A RATIONAL IN VITRO EVALUATION OF 53 MEDICINAL PLANTS USED IN THE TREATMENT OF DIARRHOEA AND THE POTENTIAL USE OF *DEINBOLLIA OBLONGIFOLIA* (SAPINDACEAE) EXTRACTS

Gabriele Würger

Thesis submitted in fulfilment of the requirements for the degree

Philosophiae Doctor

In the Phytomedicine Programme
Department of Paraclinical Sciences
Faculty of Veterinary Science
University of Pretoria

Promoter: Prof J.N. Eloff
Co-promoter: Dr L.J. McGaw

December 2010

© University of Pretoria
DECLARATION

This represents an experimental record for the work carried out in the Department of Pharmacology, University of Pretoria, under the supervision of Prof. J.N. Eloff and Dr L.J. McGaw.

I, the undersigned Gabriele Würger, present this document as my authentic material and acknowledge that it has not been submitted in any other form to any other institution. I also acknowledge that I have consulted many publications in compiling this work and the references are all listed.

Gabriele Würger
ACKNOWLEDGEMENTS

I would like to thank firstly Prof. J.N. Eloff and Prof. Botha as well as the University of Pretoria for the opportunity to do my research at the Phytomedicine Programme at the Department of Pharmacology of the University of Pretoria. A special word of thanks goes to Prof. J.N. Eloff for his help and guidance, his personal involvement and his invaluable support as my supervisor.

Secondly, Dr L.J. McGaw for all your help with the laboratory work and writing up and most importantly for always having an open ear for me throughout the duration of this research. I am very happy that our professional relationship has evolved into a true friendship that I will cherish forever.

To my friends that I made here in South Africa, especially to TharienDeWinnaar, Tshepiso Makhafola and Dr IlsevanHeerden for your support, that did not waiver, even if times were strenuous.

And most importantly to my family: Thank you for all your love, support and never ending trust in me. Without you, this thesis would never have been possible and I will be eternally grateful, especially to my dad, for providing me with the proper financial means to be able to carry out my research in a different country and so fulfil one of my biggest dreams.

Lastly, I would like to dedicate this thesis to my mother Mag. DoritWürger, who passed away mere months after I received the confirmation that I will be doing my Postgraduate degree in South Africa. You have and will always be my inspiration to strive further in life and to make my dreams come true.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxiv</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxvii</td>
</tr>
<tr>
<td>Chapter 1. Introduction and objectives</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Literature review</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Importance of diarrhoea in animal production</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Medicinal plants</td>
<td>3</td>
</tr>
<tr>
<td>1.1.3 Sources of antimicrobial activity in plants</td>
<td>4</td>
</tr>
<tr>
<td>1.1.4 Plant extracts and their effects</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5 Aim</td>
<td>6</td>
</tr>
<tr>
<td>1.1.6 Objectives</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2. Seasonal variation in antibacterial activity of five selected plant species</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Materials and methods</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1 Plant collection</td>
<td>9</td>
</tr>
<tr>
<td>2.2.2 Extraction</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 TLC fingerprinting</td>
<td>10</td>
</tr>
<tr>
<td>2.2.4 Bacterial cultures</td>
<td>10</td>
</tr>
<tr>
<td>2.2.5 Bioautographic assays</td>
<td>10</td>
</tr>
<tr>
<td>2.2.6 Microdilution assays</td>
<td>11</td>
</tr>
<tr>
<td>2.2.7 Total activity</td>
<td>12</td>
</tr>
<tr>
<td>2.2.8 Tannin assays</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Results and discussion</td>
<td>13</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>2.3.1 Quantity extracted</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 TLC fingerprinting</td>
<td>15</td>
</tr>
<tr>
<td>2.3.3 Bioautographic assays</td>
<td>17</td>
</tr>
<tr>
<td>2.3.4 Microdilution assays</td>
<td>19</td>
</tr>
<tr>
<td>2.3.5 Tannin assays</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Conclusions</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter 3. Antibacterial screening of *Combretum molle* leaf extracts to detect possible intraspecies variation

3.1 Introduction	33
3.2 Materials and methods	34
3.2.1 Plant collection	34
3.2.2 TLC fingerprinting	34
3.2.3 Bioautographic assays	34
3.2.4 Total Activity	34
3.2.5 Microdilution assays	34
3.2.6 Tannin assays	34
3.3 Results and discussion	34
3.3.1 Quantity extracted	34
3.3.2 TLC fingerprinting and Bioautographic assays	35
3.3.3 Microdilution assays	38
3.3.4 Tannin assays	42
3.4 Conclusions	45

Chapter 4. A proposal for prioritising plant species to be investigated for treating diarrhoea in animals

| 3.4 Conclusions | 46 |
5.3.1 Determination of the LC_{50} values of the five different plant extracts

