ε > 0 :

Uε ⊆ U

)
(2.62)

where, for ε > 0, we define the set Uε as

Uε = {(x, y) ∈ X ×X : dX (x, y) < ε}. (2.63)

It is clear now that, for any sequence (xn) on X, the sequence is a Cauchy sequence
if and only if

∀ ε > 0 :
∃ Nε ∈ N :

n,m > Nε ⇒ {(xn, xm) : n,m > Nε} ⊂ Uε

. (2.64)

Furthermore, for any other metric space Y , and any mapping f : X → Y , the
mapping f is uniformly continuous if and only if

∀ U ∈ UY,dY
:

(f−1 × f−1) (U) = {(x, y) : (f (x) , f (y)) ∈ U} ∈ UX,dX

. (2.65)

In view of (2.64) and (2.65) it is clear that, just as the open neighborhoods in
X characterize the topology on X, the family of sets UX,dX

completely determines
the uniform structure of the metric space. In this regard, within the context of
topological spaces, given a set X, the uniform structure shall consist of a family UX

of subsets ofX×X that satisfy certain purely set theoretic properties, properties that
are intended to capture suitable topological properties. The concept of a uniform
space is then nothing but a distillation of these purely set-theoretic properties of
UX . In particular, the Bourbaki group [30], and most notably A Weil [160], defined
a uniformity on a set X as follows.

Definition 19 A uniformity on a set X is a filter U on X × X that satisfies the
following properties
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(i) ∆ ⊆ U for each U ∈ U .

(ii) If U ∈ U then U−1 ∈ U .

(iii) For each U ∈ U there is some V ∈ U so that V ◦ V ⊆ U .

Remark 20 If U and V are subsets of the cartesian product X ×X of X, then the
inverse of U is defined as

U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U}

while the composition of U and V is specified through

U ◦ V =

{
(x, y) ∈ X ×X

∃ z ∈ X :
(x, z) ∈ V , (z, y) ∈ U

}
,

Furthermore, for any set A ⊆ X, the set U [A] is defined as

U [A] =

{
y ∈ X ∃ x ∈ A :

(x, y) ∈ U

}
.

If A is the singleton {x}, then we simply write U [x] for U [A].

It is clear that the family (2.62) and (2.63) of subsets of the cartesian product
X ×X of a metric space X constitutes a uniformity. However, not every uniformity
can be induced by a metric through (2.62) and (2.63). Conversely, every uniformity
UX on X induces a topology τUX

on X. In particular, τUX
may be defined as

W ∈ τUX
⇔

 ∀ x ∈ W :
∃ U ∈ UX :

U [x] ⊆ W

 . (2.66)

Even though the topology (2.66) induced by a uniformity UX on X can in general
not be induced by a metric, the conditions (i) to (iii) in Definition 19 have strong
metric antecedents [81]. Indeed, the first condition

∆ ⊆ U , U ∈ UX

is derived from the property (2.5), while the second condition

U ∈ UX ⇒ U−1 ∈ UX

merely reflects the symmetry condition (2.6) of a metric. Lastly, the third condition

∀ U ∈ UX :
∃ V ∈ UX :

V ◦ V ⊆ U
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is an abstraction of the triangle inequality (2.7), and states, roughly speaking, that
for ε-balls there are ε/2-balls.

In view of (2.64) it is clear that a sequence (xn) in a metric space X is a Cauchy
sequence if and only if

UX,d ⊆ (xn)× (xn) ,

where (xn) denotes also the Fréchet filter associated with the sequence. As such, we
may generalize the concept of a Cauchy sequence to any uniform space X as

(xn) a Cauchy sequence ⇔ UX ⊆ (xn)× (xn) .

More generally, given any filter F on X, we say that F is a Cauchy filter if and only
if

UX ⊆ F ×F

Furthermore, a uniform space X is complete if and only if every Cauchy filter on X
converges to some x ∈ X.

Other uniform concepts generalize in the expected way to uniform spaces. In
this regard, we may recall [81] that a mapping

f : X → Y,

with X and Y uniform spaces, is uniformly continuous if and only if

∀ U ∈ UY :
(f−1 × f−) (U) ∈ UX

.

Moreover, a uniformly continuous mapping is a uniform embedding whenever it is
injective, and its inverse f−1 is uniformly continuous on the subspace f (X) of Y .
Furthermore, f is a uniform isomorphism is a uniform embedding which is also
surjective.

The main result in connection with completeness of uniform spaces generalizes
the corresponding result for metric spaces mentioned above, and is due to Weil [160].
However, it applies only to Hausdorff uniform spaces, that is, uniform spaces for
which the induced topology (2.66) is Hausdorff. In this regard, for any Hausdorff
uniform space X there is a complete, Hausdorff uniform space X] and a uniform
embedding

ιX : X → X]

so that ιX (X) is dense in X]. Furthermore, for any complete, Hausdorff uniform
space Y , and any uniformly continuous mapping

f : X → Y
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there is a uniformly continuous mapping

f ] : X] → Y

so that the diagram

X - X]
ιX

@
@

@
@

@
@

@
@

@R

�
�

�
�

�
�

�
�

�	
Y

f f ]
(2.67)

commutes.

It should be noted that not every topology τX on a set X can be induced by a
uniformity through (2.66). Indeed, Weil [160] showed that for a given topology τX
on X, there is a uniformity on X that induces τX through (2.66) if and only if τX is
completely regular. As such, the class of uniform spaces is rather small in comparison
with the class of all topological spaces. In this regard, several generalizations of a
uniform space have been introduced in the literature, including that of a quasi-
uniform space, which is related to the concept of nonsymmetric distance, see for
instance [90].

Within the more general context of convergence spaces, a number of different
concepts of ‘uniform space’ have been studied. The most successful of these are the
so called uniform convergence spaces, and Cauchy spaces. The motivation for intro-
ducing such concepts within the setting of convergence spaces is twofold. First of all,
it allows for the definition of uniform concepts, in particular that of completeness and
completion, in this context, concepts which are fundamental in analysis. The second
reason, and related to the first, is the mentioned relatively narrow applicability of
uniform spaces within the context of the usual topology.

A uniform convergence space generalizes the concept of a uniform space in the
following ways. Every uniformity on a set X gives rise to a uniform convergence
structure. Furthermore, and as will be shown shortly, every uniform convergence
structure induces a convergence structure. This induced convergence structure need
not be, and in general is not, topological, and satisfies rather general separation
properties. In particular, even in case the induced convergence structure is topo-
logical, it need not be completely regular. The definition of a uniform convergence
space is now as follows [26].
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Definition 21 A uniform convergence structure on a set X is a family JX on X×X
that satisfies the following properties.

(i) [x]× [x] ∈ JX for every x ∈ X5.

(ii) If U ∈ JX , and U ⊆ V, then V ∈ JX .

(iii) If U ,V ∈ JX , then U ∩ V ∈ JX .

(iv) U−1 ∈ JX whenever U ∈ JX .

(v) If U ,V ∈ JX , then U ◦ V ∈ JX whenever the composition exists.

If JX is a uniform convergence structure on X, then we refer to the pair (X,JX)
as a uniform convergence space.

Remark 22 Let U and V filters on X ×X. The filter U−1 is defined as

U−1 = [{U−1 : U ∈ U}].

If the filters U and V satisfies

∀ U ∈ U :
∀ V ∈ V :

U ◦ V 6= ∅
,

then the filter U ◦ V exists, and is defined as

U ◦ V = [{U ◦ V : U ∈ U , V ∈ V}].

