Chapter 1

Revision of Sceliages Westwood, a millipede-eating genus of southern African dung beetles (Coleoptera: Scarabaeidae).

Shaun A. Forgie, Vasily V. Grebennikov, and Clarke H. Scholtz

Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa.

Running title: Millipede-eating Sceliages (Scarabaeidae) from Africa

Key words: Biology, dung beetle, larval description, new species, phylogeny, revision.

Abstract

The genus Sceliages Westwood (Scarabaeinae; Scarabaeini) from southern Africa is revised. Seven species are recognised: Sc. granulatus sp. nov. (Botswana, South Africa), Sc. augias Gillet (Angola, Democr.Republ.Congo, Zambia), Sc. adamastor (Le Peletier de Saint-Fargeau and Serville) (South Africa), Sc. brittoni Zur Strassen (South Africa), Sc. difficilis Zur Strassen (South Africa, Zimbabwe), Sc. gagates Shipp (South Africa, Mocambique), and Sc. hippias Westwood (South Africa). The new species is described and the others are re-described. Neotypes are assigned to Sc. adamastor and Sc. difficilis. A key to the species is provided. A phylogenetic analysis of the genus is presented. Male genitalia and other diagnostic characters are illustrated. Distribution maps of all species are also provided. Mature larvae of Sc. hippias are described, the first for the genus. They can be distinguished from other Scarabaeinae larvae by a markedly reduced torma on the epipharynx, and complete absence of hypopharyngeal sclerites (oncyla). Millipede relocation and burial behaviour of the adults of Sc. hippias and Sc. adamastor are described. We also provide descriptions of the brood chamber and brood balls of Sc. hippias.
Introduction

The tribe Scarabaeini contains the genera, Scarabaeus Linnaeus, Sceliages Westwood, Drepanopodus Janssens, Kheper, Pachylomerus Kirby and the subgenus Scarabaeolus Balthasar comprising 146 species. Many of the species exhibit distinct morphological and biological variability and possess either facultative or obligate feeding strategies including necrophagy. Some of the most specialised members of this tribe belong to the genus Sceliages, which exclusively utilise millipedes (Diplopoda) for food and reproduction. Millipede necrophagy has long been known in the Scarabaeinae (Halffter and Matthews, 1966: 25-34). Facultative opportunistic use of millipede carcasses by Scarabaeus (Neateuchus (syn.)) proboscidius Guérin, S. satyrus (Boheman), and S. (Scarabaeolus) flavicornis (Boheman), has been observed by some of us (Forgie and Scholtz, unpubl.). Necrophagy of millipedes has also been recorded in several species in two other tribes. In the Onthophagini, several species of Onthophagus Latreille, including O. bicavifrons d'Orbigny, and O. latigibber d'Orbigny, were attracted to fresh millipede carcasses (Krell et al., 1997, 1999). Neotropical canthonines, Canthon cyanellus cyanellus Le Conte, and C. morsei Howden, utilize both live injured and dead diplopods (Villalobos et al., 1998), whilst Deltochilum kolbei Paulian, (Halffter and Matthews, 1966) and D. valgum acropyge Bates, (Cano, 1998) are known to actively prey on live millipedes.

In southern Africa, many animals prey on millipedes (see Lawrence, 1987: 82, 89-90). For example, adult and nymphal reduviid bugs (Hemiptera: Reduviidae), for example Ectricodia crux (Thunberg), Cleptria cinctiventris Stål, and nymphs of the genus Glymmatophora Stål, frequently specialise in preying on Doratogonus Attems, spirostreptids, but never prey on species of the genus Centrobolus Cook (Lawrence, 1987). Various quinone-based defensive allomones are secreted particularly in spiroboloid and spirostreptid millipedes to repel attack by predators (Krell et al., 1998). Two species of the orders Spirostreptida and Julida were found to
use quinonous defensive secretions as pheromones (Haacker, 1974), and is likely to be a secondary function for many species of millipedes using these secretions. Necrophagous onthophagine scarabaeids are reported to be attracted to millipede secretions used as repellents (Krell et al., 1997, 1998; Krell, 1999) and likely to the quinonous secretions used as pheromones by millipedes during copulation (Kon et al., 1998). Positive chemotaxis to the defensive secretions of millipedes by Sceliages has not been tested prior to this study. Live, injured and freshly dead millipedes all attract Sceliages suggesting quinone-based secretions play a role in attracting these beetles (Krell, 1999). Sceliages have also been collected by Endrödy-Younga in traps containing meat/carrion, horse dung and fruit, and observed rolling antelope dung pellets (Mostert and Scholtz, 1986:10). The observation recorded by Mostert and Scholtz (1986) is best described as aberrant behaviour for the genus or more likely the product of mis-identification of the beetle responsible. Likewise, records of Sceliages trapped in long-term ground traps baited with various ingredients by Endrödy-Younga are possibly misleading. For example, Sc. brittoni in this case, may have become trapped inadvertently after being attracted to millipedes that might have stumbled into the traps.

With the description of the new species there are now seven in the genus Sceliages, all restricted to southern Africa. Members of the genus are rarely encountered in the wild and are likely to be mistaken for Scarabaeus L. Furthermore, specimens of Sceliages are rare in collections and often misidentified or unidentified. The biology of Sceliages has, to date, not been studied. Zur Strassen’s (1965) revision of the genus is the precedent for this study. It was based on relatively few specimens held in several museums in Europe and southern Africa. In his introduction, zur Strassen mentioned that encounters of generic misidentifications of a number of specimens in museum collections were because the genus Sceliages was not well known and the descriptions of the oldest species are very deficient. To worsen the situation, zur Strassen (1965) stated that later authors had described known species as new because they were unaware of the already
described species. It is not surprising to learn that the holotypes of *Sc. adamastor* and *Sc. gagates* are unattainable and, in accordance with zur Strassen (1965), should be considered as non-existing. As a result, we have assigned a neotype for each of these species.

In this paper we report the results of our review, present a phylogenetic analysis of the genus and describe a new species from the semi-arid western parts of the region. Moreover, we provide for first time a larval description of one species and give details of the remarkable biology of members of the genus feeding on Diplopoda.

Materials and methods

Adult material examined

The institutions to which the species belong are abbreviated as follows:

BMNH The Natural History Museum. Department of Entomology. Cromwell Road, London SW7 5BD, England. (M. Kerley)

DMSA Durban Museum. P.O. Box 4085, Durban 4000, South Africa. (T. Crouch)

HECO Oxford University Museum of Natural History. Hope Entomological Collections. The University Museum, Parks Road, Oxford OX1 3PW, England. (D. Mann)

ISNB Institut Royal des Sciences Naturelles de Belgique, Département d'Entomologie, Rue Vautier 29, B-1000 Bruxelles, Belgium. (D. Drugmand)

SAMC South African Museum. P.O.Box 61, Cape Town 8000, South Africa. (M. Cochrane)

Larval material examined

Five mature larvae originated from brood balls collected together with females. Two larvae with one female were collected on December 17, 2000, at the Rustenburg Nature Reserve (25°40'S 27°12'E), NW Province, Republic of South Africa by S. Forgie and V. Grebennikov. Three more larvae with one female collected on January 12, 2001, the same locality and the same collectors. Voucher larvae and females are deposited in UPSA and BMNH.

Material examined

Latitude and longitude coordinates in bold are utilized for the distribution maps of each species. Locality information in parenthesis represents the current recognised localities, and also information not listed on the specimen collection data labels. A question mark in parenthesis immediately precedes a locality data item that could not be interpreted. Inverted commas surround exact wording taken from specimen collection data labels. Some latitude and longitude coordinates were obtained from “material examined” by zur Strassen (1965) for Sceliages augias Gillet, and are included in the distribution map (Fig. 81) for this species.
Map coordinates were obtained either directly from specimen collection data labels or by submitting specimen localities into GeoName™ digital gazetteer (GDE Systems, Inc.™) software. These coordinates were converted to decimal degrees and plotted as distribution maps using ArcView® GIS software (Environmental Systems Research Institute, Inc.™, 380 New York, Redlands CA 92373-8100, USA).

