MODELLING THE SOIL WATER BALANCE TO IMPROVE IRRIGATION MANAGEMENT OF TRADITIONAL IRRIGATION SCHEMES IN ETHIOPIA

By

Geremew Eticha Birdo

Submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy

in Agronomy

Department of Plant Production and Soil Science, Faculty of Natural and Agricultural Sciences

University of Pretoria

Pretoria

November 2008

Supervisor: Dr. J.M. Steyn
Co-supervisor: Prof. J.G. Annandale

© University of Pretoria
DECLARATION

I, Geremew Eticha Birdo declare that this dissertation, submitted for the degree of Doctor of Philosophy in *Irrigation Agronomy* at the University of Pretoria, is my own work and has not been previously submitted by me for a degree at any other university.

Geremew Eticha Birdo
Date: January 2008
Place: Pretoria, Republic of South Africa
DEDICATION

“This work is dedicated to

my mother, harmee Likitu Hundarraa,

who aspires to see me obtaining an education at the highest level.”
PREFACE

This work was conducted in the Department of Plant Production and Soil Science at University of Pretoria, South Africa. The project involved two field experiments in Ethiopia and another two field experiments in South Africa. The aim of this work was to monitor and evaluate traditional irrigation schemes in Ethiopia in order to improve the country's productivity.

One of the works executed in Ethiopia was a survey conducted on traditional irrigation schemes to take stock of farmers' water management (amounts and intervals), major technical and social constrains hindering higher productivity, and to recommend possibilities for improvement. The result of this survey indicates the amount of water and intervals that farmers traditionally practice, as well as other technical and social constraints for future improvement.

The second activity in Ethiopia was to compare two traditional irrigation scheduling methods with two other, more scientific, methods under the furrow system, using standard crop cultivars. This activity helped the researcher to compare the performance of traditional water management to that of the scientific method, and identify the critical areas for further improvement or look for sound technologies that could replace the traditional practice.
The two activities performed in South Africa involved the use of detailed scientific methods to evaluate yield and quality performance of crops, crop growth stages for water stress, and calibrate and validate the mechanistic Soil Water Balance (SWB) model for large scale application, which could be a major tool to bring tradition and science together.

This thesis is compiled from chapters (articles) that were already published, accepted or submitted for publication and a few other publications in process. The dissertation is prepared in accordance to the guidelines set up for authors for the publication of manuscripts in the South African Journal of Plant and Soil.

In addition, the researcher expects to produce not less than four more articles from the remaining body of the thesis, in the area of soil water characteristics and model calibration and validation, for publication in various journals.
ACKNOWLEDGEMENTS

I would like to express my sincere thanks and gratitude to my supervisors, Dr JM Steyn and Prof. JG Annandale, who provided me with immeasurable support, guidance and critical comments throughout my study period. My gratitude goes to Dr Steyn for his financial support from a project of his, while my scholarship came to a halt untimely.

Oromiya Agricultural Research Institute (OARI) sponsored the study through the funding of a World Bank loan to the Ethiopian Research Capacity Building. I gratefully acknowledge this institution for the facilitation of my research.

I am also grateful to the International Water Management Institute (IWMI) at Pretoria for partial financial support for the survey work at Godino, through the APPIA project of East Africa, Ethiopia.

My special thanks go to my colleagues in the Department, Eyob Habte, who acquainted me with the field and laboratory research equipments and Yaekob Beletse, Tsegal G/Mariam, Yibekal Alemayehu and Thembeka Mpaiseng for their professional support during the development of the thesis.

The staff of the Department of Plant Production and Soil Science, including the farm workers who were so pleasant towards me – I am indebted to them.
I am grateful to Mr G/Medhin W/Giorgis, who supplied me with sprouted potato seed, Mr Aliye Hussen and the then Deputy Director General of EARO, Dr Abera Dheressa, who facilitated logistics and supported me with encouraging ideas during the research work at Godino and Bushoftu.

Special thanks go to Mr Nigusu Bekele, who assisted me in the fieldwork, and to Dr Selamyihun Kidane, Dr Solomon and the management of DZARC.