As mentioned, every uniformity JX on a set X induces a uniform convergence
structure JUX

on X through

U ∈ JUX
⇔ UX ⊆ U . (2.68)

However, not every uniform convergence structure is of the form (2.68). In this
regard, we may recall [26] that a uniform convergence structure JX on X induces a
convergence structure λJX

on X, called the induced convergence structure, through

∀ x ∈ X :
∀ F a filter on X :

F ∈ λJX
(x) ⇔ F × [x] ∈ JX

. (2.69)

The induced convergence structure need not be a completely regular topology on
X. In fact, every convergence structure λX which is reciprocal, that is,

∀ x, y ∈ X :
λX (x) = λX (y) or λX (x) ∩ λX (y) = ∅ ,

5In the original definition, this condition was replaced with the stronger one ‘[∆] ∈ JX ’. This
definition, however, results in a category which is not cartesian closed.

 
 
 



CHAPTER 2. TOPOLOGICAL STRUCTURES IN ANALYSIS 73

is induced by a uniform convergence structure through (2.69). Indeed, the family of
filters JλX

on X ×X, called the associated uniform convergence structure, specified
by

U ∈ JλX
⇔


∃ x1, ..., xk ∈ X :
∃ F1, ...,Fk filters on X :

1) Fi ∈ λX (xi) for i = 1, ..., k
2) (F1 ×F1) ∩ ... ∩ (Fk ×Fk) ⊆ U

 (2.70)

is a complete uniform convergence structure that induces the convergence structure
λX whenever it is reciprocal. In particular, every Hausdorff convergence structure is
induced by the associated uniform convergence structure (2.70). This is clearly far
more general than the completely regular topologies that are induced by uniformities.

The usual uniform concepts, namely, that of Cauchy filter, uniformly continuous
function, completeness and completion extend in the natural way to uniform con-
vergence spaces. In particular, if X and Y are uniform convergence spaces, then a
mapping

f : X → Y

is uniformly continuous whenever

∀ U ∈ JX :
(f × f) (U) ∈ JY

Furthermore, a uniformly continuous mapping is a uniformly continuous embedding
if it is injective, and has a uniformly continuous inverse f−1 on the subspace f (X)
of Y , and a uniformly continuous embedding is a uniformly continuous isomorphism
if it is also surjective.

The Cauchy sequences on a uniform convergence space are defined in the obvious
way. A filter F on X is a Cauchy filter if and only if

F × F ∈ JX , (2.71)

and the uniform convergence spaceX is complete if every Cauchy sequence converges
to some x ∈ X.

Weil’s result on the completion of uniform spaces may be reproduced within
the more general setting of uniform convergence spaces. In particular, Wyler [161]
showed that with every Hausdorff uniform convergence space X one may associate
a complete, Hausdorff uniform convergence space X], and a uniformly continuous
embedding

ιX : X → X]

so that ιX (X) is dense in X]. Furthermore, the completion X] satisfies the universal
property that, given any other complete, Hausdorff uniform convergence space Y ,
and a uniformly continuous mapping

f : X → Y,
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there is a uniformly continuous mapping

f ] : X] → Y ]

so that the diagram

X - X]
ιX
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@
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@

@
@

@
@
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�

�
�

�
�

�
�

�	
Y

f f ]
(2.72)

commutes. This completion is unique up to uniformly continuous isomorphism.

As we have mentioned, a uniformity on X is a particular case of a uniform
convergence structure. In particular, with each such uniformity UX on X we may
associate a uniform convergence structure JUX

onX in a natural way through (2.68).
As such, for each Hausdorff uniform space X, we may construct two completions,
namely, the uniform space completion of Weil [160], and the uniform convergence
space completion of Wyler [161]. These two completions, let us denote them by
X]

We and X]
Wy, respectively, are not the same. In particular, the Wyler completion

X]
Wy will typically not be a uniform space [161]. This apparent irregularity simply

means that the Weil completion X]
We will not satisfy the universal property enjoyed

by the Wyler completion. More precisely, if X is a uniform space, and given a
complete, Hausdorff uniform convergence space Y which is not a uniform space, and
a uniformly continuous mapping

f : X → Y

then we will in general not be able to find a uniformly continuous extension f ] :
X]

We → Y of f to X]
We.

Closely related to the concept of a uniform convergence space is that of a Cauchy
space. Roughly speaking, a Cauchy structure on a set X is supposed to be the
family of Cauchy filters associated with a given uniform convergence structure, and
were introduced in an attempt to axiomatize the concept of Cauchy filter. These
structures were axiomatized by Keller [80] as follows.

Definition 23 Consider a set X, and a family CX of filters on X. Then CX is a
Cauchy structure if it satisfies the following conditions:
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(i) [x] ∈ CX for each x ∈ X.

(ii) If F ∈ CX and F ⊆ G, then G ∈ CX .

(iii) If F ,G ∈ CX and F ∨ G exists, then F ∩ G ∈ CX .

The pair (X, CX) is called a Cauchy space.

Every uniform convergence structure JX on a set X induced a unique Cauchy struc-
ture CJX

on X through

F ∈ CJX
⇔ F ×F ∈ JX . (2.73)

Conversely, every Cauchy structure CX onX is induced by a uniform convergence
structure. In particular, the family of filters JCX

on X ×X defined as

U ∈ JCX
⇔
(
∃ F1, ...,Fk ∈ CX :

(F1 ×F1) ∩ ... ∩ (Fk ×Fk)

)
(2.74)

constitutes a uniform convergence structure on X. Furthermore, the Cauchy struc-
ture induced by (2.74) is exactly CX .

It should be noted that, as is the case for uniform spaces, two different uniform
convergence structures may induce the same Cauchy structures. In particular, the
uniform convergence structure (2.74) is the largest uniform convergence structure,
with respect to inclusion, that induces a given Cauchy structure. That is, if JX

is a uniform convergence structure that induces a given Cauchy structure through
(2.69), then

JX ⊆ JCX
. (2.75)

It should be noted that several different ‘completions’ may be associated with a
given Cauchy space, each with different properties [128]. Which completion is used is
rather a matter of convenience. The Wyler completion is the unique completion that
satisfies the universal extension property (2.72). However, the Wyler completion
does not preserve compatibility with algebraic structures. In this regard, if X is a
convergence vector space, then it carries in a natural way a uniform convergence
structure. The underlying set associated with the Wyler completion X] of X is a
vector space in a straight forward way. However, in contradistinction with the Weil
completion of a uniform space, the uniform convergence structure on the Wyler
completion is not the one induced through by the algebraic structure on X]. This is
also true for convergence groups [61]. Throughout the current work, we will always
use the Wyler completion.

The role of uniform spaces, and more generally uniform convergence spaces, in
analysis is well known. In particular, and most relevant to the current investigation,
is the role played by such structures in the study of linear and nonlinear PDEs,
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as explained in Chapter 1, see also Chapter 6. Furthermore, these structures also
appear in connection with the construction of compact spaces that contain a given
topological space. In this regard, we may recall that Brummer and Hager [32]
showed that, essentially, the Stone-Čech compactification of a completely regular
topological space is in fact the completion of X equipped with a suitable uniformity.

 
 
 



Chapter 3

Real and Interval Functions

3.1 Semi-continuous Functions

The classical analysis of the nineteenth century was concerned mainly with suffi-
ciently smooth functions, and in particular analytic functions. However, it is well
known that even relatively simply constructions involving only continuous functions
give rise to functions that are no longer continuous, see for instance [106] for an
excellent historical overview of these and related matters. In this regard, consider
the following example.

Example 24 The pointwise limit of a sequence of continuous functions need not be
continuous. Indeed, consider the sequence (un) of continuous functions from R to R
given by

un (x) =


0 if x ≤ − 1

n

nx+1
2

if |x| < 1
n

1 if x ≥ 1
n

. (3.1)

Clearly the sequence (un) of continuous functions converges pointwise to the function

u (x) =


0 if x < 0

1
2

if x = 0

1 if x > 0

which has a discontinuity at x = 0.

Remark 25 It should be noted that the pointwise limit of a sequence of continuous
functions, such as that constructed in Example 24, may have discontinuities on a
dense subset of the domain of convergence. In particular, in the case of real valued
functions of a real variable, the limit will in general be continuous only on a residual
set, which may have dense complement, see for instance [121] and [77].