5.4 Conclusion

Chapter 6. Potentization of *Deinbollia oblongifolia* and *Spirostachys africana*

extracts

6.1 Introduction

6.2 Materials and methods

6.2.1 Mass extraction

6.2.2 Solvent-solvent fractionation

6.2.3 TLC fingerprinting and bioautographic assays

6.2.4 Minimum inhibitory concentration determination

6.2.5 Cytotoxicity assays

6.2.5.1 Cell culture

6.2.5.2 Counting of cells and preparation of plates

6.2.5.3 MTT-assay working method

6.3 Results and discussion

6.3.1 Mass extraction

6.3.2 Solvent-solvent fractionation

6.3.3 Minimum inhibitory concentration

6.3.4 TLC fingerprinting and bioautographic assays

6.3.5 Cytotoxicity assays

6.4 Conclusion
Chapter 7. Isolation of active compounds from *Deinbollia oblongifolia* 83

7.1 Introduction 83
7.2 Materials and methods 84
7.2.1 Preparation of the bulk extract 84
7.2.2 Solvent-solvent fractionation 84
7.2.3 Column chromatography 85
7.2.4 Thin Layer Chromatography 85
7.2.5 Purification of column fractions 86
7.2.6 Preparative thin layer chromatography 86
7.2.7 Minimum Inhibitory concentration 86
7.2.8 Cytotoxicity of the isolated compound 86
7.2.9 Identification of purified active compound 86
7.2.9.1 Nuclear Magnetic Resonance Spectroscopy 86
7.3 Results and discussion 87
7.3.1 Thin layer chromatography and bioautography of the fractions resulting from column chromatography 87
7.3.2 Preparative thin layer chromatography 88
7.3.3 Minimum inhibitory concentration 89
7.3.4 Cytotoxicity of the isolated compound 89
7.3.5 Identification of the purified active compound 90
7.4 Conclusions 93
Chapter 8. Efficacy of the potentized extract of *Deinbollia oblongifolia* against different *E. coli* strains

8.1 Introduction 94
8.2 Materials and methods 94
8.2.1 Bacterial cultures 94
8.2.2 Minimum inhibitory concentration determination 94
8.2.3 Bioautographic assays 94
8.3 Results and discussion 95
8.3.1 Minimum inhibitory concentration 95
8.3.2 Bioautographic assays 95
8.4 Conclusions 99

Chapter 9. Acute, subacute and larval toxicity of the extract of *Deinbollia oblongifolia* and its chloroform fraction

9.1 Introduction 101
9.2 Materials and methods 101
9.2.1 General overview of the study design 101
9.2.1.1 Study design 101
9.2.1.2 Trial animals 101
9.2.1.3 Study termination 102
9.2.1.4 Collection and storage of samples 102
9.2.1.5 Measurements and observations 102
9.2.2 Acute toxicity 103
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/G</td>
<td>Albumin/Globulin ratio</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>BEA</td>
<td>Benzene/Ethanol/Ammonia</td>
</tr>
<tr>
<td>C</td>
<td>crude extract</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CEF</td>
<td>Chloroform / Ethyl acetate/ Formic acid</td>
</tr>
<tr>
<td>CF</td>
<td>Chloroform Fraction of Deinbollia oblongifolia</td>
</tr>
<tr>
<td>CNMR</td>
<td>Carbon nuclear magnetic resonance</td>
</tr>
<tr>
<td>COSY</td>
<td>Correlated spectroscopy</td>
</tr>
<tr>
<td>Crea</td>
<td>Creatinine</td>
</tr>
<tr>
<td>CSIR</td>
<td>Council for Scientific and Industrial Research</td>
</tr>
<tr>
<td>DB</td>
<td>Deinbollia oblongifolia n-butanol fraction</td>
</tr>
<tr>
<td>DC</td>
<td>Deinbollia oblongifolia chloroform fraction</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless enhancement by polarization transfer</td>
</tr>
<tr>
<td>DH</td>
<td>Deinbollia oblongifolia hexane fraction</td>
</tr>
<tr>
<td>DO</td>
<td>Deinbollia oblongifolia</td>
</tr>
<tr>
<td>DM</td>
<td>Deinbollia oblongifolia 35% water in methanol fraction</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DW</td>
<td>Deinbollia oblongifolia water fraction</td>
</tr>
<tr>
<td>EA</td>
<td>Ethyl acetate</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EMW</td>
<td>Ethyl acetate/Methanol/Water</td>
</tr>
<tr>
<td>F</td>
<td>Fraction</td>
</tr>
<tr>
<td>GGT</td>
<td>Gamma glutamyl transferase</td>
</tr>
<tr>
<td>GLOB</td>
<td>Globulin</td>
</tr>
<tr>
<td>H</td>
<td>Hexane</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear bond correlation</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum correlation</td>
</tr>
<tr>
<td>HNMR</td>
<td>Proton nuclear magnetic resonance</td>
</tr>
<tr>
<td>INT</td>
<td>p-Iodonitrotetrazolium violet</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>LC<sub>50</sub></td>
<td>Lethal cell toxicity</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum essential medium</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-Infrared Reflectance</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
</tr>
<tr>
<td>P.a.</td>
<td>Peltophorum africanum</td>
</tr>
<tr>
<td>R<sub>f</sub></td>
<td>Retention factor</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>SB</td>
<td>Spirostachys africana n-butanol fraction</td>
</tr>
<tr>
<td>SC</td>
<td>Spirostachys africana chloroform fraction</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SH</td>
<td>Spirostachys africana hexane fraction</td>
</tr>
<tr>
<td>SI</td>
<td>Selectivity Index</td>
</tr>
<tr>
<td>SM</td>
<td>Spirostachys africana 35% water in methanol fraction</td>
</tr>
<tr>
<td>SW</td>
<td>Spirostachys africana water fraction</td>
</tr>
<tr>
<td>TA</td>
<td>Total activity</td>
</tr>
<tr>
<td>T.e.</td>
<td>Trichilia emetica</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>TSP</td>
<td>Total serum protein</td>
</tr>
<tr>
<td>Urea</td>
<td>Urea</td>
</tr>
</tbody>
</table>
UV Ultraviolet
WHO World Health Organization
Z.m. Ziziphus mucronata
LIST OF FIGURES