My thanks go to Obbo Dassaaleny Fayissaa and Obbo Geetachoo Bashaargoo, who helped me with the installation and maintenance of research facilities at the Godino irrigation scheme.

Thanks to my friends at Pretoria, Dr Getu Beyene, Dr Abubeker Hassen, Dr Yoseph Beyene, Dr Yoseph Assefa, Dr Solomon Kebede and Mr Temesgen Tadesse, with whom I passed good times.

The hospitality of Mrs Amina Mohammed and the entertainment of baby Hassen Abubeker were marvellous and I owe them my special gratitude.

Finally, yet importantly, I thank my family for their patience during my long stay away from them, especially Obbo Dirribaa Soressaa, who supported my elderly mother.
ABSTRACT

Traditional irrigation was practiced in Ethiopia since time immemorial. Despite this, water productivity in the sector remained low. A survey on the Godino irrigation scheme revealed that farmers used the same amount of water and intervals, regardless of crop species and growth stage. In an effort to improve the water productivity, two traditional irrigation scheduling methods were compared with two scientific methods, using furrow irrigation. The growth performance and tuber yield of potato (cv. Awash) revealed that irrigation scheduling using a neutron probe significantly outperformed the traditional methods, followed by the SWB model Irrigation Calendar. Since the NP method involves high initial cost and skills, the use of the SWB Calendar is suggested as replacement for the traditional methods.

SWB is a generic crop growth model that requires parameters specific to each crop, to be determined experimentally before it could be used for irrigation scheduling. It also accurately describes deficit irrigation strategies where water supply is limited. Field trials to evaluate four potato cultivars for growth performance and assimilate partitioning, and onions' critical growth stages to water stress were conducted. Crop-specific parameters were also generated. Potato and onion crops are widely grown at the Godino scheme where water scarcity is a major constraint. These crop-specific parameters were used to calibrate and evaluate SWB model simulations. Results revealed that SWB model simulations for Top dry matter (TDM), Harvestable dry matter (HDM), Leaf area index (LAI), soil water deficit (SWD) and Fractional interception (FI) fitted well with measured data, with a high degree of statistical accuracy.
The response of onions to water stress showed that bulb development (70-110 DATP) and bulb maturity (110-145) stages were most critical to water stress, which resulted in a significant reduction in onion growth and bulb yields. SWB also showed that onion yield was most sensitive to water stress during these two stages.

An irrigation calendar, using the SWB model, was developed for five different schemes in Ethiopia, using long-term weather data and crop-specific parameters for potatoes and onions. The calendars revealed that water depth varied, depending on climate, crop type and growth stage.

Keywords: canopy cover, dry matter partitioning, furrow irrigation, irrigation scheduling, leaf area index, neutron probe, onion bulb yield, potato tubers, Soil Water Balance model, traditional irrigation, water stress
TABLE OF CONTENTS

DECLARATION.. iii
DEDICATION.. iv
PREFACE.. v
ACKNOWLEDGEMENTS .. viii
ABSTRACT... x
LIST OF FIGURES... xiv
LIST OF TABLES.. xx
LIST OF SYMBOLS AND ABBREVIATIONS... xxiv

CHAPTER 1
GENERAL INTRODUCTION...1

CHAPTER 2
LITERATURE REVIEW ...8
2.1 Community-based irrigation water management: The need for social structure...8
2.2 Water management and irrigation scheduling..11
2.2.1 Irrigation scheduling methods...11
2.3 Cultivation of some economical crops under traditional irrigation……….. 17
2.3.1 Potatoes ..17
2.3.2 Onions ..27

CHAPTER 3
MONITORING AND EVALUATION OF COMMUNITY-BASED IRRIGATION WATER MANAGEMENT AT THE GODINO SCHEME OF ETHIOPIA...32
3.1 Introduction ..32
3.2 Materials and methods..33
3.3 Results and discussion...36
3.4 Conclusions ..47

CHAPTER 4
COMPARISON BETWEEN TRADITIONAL AND SCIENTIFIC IRRIGATION SCHEDULING PRACTICES FOR FURROW IRRIGATED POTATOES IN ETHIOPIA ...49
9.4 Conclusions .. 196