77
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Furthermore, such discontinuous functions appear also in the applications of math-
ematics. In this regard, we may recall the discontinuous solution (1.12) to the non-
linear conservation law (1.4) to (1.5) which turns out to model the highly relevant
physical phenomenon of shock waves.

An important class of such discontinuous functions arises in a natural way as a
particular case of Example 24, namely, the semi-continuous real valued functions.
The concept of a semi-continuous function generalizes that of a continuous function,
and was first introduced by Baire [13] in the case of real valued functions of a real
variable. Subsequently, the definition was extended to real valued functions on an
arbitrary topological space, as well as functions with more general ranges, notably
extended real valued functions, and set valued functions. In this case we will restrict
our attention to the situation which is most relevant to the current investigation,
namely, the case of extended real valued functions

u : X → R

where X is a topological space, and R = R ∪ {±∞} is the extended real line.

Recall that a function u : X → R is continuous at x ∈ X if and only if

∀ ε > 0 :
∃ V ∈ Vx :

y ∈ V ⇒ |u (x)− u (y) | < ε
(3.2)

which is equivalent to

∀ ε > 0 :
∃ V ∈ Vx :

y ∈ V ⇒ u (x)− ε < u (y) < u (x) + ε
. (3.3)

The concept of semi-continuity of a function u : X → R at x ∈ X is obtained by
considering each of the two inequalities in (3.3) separately. In this regard, the stan-
dard definitions of lower semi-continuous function, and an upper semi-continuous
function, respectively, are as follows.

Definition 26 A function u : X → R is lower semi-continuous at x ∈ X whenever

∀ M < u (x) :
∃ V ∈ Vx :

y ∈ V ⇒M < u (y)

or u (x) = −∞. If u is lower semi-continuous at every point of X, then it is lower
semi-continuous on X.

Definition 27 A function u : X → R is upper semi-continuous at x ∈ X whenever

∀ M > u (x) :
∃ V ∈ Vx :

y ∈ V ⇒M > u (y)

or u (x) = +∞. If u is upper semi-continuous at every point of X, then it is upper
semi-continuous on X.
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Clearly, each continuous function u : X → R is both lower semi-continuous and
upper semi-continuous on X. Conversely, a function u : X → R is both lower semi-
continuous and upper semi-continuous on X, then it is continuous on X. Important
examples of discontinuous semi-continuous functions include the indicator function
χA of a set A ⊆ X, that is,

χA (x) =


1 if x ∈ A

0 if x /∈ A
(3.4)

If A is open, then χA is lower semi-continuous, and if A is closed, then χA is upper
semi-continuous.

Semi-continuous functions appear as fundamental objects in analysis and its
applications. In particular, such functions play a basic role in optimization theory,
since semi-continuous functions have certain useful properties that fail in the case
of continuous functions. In this regard, we may recall that the supremum of a set of
continuous functions need not be continuous. In this regard, consider the following.

Example 28 Consider the set {uα : α > 1} of continuous, real valued functions on
R, where each function uα is defined by

uα (x) =


0 if |x| ≥ α

|x|−α
α−1

if α < |x| < 1

−1 if |x| ≤ 1

The pointwise supremum of the set {uα : α > 1} is the function

u : R 3 x 7→ sup{uα (x) : α > 1} ∈ R

which, in this case, is a well defined, real valued function given by

uα (x) =


0 if |x| > 1

−1 if |x| ≤ 1

which is not continuous on R.1

Remark 29 It should be noted that the function u constructed in Example 28 is
continuous everywhere except on the closed nowhere dense set {±1} ⊂ R. In general,
the pointwise supremum of a set of continuous functions may be discontinuous on a
dense set. In particular, the set of points at which such a functions is continuous is
in general only a residual set.

1Similar examples may be constructed to show that the pointwise infimum of a set of continuous
functions need not be continuous.
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In contradistinction with the continuous case, semi-continuity of real valued func-
tions is, to a certain extent, preserved when forming pointwise suprema and infima.
In particular, if A is a set of lower semi-continuous functions on X, then the function
u : X → R defined through

u : X 3 x 7→ sup{v (x) : v ∈ A} ∈ R (3.5)

is lower semi-continuous. Similarly, if B is a set of upper semi-continuous functions
on X, then the function

l : X 3 x 7→ inf{v (x) : v ∈ B} ∈ R (3.6)

is upper semi-continuous. It should be noted that the infimum of a set of lower
semi-continuous functions need not be lower semi-continuous, while the supremum
of a set of upper semi-continuous functions is not always upper semi-continuous.

A particular case of (3.5) and (3.6) above occurs when the sets of functions A
and B consist of continuous functions. Indeed, since a continuous function is both
lower semi-continuous and upper semi-continuous, it follows immediately from (3.5)
and (3.6) that

∀ A ⊂ C (X) :

1) u : X 3 x 7→ sup{v (x) : v ∈ A} ∈ R lower semi-continuous

2) l : X 3 x 7→ inf{v (x) : v ∈ A} ∈ R upper semi-continuous

Conversely, if X is a metric space, then for each lower semi-continuous function
u : X → R we have

∃ A ⊂ C (X) :
u (x) = sup{v (x) : v ∈ A}, x ∈ X ,

while for every upper semi-continuous function l : X → R we have

∃ B ⊂ C (X) :
l (x) = inf{v (x) : v ∈ B}, x ∈ X

Remark 30 In general it is not true that the pointwise supremum, respectively in-
fimum, of a set of continuous functions is the supremum, respectively infimum, of
such a set with respect to the pointwise order on C (X). Indeed, if for each n ∈ N
we define the function un ∈ C (R) through

un (x) =


1− n|x| if |x| < 1

n

0 if |x| ≥ 1
n

,

then the pointwise infimum of the set {un : n ∈ N} is the function

u (x) =


1 if x = 0

0 if x 6= 0
,

while the infimum of the set {un : n ∈ N} in C (R) is the function which is identically
0 on R.
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As we have shown, semi-continuity of extended real valued functions is a far more
general concept than continuity of such functions. However, such functions preserve
certain useful properties of continuous functions. In particular, under certain mild
assumptions on the function u, as well as the domain of definition X, the extreme
value theorem for continuous functions may be generalized to semi-continuous func-
tions. Indeed, if X is compact, and u : X → [−∞,+∞)2 is upper semi-continuous,
then u attains a maximum value on X. That is,

∃ x0 ∈ X :
u (x) ≤ u (x0) , x ∈ X .

Similarly, if u : X → (−∞,+∞] is lower semi-continuous, then u attains a minimum
on X

∃ x0 ∈ X :
u (x) ≥ u (x0) , x ∈ X .

Another useful property of continuous functions that extends to semi-continuous
functions is concerned with the insertion of a continuous function in between two
given functions. More precisely, given two continuous, real valued functions u and
v on X such that u ≤ v, then it is trivial observation that

∃ w ∈ C (X) :
u ≤ w ≤ v

. (3.7)

Indeed, we may simply take w to be the function (u+ v) /2. In the nontrivial case
when the continuous functions u and v in (3.7) are replaced with suitable semi-
continuous functions, in particular u is upper semi-continuous and v is lower semi-
continuous, (3.7) fails. However, a deep result due to Katětov [76] and Tong [152]
characterizes normality of X in terms of such an insertion property. Namely, the
topological space X is normal if and only if for each lower semi-continuous function
v, and each upper semi-continuous function u such that u ≤ v, we have

∃ w ∈ C (X) :
u ≤ w ≤ v

. (3.8)

This is a generalization of Hahn’s Theorem [68], which states that (3.8) holds if X
is a metric space.