Male genitalia

Aedeagi were removed from 21 specimens (*Sc. granulatus*: 1 Holotype SANC, 4 Paratypes SANC, 1 Paratype UPSA; *Sc. hippias*: 1 TMSA, 1 SANC; *Sc. augias*: 1 BMNH; *Sc. adamastor*: 1 TMSA; *Sc. brittoni*: 1 SANC, 1 TMSA; *Sc. difficilis*: 3 SANC, 1 UPSA, 3 TMSA; *Sc. gagates*: 2 SANC), and soaked in warm 10% KOH for ca. 15 minutes. The internal sacs were extracted, stretched out and allowed to soak in warm 10% KOH for a further 5 minutes. Sacs were soaked successively in dH₂O, 70% EtOH, dH₂O prior to their preservation in glycerine. Virgular sclerites (Matthews, 1974) were dissected from the internal sacs and placed in drops of glycerine on glass slides for examination under a stereomicroscope.

Mature larvae

Sceliages larvae and females were preserved in Bouin’s liquid for a week and then transferred into 70% ethanol. Two larvae were disarticulated as follows: head, left legs, mandibles, and the labio-maxillar complex, were separated and cleaned in a hot water solution of KOH. Separated parts were transferred into glycerol and studied under dissecting and compound microscopes. Morphological drawings were done using camera-lucida. The morphological terms utilized in this description are those explained by Böving (1936), Ritcher (1966) and Lawrence (1991).

1 The distributors of GeoName™ have created a website with the same data and functionality as the software: http://gnpswww.nima.mil/geonames/GNS/index.jsp
Exception is made for terms applicable to the secondary thoracic and abdominal subdivisions; instead of “prescutum”, “scutum” and “scutellum”, we use “dorsal lobes” as explained in Baker (1968: 13). For comparative purposes, one larva of each of the following Scarabaenae genera was studied as described in the “Materials and methods” section: *Circellium bacchus* Fabricius; *Heliocopris andersoni* Bates; *Kheper nigroaeneus* (Boheman); *Scarabaeus galenus* (Westwood); *Scarabaeus* (*Pachysoma*) *gariepinus* (Ferreira); *S. (Pachysoma) striatus* (Castelnau); *Synapsis tmolus* (Fischer); and, *Tragiscus dimidiatus* Klug.

Biology and nidification

Field study of *Sceliages hippias* was carried out at the Rustenberg Nature Reserve and observations *Sc. adamasor* at the De Hoop Nature Reserve (34°25'S 20°24'E), Western Cape Province, South Africa.

Trapping

Beetles were attracted to a series of pitfall traps baited with freshly killed millipedes unless otherwise stated. Traps were placed into the field before 0:900 and left for no longer than an hour to minimise stress of captured beetles.
Fig. 1. *Sceliages granulatus* sp. nov., habitus.

(Cover: *Invert. Syst.* 16(6), 2002)
Genus *Sceliages* Westwood

Type species of *Sceliages*: *Sceliages iopas* Westwood 1837(= *S. adamastor* (Le Peletier de Saint-Fargeau and Serville 1828)) [by monotypy].

Type species of *Parascarabaeus*: *Parascarabaeus tonkineus* Balthasar 1961 [by original designation].

Diagnosis

Unique morphological characters diagnosing the genus *Sceliages* are: shape and arrangement of the four up-turned clypeal teeth (two frontal medial teeth narrow and protrude further than lateral teeth. Rounded suture separates frontal medial teeth from each other; lateral teeth broad, angulate, skewed, and separated from frontal medial teeth by a sharply angled suture). Apex of mesotibia with two markedly developed spurs. Basal tarsomeres are distally flared appearing triangulate. Unique behaviour within Scarabaeini: utilisation of millipedes for feeding and breeding.
Re-description of adults

Body shape: body mostly hunched, reminiscent of species of the *Scarabaeus* (*Scarabaeolus*) *ebenus* (Klug), group (Zur Strassen, 1965).

Head (Fig. 2): clypeal margin with four up-turned teeth. Two frontal medial teeth narrow and protrude further than lateral teeth. Rounded suture separates frontal medial teeth from each other; lateral teeth broad, angulate, skewed, and separated from frontal medial teeth by sharply angled suture. Genal epistomae more pronounced than lateral teeth of clypeus. Anterior lateral corner of gena tooth-like and separated from clypeus by sharply angled suture. Posterior margin of gena obtusely rounded. Geno-clypeal suture laterally present with obvious groove at its basal terminus. Surface texture of genae and clypeus shagreened and rugose with dense often deep punctations. Punctations become simplified and less dense on frons and vertex.

Antennae: antennal furcle consists of three segments; first segment bowl shaped, second segment much smaller, less bowl shaped and fits into first segment. Third segment sits on top of second segment.

Pronotum: surface smooth with fine shagreen texture and covered with minute, regularly spaced punctations.

Sternites: surface of mesobasisternum shagreened with complex punctuation of varying density and size. Margins of punctations smooth. Distal halves of metasternum and adjacent metepisternites with simple sparse punctuation. Mesosternal process markedly broad and pronounced. Markedly developed facet present between each inner margin of mesocoxal cavity.
and lateral carinae of mesosternellum. Width of mesosternellum between closest point separating mesocoxae greater than width of mesocoxal cavity.

Legs: apical (fourth) denticle of protibia, sickle-shaped (Figs 16-19). Antero-ventral margin of profemora adjacent to protrochanter ridged in all species and armed with at least one spur-like projection in most species (Figs 3-5). Spur present in males and females and blunted in aged specimens. Antero-ventral margin of protrochanter well defined and ridged in most species (Figs 3-5). Meso- and metatibia truncated distally (Figs 16-24). Two markedly developed mesotibial spurs present, outer spur larger than inner spur (Figs 16-19). Outer spur curved, spatulate and pointed. Inner spur evenly tapered to point. In males, dorsal truncation of distal portion of metatibia exaggerated, short and acutely fading towards medial region of tibia (Figs 14, 21, 23). Three clumps of setae present at base of metatibial truncation (Fig. 14): First clump forms row closest to truncation comprising dense row of short, equal length setae, aligned to angle of truncation across dorsal surface of metatibia; second clump of setae longer than first clump and positioned along metatibial margin in row transecting terminus of first clump of setae. Third clump consisting of short setae positioned basally from first clump along the outer dorsal margin of metatibia. In females, metatibia broad, rectilinear, without truncation and dorsal surface lacking clumps of setae (Fig. 15). Both sexes possess uniform row of setae running uninterrupted medially along length of inner metatibial surface (Fig. 20). Setae often arise from medial longitudinal carina or margin that defines the setal row. Basal tarsomeres flared distally appearing triangular in dorsal and ventral perspectives.

Male Genitalia (Figs 6-13): ventral structure, or handle, of virgular sclerite completely fused with primary sclerotised circular ring. Apical region of handle upturned with varying degree and twisted so that apex is approximately perpendicular to plane of basal region.
Ateuchus adamastor was first described by Le Peletier de Saint-Fargeau and Serville in 1828. In 1837, Westwood described the genus Sceliages (based on the species Sc. iopas) to differentiate species of Scarabaeus, including those of the genus Ateuchus Weber, that possess several “structural peculiarities” including 2 mesotibial spurs. Both Westwood (1837) and Lacordaire (1856) thought A. adamastor should belong to the genus Sceliages presumably without realising A. adamastor was conspecific with Sc. iopas. Synonymy of both species under the new combination Sceliages adamastor (Le Peletier de Saint-Fargeau and Serville 1828) was formalised by Shipp (1895). The genus Ateuchus was described by Weber in 1801 without the designation of a type- species and in 1901, Péringuey designated it a synonym of Scarabaeus. Currently, Ateuchus only appears as a new world genus within the tribe Coprini (Halffter and Edmonds, 1982).

As far as we are aware, Ferreira (1972: 76) is the first author to cite Parascarabaeus Balthasar as a synonym of Sceliages. However, Mostert and Scholtz (1986: 10-11) later proposed that the type species of Parascarabaeus tonkineus is likely to be a mislabelled specimen of Sceliages since all other specimens of Sceliages have been collected only in the southern half of the African continent. Nonetheless, its status remains as the only full generic synonym of Sceliages to date (Mostert and Scholtz, 1986).