Figure 2.1: Acacia karroo

Figure 2.2: Acacia sieberiana var. woodii

Figure 2.3: Peltophorum africanum

Figure 2.4: Trichilia emetica

Figure 2.5: Ziziphus mucronata

Figure 2.6: Average yield of Acacia karroo with acetone extraction

Figure 2.7: Average yield of Acacia sieberiana var. woodii with acetone extraction

Figure 2.8: Average yield of Peltophorum africanum with acetone extraction

Figure 2.9: Average yield of Trichilia emetica with acetone extraction

Figure 2.10: Average yield of Ziziphus mucronata with acetone extraction

Figure 2.11: Chromatograms of monthly samples of five species collected during December and January EMW

Figure 2.12: Chromatograms of monthly samples of five species collected during June and July EMW

Figure 2.13: Chromatograms of monthly samples of five species collected during December and January CEF

Figure 2.14: Chromatograms of monthly samples of five species collected during June and July CEF

Figure 2.15: Chromatograms of monthly samples of five species collected during December and January BEA

Figure 2.16: Chromatograms of monthly samples of five species collected during June and July BEA

Figure 2.17: Bioautography of monthly samples from December and January against E. coli (CEF)

Figure 2.18: Bioautography of monthly samples from June and July against E. coli (CEF)

Figure 2.19: Bioautography of monthly samples from December and January against S. aureus (CEF)

Figure 2.20: Bioautography of monthly samples from June and July against S. aureus (CEF)
Figure 2.21: Activity of *A. karroo* against *E. coli*

Figure 2.22: Activity of *A. karroo* against *S. aureus*

Figure 2.23: Activity of *A. sieberiana* against *E. coli*

Figure 2.24: Activity of *A. sieberiana* against *S. aureus*

Figure 2.25: Activity of *P. africanum* against *E. coli*

Figure 2.26: Activity of *P. africanum* against *S. aureus*

Figure 2.27: Activity of *T. emetica* against *E. coli*

Figure 2.28: Activity of *T. emetica* against *S. aureus*

Figure 2.29: Activity of *Z. mucronata* against *E. coli*

Figure 2.30: Activity of *Z. mucronata* against *S. aureus*

Figure 2.31 A: Comparison between tannin content and activity against *E. coli* for *Acacia karroo*

Figure 2.31 B: Correlation between tannin content and activity against *E. coli* in *Acacia karroo*

Figure 2.32 A: Comparison between tannin content and activity against *S. aureus* for *Acacia karroo*

Figure 2.32 B: Correlation between tannin content and activity against *S. aureus* in *Acacia karroo*

Figure 2.33 A: Comparison between tannin content and activity against *E. coli* for *Acacia sieberiana* var. *woodii*

Figure 2.33 B: Correlation between tannin content and activity against *E. coli* in *Acacia sieberiana* var. *woodii*

Figure 2.34 A: Comparison between tannin content and activity against *S. aureus* for *Acacia sieberiana* var. *woodii*

Figure 2.34 B: Correlation between tannin content and activity against *S. aureus* in *Acacia sieberiana* var. *woodii*

Figure 2.35 A: Comparison between tannin content and activity against *E. coli* for *Peltophorum africanum*

Figure 2.35 B: Correlation between tannin content and activity against *E. coli* in *Peltophorum africanum*
Figure 2.36 A: Comparison between tannin content and activity against S. aureus for Peltophorum africanum

Figure 2.36 B: Correlation between tannin content and activity against S. aureus in Peltophorum africanum