Two fundamental operations associated with semi-continuous functions, and ex-
tended real valued functions in general, are the Baire Operators introduced by Baire
[13] for real valued functions of a real variable. These operators were generalized
to the case of extended real valued functions of a real variable by Sendov [146],
and to functions defined on an arbitrary topological space by Anguelov [3]. Since
these operators will be used extensively throughout the text, we include a detailed
discussion of some of their more important properties.

2Note that, in case the function is allows to assume the value +∞ on X, the result is trivial.
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In this regard, we denote by A (X) the set of extended real valued functions on
a topological space X. That is,

A (X) = {u : X → R}.

The Lower Baire Operator I and Upper Baire Operator S are, respectively, mappings

I : A (X) → A (X)

and

S : A (X) → A (X)

which are defined as

I (u) (x) = sup{inf{u (y) : y ∈ V } : V ∈ Vx}, x ∈ X (3.9)

and

S (u) (x) = inf{sup{u (y) : y ∈ V } : V ∈ Vx}, x ∈ X, (3.10)

respectively, with Vx denoting the neighborhood filter at x ∈ X. The connection
of the operators (3.9) and (3.10) with semi-continuity of functions in A (X) may be
seen immediately. Indeed, the Baire Operators characterize semi-continuity through

u ∈ A (X) is lower semi-continuous ⇔ I (u) = u (3.11)

and

u ∈ A (X) is upper semi-continuous ⇔ S (u) = u, (3.12)

respectively. Furthermore, for each u ∈ A (X) the function I (u) is lower semi-
continuous, while the function S (u) is upper semi-continuous. From (3.11) and
(3.12) it therefore follows that the operators I and S are idempotent, that is, for
each u ∈ A (X)

I (I (u)) = I (u) (3.13)

and

S (S (u)) = S (u) . (3.14)

Moreover, from the definitions (3.9) and (3.10) it is clear that the operators I and
S are also monotone with respect to the pointwise order on A (X)

∀ u, v ∈ A (X) :

u ≤ v ⇒
(

1) I (u) ≤ I (v)
2) S (u) ≤ S (v)

)
. (3.15)
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It follows from (3.15) that compositions of the operators I and S must also be
monotone so that

∀ u, v ∈ A (X) :

u ≤ v ⇒
(

1) (I ◦ S) (u) ≤ (I ◦ S) (v)
2) (S ◦ I) (u) ≤ (S ◦ I) (v)

)
. (3.16)

Furthermore, the composite operators in (3.16) are also idempotent so that

(I ◦ S) ((I ◦ S) (u)) = (I ◦ S) (u) (3.17)

and

(S ◦ I) ((S ◦ I) (u)) = (I ◦ S) (u) (3.18)

for each u ∈ A (X). Indeed, by the obvious inequality

I (u) ≤ S (u) , (3.19)

as well as (3.13) to (3.14), we have

(I ◦ S) ◦ (I ◦ S) (u) ≤ (I ◦ S) ◦ (S ◦ S) (u) = (I ◦ S) (u)

and

(I ◦ S) ◦ (I ◦ S) (u) ≥ (I ◦ I) ◦ (I ◦ S) (u) = (I ◦ S) (u)

which implies (3.17). The identity (3.18) is obtained by similar arguments.

A particularly useful class of semi-continuous functions is that of the normal
semi-continuous functions. These functions were introduced by Dilworth [47] in
connection with his attempts at obtaining a representation of the Dedekind order
completion of spaces of continuous functions. In particular, Dilworth showed that
the Dedekind order completion of the space Cb (X) of all bounded, real valued con-
tinuous functions on a completely regular topological space X is the set of bounded
normal upper semi-continuous functions on X.

A definition of normal semi-continuity for arbitrary real valued functions was
given by Anguelov [3], which coincides with Dilworth’s definition in the case of
bounded functions. This is the definition that we will use, and it is most simply
stated in terms of the Baire Operators I and S. Namely, a real valued function
u ∈ A (X) is normal lower semi-continuous whenever

(I ◦ S) (u) = u (3.20)

and it is normal upper semi-continuous whenever

(I ◦ S) (u) = u (3.21)
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From the time Dilworth introduced normal semi-continuous functions in the
1950s, up to very recently, there was rather limited interest in these functions.
There are two possible reasons for such a lack of enthusiasm concerning normal semi-
continuous functions functions. Firstly, Dilworth’s results on the order completion
of spaces of continuous functions applies only in rather particular cases, namely,
when the underlying space X is compact, or to the set of bounded continuous func-
tions on a completely regular space. Moreover, it appeared to be rather difficult to
extend Dilworth’s results to the case of unbounded functions. Several attempts at
more general results concerning the order completion of spaces of continuous func-
tions have resulted only in partial success, see for instance [56]. Furthermore, these
functions appeared at the time not to have other significant applications.

Recently, as will be discussed in more detail in Section 3.2, there has been a
renewed interest in such functions. The current interest in these functions is due
to two highly nontrivial applications of normal semi-continuous functions. Indeed,
Anguelov [3] significantly extended Dilworth’s results on the Dedekind order comple-
tion of spaces of continuous functions, using spaces of functions that are essentially
equivalent to normal semi-continuous functions. This, in turn, has lead to a sig-
nificant improvement of the regularity of generalized solutions to large classes of
nonlinear PDEs obtained through the Order Completion Method [8], [9].

3.2 Interval Valued Functions

The field of interval analysis, and in particular interval valued functions, is a subject
that is traditionally associated with validated computing [2], [87], [146]. The central
issue is to design algorithms generating bounds for exact solutions of mathematical
problems, and such bounds may be represented as intervals, and interval valued
functions. In this context, such functions appear in a natural way as error bounds
for numerical and theoretical computations. Such interval valued functions have
also been applied to approximation theory [146]. In fact, Sendov [146] introduced
the concept of a Hausdorff continuous interval valued function in connection with
Hausdorff approximations of real functions of a real argument. However, recent
applications of interval valued functions to diverse mathematical fields previously
considered to be unrelated to interval analysis, have lead to a renewed interest in
these functions, as well as to a new point of view regarding them. Namely, the
possible structures, of whatever appropriate kind (topological, algebraic or order
theoretic), with which spaces of interval valued functions may be equipped.

Let us now briefly recall the basic notations and concepts involved. In this
regard, we denote by

IR =

{
a = [a, a]

1) a, a ∈ R
2) a ≤ a

}
the set of extended, closed real intervals. The subset of IR consisting of finite
and closed real intervals is denoted by IR. By identifying a point a ∈ R with the
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degenerate interval [a, a] ∈ IR, we may consider the extended real line as a subset
of IR

R ⊂ IR. (3.22)

The usual total order on R can be extended to a partial order on IR in several
different ways. A particularly useful order was defined by Markov [104] though

a ≤ b⇔
(

1) a ≤ b

2) a ≤ b

)
(3.23)

Our main interest in this section is in functions whose values are extended real
intervals. For a given set X we denote by A (X) the set of such interval valued
functions on X, that is,

A (X) = {u : X → IR}. (3.24)

A convenient representation of interval valued functions is as pairs of point valued
functions. In particular, with every u ∈ A (X) we associate the pair of point valued
functions u, u ∈ A (X) such that

u (x) = [u (x) , u (x)], x ∈ X. (3.25)

Through the identification of points in R with intervals in IR, we may consider
the set A (X) of extended real valued functions on X as a subset of A (X). Since the
partial order (3.23) on IR extends the usual total order on R, the pointwise order
on A (X), specified as

u ≤ v ⇔
(
∀ x ∈ X :

u (x) ≤ v (x)

)
, (3.26)

extends the pointwise order on A (X).