Regarding the morphological differentiation of the genus, a second medial/inner mesotibial spur is also present in Scarabaeus subgenus Scarabaeolus Balthasar however differing from Sceliages in being vestigial and difficult to locate (e.g. Zur Strassen, 1967:130).
Key to the species of the genus *Scoliages* Westwood

1. Protibia slightly and evenly increasing in width distally; with slight to no inward angulation on medial facet at level of second external denticle (angulation less apparent in females) (Figs 25-32, 42-45) ... 2

Protibia abruptly increasing in width distally at level between second and third external denticle; with markedly developed inward angulation of medial facet at level from third external denticle to between third and halfway to second external denticle (angulation less apparent in females) (Figs 33-41) ... 5

2(1). Elytra surface complex, obvious corrugation or granulation; course shagreen texture; waxy indumentum present; general matt appearance; striae well defined, bordered with micro carinae... 3

Elytra surface plain, without obvious surface protuberances; fine shagreen texture, waxy indumentum usually absent, general glossy appearance; striae fine, narrow and grooved......... 4

3(2). Elytra surface covered in dense, raised granulations.......................... *granulatus* sp. nov.

Elytra surface longitudinally corrugated; tops of corrugations smooth, glossy providing a striped or ribbed appearance... *augias* Gillet

4(3). Antennae yellow-orange; posterior facet of mesofemora armed with single row of long setae closely paralleling ventral margin (Fig. 47); medial facet of mesotibia straight (Fig. 18).... *hippias* Westwood

Antennae brown-black; posterior facet of mesofemora armed with two to three rows of setae (Figs 54, 55); first row closely paralleling ventral margin; second and third row (if present) with
setation reduced in number from a few to several setae; medial facet of mesotibia slightly curved inwards.. gagates Shipp

5(1). Obtuse inward angulation of medial facet of protibia from third external denticle (Figs 33-36); protibial width (in dorsal perspective) broadens abruptly in apical quarter; elytra surface glossy; striae on elytra fine, narrow grooved...6

Slight inward angulation of medial facet of protibia from between third and half way to second external denticle (Figs 37-41); protibial width (in dorsal perspective) slightly increased in apical quarter; elytra surface matt with thin waxy indumentum; striae on elytra well defined often bordered with micro carinae (more apparent in teneral adults)............... difficilis Zur Strassen

6(5). setation red; mesotibia slightly bowed (Fig. 16); outer mesotibial spur elongate to approximately 1/2 length of mesotibia (Fig. 16); medial facet of metatibia (in dorsal perspective) relatively straight (Fig. 23)... brittoni Zur Strassen

setation black; mesotibia obtusely bowed (Fig. 17); outer mesotibial spur 1/5 to 1/4 length of mesotibia (Fig. 17); entire metatibia bowed inwards (Figs 21, 22)....................... adamastor (Le Peletier de Saint-Fargeau and Serville)
Sceliages adamastor (Le Peletier de Saint-Fargeau and Serville 1828)

(Figs 11, 17, 21, 22, 35, 36, 50, 51, 83)

Ateuchus adamastor Le Peletier de Saint-Fargeau and Serville 1828: 351. – Westwood 1837: 12; Lacordaire 1856: 66; Shipp 1895: 38. **Comb. nov.**

Sceliages iopas Westwood 1837: 12. – Lacordaire 1856: 66; Shipp 1895: 38. **Syn.**

Sceliages jopas [Sic!] Westwood 1837 – Zur Strassen 1965: 220, 228-230; Ferreira 1972: 77

Sceliages joppas [Sic!] Westwood 1837 – Ferreira 1972: 76

Sceliages curvipes Gillet 1911b: 310. – Gillet 1911a: 16; Zur Strassen 1965: 228. **Syn.**

Material Examined

Type specimens. See comments.

Sceliages iopas. Holotype: ♂, labelled “South Africa; Sceliages iopas Westwood 1837. Type coll.428” in HECO. Paratype: 1♂, labelled “South Africa; Sceliages iopas Westwood 1837. Type coll.428” in HECO.
Sceliages curvipes. Holotype: ♂, labelled “South Africa; Sceliages curvipes Gillet 1911” in BMNH.

Diagnosis

Sc. adamastor possess obtusely curved inward angulation of the mesotibiae. Presence of an obvious inward curvature of the metatibia is apparent in both males and females. The length of the outer mesotibial spur relative to the length of the mesotibia is markedly reduced. Setation generally black.

Re-description

Length 12–22 mm.
Head: surface smooth to slightly rugose on genal epistomae. Genae and clypeus densely covered with large punctations. Geno-clypeal suture well defined.

Sternites: surface of mesobasisternum coarsely shagreened with markedly-spaced, shallow, feebly developed crescent-shaped punctations. Dorsal margins of punctations smooth. Setation generally absent.

Legs: medial (inner) facet of protibia abruptly angled inwards from third (penultimate distal) external denticle (Figs 35, 36). Protibial width (in dorsal perspective) in distal quarter broadens markedly to apex. Mesotibia obtusely curved inwards, more rounded than rectilinear and truncate in apical third (Fig. 17). Inner mesotibial spur less than 1/2 length and thickness of outer mesotibial spur. Inner spur offset from outer spur by 15 to 20 degrees. Outer mesotibial spur 1/5 to 1/4 length of mesotibia (Fig. 17). Mesotarsi approximately half length of mesotibia. Mesofemora armed with many rows of dense long black setae on posterior facet (Fig. 51). Metatibia evenly curved inwards (Figs 21, 22).

Male genitalia (Fig. 11): handle of virgular sclerite broad in width, steep semi-circular concavity along dorso-basal margin; evenly concave along entire ventral margin. Dorsal margin notched at terminus of union with circular sclerite prior to obvious swelling to terminus of apical region of handle. Secondary sclerotisation of handle reduced between dorsal and ventral corners of apex, forming slight saddle.

Comments

Horn *et al.* (1990) provide no information regarding the Coleoptera collections of Le Peletier or Audinet-Serville. It therefore seems to be improbable that their locations including the type(s) of
Ateuchus (=Sceliages) adamastor will ever be found. Moreover, Yves Cambefort (pers. comm.) of the Paris Museum of Natural History, home to portions of Le Peletier's collections, states the types described by both Le Peletier and Audinet-Serville are apparently unknown and are likely to be lost. In accordance with zur Strassen (1965) and those who have helped us in attempting to locate the type(s), *Sc. adamastor* type(s) are considered as missing or non-existent. We have therefore assigned a neotype for this species.

Re-description and identification of this species was therefore based on the descriptions of *Ateuchus adamastor* by Le Peletier de Saint-Fargeau and Serville, examination of the conspecific types of *Sceliages iopas* and *Sc. curvipes*, the description of *Sc. iopas* by Westwood, description of *Sc. adamastor* by zur Strassen (1965) and identified non-type material.

It is worth noting the species labels of the 2 type specimens of *Sceliages iopas* held at the Hope Entomological Collections, University of Oxford, are hand written in a manner likely to be misinterpreted as *Sc. jopas*. The locality data of the Free State specimen is not considered accurate and is not included in the distribution map (Fig. 83). We also examined 12 specimens from the ISNB. Of these, 2 are mis-identified specimens of *Sc. gagates* and 2 of *Sc. difficilis*. The remaining 8 specimens of *Sc. adamastor* contain minimal to no original collection data to be of any use in distribution maps.

The body size of *Sc. adamastor* is approximately as large as *Sc. brittoni* and smaller adult specimens may also be confused initially with large specimens of *Sc. difficilis*. The posterior surface of the mesofemora of *Sc. adamastor* specimens from De Hoop is armed with a single row of long black setae closely paralleling the ventral margin and a second less dense, incomplete row inset from the posterior margin (Fig. 50). All other specimens of this species are
heavily setose (Fig. 51). The mesotibia of males is only slightly more obtusely bowed and the inner facet of the protibia more abruptly angled inwards than in females.

Geographical Distribution.

Sc. adamastor is known only from South Africa (Fig. 83).

Sceliages augias Gillet 1908

(Figs 4, 9, 31, 32, 48, 49, 81)

Material Examined

Type specimens.

Sceliages augias. Holotype: ♀, labelled “Angola, Benguela; F.C. Wallman Leg.” in Institut Royal des Sciences Naturelles de Belgique (ISNB), Brussels; 10,640.
Non-type specimens. 7♂, 2♀. **ANGOLA:** Casonda (7°23'S 20°54'E) (1♂ TMSA).