Figure 2.37 A: Comparison between tannin content and activity against E. coli for Trichilia emetica

Figure 2.37 B: Correlation between tannin content and activity against E. coli in Trichilia emetica

Figure 2.38 A: Comparison between tannin content and activity against S. aureus for Trichilia emetica

Figure 2.38 B: Correlation between tannin content and activity against S. aureus in Trichilia emetica

Figure 2.39 A: Comparison between tannin content and activity against E. coli for Ziziphus mucronata

Figure 2.39 B: Correlation between tannin content and activity against E. coli in Ziziphus mucronata

Figure 2.40 A: Comparison between tannin content and activity against S. aureus for Ziziphus mucronata

Figure 2.40 B: Correlation between tannin content and activity against S. aureus in Ziziphus mucronata

Figure 3.1: Combretum molle

Figure 3.2: Average yield of acetone extraction of 42 different Combretum molle samples

Figure 3.3: Combretum molle Waterberg EMW

Figure 3.4: Combretum molle Waterberg EMW against E. coli

Figure 3.5: Combretum molle Waterberg EMW against S. aureus

Figure 3.6: Combretum molle Waterberg CEF

Figure 3.7: Combretum molle Waterberg CEF against E. coli

Figure 3.8: Combretum molle Waterberg CEF against S. aureus

Figure 3.9: Combretum molle Waterberg BEA

Figure 3.10: Combretum molle Waterberg BEA against E. coli

Figure 3.11: Combretum molle Waterberg BEA against S. aureus
Figure 3.12: *Combretum molle* Onderstepoort EMW

Figure 3.13: *Combretum molle* Onderstepoort EMW against *E. coli*

Figure 3.14: *Combretum molle* Onderstepoort EMW against *S. aureus*

Figure 3.15: *Combretum molle* Onderstepoort CEF

Figure 3.16: *Combretum molle* Onderstepoort CEF against *E. coli*

Figure 3.17: *Combretum molle* Onderstepoort CEF against *S. aureus*

Figure 3.18: *Combretum molle* Onderstepoort BEA

Figure 3.19: *Combretum molle* Onderstepoort BEA against *E. coli*

Figure 3.20: *Combretum molle* Onderstepoort BEA against *S. aureus*

Figure 3.21: *Combretum molle* SANBI Pretoria Botanical Garden EMW

Figure 3.22: *Combretum molle* SANBI Pretoria Botanical Garden EMW against *E. coli*

Figure 3.23: *Combretum molle* SANBI Pretoria Botanical Garden EMW against *S. aureus*

Figure 3.24: *Combretum molle* SANBI Pretoria Botanical Garden CEF

Figure 3.25: *Combretum molle* SANBI Pretoria Botanical Garden CEF against *E. coli*

Figure 3.26: *Combretum molle* SANBI Pretoria Botanical Garden CEF against *S. aureus*

Figure 3.27: *Combretum molle* SANBI Pretoria Botanical Garden BEA

Figure 3.28: *Combretum molle* SANBI Pretoria Botanical Garden BEA against *E. coli*

Figure 3.29: *Combretum molle* SANBI Pretoria Botanical Garden BEA against *S. aureus*

Figure 3.30: *Combretum molle* Magaliesberg EMW

Figure 3.31: *Combretum molle* Magaliesberg EMW against *E. coli*

Figure 3.32: *Combretum molle* Magaliesberg EMW against *S. aureus*

Figure 3.33: *Combretum molle* Magaliesberg CEF

Figure 3.34: *Combretum molle* Magaliesberg CEF against *E. coli*
Figure 3.35: *Combretum molle* Magaliesberg CEF against *S. aureus*

Figure 3.36: *Combretum molle* Magaliesberg BEA

Figure 3.37: *Combretum molle* Magaliesberg BEA against *E. coli*

Figure 3.38: *Combretum molle* Magaliesberg BEA against *S. aureus*

Figure 3.39: *Combretum molle* Lowveld Botanical Garden Nelspruit EMW

Figure 3.40: *Combretum molle* Lowveld Botanical Garden Nelspruit EMW against *E. coli*

Figure 3.41: *Combretum molle* Lowveld Botanical Garden Nelspruit EMW against *S. aureus*

Figure 3.42: *Combretum molle* Lowveld Botanical Garden Nelspruit CEF

Figure 3.43: *Combretum molle* Lowveld Botanical Garden Nelspruit CEF against *E. coli*

Figure 3.44: *Combretum molle* Lowveld Botanical Garden Nelspruit CEF against *S. aureus*

Figure 3.45: *Combretum molle* Lowveld Botanical Garden Nelspruit BEA

Figure 3.46: *Combretum molle* Lowveld Botanical Garden Nelspruit BEA against *E. coli*

Figure 3.47: *Combretum molle* Lowveld Botanical Garden Nelspruit BEA against *S. aureus*