Several concepts of continuity of interval valued functions, defined on a topolog-
ical space X, have been introduced in the literature [6], [146]. Here we may recall
the concepts of Hausdorff continuity, Dilworth continuity and Sendov continuity, all
of which are closely linked to the concepts of semi-continuity of extended real val-
ued functions discussed in Section 3.1. These continuity concepts are conveniently
formulated in terms of extensions of the Baire operators (3.9) and (3.10). In this
regard, we note that these operators act in a natural way also on interval valued
functions. Indeed, for u ∈ A (X) we may define the operators I and S as

I (u) (x) = sup{inf{u (y) : y ∈ V } : V ∈ Vx}, x ∈ X (3.27)

and

S (u) (x) = inf{sup{u (y) : y ∈ V } : V ∈ Vx}, x ∈ X (3.28)
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which clearly coincides with (3.9) and (3.10), respectively, if u is point valued.

It should be noted that the extended Baire operators (3.27) and (3.28) produce
point valued functions. That is,

I : A (X) → A (X)

and

S : A (X) → A (X)

As such, and in view of (3.19), the Graph Completion Operator

F : A (X) 3 u 7→ [I (u) , S (u)] ∈ A (X) , (3.29)

introduced by Sendov [146] for finite interval valued functions of a real argument,
see also [3], is a well defined mapping. From (3.15), (3.13) and (3.14) it follows that
the operator F is both monotone and idempotent, that is, for all u ∈ A (X)

F (F (u)) = F (u) , (3.30)

and for all u, v ∈ A (X)

u ≤ v ⇒ F (u) ≤ F (v) . (3.31)

An important class of interval valued functions, namely, the Sendov continuous (S-
continuous) functions, is defined as the fixed points of the operator F . That is,
u ∈ A (X) is S-continuous if and only if

F (u) = u. (3.32)

These functions, introduced by Sendov, play an important role in the theory of
Hausdorff approximations [146].

The class of functions of main interest in the current context is that of the
Hausdorff continuous functions, which are defined as follows [146], see also [3].

Definition 31 A function u ∈ A (X) is Hausdorff continuous (H-continuous) if

F (u) = u (3.33)

and for each v ∈ A (X)(
∀ x ∈ X :

v (x) ⊆ u (x)

)
⇒ F (v) = u. (3.34)

The set of all H-continuous functions on X is denoted as H (X).
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Remark 32 A remark on the particular meanings of conditions (3.33) and (3.34)
is appropriate. Essentially, the condition (3.33) may be interpreted as a continu-
ity requirement. Indeed, in view of the definition (3.29) of the Graph Completion
Operator and the characterization (3.12) of semi-continuity in terms of the Baire
operators, the condition (3.33) simply states that the function u may be represented
by a pair of semi-continuous functions, namely, u is lower semi-continuous, and u
is upper semi-continuous. The second condition (3.34) is in fact a minimality con-
dition with respect to inclusion. That is, u is smallest S-continuous function, with
respect to inclusion, included in u.

H-continuous functions were first introduced by Sendov [146] for functions of a real
variable in connection with applications to the theory of Hausdorff approximations.
Recently [3], the definition was extended to functions defined on arbitrary topological
spaces.

The set H (X) of H-continuous functions inherits the partial order (3.26). With
this order, the set H (X) is a complete lattice, that is,

∀ A ⊆ H (X) :
∃ u0, l0 ∈ H (X) :

1) u0 = supA
2) l0 = inf A

. (3.35)

Furthermore, the supremum and infimum in (3.35) may be described in terms of the
pointwise supremum and infimum

ϕ : X 3 x 7→ sup{u (x) : u ∈ A} ∈ R

and

ψ : X 3 x 7→ inf{u (x) : u ∈ A} ∈ R,

respectively. Indeed, see [3], we have the following characterization of u0 and l0 in
(3.35):

u0 = F (I (S (ϕ))) , l0 = F (S (I (ψ)))

To date, three important classes of H-continuous functions have been identified.
These are the finite H-continuous functions Hft (X), the bounded H-continuous func-
tions Hb (X) and the nearly finite H-continuous functions Hnf (X). These classes of
functions are defined as

Hft (X) =

{
u ∈ H (X)

∀ x ∈ X :
u (x) ∈ IR

}
, (3.36)

Hb (X) =

{
u ∈ Hft (X)

∃ [a, a] ∈ IR :
u (x) ⊆ [a, a], x ∈ X

}
(3.37)
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and

Hnf (X) =

{
u ∈ H (X)

∃ Γ ⊂ X closed nowhere dense :
x ∈ X \ Γ ⇒ u (x) ∈ IR

}
, (3.38)

respectively. The relevance of these classes of functions is evident from the recent and
highly nontrivial applications to diverse branches of mathematics [3], [8], [9], [10].
One of the applications, namely, the the Order Completion Method for nonlinear
PDEs [8], [9] is recounted in Section 1.4, while the discussion of an application to
topological completion of C (X) [10] is postponed to Chapter 4. Here we proceed
with a short account of the main results of Anguelov [3] concerning the Dedekind
order completion of C (X).

In this regard, we note that, as a simple corollary to (3.35), each of the spaces
(3.36) to (3.38) is a Dedekind order complete lattice (1.96) with respect to the order
induced from H (X). Furthermore, each continuous, real valued function on X is
also H-continuous. Indeed, since each continuous, real valued function u is both
lower semi-continuous and upper semi-continuous, it follows by (3.11) and (3.12)
as well as the definition (3.29) of the Graph Completion Operator that F (u) = u.
Furthermore, since u is point valued, it follows that the second condition (3.34) of
Definition 31 also holds. Then the set of inclusions

Cb (X) ⊆ Hb (X) , C (X) ⊆ Hft (X) (3.39)

is obvious. Moreover, in view of the fact that the order (3.26) extends the usual
pointwise order on A (X), it is clear that the inclusions in (3.39) are in fact also
order isomorphic embeddings (51). What remains to be verified is the denseness
properties

∀ u ∈ Hft (X) :
u = sup {v ∈ C (X) : v ≤ u} (3.40)

and

∀ u ∈ Hb (X) :
u = sup {v ∈ Cb (X) : v ≤ u} . (3.41)

The order denseness properties (3.41) holds for every topological space X. The
property (3.40) is valid whenever X is a metric space, or when X is completely
regular and satisfies

∀ u ∈ Hnf (X) :
∃ v ∈ C (X) :

u ≤ v
.

In particular, in each of these cases, we may construct for each u ∈ Hft (X) sequences
(λn) and (µn) of continuous functions on X so that

∀ n ∈ N :
λn ≤ λn+1 ≤ u ≤ µn+1 ≤ µn

(3.42)

 
 
 



CHAPTER 3. REAL AND INTERVAL FUNCTIONS 89

and

∀ x ∈ X :
1) sup{λn (x) : n ∈ N} = u (x)
2) inf{µn (x) : n ∈ N} = u (x)

(3.43)

Now, as mentioned, the H-continuous functions are essentially equivalent to suit-
able normal semi-continuous functions. In this regard, consider a finite H-continuous
function u on X. Then clearly, the function

u = (I ◦ S) (u) (3.44)

is real valued and normal lower semi-continuous. Conversely, for a given real valued
normal lower semi-continuous function v on X, the function

v = F (v)

is a finite H-continuous function. Indeed, the mapping

F : NLft (X) → Hft (X) (3.45)

is a bijection, withNLft (X) the space of all real valued normal lower semi-continuous
functions on X. Moreover, given normal lower semi-continuous functions u and v
on X, we have

u ≤ v ⇔ F (u) ≤ F (v) (3.46)

so that F is in fact an order isomorphism.

Remark 33 The same construction may be reproduced for normal upper semi-
continuous functions. In this case, one may consider the mapping

F : NUft (X) → Hft (X)

instead of (3.45), where NUft (X) denotes the set of real valued normal upper semi-
continuous functions.

The concept of an interval valued function, and in particular that of an H-
continuous function, proves to be a useful concept in so far as the representations
of certain extensions of spaces of continuous functions are concerned. Here we
discussed only the extension through order, but recently the rational completion of
the ring C (X) and other related extensions of this space were also characterized as
spaces of H-continuous functions [4]. Moreover, and as will be discussed in more
detail in Chapter 4, the convergence vector space completion of C (X) with respect
to the so called order convergence structure may be constructed as the set Hft (X).
However, in view of the fact that interval valued functions are relatively unknown in
analysis, our preference in the current investigation is rather to use the equivalent
representation via normal lower semi-continuous functions.