DEMOCRATIC REPUBLIC OF CONGO: Mukana (Mukama [sic]), 1810 m; 29 xi. 1948, Mis.G.F. de Witt 2033a (1♂ ISNB). **ZAMBIA:** “Rhodesie du Nord”, Abercorn (Mbala) (8°50'S 31°23'E), 1600 m; 12 iv. 1943, H.J. Brédo (1♂ ISNB). Algoa (Kabwe), Broken Hill, 180 Km E (14°26'S 30°18'E); January 1913, Ll. Lloyd (1♂ BMNH). Mpika, Muchinga Mountains (11°42'S 27°10'E), 1500 m; January 1908, S.H. Neave (1♂ ISNB). “Rhodesie du Nord”, Mweru-Wantipa; H.J. Brédo (1♂ ISNB). Serenje (13°10'S 30°47'E), 1500 m; December 1912, Ll. Lloyd (1♀ BMNH). Serenje District, 1350 m, 28 xii. 1907, Neave (1♂ BMNH).

TANZANIA: Mpwapwa (6°21'S 36°29'E); no collection Data; “Nevinson Coll. 1918–14” (1♀ BMNH).

Diagnosis

Sc. augias is easily differentiated from the other species of *Sceliages* by the appearance of its elytra: pronounced longitudinal ridges/corrugations filled with a matt grey indumentum and the tops shiny black providing a striped appearance.

Re-description

Length. 10-18 mm.

Head: surface rugosely punctated on genae and clypeus. Distal halves of geno-clypeal sutures obscured by rugose surface. Frons and vertex with less dense and smaller punctations.

Pronotum: obtusely rounded with curvature in the posterior third of lateral margins. Thickness and angulation of lateral margins unvaried.
Elytra: pronounced longitudinal carina or corrugations positioned medially on surface between each stria. Surface texture coarsely shagreened. Surfaces between carinae covered with indumentum and appearing matt grey. Carinae shiny black without waxy indumentum. Elytra appearing striped or ribbed.

Sternites: surface of mesobasisternum coarsely shagreened with well spaced, crescent-shaped, facetted punctations. Punctations raised forming protrusions or turbercle-like structures. Dorsal margins of protrusions smooth. Protrusions each armed with single long seta.

Legs: spur-like projection markedly pronounced on anterior ventral ridges of both profemora and protrochanter (Fig. 4). Inner face of protibia slightly angled inwards from second external protibial denticle (Figs 31, 32). Mesofemora armed with few (Fig. 49) to many (Fig. 48) rows of long setae on the posterior facet. Inner mesotibial spur 2/3 length of outer spur and 1/2 its thickness; angle is offset from outer spur by 30 degrees. Mesotarsus between 1/2 and 2/3 length of mesotibia.

Male genitalia (Fig. 9): handle of virgular sclerite broad in width, steeply concave along dorsal margin of basal region and evenly concave along ventral margin. Dorsal margin notched immediately after distal terminus of union with circular sclerite. Dorsal margin angles abruptly upwards to apex of handle. Apical region tapers to its widest thickness at apex. Apex angulate and width nearly as broad as length of dorsal margin from apex to notch. Secondary sclerotisation of handle reduced in ventral corner of apical region and dorsal corner of basal region. Handle has small baso-ventral extension also with reduction in secondary sclerotisation.

Comments

We are not aware who formally synonymised *Scarabaeus delaunay-larivierei* with *Sc. augias*; we follow Ferreira (1961: 64) who is the first author known to us to use this synonymy.
Intra-specific variation in the degree of setation or pubescence on the mesofemoral posterior surface is apparent among specimens of *Sc. augias*. Specimens from coastal Casonda, Angola possess dense setation similar to that of *Sc. brittoni* (Fig. 48) compared to inland specimens (eg. Fig. 49).

Geographical Distribution.

We saw specimens of *Sc. augias* from the Dominican Republic of Congo, Angola, Zambia and single specimen labelled "Mpwapwa" with no other collection information provided. The only locality fitting this name occurs in far eastern Tanzania. If this locality is correct the distribution of the species is extended all the way across central Africa. Its distribution point however has not been included in Figure 81. Further material examined are cited by zur Strassen (1965: 221): CONGO: Kankunda, Upemba National Park (8°36'S 26°26'E), 1300 m; 24-28 November 1947, G.F. de Witte; (1♂ Musée Royal de l’Afrique Central, Tervuren (MACT)). ZAMBIA: Mpika, Muchinga Mountains, 1500 m; January 1908, S.H. Neave; (1♂ MACT). The former of these two records is incorporated in Figure 81.

Sceliages brittoni Zur Strassen 1965

(Figs 5, 10, 16, 23, 33, 34, 48, 83)

Sceliages brittoni Zur Strassen 1965: 230. – Ferreira 1972: 77

Material Examined
Type specimens.

Sceliages brittoni. Holotype: ♂, labelled “South Africa: SW Cape (Western Cape Province); Leipoldtville, Eland’s Bay (32°13'S 18°29'E); October 1947, museum exped.” In SAMC.

Paratypes: 1 ♀, labelled “South Africa: SW Cape (Western Cape Province); Darling (33°23'S 18°23'E); October 1906, L. Péringuey” in SAMC. 1 ♀, labelled “Eland’s Bay; October 1947, museum exped.” In SAMC. 1 ♀, labelled “Saldanha Bay (33°03'S 18°00'E); September 1960 “S.A.M.”” in SAMC.

Non-type specimens. 23♂, 7♀. SOUTH AFRICA. Western Cape Prov.: Namaqualand Kommandokraal farm, 31°30'S 18°13'E, on sandy ground; 23 ix. 1994, Endrödy and Bellamy, E-Y 3033 (1♂ TMSA). Langebaan, Geelbek, 12 Km SE (33°06'S 18°02'E), col. in sand and shrubland; 1–29 x. 1979, Davis and Payton (3♂, 2♀ SANC). Langebaan, Geelbek, 12 Km SE, 29 x. 1979, A.L.V. Davis (1♂ SANC). Nortier farm, 32°02'S 18°20'E, ground traps, meat bait; 25 viii. 1981, Endrödy-Younga, E-Y 1845 (1♂ TMSA). Seweputs coast, 31°39'S 18°17'E, ground traps, 64 days, banana bait 23 viii. 1981, Endrödy-Younga, E-Y 1836 (1♂ TMSA).

Northern Cape Prov.: Hondekloofbaitai, 30°19'S 17°16'E; September 1974, E.K. Hartwig (1♀ SANC). Hondekloofbaitai, 12km E, 30°21'S 17°25'E, ground traps, 58 days, millipede bait; 30 viii. 1977, Endrödy-Younga, E-Y 1359 (1♂,4♀ TMSA). Kotzesrus, 30°57'S 17°50'E, white dunes, day, ground traps, 62 days, meat bait; 23 viii. 1979, Endrödy-Younga, E-Y 1581/4 (2♂ TMSA). Quaggafontein, 30°13'S 17°33'E, ground traps, 60 days, millipede bait; 29 viii. 1977, Endrödy-Younga, E-Y 1356b (1♂ TMSA). Vlakte farm, Gemsbok, 30°30'S 17°29'E, ground traps, 56 days, meat bait; 1 xi. 1977, Endrödy-Younga, E-Y 1366 (1♂ TMSA). Vlakte farm, Gemsbok, 30°30'S 17°29'E, singled, dunes, day; 30 viii. 1977, Endrödy-Younga, E-Y 1361 (1♂ TMSA).
Diagnosis

Sc. brittoni is easily diagnosed with the following morphological characters: red setation; markedly elongate outer mesotibial spur relative to the length of the mesotibia; and a large body size. The distribution of _Sc. brittoni_ is restricted to the west coastal regions of South Africa.

Re-description

Length 17-25 mm.

Sternites: surface of mesobasisternum texture coarsely shagreened. Punctations crescent-shaped and faceted. Punctations raised forming protrusion or tubercle-like structures; dense but generally unlinked radiating anterior-laterally from centre of mesosternal process. Setation generally absent.