Figure 3.48: NIR spectrum of *Combretum molle* collected at SANBI Pretoria Botanical Garden

Figure 3.49: Comparison of the activity of the different *Combretum molle* samples against *E. coli* and their tannin content

Figure 3.50: Correlation of the activity against *E. coli* and the tannin content of the different *Combretum molle* samples

3.51: Comparison of the activity of the different *Combretum molle* samples against *S. aureus* and their tannin content

3.52: Correlation of the activity against *S. aureus* and the tannin content of the different *Combretum molle* samples

Figure 4.1: Average percentage extracted from 53 selected plants species

Figure 4.2: Comparison of the activity of the 53 different plant samples against *E. coli* and their tannin content
Figure 4.3: Comparison of the activity of the 53 different plant samples against S. aureus and their tannin content

Figure 4.4: *Acacia sieberiana* var. *woodii* EMW

Figure 4.5: *Acacia sieberiana* var. *woodii* EMW against *E. coli*

Figure 4.6: *Acacia sieberiana* var. *woodii* EMW against *S. aureus*

Figure 4.7: *Acacia sieberiana* var. *woodii* CEF

Figure 4.8: *Acacia sieberiana* var. *woodi* CEF against *E. coli*

Figure 4.9: *Acacia sieberiana* var. *woodii* CEF against *S. aureus*

Figure 4.10: *Acacia sieberiana* var. *woodii* BEA

Figure 4.11: *Acacia sieberiana* var. *woodii* BEA against *E. coli*

Figure 4.12: *Acacia sieberiana* var. *woodii* BEA against *S. aureus*

Figure 4.13: *Albizia adianthifolia* EMW

Figure 4.14: *Albizia adianthifolia* EMW against *E. coli*

Figure 4.15: *Albizia adianthifolia* EMW against *S. aureus*

Figure 4.16: *Albizia adianthifolia* CEF

Figure 4.17: *Albizia adianthifolia* CEF against *E. coli*

Figure 4.18: *Albizia adianthifolia* CEF against *S. aureus*

Figure 4.19: *Albizia adianthifolia* BEA

Figure 4.20: *Albizia adianthifolia* BEA against *E. coli*

Figure 4.21: *Albizia adianthifolia* BEA against *S. aureus*

Figure 4.22: *Deinbollia oblongifolia* EMW

Figure 4.23: *Deinbollia oblongifolia* EMW against *E. coli*

Figure 4.24: *Deinbollia oblongifolia* EMW against *S. aureus*
Figure 4.25: *Deinbollia oblongifolia* CEF

Figure 4.26: *Deinbollia oblongifolia* CEF against *E. coli*

Figure 4.27: *Deinbollia oblongifolia* CEF against *S. aureus*

Figure 4.28: *Deinbollia oblongifolia* BEA

Figure 4.29: *Deinbollia oblongifolia* BEA against *E. coli*

Figure 4.30: *Deinbollia oblongifolia* BEA against *S. aureus*

Figure 4.31: *Spirostachys africana* EMW

Figure 4.32: *Spirostachys africana* EMW against *E. coli*

Figure 4.33: *Spirostachys africana* EMW against *S. aureus*

Figure 4.34: *Spirostachys africana* CEF

Figure 4.35: *Spirostachys africana* CEF against *E. coli*

Figure 4.36: *Spirostachys africana* CEF against *S. aureus*

Figure 4.37: *Spirostachys africana* BEA

Figure 4.38: *Spirostachys africana* BEA against *E. coli*

Figure 4.39: *Spirostachys africana* BEA against *S. aureus*

Figure 4.40: *Tetradenia riparia* EMW

Figure 4.41: *Tetradenia riparia* EMW against *E. coli*

Figure 4.42: *Tetradenia riparia* EMW against *S. aureus*

Figure 4.43: *Tetradenia riparia* CEF

Figure 4.44: *Tetradenia riparia* CEF against *E. coli*

Figure 4.45: *Tetradenia riparia* CEF against *S. aureus*

Figure 4.46: *Tetradenia riparia* BEA

Figure 4.47: *Tetradenia riparia* BEA against *E. coli*
Figure 4.48: *Tetradenia riparia* BEA against *S. aureus*

Figure 5.1: Linear regression curve and equation for one of the *Tetradenia riparia* samples

Figure 5.2: Toxicity of *Acacia sieberiana* var. *woodii* extract

Figure 5.3: Toxicity of *Albizia adianthifolia* acetone extract

Figure 5.4: Toxicity of *Deinbollia oblongifolia* extract 1st experiment

Figure 5.5: Toxicity of *Deinbollia oblongifolia* extract

Figure 5.6: Toxicity of *Spirostachys africana* extract

Figure 5.7: Toxicity of *Tetradenia riparia* extract

Figure 6.1: Representation of solvent-solvent fractionation procedure (Suffness and Douros, 1979)