 
 
 



Chapter 4

Order and Topology

4.1 Order, Algebra and Topology

Order, together with algebra and topology, are the most fundamental concepts in
modern mathematics, and the rich mathematical field that may be broadly called
‘analysis’ is an example of the great power and utility of mathematical concepts
that arise as combinations of these basic notions. In this regard, we may recall the
theory of Operator Algebras, initiated by von Neumann, where all three these basic
concepts are involved. In this section, we will discuss two examples of such fruitful
interactions between the basic trio of order, algebra and topology which is relevant
to the current investigation. Namely, the theory of ordered algebraic structures, in
particular Riesz Spaces, and that of ordered topological spaces.

Many of the interesting spaces in analysis, and in particular linear functional
analysis, are equipped with partial orders in a natural way. Some of the most
prominent examples include the following. The space C (X) of continuous, real
valued functions on a topological space X ordered in the usual pointwise way

∀ u, v ∈ C (X) :

u ≤ u⇔
(
∀ x ∈ X :

u (x) ≤ v (x)

)
,

and the space M (Ω) of real valued measurable functions on a measure space (Ω,Λ, µ),
modulo functions that are almost everywhere equal, equipped with the almost ev-
erywhere pointwise order

∀ u, v ∈ M (Ω)

u ≤ v ⇔
(
∃ E ⊂ Ω, µ (E) = 0 :

u (x) ≤ v (x) , x ∈ Ω \ E

)
as well as its important subspaces of p-integrable functions. These are defined as

Lp (Ω) =

{
u ∈ M (Ω) :

∫
Ω

|u (x) |pdx <∞
}

90
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for p ≤ 1 <∞, and

L∞ (Ω) =

u ∈ M (Ω)
∃ C > 0 :
∃ E ⊂ Ω, µ (E) = 0 :

u (x) ≤ C, x ∈ Ω \ E


The spaces described above are all examples of Riesz spaces, also called vector

lattices. A Riesz space is a real vector space L equipped with a partial order in such
a way that L is a lattice and

∀ u, v, w ∈ L :
∀ α ∈ R, α ≥ 0 :

1) u ≤ v ⇒ u+ w ≤ v + w
2) u ≥ 0 ⇒ αu ≥ 0

. (4.1)

Riesz spaces were introduced independently, and more or less simultaneously, by F.
Riesz [130], [131] , L. V. Kantorovitch [72], [73], [74] and H. Freudenthal [60].

The simple requirements on the compatibility of the order on L and its algebraic
structure in (4.1) has some immediate and rather unexpected consequences. In this
regard, we may recall [101] that any Riesz space L is a fully distributive lattice.
That is,

∀ A ⊂ L :
∀ u ∈ L :

inf{sup{u, v} : v ∈ A} = inf{u, supA}

provided that supA exists in L.

The utility and power of methods from Riesz space theory, when applied to
problems in analysis and other parts of mathematics, is well documented, although
often not fully appreciated. In this regard, we may recall Freudenthal’s Spectral
Theorem [60], see also [101]. Roughly speaking, Freudenthal’s Theorem states that
each u ∈ L may be approximated, in a suitable sense, by ‘step functions’. The
importance of this result is clear from its applications. These include the following
three fundamental results, namely, the Radon-Nykodym Theorem in measure theory,
the Spectral Theorem for Hermitian operators and normal operators in Hilbert space,
and the Poisson formula for harmonic functions on an open circle, see [101].

The theory of Riesz spaces has been extensively developed, and most of the
basic questions have by now been settled for nearly twenty years. The most recent
theoretical program was initiated by A. C. Zaanen in the later part of the 1980s. The
aim of this program was to reprove the major results of the theory in elementary
terms, without reference to the often highly complicated representation theorems
for Riesz spaces. This area of research has culminated in 1997 in the excellent
introductory text [164]. Current interest in Riesz spaces stem from their many
applications, in particular in connection with stochastic calculus and martingale
theory, see for instance [45], [91], [92] and [95].
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A useful generalization of the concept of a Riesz space is that of a lattice ordered
group, called an l-group for short. In this regard, recall [29] that an l-group is a
commutative group G = (G,+, ) equipped with a lattice order ≤ such that

∀ f, g, h ∈ G :

f ≤ g ⇒
(

1) f + h ≤ g + h
2) h+ f ≤ h+ g

)
. (4.2)

Such an l-group is called Archimedean whenever

∀ f, g ≥ 0 :
nf ≤ g, n ∈ N ⇒ f = 0

, (4.3)

with 0 the group identity in G. Loosely speaking, the condition (4.3) means that the
group G does not contain any ‘infinitely small’ of ‘infinitely large’ elements. Lastly,
an element e ∈ G is an order unit if e > 0 and

∀ g ∈ G , g ≥ 0 :
∃ n ∈ N :

g ≤ ne
,

while e is a weak order unit whenever e > 0 and

∀ g ∈ G, g ≥ 0 :
inf{e, g} = 0 ⇒ g = 0

.

A useful aspect of the theory of Archimedean l-groups is that, each such group
admits a representation as a set of continuous, real valued functions on a suitable
topological space. In particular, if G admits a distinguished weak order unit, then
we may associate with G a completely regular topological space, call it XG, and an
l-group homomorphism

TG : G→ C (XG) .

That is, every commutative l-group with distinguished weak order unit is isomor-
phic to an l-subgroup of the space of continuous functions on certain completely
regular topological space XG, see [162] as well as [16] and the references cited there.
Conversely, we may associate with each completely regular topological space X a
commutative l-group with weak order unit GX , namely, the l-group C (X). This
amounts to a relationship between the categories W of Archimedean l-groups with
weak order unit, and the category R of completely regular topological spaces. As
such, one may study the latter category through the more simple one W .

On a partially ordered set X there are several ways to define a topology in
terms of the order on X, see for instance [29]. Among these, we may mention the
order topology [82], the interval topology [83], the Scott topology and the Lawson
topology [66]. Such topologies turn out to be interesting from the point of view
of applications. In this regard, we may recall that the Scott topology and the
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Lawson topology play an important role in the theory of continuous lattices, and its
applications to theoretical computer science [66].

More generally, given a topological space X equipped with a partial order, we
may require the order to be compatible with the topology in a suitable sense. One
particularly useful requirement is that the mappings

∨ : X ×X 3 (x, y) 7→ sup{x, y} ∈ X (4.4)

and

∧ : X ×X 3 (x, y) 7→ inf{x, y} ∈ X (4.5)

be continuous on their respective domains of definition, with respect to the product
topology on X × X. Such a space is termed an ordered topological space. The
order topology, and the interval topology on a lattice X, see for instance [53], are
both examples of ordered topological spaces. It turns out that, in this case, many
properties of the topology τ on X may be characterized in terms of the partial order.
This may represent a dramatic simplification in so far as topological concepts may
be described at the significantly more simple level of order.

4.2 Convergence on Posets

As mentioned in Chapter 2, we may associate with every topology τ on a set X a
notion of convergence with respect to τ . However, one may also define several useful
and important concepts of convergence that cannot be associated with a topology.
In particular, we may, for example, associate with each element x of a set X a
collection σ (x) of sequences on X, which is interpreted to mean that a sequence
(xn) converges to x if and only if (xn) belongs to σ (x). Such an association of
sequences with points is in general not determined by a topology.

In the previous section, we discussed the idea of defining a topology in terms of a
partial order. In this case, and in view of the above remark, we may associate with
the partial order the convergence induced by the topology. More generally, we may
define a notion of convergence of sequences in terms of a given partial order on a set
X. Indeed, several such useful notions of convergence on partially ordered sets have
been introduced in the literature, see for instance [29], [50], [101] and [105]. It often
happens that these notions of convergence cannot be associated with any topology,
see for instance [154].