CHAPTER 10

GENERAL CONCLUSION AND RECOMMENDATIONS 198
10.1 General conclusion .. 198
10.2 Recommendations ... 203

REFERENCE .. 205

APPENDIX ... 224

LIST OF FIGURES

Figure 3.1 Water management related constraints and their extent

at the Godino traditional irrigation scheme..38

Figure 3.2 Soil and farm infrastructure related constraints and their extent

at the Godino traditional irrigation scheme.................................39

Figure 3.3 Social related constraints and their extent at the Godino traditional

irrigation scheme..40

Figure 3.4 Average daily scheme water supply (L s\(^{-1}\)) for Godino traditional

irrigation scheme...41

Figure 3.5 Farmer's irrigation water application depth (mm) for onion, potato

and tomato crops at the Godino traditional irrigation scheme........43

Figure 3.6 Farmer's traditional irrigation interval (days) for onion, potato and

tomato crops at the Godino traditional irrigation scheme.............44

Figure 3.7 Gravimetric water content measured before irrigation water

application at the Godino traditional irrigation scheme...............46

Figure 3.8 Soil water deficit before irrigation (irrigation requirement) in

comparison with the water amount the farmer applied.46

Figure 4.1 Leaf area index (LAI) for four irrigation treatments: Soil Water
Balance (SWB), farmers traditional practice (FTP), research centre practice (RCP) and neutron probe (NP) treatments

Figure 4.2 Leaf dry mass (LDM) for four irrigation treatments: Soil Water Balance (SWB), farmers traditional practice (FTP), research centre practice (RCP) and neutron probe (NP) treatments

Figure 4.3 ETo (reference) for the cropping period at Debre-Zeit as compared to water applied for each treatment

Figure 4.4 Fractional interception (FI) of the photosynthetically active radiation (PAR) for four irrigation treatments: Soil Water Balance (SWB), farmers traditional practice (FTP), research centre practice (RCP) and the neutron probe (NP) treatments

Figure 4.5 Response of wetting front detectors 24 hrs after irrigation to correct the SWB model irrigation scheduling

Figure 4.6 Soil water deficit measured before irrigation for four irrigation treatments: Soil Water Balance (SWB), farmers traditional practice (FTP), research centre practice (RCP) and re-filling to field capacity as per the neutron probe reading (NP) treatments

Figure 5.1 Leaf area index (LAI) of four potato cultivars during the days after planting (DAP)

Figure 5.2 Leaf dry mass (LDM) of four potato cultivars during days after planting (DAP)

Figure 5.3 Canopy dry mass (CDM) of four potato cultivars during days after planting (DAP)

Figure 6.1 Tuber specific gravity of four potato cultivars under comparison

Figure 6.2 Reducing sugars (%) of USDA standard of four potato cultivars under comparison

Figure 6.3 Vascular discolouration (%), brown spot (%), and hollow...
heart (%) recorded for four potato cultivars under comparison………..103

Figure 7.1 Soil water deficit (mm) of onions, non-stressed treatment (NNN)…… 113

Figure 7.2 Soil water deficit (mm) of onions water stressed at vegetative growth stage (35-70 DATP) (SNN).………………………………………114

Figure 7.3 Soil water deficit (mm) of onions water stressed at bulb elongation (70-110 DATP) (NSN).…………………………………………………115

Figure 7.4 Soil water deficit (mm) of onions water stressed at bulb maturity (NNS)……………………………………………………………………116

Figure 7.5 Onion leaf area index (LAI) for four water stress treatments applied at different days after transplanting (DATP): Non-stressed (NNN), stressed at initial bulb formation (SNN), stressed at bulb development (NSN) and stressed at bulb maturity (NNS)……..123

Figure 7.6 Onion specific leaf area (SLA) for four water stress treatments applied at different days after transplanting (DATP): Non-stressed (NNN), stressed at initial bulb formation (SNN), stressed at bulb development (NSN) and stressed at bulb maturity (NNS)………124