Figure 6.2: Chromatograms EMW

Figure 6.3: Bioautography against *E. coli* EMW

Figure 6.4: Chromatograms CEF

Figure 6.5: Bioautography against *E. coli* CEF

Figure 6.6: Chromatograms BEA

Figure 6.7: Bioautography against *E. coli* BEA

Figure 6.8: Toxicity of the chloroform fraction of *Deinbollia oblongifolia*

Figure 6.9: Toxicity of the chloroform fraction of *Spirostachys africana*

Figure 7.1: *Deinbollia oblongifolia*

Figure 7.2: Distribution of *Deinbollia oblongifolia*

Figure 7.3: Chromatograms 10% EA / 10% H

Figure 7.4: Bioautography 10 % EA / 90 % H against *E. coli*

Figure 7.5 A: Chromatograms combined fractions 10 % EA / 90 % H

Figure 7.5 B: Chromatograms combined fractions EMW
Figure 7.5 C: Chromatograms combined fractions CEF

Figure 7.5 D: Chromatograms combined fractions BEA

Figure 7.5 E: Bioautography combined fractions 10 % EA / 90 % H against E. coli

Figure 7.6: Chromatograms of compound

Figure 7.7: Bioautographs compound against E. coli

Figure 7.8: Cytotoxicity of isolated compound

Figure 8.1 A: Bioautography against B 1279 for C, CF and GB2 EMW

Figure 8.1 B: Bioautography against B 1279 for C, CF and GB2 CEF

Figure 8.1 C: Bioautography against B 1279 for C, CF and GB2 BEA

Figure 8.2 A: Bioautography against B 1295 for C, CF and GB2 EMW

Figure 8.2 B: Bioautography against B 1295 for C, CF and GB2 CEF

Figure 8.2 C: Bioautography against B 1295 for C, CF and GB2 BEA

Figure 8.3 A: Bioautography against B 1297 for C, CF and GB2 EMW

Figure 8.3 B: Bioautography against B 1297 for C, CF and GB2 CEF

Figure 8.3 C: Bioautography against B 1297 for C, CF and GB2 BEA

Figure 8.4 A: Bioautography against B 1314 for C, CF and GB2 EMW

Figure 8.4 B: Bioautography against B 1314 for C, CF and GB2 CEF

Figure 8.4 C: Bioautography against B 1314 for C, CF and GB2 BEA
LIST OF TABLES

Table 2.1: MIC values of monthly samples against *E. coli* after 60 min and 120 min

Table 2.2: MIC values of monthly samples against *S. aureus* after 60 min and 120 min

Table 2.3: Results of tannin assays for extracts prepared from leaf material collected monthly (results for average square diameter of zone are not given since the average equivalent gallic acid translated 1:1 to this value)

Table 3.1: MIC values of 42 different *Combretum molle* samples against *E. coli* after 60 min and 120 min

Table 3.2: MIC values of 42 different *Combretum molle* samples against *S. aureus* after 60 min and 120 min

Table 3.3: Results of tannin assays of 42 different *Combretum molle* samples (results for average square diameter of zone are not given since the average equivalent gallic acid translated 1:1 to this value)

Table 4.1: Selected plants for screening (Hutchings *et al.*, 1996; Bossard, 1993; Bryant, 1966)

Table 4.2: Percentage of plant material extracted with acetone, experiment repeated

Table 4.3: MIC values after 60 and 120 min against *E. coli*. Each value represents the average of 9 determinations

Table 4.4: MIC values after 60 and 120 min against *S. aureus*. Each value represents the average of 9 determinations

Table 4.5: Tannin contents for the 53 selected plant species

Table 4.6: Ranking of the extracts based on the formula developed

Table 5.1: LC\textsubscript{50} and SI values of the different species

Table 6.1: Fraction masses and percentages of *Deinbollia oblongifolia*

Table 6.2: Fraction masses and percentages of *Spirostachys africana*

Table 6.3: MIC values of the fractions of *Deinbollia oblongifolia* against *E. coli*

Table 6.4: MIC values of the fractions of *Spirostachys africana* against *E. coli*
Table 6.5: LC$_{50}$and SI of the chloroform fractions

Table 7.1: Fractions with their corresponding solvent systems

Table 8.1: MIC values in mg/ml (± SD) of the crude extract (C), the chloroform fraction (CF) and the pure compound (GB2) isolated from *Deinbollia oblongifolia* after 60 or 120 minutes incubation against four strains of pathogenic bacteria

Table 9.1: Dosing regimen, clinical signs and macroscopic lesions and percentage of body weight gained or lost during the trial in animals dosed with *Deinbollia oblongifolia*

Table 9.2: Dosing regimen, clinical signs and macroscopic lesions and percentage of body weight gained or lost during the trial in animals dosed with the chloroform fraction of *Deinbollia oblongifolia*