One of the most well known such examples of convergence defined through a par-
tial order that is, in general, not associated with any topology, is order convergence
of sequences, see for instance [101] or [105]. In this regard, see also Example 9, for
a given partially ordered set X, a sequence (xn) order converges to x ∈ X whenever

∃ (λn) , (µn) ⊂ X :
1) n ∈ N ⇒ λn ≤ λn+1 ≤ xn+1 ≤ µn+1 ≤ µn

2) sup {λn : n ∈ N} = x = inf {µn : n ∈ N}
(4.6)
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In general, there is no topology τ on X such that, for each x ∈ X, and every
sequence (xn) on X, (xn) order converges to x if and only if (xn) converges to
x with respect to τ , see for instance [154]. Indeed, the following two properties of
convergent sequences in topological spaces [107] fail to hold for the order convergence
of sequences. Namely, the Divergence Axiom

If every subsequence of (xn) contains a subsequence which converges
to x ∈ X, then (xn) converges to x.

and the Axiom of Iterated Limits

If, for every n ∈ N, the sequence (xn,m) converges to xn ∈ X, and the
sequence (xn) converges to x in X, then there is a strictly increasing
sequence of natural numbers (mn) so that the sequence (xn,mn)
converges to x in X.

(4.7)

In this regard, we may recall Example 9. Note, however, that the following version
of the Axiom of Iterated Limits (4.7) remains valid under rather general conditions
on the partially ordered set X.

Proposition 34 *[10] Let L be a lattice with respect to a given partial order ≤.

1. For every n ∈ N, let the sequence (um,n) in L be bounded and increasing and
let

un = sup{um,n : m ∈ N}, n ∈ N
u′n = sup{um,n : m = 1, ..., n}

If the sequence (un) is bounded from above and increasing, and has supremum
in L, then the sequence (u′n) is bounded and increasing and

sup{un : n ∈ N} = sup{u′n : n ∈ N}

2. For every n ∈ N, let the sequence (vm,n) in L be bounded and decreasing and
let

vn = inf{vm,n : m ∈ N}, n ∈ N
v′n = inf{vm,n : m = 1, ..., n}

If the sequence (vn) is bounded from below and decreasing, and has infimum in
L, then the sequence (v′n) is bounded and decreasing and

inf{vn : n ∈ N} = inf{v′n : n ∈ N}

Since the usual Hausdorff concept of topology is insufficient to describe the order
convergence of sequences, the question arises whether or not convergence structures
provide a sufficiently general context for the study of the order convergence of se-
quences. Several authors have addressed this issue, and similar problems arising in
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connections with other types of convergence on partially ordered sets, see for exam-
ple [55] and [67]. In this regard, R Ball [15] showed that the order convergence of
(generalized) sequences, on an l-group is induced by a group convergence structure.
In particular, it is shown that the convergence group completion of such an l-group
with respect to the mentioned group convergence structure is the Dedekind order
completion of G. Papangelou [122] considered a similar problem in the setting of
sequential convergence groups.

Recently [10], [155], it was shown that for any σ-distributive lattice X, that is,
a lattice X that satisfies

∀ (xn) ⊆ X :
∀ x ∈ X :

sup{xn : n ∈ N} = x0 ⇒ sup{inf{x, xn} : n ∈ N} = inf{x, x0}
,

there is a convergence structure on X that induces the order convergence of se-
quences. In particular, the convergence structure λo, specified as

∀ x ∈ X :
∀ F a filter on X :

F ∈ λo (x) ⇔


∃ (λn) , (µn) ⊂ X :

1) n ∈ N ⇒ λn ≤ λn+1 ≤ x ≤ µn+1 ≤ µn

2) sup {λn : n ∈ N} = x = inf {µn : n ∈ N}
3) [{[λn, µn] : n ∈ N}] ⊆ F

 (4.8)

is first countable, Hausdorff, and induces the order convergence of sequences. In
particular, if X is an Archimedean Riesz space, then the convergence structure (4.8)
is a vector space convergence structure, and X a convergence vector space. In this
case, we may construct the convergence vector space completion of X, which is the
Dedekind σ-completion of X [155], equipped with the order convergence structure
(4.8). In particular, in case X is the set C (Z) of continuous functions on a metric
space Z, then the completion may be constructed as the set Hft (Z) of finite H-
continuous interval valued functions on Z.

 
 
 



Chapter 5

Organization of the Thesis

5.1 Objectives of the Thesis

The aim of this thesis is to develop a general and type independent theory con-
cerning the existence and regularity of generalized solutions of systems of nonlinear
PDEs. In this regard, our point of departure is the Order Completion Method [119],
which is discussed in Section 1.4. In particular, this includes, as a first and basic
step, a reformulation of the Order Completion Method in the context of uniform
convergence spaces. That is, the construction of generalized solutions to a nonlinear
PDE (1.100) as an element of the Dedekind completion of the space Mm

T (Ω) is in-
terpreted in terms of the Wyler completion of a suitable uniform convergence space.
Such a recasting of the Order Completion Method in terms of uniform convergence
spaces allows for the application of convergence theoretic techniques to problems re-
lating to the structure and regularity of generalized solutions, techniques that may
turn out to be more suitable to the mentioned problems that the order theoretic
methods involved in the Order Completion Method.

The recasting of the Order Completion Method in the setting of uniform conver-
gence spaces, instead of that of ordered sets and their completions, is the first and
basic aim of this work. In this regard, appropriate uniform convergence spaces are
introduced, and the completions of these spaces are characterized. The existence
and uniqueness of generalized solutions of arbitrary continuous systems of nonlinear
PDEs is proved within the context of the mentioned uniform convergence spaces.
Furthermore, it is shown that these solutions may be assimilated with usual normal
lower semi-continuous functions. That is, there is a natural injective and uniformly
continuous mapping from the space of generalized solutions into the space of nearly
finite normal lower semi-continuous maps. This provides a blanket regularity for the
solutions.

The regularity of the generalized solutions delivered through the Order Com-
pletion Method is dramatically improved upon in two ways. In the first place, it
is shown that such generalized solutions may in fact be assimilated with functions
that are smooth, up to the order of differentiability of the nonlinear partial differ-
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ential operator T (x,D), everywhere except on a closed nowhere dense subset of the
domain of definition of the system of equations. This result is based on the fact
that any Hausdorff convergence structure admits a complete uniform convergence
structure. As such, it seems unlikely that such a result can be obtained in terms
of the purely order theoretic methods upon which the Order Completion Method is
based.

As mentioned in Section 1.4, the spaces of generalized functions delivered through
the Order Completion Method are, to some extent, dependent on the particular
nonlinear partial differential operator that defines the equation. For the spaces of
generalized functions mentioned above, which are obtained as the Wyler completions
of suitable uniform convergence spaces, this is also the case. The second major
development we present here, regarding to the regularity of generalized solutions of
systems of nonlinear PDEs, addresses this issue. In this regard, and in the original
spirit of Sobolev, we construct spaces of generalized functions that do not depend
in any way on a particular nonlinear partial differential operator. These spaces are
shown to contain generalized solutions, in a suitable sense, of a large class of systems
of nonlinear PDEs. This result provides some additional insight into the structure
of unique generalized solutions constructed in the Order Completion Method. In
particular, such a solution may be interpreted as nothing but the set of solutions in
the new Sobolev type spaces of generalized functions.

The solutions constructed in the Sobolev type spaces of generalized functions
may be represented through their generalized partial derivatives as usual nearly
finite normal lower semi-continuous functions. As such, the singularity set of such a
generalized function, that is, the set of points where at least one of the generalized
partial derivatives is not continuous, is a set of first Baire category. However, it
should be noted that the generalized derivatives cannot be interpreted classically,
that is, as usual partial derivatives, at those points where the generalized function
is regular.