Figure 7.7 Onion leaf area duration (LAD) for four water stress treatments applied at different days after transplanting (DATP): Non-stressed (NNN), stressed at vegetative stage (SNN), stressed at bulb development stage (NSN) and stressed at bulb maturity stage (NNS)……………………………………125

Figure 7.8 Relationship between leaf area duration (LAD) and total dry matter
(TDM) for treatments non-water stressed (NNN), water stressed during vegetative growth stage (SNN), water stressed during bulb development stage (NSN) and water stressed during bulb maturity stage (NNS)…….126

Figure 7.9 Onion total dry matter (TDM) for four water stress treatments applied at different days after transplanting (DATP): Non-stressed (NNN), stressed at vegetative stage (SNN), stressed at bulb development (NSN) and stressed at bulb maturity (NNS).……………………………127

Figure 7.10 Fractional interception (FI) of photosynthetically active radiation (PAR) for four water stress treatments applied at different days after transplanting (DATP) of onions: Non-stressed (NNN), stressed at vegetative stage (SNN), stressed at bulb development (NSN) and stressed at bulb maturity (NNS).……………………………128

Figure 8.1a Simulated (lines) and measured (points) values of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for Frodo …..145

Figure 8.1b Simulated (lines) and measured values (points) of fractional interception (FI)(solar) for Frodo……………………………………..146

Figure 8.2a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for Pentland Dell……………………………………………………………………...147

Figure 8.2b Simulated (lines) and measured values (points) of fractional interception of (FI) (solar) for Pentland Dell……………………………………...148

Figure 8.3a Simulated (lines) and measured values (points) of rooting depth
(RD), leaf area index (LAI), total dry matter (TDM), harvestable dry
matter (HDM) and soil water deficit to field capacity for Darius………149

Figure 8.3b Simulated (lines) and measured values (points) of fractional
interception (FI) (solar) for Darius………………………………………150

Figure 8.4a Simulated (lines) and measured values (points) of rooting depth
(RD), leaf area index (LAI), total dry matter (TDM), harvestable dry
matter (HDM) and soil water deficit to field capacity for Shepody……151

Figure 8.4b Simulated (lines) and measured values (points) of fractional
interception (FI) (solar) for Shepody………………………………………152

Figure 8.5 Correlation between leaf area index (LAI) and fractional interception (FI)
of radiation for potato cv Awash. Canopy extinction coefficient (K) and
coefficient of determination (r^2) of the exponential regression function.
…………………………………………………………………………..157

Figure 8.6a Simulated (lines) and measured values (points) of rooting depth
(RD), leaf area index (LAI), total dry matter (TDM), harvestable dry
matter (HDM) and soil water deficit to field capacity for SWB
treatment (DZ1)…………………………………………………………158

Figure 8.6b Simulated (lines) and measured values (points) of fractional
interception (FI) (solar) for SWB treatment (DZ1)………………………159

Figure 8.7a Simulated (lines) and measured values (points) of rooting depth
(RD), leaf area index (LAI), total dry matter (TDM), harvestable dry
matter (HDM) and soil water deficit to field capacity for FTP
treatment (DZ2)……………………………………………………………160

Figure 8.7b Simulated (lines) and measured values (points) of fractional
interception (FI) (solar) for FTP treatment (DZ2)………………………161
Figure 8.8a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for RCP treatment (DZ3)……………………………………………………………………162

Figure 8.8b Simulated (lines) and measured values (points) of fractional interception (FI) (solar) for RCP treatment (DZ3)…………………163

Figure 8.9a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for NP treatment (DZ4)…………………………………………………………………164

Figure 8.9b Simulated (lines) and measured values (points) of fractional interception (solar) for NP treatment (DZ4)………………………165

Figure 8.10a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for NNN treatment ………………………………………………………………171

Figure 8.10b Simulated (lines) and measured values (points) of fractional interception (FI) (solar) for NNN treatment.........................172

Figure 8.11a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for SNN treatment……………………………………………………………173

Figure 8.11b Simulated (lines) and measured values (points) of fractional interception (FI) (solar) for SNN treatment.........................174