Table 9.3: Dosing regimen, clinical signs and macroscopic lesions in animals dosed with *Deinbollia oblongifolia*

Table 9.4: Dosing regimen, clinical signs and macroscopic lesions in animals dosed with the chloroform fraction of *Deinbollia oblongifolia*

Table 9.5: Dosing regimen, clinical signs and macroscopic lesions in animals dosed with the solvent control acetone

Table 9.6: Clinical chemistry parameters of rats dosed with 5 mg/kg of the crude extract of *Deinbollia oblongifolia*

Table 9.7: Clinical chemistry parameters of rats dosed with 20 mg/kg of the crude extract of *Deinbollia oblongifolia*

Table 9.8: Clinical chemistry parameters of rats dosed with 50 mg/kg of the crude extract of *Deinbollia oblongifolia*

Table 9.9: Clinical chemistry parameters of rats dosed with 50 mg/kg of the chloroform fraction of *Deinbollia oblongifolia*

Table 9.10: Clinical chemistry parameters of rats dosed with 125 mg/kg of the chloroform fraction of *Deinbollia oblongifolia*
Table 9.11: Clinical chemistry parameters of rats dosed with 300 mg/kg of the chloroform fraction of *Deinbollia oblongifolia*

Table 9.12: Clinical chemistry parameters of rats dosed with the pure solvent (Acetone)
ABSTRACT

Antibiotic Feed Additives (AFA) have been used to prevent many bacterial infections during weaning of livestock. The use of these AFA’s resulted in the development of multiresistant bacterial strains and was therefore banned by the European Union. The United States also restricted the use of these feed additives considerably. Many scientists have started to search for alternatives in the prophylactic and therapeutic treatment of bacterial infections. Plants have been used traditionally by resource poor people all over the world to treat many infections. Diarrhoea not only causes many problems in the high intensity production of livestock but also leads to many human deaths. A large number of plants have been used to treat diarrhoea in humans and animals. Several authors have selected one or two species based on traditional use to evaluate in depth. In this project several different relevant parameters of 53 plant species used traditionally to treat diarrhoea were investigated in order to develop a model that would identify the species with the highest chance of delivering a useful antibacterial product.

Antibacterial activities against two pathogens important in diarrhoea (Staphylococcus aureus and Escherichia coli) were positive parameters in selecting species. Because tannins frequently have antibacterial activity, but are not useful as prophylactic agents due to their effect on production, high tannin content was considered to be a negative indication. Cellular toxicity was also used as a negative parameter at a later stage.

In addition to the in vitro assays there are also other parameters to be investigated to evaluate the potential use of plants. The influence of season of collection was determined on the antibacterial activity and tannin content of acetone leaf extracts of five plant species traditionally used to treat diarrhoea. They were Acacia karroo, Acacia sieberiana var. woodii, Peltophorum africanum, Trichilia emetica and Ziziphus mucronata.

The antibacterial activity varied depending on the season of collection with the best activity generally in the months of late summer to autumn (January to April). The activity of Acacia karroo against E. coli was best in the month of April (MIC = 0.11 mg/ml (TA = 332 ml/g)) and against S. aureus in the month of March (MIC = 0.06 mg/ml (TA = 334 ml/g)). Acacia sieberiana subsp. woodii extracts had the best activity against E. coli (MIC = 0.10 mg/ml (TA = 303 ml/g)) in March against S. aureus in April (MIC = 0.08 mg/ml (TA = 303 ml/g)). Peltophorum africanum extracts were most active against E. coli in February (MIC = 0.05 mg/ml (TA = 1188 ml/g)) and against S. aureus in February and March (MIC = 0.04 mg/ml (TA = 1188 ml/g and 1075 ml/g)). Trichilia emetica extracts were generally not very active against the bacterial strains (best activity: MIC = 0.22 mg/ml (TA = 74 ml/g) against E. coli in May and MIC = 0.28 mg/ml (TA = 26 ml/g) against S. aureus in December). Ziziphus mucronata was most active
against both bacterial strains and in May (E. coli: MIC = 0.10 mg/ml (TA = 589 ml/g); S. aureus: MIC = 0.04 mg/ml (TA = 1099 ml/g)). The tannin content varied in the extracts as well. The antibacterial activity however did not seem to be directly correlated to the tannin content.

Another important parameter in the use of plant species is to determine the interspecies variation of plants based on genetic or environmental influences. Leaves from 42 plants of Combretum molle were collected at different locations during the same season. The average MIC against E. coli was 0.227 mg/ml. The low standard deviation of 0.07 indicates that there was very little variation in activity. The average value against S. aureus was 0.399 mg/ml with a slightly higher standard deviation of 0.16. However due to the fact that the samples from different areas extracted different amounts, the total activity varied. The tannin assays revealed that there was with one exception no correlation between the antibacterial activity and the tannin content. So it can be safe to assume that genetic variation does not influence the activity too much at least in C. molle leaves.