Leags: medial (inner) facet of protibia abruptly angled inwards from third external denticle (Figs 33, 34). Protibial width (in dorsal perspective) in distal quarter broadens abruptly to apex. Profemoral spur-like projection pronounced with reduced tooth-like serrations on remainder of anterior ventral ridge of both profemora and protrochanter (Fig. 5). Spur-like projection may be present but reduced on anterior ventral ridge of protrochanter. Mesofemora armed with many rows of dense, obvious long red/brown setae on the posterior facet (Fig. 48). Outer mesotibial spur markedly elongate; approximately half length of mesotibia (Fig. 16). Inner mesotibial spur less than 1/3 length and width of outer spur; offset from outer spur by 30 to 45 degrees. Mesotarsus approximately 1/3 length of mesotibia. Minimal to no inward curvature of metatibia (Fig. 23).
Male genitalia (Fig. 10): handle of virgular sclerite narrow and relatively constant thickness through its length; widening slightly at each end. Handle evenly concave along majority of dorsal margin to an abrupt outward angulation near terminus of apical region; ventral margin slightly concave to angulate. Dorsal margin unnotched at terminus of union with circular sclerite. Secondary sclerotisation of handle reduced between dorsal and ventral corners of apex forming an obvious saddle. Dorsal and ventral corners of apical region of handle appear as protruding points. Baso-ventral corner forms a slight protruding extension with reduction in secondary sclerotisation from its apex to baso-dorsal union with circular sclerite.

Comments

The majority of the external morphological features of Sc. brittoni closely resemble those of Sc. adamastor.

Biological observations

A single Sc. brittoni in Namaqualand, South Africa, was observed displacing reduviid nymphs (species unknown) attacking a large harpagophorid millipede, Zinophora sp (Diplopoda: Spirostreptida). Sc. brittoni then relocated the millipede whilst it was still alive (J. Colville, personal communication).

Geographical distribution

Sc. brittoni is known from South Africa only (Fig. 83).
Fig. 2. Head plates of Sceliages, contour. Figs 3-5. Profemora and protochanter development of basal region of anterior-ventral margin (ventral perspective). Scales = 1 mm. Fig. 3 - Sc. hippias; Fig. 4 - Sc. augias; Fig. 5 - Sc. brittoni.

Figs 6-13. Male genitalia of Sceliages; virgular and circular sclerites of the internal sac, contour. Scales = 0.2 mm. Fig. 6 - Sc. granulatus (Sekoma, Botswana); Fig. 7 - Sc. granulatus (Kimberley, RSA); Fig. 8 - Sc. hippias; Fig. 9 - Sc. augias; Fig. 10 - Sc. brittoni; Fig. 11 - Sc. adamastor; Fig. 12 - Sc. difficilis; Fig. 13 - Sc. Gagates.

Figs 14-15. Metatibia of Sceliages; sexual variation of distal apices (dorsal perspective), contours. Scales = 1 mm. Fig. 14 - Sc. hippias, ♂; Fig. 15 - Sc. hippias, ♀.

Figs 16-19. Mesotibia and mesotibial spurs of Sceliages (dorsal perspective), contours. Scales = 1 mm. Fig. 16 - Sc. brittoni; Fig. 17 - Sc. adamastor; Fig. 18 - Sc. hippias; Fig. 19 - Sc. difficilis.

Fig. 20. Metatibia of Sceliages gagates; medial facet with medio-longitudinal setation/carina (dorsolateral perspective), contour. Scale = 1 mm.

Figs 21-24. Metatibia of Sceliages; inward curvation (dorsal perspective), contours. Scales = 1 mm. Fig. 21 - Sc. adamastor, ♂; Fig. 22 - Sc. adamastor, ♀; Fig. 23 - Sc. brittoni, ♂; Fig. 24 - Sc. granulatus ♀.
Figs 25-45. Protibiae of Sceliages (dorsal perspective), contours. Scales = 1 mm. Fig. 25 - Sc. granulatus, ♂ (Kimberley, RSA); Fig. 26 - Sc. granulatus, ♀ (Kimberley, RSA); Fig. 27 - Sc. granulatus, ♀ (Kang, Botswana); Fig. 28 - Sc. granulatus, ♂ (Kang, Botswana); Fig. 29 - Sc. hippias, ♂; Fig. 30 - Sc. hippias, ♀; Fig. 31 - Sc. augias, ♂; Fig. 32 - Sc. augias, ♀; Fig. 33 - Sc. brittoni, ♂; Fig. 34 - Sc. brittoni, ♀; Fig. 35 - Sc. adamastor, ♂; Fig. 36 - Sc. adamastor, ♀; Fig. 37 - Sc. difficilis, ♂ (Rhenosterpoort farm, RSA); Fig. 38 - Sc. difficilis, ♀ (Rhenosterpoort farm, RSA); Fig. 39 - Sc. difficilis, ♂ (Umtali, Zimbabwe); Fig. 40 - Sc. difficilis, ♀ (Umtali, Zimbabwe); Fig. 41 - Sc. difficilis, ♀ (Holotype, BMNH); Fig. 42 - Sc. gagates, ♂ (Muzi Area, RSA); Fig. 43 - Sc. gagates, ♀ (Muzi Area, RSA); Fig. 44 - Sc. gagates, ♂ (Delagoa B., Moçamb.); Fig. 45 - Sc. gagates, ♀ (Delagoa B., Moçamb.). Figs 46-55. Mesofemora of Sceliages; setation/pubescence on posterior facet. Left margins are dorsal, (lateral perspective). Scales = 1 mm. Fig. 46 - Sc. granulatus; Fig. 47 - Sc. hippias; Fig. 48 - Sc. brittoni and Sc. augias (Casonda, Angola); Fig. 49 - Sc. augias (Mpwapura); Fig. 50 - Sc. adamastor (De Hoop Nat. Res., RSA); Fig. 51 - Sc. adamastor; Fig. 52 - Sc. difficilis (Badplaas, RSA); Fig. 53 - Sc. difficilis (Boekenhoutskloof, RSA); Fig. 54 - Sc. gagates (Muzi Area, RSA); Fig. 55 - Sc. gagates (Muzi Area, RSA).
Sceliages difficilis Zur Strassen 1965

(Figs 12, 19, 37-41, 52, 53, 82)

Material Examined

Type specimens.

Sceliages difficilis. Holotype: ♂, labelled “South Africa: Eastern Cape Province; Grahams town; ex. coll. Fry 1905 – 100”, in BMNH.

Paratypes: 1 ♂ and 1 ♀, labelled “South Africa: Natal (Kwazulu-Natal); Krantzkop (Kranskop) (28°58'S 30°51'E); November 1917, K.H. Barnard”, in SAMC. 1 ♂, labelled “Natal (Kwazulu-Natal); pt; “58.13””, in BMNH. 1 ♂, labelled “Natal (Kwazulu-Natal); ex. coll. Pascoe”, in BMNH. 1 ♂, labelled “Natal (Kwazulu-Natal), Durban; A.E.Miller”, in SAMC. 1 ♂, labelled “Zimbabwe: Salisbury (Harare), Mashunaland (17°50'S 31°03'E); 1893, G.A. Marshall”, in SAMC. 1 ♂, labelled “Inyanyadzi River (Nyanyadzi), Gazaland (19°45'S 32°25'E); November 1901, G.A.K. Marshall”, in BMNH. 1 ♂, labelled “Africa, austr.; Coll. J.J.Gillet”, in ISNB.

Diagnosis

Sc. difficilis can be diagnosed using the angulation of the protibiae (the medial facet of the protibia is slightly angled inwards from between the third external denticle to half-way to the second external denticle. Protibial width is even from the base to parallel with the third external denticle where the width broadens slightly to the apex), and the protruding extension of the baso-ventral corner of the virgular sclerite handle.

Re-description

Length 10-18 mm.

Pronotum: lateral margins evenly rounded. Thickness of lateral margin narrow and even.

Elytra: surface smooth with flat to slightly raised, minute granulations (more apparent in teneral adults). Stria markedly developed (more apparent in teneral adults) comprising a longitudinal pair of micro-carina. Minimal to no longitudinal groove bordered by micro-carinae.

Sternites: surface of mesobasisternum coarsely shagreened, large crescent-shaped punctations, densely arranged and often linked, radiating anterior-laterally from centre of mesosternal process. Punctations generally armed with single very short brown/black setae.

Legs: medial facet of protibia slightly angled inwards from between third external denticle to half-way to second external denticle (Figs 37-41). Even protibial width from base to parallel with third external denticle where width broadens slightly to apex. Protibial angulation and start of angulation more subtle in females (Figs 38, 40, 41). Mesofemora armed with three (Fig. 53) to four (Fig. 52) rows of long thick black/brown setae on posterior facet. Most rows approximately
equal in length. Second row from ventral marginal row often reduced setation. Mesotibia slightly curved inwards (Fig. 19). Outer mesotibial spur 1/3 length of mesotibia. Inner spur 2/3 length and 1/3 width of outer spur. Inner mesotibial spur offset from the outer spur by 10 to 20 degrees. Mesotarsus 2/3 length of mesotibia.