Figure 8.12a Simulated (lines) and measured values (points) of rooting depth

xix
(RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for NSN treatment………………………………………………………………175

Figure 8.12b Simulated (lines) and measured values (points) of fractional interception (FI) (solar) for NSN treatment……………………………………176

Figure 8.13a Simulated (lines) and measured values (points) of rooting depth (RD), leaf area index (LAI), total dry matter (TDM), harvestable dry matter (HDM) and soil water deficit to field capacity for NNS treatment………………………………………………………………177

Figure 8.13b Simulated (lines) and measured values (points) of fractional interception (solar) for NNS treatment……………………………………178

Figure A1 Irrigation, rainfall and the soil water balance during the growing period of potato, cv. Frodo……………………………………………..232

Figure A2 Irrigation, rainfall and the soil water balance during the growing period of potato, cv. Pentland Dell……………………………………..233

Figure A3 Irrigation, rainfall and the soil water balance during the growing period of potato, cv. Darius…………………………………………….234

Figure A4 Irrigation, rainfall and the soil water balance during the growing period of potato, cv. Shepody…………………………………………235

Figure A5 Irrigation, rainfall and the soil water balance during the growing period of Soil Water Balance (DZ1) treatment…………………………236

Figure A6 Irrigation, rainfall and the soil water balance during the growing period of Farmer's Traditional Practice (DZ2) treatment………………237

Figure A7 Irrigation, rainfall and the soil water balance during the growing period of Research Centre Practice (DZ3) treatment…………………238

xx
Figure A8 Irrigation, rainfall and the soil water balance during the growing period of Neutron Probe (DZ4) treatment………………………………239

Figure A9 Irrigation, rainfall and the soil water balance during the growing period of onion (NNN) treatment………………………………………240

Figure A10 Irrigation, rainfall and the soil water balance during the growing period of onion (SNN) treatment………………………………………241

Figure A11 Irrigation, rainfall and the soil water balance during the growing period of onion (NSN) treatment………………………………………242

Figure A12 Irrigation, rainfall and the soil water balance during the growing period of onion (NNS) treatment………………………………………243

LIST OF TABLES

Table 1.1 Irrigation potential and the area of land already developed in different river basins of Ethiopia (WRDA, 1990)…………………………………2

Table 2.1 Irrigation scheduling methods, tools required and the advantages and disadvantages of each method (Waskom, 1994)…………………..14

Table 4.1 Potato fresh tuber yield (FTY), average leaf dry mass (LDM), average canopy dry mass (CDM), average tuber dry mass (TDM), maximum leaf area index (LAI), average fractional interception (FI) of PAR and standard error of mean (SEM) for the irrigation treatments compared…..59

Table 4.2 Total seasonal water applied, tuber yield and irrigation water use efficiency (IWUE) for four irrigation treatments: re-filling to field capacity as per the neutron probe reading (NP), Soil Water Balance (SWB), research centre practice (RCP) and farmers traditional practice (FTP) treatments………………………………………………………………...66

Table 5.1 Potato dry matter partitioning to leaves (LDM), stem (SDM), tuber (HDM), and total dry mass (TDM) for the four potato cultivars. Harvest I (58 DAP)………………………………………………………….. 79
Table 5.2 Potato dry matter partitioning to leaves (LDM), stem (SDM), tuber (HDM) and total dry mass (TDM) for the four potato cultivars. Harvest II (72 DAP) …………………………………………………………………………………..80

Table 5.3 Potato dry matter partitioning to leaves (LDM), stem (SDM), tuber (HDM) and total dry mass (TDM) for the four potato cultivars. Harvest III (84 DAP) …………………………………………………………………………………..81

Table 5.4 Potato dry matter partitioning to leaves (LDM), stem (SDM), tuber (HDM) and total dry mass (TDM) for the four potato cultivars. Harvest IV (101 DAP) …………………………………………………………………………………..82

Table 5.5 Average stem number and percent canopy covers for the first (CC1) and the second (CC2) measurements for the four potato cultivars compared …………………………………………………………………………………..83