Fifty three plant species traditionally used to treat diarrhoea in published literature were then ranked using a novel system in order to determine which species had the most potential value. Ranking was based on the lowest MIC value against E. coli, lower activity against S. aureus (to limit selecting for general metabolic toxins), low tannin concentration and high extract yield.

From this ranking, five plants were chosen to investigate their potential value further: Acacia sieberiana var. woodii (E. coli: MIC = 0.13 mg/ml, TA = 108 ml/g; S. aureus: MIC = 0.13 mg/ml, TA = 108 ml/g; Yield = 14 mg), Albizia adianthifolia (E. coli: MIC = 0.14 mg/ml, TA = 239 ml/g; S. aureus: MIC = 0.04 mg/ml, TA = 765 ml/g; Yield = 34 mg), Deinbollia oblongifolia (E. coli: MIC = 0.17 mg/ml, TA = 158 ml/g; S. aureus: MIC = 0.08 mg/ml, TA = 338 ml/g; Yield = 27 mg), Spirostachys africana (E. coli: MIC = 0.13 mg/ml, TA = 300 ml/g; S. aureus: MIC = 0.09 mg/ml, TA = 438 ml/g; Yield = 38 mg) and Tetradenia riparia (E. coli: MIC = 0.09 mg/ml, TA = 214 ml/g; S. aureus: MIC = 0.13 mg/ml, TA = 149 ml/g; Yield = 20 mg). None of the plants contained any tannin.

The next step towards the recommendation of a plant for the development of a commercial product was to evaluate the cytotoxicity of the selected five species. The following values were obtained: Acacia sieberiana var. woodii LC50 = 0.026 mg/ml, Albizia adianthifolia LC50 = 0.068 mg/ml, Deinbollia oblongifolia LC50 = 0.078 mg/ml, Spirostachys africana LC50 = 0.025 mg/ml and Tetradenia riparia LC50 = 0.028 mg/ml.

Deinbollia oblongifolia (for its low LC50 value) and Spirostachys africana (for its good antibacterial activity and total activity) were potentized by removing inactive compounds through solvent-solvent fractionation. The antibacterial activity against E. coli was increased this way (MIC = 0.08 mg/ml for...
Deinbollia oblongifolia (chloroform fraction) and MIC = 0.08 mg/ml for *Spirostachys africana* (chloroform fraction)). The LC$_{50}$ values for both chloroform fractions were determined (LC$_{50}$ = 0.188 mg/ml for *Deinbollia oblongifolia* and LC$_{50}$ = 0.062 mg/ml for *Spirostachys africana*). The selectivity index (SI) was also determined and proved that the potentization was indeed successful (*Deinbollia oblongifolia* SI = 2.35 compared to a value of 0.45 for the crude extract; *Spirostachys africana* SI = 0.78 compared to a value of 0.19 for the crude extract). Based on these values, the chloroform fraction of *Deinbollia oblongifolia* was chosen as the less toxic one with similar activity and a higher selectivity index to be worked on further. One of the active compounds was isolated and evaluated for its activity against *E. coli* (MIC = 0.74 mg/ml) The LC$_{50}$ value of 0.042 mg/ml indicated that the activity of the extract was a result of synergism rather than being due to a single active compound (the selectivity index (SI) was 0.06 compared to the values of 0.45 for the crude and 2.35 for the potentized extract).

The plant extracts should of course be as effective against pathogenic strains as they were against the ATCC strains and so the extracts and pure compound of *Deinbollia oblongifolia* were tested for their activity against four different pathological *E. coli* strains. The results showed that the crude extract and the fraction were as active as in the preliminary screening results against only one of the four pathological strains. The pure compound on the other hand was more active against all four pathological strains than against the ATCC strain.

The next step was to test the safety of the extracts of *Deinbollia oblongifolia* in mammals. Unfortunately neither the crude extract nor the chloroform fraction of *Deinbollia oblongifolia* could be used safely in a living organism or in an isolated organ study. A part of the problem may have been caused by the vehicle used in the study despite reports in the literature that an acetone water mixture is safe to use.

In general all the species investigated had good antibacterial activity against *E. coli* this supports the traditional use of these species although we used acetone as extractant rather than the water used traditionally. There were major differences in antibacterial activity over a season indicating that mature leaves were more active than young leaves before senescence started. At least in the case of *Combretum molle* there was little difference in the antibacterial activity of many plants collected at different locations during the same season.

The results obtained in this study could be useful in further studies to develop extracts that can be used to control diarrhoea in animals. Possibly more emphasis should be put on the difference in activity towards *E. coli* and *S. aureus* to eliminate the presence of general metabolic toxins. Such an approach would lead to a different priority order for species to examine. A major first step would probably be to test the *in vitro* and *in vivo* toxicity of selected species.