Male genitalia (Fig. 12): handle of virgular sclerite of relatively constant thickness through most its length, widening slightly at each end. Handle evenly concave along majority of dorsal and ventral margin. Dorsal margin unnotched at terminus of union with circular sclerite. Apical margin of handle rectangular. Basal margin between dorsal and ventral corners slightly concave. Secondary sclerotisation of handle reduced in apical ventral corner and apical dorsal corner. Baso-ventral corner forms protruding extension with reduction in secondary sclerotisation.

Comments

The etymology of the species name *difficilis* could be based on the difficulty to accurately diagnose this species. *Sc. difficilis* closely resembles *Sc. gagates* and *Sc. adamastor*. Geographic distribution (*Sc. gagates* is restricted to the eastern coastal regions), differences in width curvature/angulation of the protibiae, and pronotum lateral margins (more evenly rounded in *Sc. difficilis* and more obtusely rounded/flared in *Sc. gagates*), are the principal external characters in separating the two species. Some specimens of *Sc. difficilis* have been mis-identified as *Sc. adamastor*. This may be due to the curvature of mesotibia reminiscent of this strong diagnostic feature in *Sc. adamastor* (Fig. 17). Note, however, on *Sc. adamastor*, the outer mesotibial spur is markedly shorter than the length of mesotibia (Fig. 17) compared to *Sc. difficilis* (Fig. 19), and the mesotarsi of *Sc. difficilis* are 2/3 the length of the mesotibiae (c.f. mesotarsi of *Sc. adamastor* are 1/2 the length of the mesotibiae).
Geographical Distribution

Sc. difficilis is known from South Africa and Zimbabwe (Fig. 82).

Sceliages gagates Shipp 1895

(Figs 13, 20, 42-45, 54, 55, 82)

Material Examined

Type specimens. See comments.

Sceliages gagates. Neotype: ♀, Labelled “SORDWANA BAY, Natal (3 Km from camp); 15 x 1978, Bornemissza and Aschenborn”, in SANC; Database No: COLS 00045.

Sceliages gagates. ?type: Labelled “Limpopo” in BMNH.

CSIRO (2♂ SANC), St Lucia Estuary (28°21'S 32°29'E); 23 x. 1966, L. Louw (1♀ SANC).

North West Province. (?) Sand River Mountain, 24°32'S 27°39'E; 18-19 xii. 1985, C.L. Bellamy and D. d'Hotman (1♀ UPSA).

Diagnosis

Diagnostic morphological characters of *Sc. gagates* are: the lateral margins of the pronotum (obtusely rounded; thickness of lateral margins flared medially and narrow posteriorly; dorsal edge of margin upturned slightly); and the differences in protibia angulation (medial facet of protibia slightly angled inwards from second protibial denticle; even and slight increase of protibial width from base to apex) compared primarily to *Sc. difficilis*. The distribution of *Sc. gagates* is restricted to the coastal regions of north-eastern South Africa and Moçambique and is regarded as a key diagnostic character for the species.

Re-description

Length 10-18 mm.

Pronotum: lateral margins obtusely rounded. Thickness of lateral margins flared medially and narrow posteriorly. Dorsal edge of margin upturned slightly.
Comments

Type specimens were unable to be located for this revision nor their existence confirmed thereof (Horn et al., 1990). Only a few types from the original Shipp collection were retained by the Hope Entomological Collections, Oxford University Museum of Natural History. Some of the collection was purchased by P.M. Bright however contains no scarabaeines (Darren Mann, pers. comm.). The location of the location of most of Shipp's types remains a mystery. According to zur Strassen (1965), a [Holo]type of *Sc. gagates* with the locality “limpopo” was apparently lodged with the BMNH. All specimens of *Sceliages* were loaned from the BMNH for this revision of which no types of *Sc. gagates* were present. Zur Strassen (1965) was met with the same fate and also questioned the existence of types, more especially, the supposed type specimen. Zur Strassen (1965) also argued that the original description by Shipp was inaccurate and could easily have been based on a specimen of *Sc. hippias* lacking its yellow apical antennomeres, or *Sc. difficilis*, an undescribed species in 1895.

With an absence of types, our description of this species was initially based on the original description by Shipp (1895) and, in accordance with zur Strassen (1965), found Shipp's description more akin to that of *Sc. difficilis*. We therefore relied on the description and key by zur Strassen (1965) and examination of as many specimens we could obtain. We noticed an obvious lack of zur Strassen’s knowledge of the geographic localities of the specimens he examined and subsequently identified either as *Sc. gagates* or *Sc. difficilis* which made their differentiation rather ambiguous. This lead us to re-describe the species based on lowland coastal specimens of *Sc. gagates* or mis-labelled *Sc. difficilis* which possess uniformity in the morphological characters we regard as descriptive for *Sc. gagates*.
Based on the current re-description of *Sc. gagates* the [Holo]type with the locality “limpopo” is likely to be correct only if the specimen was collected in the eastern lowland coastal region of Moçambique through which the Limpopo(River) flows. However, its location, or that of any other type for this species, remains a mystery. General agreement by those who have helped us try to locate missing types is that they should be treated as non-existant and neotypes be assigned. This we have done.

Subtle intra-specific variations or external wear on diagnostic characters of both *Sc. gagates* and *Sc. difficilis* can easily lead to misidentification for either species. There are relatively few consistently sound diagnostic characters that could be described to separate the two species. “Ambiguous” male specimens of *Sc. gagates* that could be misidentified as *Sc. difficilis*, do however show reasonably consistent similarities in their virgular sclerites.

Geographical Distribution

Sc. gagates is known from the lowland coastal regions of north-eastern South Africa and southern Moçambique (Fig. 82).
Sceliages granulatus, sp. nov.

(Figs 1, 6, 7, 24, 25-28, 46, 80)

Material Examined

Type specimens. See comments

Holotype: ♂, labelled “Botswana: Kang, 35 Km SE, millipede-baited pitfall trap; 23 January 1978, A.L.V. Davis” (23°46'S 22°51'E), in SANC.

Paratypes: 3♂, 1♀, same data as holotype, in SANC; 1♂, 2♀ labelled “Botswana: Sekoma, 26 Km E, millipede-baited pitfall trap, 24-25 January 1978, A.L.V. Davis” (24°24'S 23°53'E), 1♂ in UPSA, 2♀ in SANC.

Non-type specimens. 3♂, 2♀. SOUTH AFRICA: 1♂ labelled ‘Northern Cape Province; Olifantshoek, 45 Km SW, 28 February 1973, Bornemissza and Temby’ (27°56'S 22°44'E) in SANC; 1♀ labelled ‘Vryburg’ (26°57'S 24°44'E) in SAMC; 2♂, 1♀ labelled ‘South Africa: “Cape Province”, Kimberley 28°44'S 24°46'E, October - November, 1980, S. Erasmus’, in SANC

Diagnosis

Sc. granulatus shares a similar overall appearance with small teneral adults of Sc. difficilis except for the following differences present in Sc. granulatus: an obvious indumentum covering the elytra. Granulations on elytra more obvious and pronounced. Striae on the elytra are more pronounced. Pronotum lateral margins are obtusely rounded (similar to Sc. gagates).
Description

Length 11-13 mm.

Head: surface rugose, densely punctated on genae and clypeus. Punctations on marginal regions of clypeus and gena form prolonged ripple-like ridges. Geno-clypeal suture obscured along apical half by punctations and roughness of surface near geno-clypeal margins. Antennae armed with dense array of pale minute sensilla on apical margins and dorsal surfaces on antennal club antennomeres.

Pronotum: surface coarsely shagreened, covered in minute punctations and fine, flat granulations. Lateral margins of pronotum obtusely rounded. Width of pronotal lateral margins constant in posterior half. Angulation of lateral margin without variation posteriorly and minimal to none medially. Entire dorsal lateral margin well defined.

Elytra: surface coarsely shagreened, covered in well developed granulations. Stria bordered with 2 evenly spaced carinae; granulation absent in strips running parallel with outer margins of each carina. Elytra covered with thin layer of indumentum providing dull matt appearance.