Table 5.6 Comparison of average leaf dry mass (LDM), average canopy dry mass (CDM), fresh potato tuber yield (FTY) at final harvest, tuber dry matter (HDM) at final harvest and average leaf area index (LAI) for the four potato cultivars compared …………………………………………………………………………………..84

Table 6.1 External tuber characteristics evaluated for the four potato cultivars under comparison (USDA, 1997) …………………………………………………………………………………..95

Table 6.2 Internal tuber characteristics used for evaluating four potato cultivars under comparison (USDA, 1997) …………………………………………………………………………………..96

Table 6.3 Average tuber form index (TFI) for large, medium and small sized tubers of the four cultivars compared …………………………………………………………………………………..100

Table 6.4 Tuber size distributions for large, medium and small and total tuber yield of the four cultivars compared …………………………………………………………………………………..101

Table 6.5 External and internal quality characteristics of four potato cultivars under comparison …………………………………………………………………………………..102

Table 7.1 Leaf dry matter (LDM), bulb dry matter (BDM), total dry matter (TDM), leaf area index (LAI) and fractional interception (FI) of onion at 124 days after transplant (DATP) for four water regimes ………
138 days after transplant (DATP) for four water regimes………………120

Table 7.3 Leaf dry matter (LDM), bulb dry matter (BDM), total dry matter (TDM), leaf area index (LAI) and fractional interception (FI) of onion at 152 days after transplant (DATP) for four water regimes………………121

Table 7.4 Onion water use and irrigation water use efficiency (IWUE) for four water stress treatments applied at different days after transplanting (DATP): Non-stressed (NNN), stressed at vegetative stage (SNN), stressed at bulb development (NSN) and stressed at bulb maturity (NNS)………130

Table 8.1 Model evaluation parameters and their accuracy criteria levels (after De Jager, 1994). …………………………………………………143

Table 8.2 Summary of crop growth parameters determined for the four potato cultivars from 2003 field data and from the literature, to calibrate the SWB model……………………………………………………144

Table 8.3 Summary of crop growth parameters determined for potato cv. Awash at Debre-Zeit, Ethiopia in 2005 and from literature…………………155

Table 8.4 Summary of crop growth parameters determined for onion (cv Texas Grano) water stressed at different growth stages during the field experiment in 2004 at the Hatfield experimental farm and from literature to calibrate the SWB model………………………………169

Table 9.1 Irrigation calendar output as recommended by SWB scheduler, using potato crop for Debre-Zeit climate and soil conditions………………194

Table 9.2 Irrigation calendar output as recommended by SWB scheduler, using onion crop for Debre-Zeit climate and soil conditions………………195

Table A1 Irrigation calendar output as recommended by SWB scheduler, using potato crop for Melkassa climate and soil conditions………………224
Table A2 Irrigation calendar output as recommended by SWB scheduler,
using onion crop for Melkassa climate and soil conditions………………225

Table A3 Irrigation calendar output as recommended by SWB scheduler,
using potato crop for Bako climate and soil conditions…………………..226

Table A4 Irrigation calendar output as recommended by SWB scheduler,
using onion crop for Bako climate and soil conditions…………………227

Table A5 Irrigation calendar output as recommended by SWB scheduler,
using onion crop for Zeway climate and soil conditions…………………228

Table A6 Irrigation calendar output as recommended by SWB scheduler,
using onion crop for Zeway climate and soil conditions…………………229

Table A7 Irrigation calendar output as recommended by SWB scheduler,
using potato crop for Shashemene climate and soil conditions…………230

Table A8 Irrigation calendar output as recommended by SWB scheduler,
using onion crop for Shashemene climate and soil conditions……………231

LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Campbell's coefficient of the log-log water retention function</td>
</tr>
<tr>
<td>ADL</td>
<td>Allowable depletion level</td>
</tr>
<tr>
<td>Alt</td>
<td>Altitude (m)</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>CDmi</td>
<td>Canopy dry matter daily increment (kg)</td>
</tr>
<tr>
<td>cv.</td>
<td>Cultivar</td>
</tr>
<tr>
<td>D</td>
<td>Index of agreement of willmott</td>
</tr>
<tr>
<td>DAP</td>
<td>Days after planting</td>
</tr>
<tr>
<td>DATP</td>
<td>Days after transplant</td>
</tr>
<tr>
<td>DM</td>
<td>Dry matter production (kg m⁻²)</td>
</tr>
<tr>
<td>DMi</td>
<td>Daily increment of total dry matter (kg m⁻²)</td>
</tr>
</tbody>
</table>
Dr Drainage (mm)
DWR Dry matter water ratio (Pa)
dz Soil layer thickness (m)
DZARC Debre-Zeit agricultural research centre
E Actual evaporation (mm)
e_a Actual (atmospheric) vapour pressure (kPa)
E_c Radiation conversion efficiency (kg MJ⁻¹)
EMDD Emergence day degree (d °C)
eq(s) equation(s)
e_s Saturated vapour pressure (kPa)
ET Evapotranspiration (mm = kg m⁻²)
ETcrop Crop evapotranspiration
ETo (FAO) reference crop evapotranspiration (mm d⁻¹)
f Layer root fraction
FAO Food and Agriculture Organization of the United Nation (Rome, Italy)
FI Fractional interception
FI_{PAR} Fractional interception of photosynthetically active radiation
FLDD Day degrees at end of vegetative growth (d °C)
FL_{solar} Fractional interception of solar radiation
f_r Fraction of dry matter partitioned to roots
GDD Growing day degrees (d °C)
H_C Crop height (m)
H_{C_{max}} Maximum crop height (m)
HDM Harvestable (tuber) dry matter (kg m⁻²)
I Irrigation amount (mm)
I_C Amount of precipitation intercepted by the canopy (mm)
IR Irrigation requirement
IWMRI International Water Management Institute
IWUE Irrigation water use efficiency
K Canopy radiation extinction coefficient
K_{Cb} Basal crop coefficient
K_{PAR} Canopy extinction coefficient of photosynthetically active radiation
K_S Canopy extinction coefficient of total solar radiation
LAD Leaf area duration
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAI</td>
<td>Leaf area index (m² m⁻²)</td>
<td></td>
</tr>
<tr>
<td>LAIy</td>
<td>Leaf area index of senesced leaves</td>
<td></td>
</tr>
<tr>
<td>LDM</td>
<td>Leaf dry matter (kg m⁻²)</td>
<td></td>
</tr>
<tr>
<td>LSD</td>
<td>Least significant difference</td>
<td></td>
</tr>
<tr>
<td>MAE</td>
<td>Mean absolute error</td>
<td></td>
</tr>
<tr>
<td>MTDD</td>
<td>Maturity day degree (d °C)</td>
<td></td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared radiation (0.73 µm)</td>
<td></td>
</tr>
<tr>
<td>OARI</td>
<td>Oromiya Agricultural Research Institute</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Precipitation (mm)</td>
<td></td>
</tr>
<tr>
<td>Pa</td>
<td>Atmospheric pressure for a given altitude (kPa)</td>
<td></td>
</tr>
<tr>
<td>PAR</td>
<td>Photosynthetically active radiation (0.4 0.7 µm)</td>
<td></td>
</tr>
<tr>
<td>PAW</td>
<td>Plant available water</td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td>Stem-leaf partitioning parameter (m² kg⁻¹)</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Potential evaporation (mm)</td>
<td></td>
</tr>
<tr>
<td>PET</td>
<td>Potential evapotranspiration (mm)</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Potential transpiration (mm)</td>
<td></td>
</tr>
<tr>
<td>PWP</td>
<td>Permanent wilting point</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Runoff (mm)</td>
<td></td>
</tr>
<tr>
<td>r²</td>
<td>Coefficient of determination</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>Root depth (m)</td>
<td></td>
</tr>
<tr>
<td>RDM</td>
<td>Root dry matter (kg m⁻²)</td>
<td></td>
</tr>
<tr>
<td>RDmax</td>
<td>Maximum root depth (m)</td>
<td></td>
</tr>
<tr>
<td>RGR</td>
<td>Root growth rate (m² kg⁻⁰.⁵)</td>
<td></td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td>RHmax</td>
<td>Daily maximum relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td>RHmin</td>
<td>Daily minimum relative humidity (%)</td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