In this regard, we show that, for a large class of equations, there are generalized
solutions which are in fact classical solutions everywhere except on some closed
nowhere dense set. This result is based on a suitable approximation of functions

u : Ω → R

that are Cm-smooth everywhere except on a closed nowhere dense subset of Ω, by
functions in Cm (Ω), and on a result giving sufficient conditions for the compactness
of a set in Cm (Ω) with respect to a suitable topology.

The last topic to be treated concerns initial and / or boundary value prob-
lems. The results discussed so far apply to systems of nonlinear PDEs without any
additional conditions. In this regard, we show that the methods that have been de-
veloped here may be applied to initial and / or boundary value problems with only
minimal modifications. In particular, we show that a large class of Cauchy problems
admit solutions in the Sobolev type spaces of generalized functions. Furthermore,
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under only very mild assumptions regarding the smoothness of the nonlinear partial
differential operator and the initial data, we show that a solution can be constructed
which is in fact a classical solution everywhere except on a closed nowhere dense
subset of the domain of definition of the system of equations. This result is a first
in the literature. In particular, it is the first extension of the Cauchy-Kovalevskaia
Theorem 2 on its own general and type independent grounds to equations that are
not analytic.

5.2 Arrangement of the Material

The results presented in this work are organized as follows. In Chapter 6 we obtain
some preliminary results on the Wyler completion of Hausdorff uniform convergence
spaces. In particular, we show that if a uniform convergence space X is a subspace
of Y , then the completion X] of X need not be a subspace of Y . However, the
inclusion mapping

i : X → Y

extends to an injective, uniformly continuous mapping

i] : X] → Y ].

More generally, if X and Y are Hausdorff uniform convergence spaces, and

ϕ : X → Y

is a uniformly continuous embedding, then the unique uniformly continuous exten-
sion

ϕ] : X] → Y ]

of ϕ to X] is injective, but not necessarily an embedding. Products of uniform
convergence structure are shown to be compatible the Wyler completion. In partic-
ular, the completion of the product

∏
i∈I Xi of a family (Xi)i∈I of Hausdorff uniform

convergence spaces is the product
∏

i∈I X
]
i of the completions X]

i of the Xi. These
results are used to obtain a description of the completion of a uniform convergence
space that is equipped with the initial uniform convergence structure with respect
to a family of mappings

ϕi : X → Xi,

where each Xi is a Hausdorff uniform convergence space. In particular, we show
that there is an injective, uniformly continuous mapping

Φ : X] →
∏
i∈I

X]
i
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so that πi ◦ Φ = ϕ]
i for each i ∈ I, with πi the projection.

Chapter 7 concerns certain spaces of normal lower semi-continuous functions. In
particular, we introduce the space NL (X) of all nearly finite normal lower semi-
continuous functions, and the space ML (X) of nearly finite normal lower semi-
continuous functions that are continuous and real valued everywhere except on a
closed nowhere dense subset of X. This space also appears in connection with
rings of continuous functions and their completions [56]. Some properties of the
mentioned classes of functions are investigated. We introduce a uniform convergence
structure on ML (X) in such a way that the induced convergence structure is the
order convergence structure (4.8). The Wyler completion of ML (X) with respect
to this uniform convergence structure is obtained as the set NL (X), equipped with
a suitable uniform convergence structure.

The uniform convergence spaces introduced in Chapter 7 form the point of de-
parture for the construction of spaces of generalized functions in Chapter 8. In this
regard, we construct the so-called pullback space of generalized functionsNLT (Ω)K

associated with a given system nonlinear PDEs

T (x,D)u (x) = f (x) . (5.1)

in Section 8.1. In Section 8.2 we introduce the Sobolev type spaces of generalized
functions NLm (Ω). These spaces are obtained as the completion of the set

MLm (Ω) =

{
u ∈ML (Ω)

∃ Γ ⊂ Ω closed nowhere dense :
u ∈ Cm (Ω)

}
equipped with a suitable uniform convergence structure. The structure of the gen-
eralized functions that are the elements of NLm (Ω) are discussed, as well as the
connection with the spaces NLT (Ω). In Section 8.3 we discuss the issue of extend-
ing a nonlinear partial differential operator to the Sobolev type spaces of generalized
functions NLm (Ω). In this regard, we show how such an operator may be defined
on MLm (Ω)K , for a suitable K ∈ N. It is shown that every such operator is uni-
formly continuous on MLm (Ω)K , and as such it may be uniquely extended to the
space NLm (Ω)K . We also discuss the correspondence between generalized solutions
in the pullback type spaces of generalized functions, and the Sobolev type spaces of
generalized functions. It is shown that generalized solution to (5.1) in NLm (Ω)K

corresponds to the unique generalized solution in the pullback type space NLT (Ω),
should such solutions exist.

Chapter 9 addresses the issue of existence of generalized solutions in the spaces of
generalized functions constructed in Chapter 8. In Section 9.1 we introduce certain
basic approximation results. These include a multidimensional version of (1.110), as
well as a suitable refinement of that result. Section 9.2 contains the first and basic
existence and uniqueness result for generalized solutions in the pullback spaces of
generalized functionsNLT (Ω). This section also includes a detailed investigation of
the structure of such generalized solutions. In Section 9.3 we investigate the effects
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of additional assumptions on the smoothness of the nonlinear partial differential
operator T and the righthand term f on the regularity of generalized solutions in
NLT (Ω). Here we obtain what may be viewed as a maximal regularity result
for the solution in pullback type spaces of generalized functions. In particular, it
is shown that if the nonlinear partial differential operator T, and the righthand
term f are Ck-smooth, for some k ∈ N, then the generalized solution in NLT (Ω)

may be assimilated with functions in MLk (Ω)K . Section 9.4 contains existence
results for generalized solutions of a large class of systems of nonlinear PDEs in the
Sobolev type spaces of generalized functions. It is also shown that under additional
assumptions on the smoothness of the nonlinear partial differential operator T and
righthand term f, namely, that both are Ck-smooth, we may obtain solutions in
NLm+k (Ω).

In Chapter 10 we discuss further regularity properties of generalized solutions
in Sobolev type spaces of generalized functions. Section 10.1 introduces suitable
topologies on the space Cm (Ω) which admit convenient conditions for a set A ⊂
Cm (Ω) to be precompact. In particular, we show that any set F ⊂ Cm+1 (Ω) that
satisfies

∀ A ⊂ Ω compact :
∃ MA > 0 :
∀ |α| ≤ m+ 1 :

u ∈ A⇒ |Dαu (x) | ≤MA, x ∈ A

is precompact in Cm (Ω). This generalizes a well known result for the one dimensional
case Ω ⊆ R, see for instance [49]. Using this result, it is shown in Section 10.2 that a
large class of systems of nonlinear PDEs admit a generalized solution in NLm (Ω)K

that is in fact a classical solution everywhere except on a closed nowhere dense
subset of Ω.

Chapter 11 is dedicated to the study of a large class of initial value problems. In
particular, we extend the Cauchy-Kovalevskaia Theorem 2 to systems of equations,
and initial data, which are not analytic. In this regard, it is shown that such an
initial value problem admits a generalized solution in NLm (Ω)K which satisfies
the initial condition in a suitable generalized sense. This is achieved through a
slight modification of the methods introduced in Chapters 7 through 9. Indeed,
the initial value problem is solved by essentially the same techniques that apply to
the free problem. It is also shown that such a generalized solution to the Cauchy
problem may be constructed which is a classical solution everywhere except on a
closed nowhere dense subset of the domain of definition. Furthermore, this solution
satisfies the initial condition in the usual sense.

Chapter 12 contains some concluding remarks. In particular, we discuss some of
the implications of the results obtained here. Directions for future research are also
indicated.
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