Sternites: surface of mesobasisternum finely shagreened, covered with large punctations often linked in ripple like chains of four or more. Punctations crescent-shaped and slightly facetted. Facets between inner margins of mesocoxal cavities and lateral carinae of mesosternellum undermined posteriorly and straightened to vertical at deepest point. Each facet outwardly curved twisting to horizontal anteriorly. Carina curved at union with mesobasisternal-mesepisternal suture.
Legs: medial (inner) facet of protibia poorly curved inwards. Females; curvature is even (Figs 26, 27). Males; curvature subtly more apparent from second external protibial denticle (Figs 25, 28). Medial facet of protibia twisted by 45 degrees from vertical in proximal half to horizontal position in distal half. Males; medial carina of keel of first (most basal) protibial denticle reaches dorsal longitudinal carina. Antero-ventral margin of profemora adjacent to protrochanter armed with one spur-like projection. Posterior facet of mesofemora armed with three rows of setae running parallel to dorsal and ventral margins (Fig. 46). Rows of variable length. Setae of variable density. Vagrant setae located sparsely between rows. Mesotibiae poorly curved inwards. Outer mesotibial spur approximately 1/3 length of mesotibia. Inner mesotibial spur more than 2/3 length of outer spur. Inner mesotibial spur offset from outer spur by 15 degrees. Mesotarsus approximately 2/3 length of mesotibia. Metatibia (in dorsal perspective) without inward curvature (Fig. 24).

Male genitalia (Figs 6, 7): handle of virgular sclerite broadly concave along medial region; dorsal margins steeply curved upwards at both ends. Apical region tapers to its widest at apex. Apex rounded at dorsal corner; angled at ventral corner. Secondary sclerotisation reduced transversely in ventral corner of apex of handle. Basal region of handle has reduction of secondary sclerotisation at dorsal corner. Baso-ventral corner of handle has pronounced rectangulate extension.

Comments

The virgular sclerite of Sc. granulatus from Kimberley (Fig. 7) differs slightly from the Botswana specimens (Fig. 6) in possessing a slightly thinner, less tapered apical region without angulation at the apex. Generally, virgular sclerites show little to no intraspecific variation and are therefore regarded as species specific and highly conserved. Only two male specimens have
been collected from Kimberley that prevents testing whether or not these differences are consistent. Whilst no external differences are apparent between the South African and Botswana specimens, the former have not been included in the type series.

Geographical Distribution

Sc. granulatus is known from semi-arid regions of southern Botswana and the northern part of central South Africa (Fig. 80) in areas considered to represent Kalahari sands.

Specific epithet

Species name is derived from the small but pronounced granulations on the elytra.

Sceliages hippocas Westwood 1844

(Figs 3, 8, 14, 15, 18, 29, 30, 47, 56-79, 80)

Sceliages hippocas Westwood 1844: 100. – Shipp 1895: 39; Péringuey 1901: 64; Gillet 1911a: 16; Ferreira 1961: 65; Ferreira 1972: 78; Zur Strassen 1965: 221, 222, 224, 226-228.

Ateuchus microcephalus Boheman 1857: 176. – Shipp 1895: 38. **Syn.**

Material Examined

Type specimens. See comments.

Sceliages hippocas. Holotype: 1♂, labelled “?type” “Int. S. Afr.” in BMNH; 54-76.

North West Province. Rustenberg Nature Reserve 25°40'S 27°12'E; 17-20 iii. 1980, C. G. E. Moolman (1♀ SANC). Rustenberg Nature Reserve 25°40'S 27°12'E; 17 xii 2000, millipede baited p/f trap (1hr @ 0900h), S. A. Forgie (1♂,1♀ SANC; 1♂, 8♀ UPSA). Tonguani Gorge, Pretoria, 81 Km W (25°50'S 27°30'E); 2 xii. 1972, Bornemissza and Insley, ex. coll. CSIRO (1♂ SANC). Retiefskloof, Rustenberg, 15 Km SE (25°49'S 27°16'E); 25 –26 x. 1975, I.D. Temby,
Sc. hippias is easily identifiable with the yellow/orange colour of the antennomeres, especially in live specimens. Should this character be ambiguous or missing in dead pinned specimens, then correct diagnosis of the species is assured with the unique setation on the posterior facet of the mesofemora, and mesotibiae are relatively short, evenly tapering to the distal apex, and without any curvature.

Re-description

Length 12-16 mm.
Head: surface of frons and vertex smooth with smaller, fewer punctations than in geno-clypeal region. Geno-clypeal suture is obscured by dense punctations and rough surface along its apical half. Antennal club yellow-orange.

Pronotum: lateral margins of pronotum obtusely rounded. Angulation of lateral margins of pronotum unvaried. Lateral margins of even width in posterior half.

Elytra: surface smooth, finely punctated and without waxy indumentum. Striae faint, lineal grooves infrequently bordered by minute carinae, and interrupted by punctations.

Sternites: surface of mesobasisternum smooth with large, evenly spaced, scalloped punctations radiating in vague linear fashion, antero-laterally from centre of mesosternal process. Mesosternum loosely covered in minute punctations, most armed with a single minute pale seta.

Legs: medial facet of protibia angled slightly, if at all, inwards from second protibial denticle (Figs 29, 30). Protibia width increasing evenly and slightly from base to apex. Antero-ventral margin of profemora adjacent to trochanter an obvious ridge, rounded, without serration; spur-like projection absent (Fig. 3). Mesofemora armed with single row of setae closely paralleling ventral margin in basal half of posterior facet (Fig. 47). Inner facet of mesotibia straight (Fig. 18). Outer mesotibial spur approximately 1/4 length of mesotibia. Inner mesotibial spur equal in length to outer spur and 1/2 its thickness. Angle of inner mesotibial spur is generally offset from outer spur by 10 degrees. Mesotarsus approximately 2/3 length of mesotibia.

Male genitalia (Fig. 8): handle of virgular sclerite thin in width, unevenly concave along baso-dorsal and ventral margins, and of relatively constant thickness. Dorsal margin angle down or notched at distal terminus of union with circular sclerite. Apical region of handle abruptly curved upward giving handle an overall sickle-shape appearance. Apical region is slightly
thicker than basal region and rectilinear at its apex. Both dorsal and ventral corners of apex have approximately equal reduction in secondary sclerotisation.

Comments

Much of the Westwood collection, including many of the types, was housed in the Zoological Society of London's collection, which was later incorporated into the main series collections of the BMNH before 1900. According to D. Mann (pers. comm.), the Westwood Type of Sc. hippias, if extant, would have been in the series we received from the BMNH for this revision. D. Mann warned the specimen (if present) may not be labelled as a Westwood species, as the labelling of that period was scant to say the least. We examined a specimen labelled “?type” and “Int. S. Afr.” from the BMNH series with an accession number, 54-76. The type label may well have been added by zur Strassen during his revision of the genus in which he states this specimen, along with the female Ateuchus microcephalus paratype labelled “Caffraria” in The Natural History Museum of Stockholm, are dubious. Zur Strassen (1965) concluded in his discussion of Sc. hippias it is likely the holotype and paratype(s) are lost and should be regarded as non-existent. However, further examination of the BMNH “?type” specimen labels and cross referencing of its museum accession number with the accessions registrar in the entomology library of the BMNH reveals this specimen to be the actual holotype for Scelages hippias. The specimen in question has subsequently been correctly labelled as the holotype by D. Mann and remains housed in the BMNH.

Re-description and identification of this species was therefore based on the descriptions by Westwood (1844) and zur Strassen (1965), identified material and diagnostic key of the genus by zur Strassen (1965).
NB: If some or all of the setae on the posterior facet of the mesofemora are absent then the setal sockets should be evident enough to identify this species.

Geographical Distribution

Sc. hippocastanum is known only from the north-eastern corner of South Africa (Fig. 80).

Description of mature larvae of *Sceliages hippocastanum*

Diagnosis

The appearance of mature *Sc. hippocastanum* larvae is typical of those of the subfamily Scarabaeinae (Edmonds and Halffter 1978). They differ, however, from other larvae of the subfamily in possessing the following unique (*) or rarely found characters: (1*) tormae and epitormae are markedly reduced, close to absent; (2) dorsal surface of the stipes is without an irregular row of conical (="stridulatory") teeth along the basal margin; (3*) hypopharyngeal area is without two dissimilar sclerites (oncyli); (4) antennae with three segments; (5) venter of the last abdominal segment lacks any rows or patches of short setae; (6) raster absent.