<td></td>
</tr>
<tr>
<td>Rs</td>
<td>Solar radiation (MJ m⁻² day⁻¹ or W m⁻²)</td>
<td></td>
</tr>
<tr>
<td>SAR</td>
<td>Sodium adsorption ratio</td>
<td></td>
</tr>
<tr>
<td>S.a.</td>
<td>Sinno anno (no date)</td>
<td></td>
</tr>
<tr>
<td>SDM</td>
<td>Stem dry matter (kg m⁻²)</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>Specific gravity</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Stress index</td>
<td></td>
</tr>
<tr>
<td>SLA</td>
<td>Specific leaf area (m² kg⁻¹)</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>SWB</td>
<td>Soil Water Balance</td>
<td></td>
</tr>
<tr>
<td>SWD</td>
<td>Soil water deficit (mm = kg m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Actual transpiration (mm = kg m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>Air temperature (T_a = T_d) (°C)</td>
<td></td>
</tr>
<tr>
<td>Tb</td>
<td>Base temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>T(_{\text{cut-off}})</td>
<td>Cut-off temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>TDM</td>
<td>Top dry matter (kg m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>TDM(_{\text{start}})</td>
<td>Top dry matter at emergence (kg m(^{-2}))</td>
<td></td>
</tr>
<tr>
<td>TFI</td>
<td>Tuber form index</td>
<td></td>
</tr>
<tr>
<td>To</td>
<td>Standard air temperature at sea level (293 °K)</td>
<td></td>
</tr>
<tr>
<td>TransDD</td>
<td>Day degrees of transition period from vegetative to reproductive growth stage (d °C)</td>
<td></td>
</tr>
<tr>
<td>Tw</td>
<td>Wet bulb air temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Wind speed (m s(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>U(_*)</td>
<td>Dimensionless root uptake rate</td>
<td></td>
</tr>
<tr>
<td>U(_2)</td>
<td>Wind speed measured at 2 m height (m s(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>VPD</td>
<td>Vapour pressure deficit (Pa)</td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>Water content</td>
<td></td>
</tr>
<tr>
<td>WFD</td>
<td>Wetting front detector</td>
<td></td>
</tr>
<tr>
<td>WUE</td>
<td>Water use efficiency (kg ha(^{-1}) mm(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Yield (kg ha(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>Soil depth (m)</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Adiabatic lapse rate (K m(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Psychrometer constant (kPa °C(^{-1}))</td>
<td></td>
</tr>
<tr>
<td>ΔS</td>
<td>Change in soil water storage (mm)</td>
<td></td>
</tr>
<tr>
<td>Δt</td>
<td>Duration (day)</td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>Volumetric soil water content (m(^3) m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>θ(_{fc})</td>
<td>Volumetric soil water content at field capacity (m(^3) m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>θ(_{pwp})</td>
<td>Volumetric soil water content at permanent wilting point (m(^3) m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>θ(_{sat})</td>
<td>Volumetric water content at saturation (m(^3) m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>ρ(_b)</td>
<td>Bulk density (Mg m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>ρ(_w)</td>
<td>Water density (Mg m(^{-3}))</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>Stefan-Boltzmann constant (5.6697\times10^{-8}) W m(^{-2}) K(^{-4})</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ψ_{avg}</td>
<td>Root weighted average soil matric potential (J kg$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Ψ_{fc}</td>
<td>Soil matric potential at field capacity (J kg$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Ψ_{lm}</td>
<td>Leaf water potential at maximum transpiration (J kg$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Ψ_{m}</td>
<td>Soil matric potential (J kg$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Ψ_{pwp}</td>
<td>Soil matric potential at permanent wilting point (J kg$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Ψ_x</td>
<td>Xylem water potential (J kg$^{-1}$)</td>
<td></td>
</tr>
</tbody>
</table>