Description

Body-shape typical for Scarabaeinae larvae: whitish body strongly bent at about middle with markedly developed secondary dorsal folds. Head capsule (Figs 58-61): width ca.3.0 mm. Each hypostomal ridge is subdivided into two short sub-elements. Epipharynx (Fig. 57): tormae markedly reduced and close to be absent. Antenna (Figs 71, 72): consists of three segments; basal segment with 5 pores and no setae; middle segment with flat sensorium, 2 pores and 4
setae; distal segment with 3 apical conical sensillae and 9 pores on ventral surface. Mandible (Figs 62-67): nearly symmetrical; scissorial part on right mandible markedly shorter than that on left one; each mandible with three groups of short setae in molar part and with one long seta in proximal third of lateral surface. Maxilla (Fig. 69): dorsal surface of stipes without irregular row of conical teeth along basal margin. Labium and hypopharynx (Fig. 69): hypopharyngeal bracon as on Fig. 69; hypopharynx without oncyli. Thorax (Figs 77): pro- and metathorax not subdivided by folds; mesothorax weakly subdivided dorsally. Tergum of prothorax with anterior process on each side. Mesothoracic spiracles not found. Legs (Figs 73-76): two-segmented, with weak additional dorsal fold between presumably trochanter and femur. Abdomen (Fig. 56): segments 1-5 subdivided dorsally in 3 dorsal lobes; segment 6 subdivided in 2 dorsal lobes; segments 7-10 not subdivided. Anal opening transverse (Fig. 79). Raster absent.

Remarks and discussion

Sceliages hippias larvae resemble those of dung-feeding Scarabaeinae groups. They share a number of morphological characters outlined by Edmonds and Halffter (1978; with a few exceptions, see description). In the current paper we outline some of the major characters of *Sc. hippias* larvae and compare them to the larvae of other taxa of the Scarabaeinae. Putative phylogenetic trends are discussed below.

1. Tormae and their associated sclerites (epitorma, dexiotorma, laeotorma, pternotorma) are markedly reduced or absent. These structures are normally present throughout larvae of the Scarabaeoidea (Ritcher, 1966; Edmonds and Halffter, 1978). In some cases tormae are not united mesally or are somewhat reduced (Ritcher, 1966, Schuster and Reyes-Castillo, 1981). As far as we are aware, the degree of reduction of the tormae in larval *Sc. hippias* is the most extreme within the subfamily.
2. The dorsal surface of the stipes is without an irregular row of conical teeth along the basal margin. These teeth are present throughout Scarabaeinae (except *Sisyphus*, see: Edmonds and Halffter, 1978) and many other groups in the Scarabaeoidea. We are not aware of a study demonstrating homology in these structures between the different lineages of the Scarabaeoidea. Occasionally these teeth are referred to as stridulatory teeth (Ritcher, 1966: 26). This assumption has been doubted by Edmonds and Halffter (1978: 313). Moreover, Hirschberger and Rohrseitz (1995) were not able to detect any sound pattern from *Aphodius* larvae possessing these teeth (Hirschberger, personal communication).

3. The hypopharyngeal area is without oncyli. Hypopharyngeal sclerotisation is present in all known larvae of the subfamilies Scarabaeinae and Aphodiinae. Hypopharyngeal sclerotisation is also present in the larvae of the families Geotrupidae and Lucanidae. As with the presence of "stridulatory" teeth on the stipes, no proof has been found to demonstrate the homology of these structures in the different groups of the Scarabaeoidea. The absence of these sclerites in *Sc. hippias* larvae appears to be unique within the subfamily.

4. The antennae of *Sc. hippias* larvae consist of three antennomeres. In contrast, all other described larvae within the Scarabaeinae possess four antennomeres, even when the subdivision between the two basal segments is poorly distinguished. In *Sc. hippias* this subdivision is absent and, consequently, the two basal antennomeres are fused to form a single one. A three-segmented antenna is a character often utilised to separate Geotrupidae larvae from those of Scarabaeinae possessing four-segmented antennae. Three-segmented antennae have also been found in one unidentified *Scarabaeus* larva from South Africa (Grebennikov and Scholtz, unpubl.).
Figs 56-57. Mature larva of *Sceliages hippias*. Fig. 56–habitus, lateral view, scale = 5 mm; Fig. 57–epipharynx, scale = 0.2 mm. Figs 58-65. Mature larva of *Sceliages hippias*, details. Scales = 1 mm. Figs. 58-59–head, dorsal (Fig. 58) and ventral (Fig. 59); Figs. 60-62–left mandible, dorsal (Fig. 60), mesal (Fig. 61) and ventral (Fig. 62); Figs. 63-65–right mandible, dorsal (Fig. 63), mesal (Fig. 64) and ventral (Fig. 65).
Figs 66-67. Mature larva of *Sceliiages hippias*, head frontal (Fig. 66) and lateral (Fig. 67), scales = 1 mm. Figs 68-72. Mature larva of *Sceliiages*, details. Fig. 68 - right apical labial palpmere, dorsal, scale = 0.01 mm; Fig. 69 - labium, hypopharynx, and right maxilla, dorsal, scale = 0.25 mm; Fig. 70 - right maxillary palp, dorsal, scale = 0.1 mm; Figs. 71-72 - left antenna, ventral (Fig. 71) and dorsal (Fig. 72), scale = 0.1 mm.
Figs 73-76. Mature larva of Sceliphron hippocastanum, details. Scales = 0.4 mm. Figs. 73-74—left leg, anterior (Fig. 73) and posterior (Fig. 74) views; Figs. 75-76—apex of left leg, anterior (Fig. 75) and posterior (Fig. 76) views. Figs 77-79. Mature larva of Sceliphron hippocastanum, details. Scales = 1 mm. Fig. 77—thorax and two first abdominal segments, lateral; Fig. 78—venter of last abdominal segment; Fig. 79—anal opening and anal lobes.

5. The raster is absent from the ventral surface of the last abdominal segment of Sc. hippocastanum. This structure is often inconspicuous, but still present in larvae of the Scarabaeinae (except larvae of the genus Sisyphus, Edmonds and Halffter, 1978). We failed to see any setation on the median part of the tenth ventrite, even under high magnification.
Biology and nidification

Millipedes

Three relatively abundant species of millipedes from the order Spirostreptida are utilized by Sc. hippias at the Rustenberg Nature Reserve. Two species belong to the family Spirostreptidae: *Doratogonus rugifrons* (Attems 1922), and *D. levigatus* (Attems 1928). The former is a large black species approximately 12-14 cm long and 4-11 mm wide. The latter species is approximately 8-11 cm long and 5-7 mm wide. The third large orange-brown banded species, *Zinophora robusta* (Attems 1928), with similar dimensions to *D. levigatus*, belongs to the family Harpagophoridae.

Attraction to millipedes

It was important to confirm whether attraction to millipedes by Sceliages beetles is primarily due to a positive chemotaxic response to the quinone-based secretions produced by the millipedes (Krell *et al.*, 1998). To provisionally test this, healthy, uninjured *Z. robusta* and *D. rugifrons* millipedes were wrapped in pieces of tissue paper and agitated to collect their quinone-based secretions (after Krell *et al.*, 1997). These pieces of tissue (including a control piece of tissue paper not containing secretions) were then suspended above 3 pitfall traps and left for approximately 1/2 an hour at 10:00h. Only the ‘quinone’ traps collected several adult Sceliages. A healthy, uninjured millipede suspended above a pitfall trap also attracted 4 adult Sceliages within 1/2 an hour. Other species of beetles known to utilise millipede carcasses in the research area were not attracted to the traps.
Millipede relocation

We tested the assumption that Sceliages make balls from the internal tissues of a freshly crushed millipede and roll the ball backwards using its forelegs for locomotion. We crushed several millipedes and left them for observation. Beetles, instead of making a ball, utilized the freshest and most intact portion of the millipede which was relocated using their head and forelegs. Whole millipede corpses and injured millipedes were relocated in the same way up to a distance of 5m.

Burial

Laboratory trials were set-up using 6 pairs of Sc. adamastor to observe male-female co-operation in millipede burial. Fighting took place when a single millipede corpse was introduced to each pair. When a second millipede corpse was added to each pair, relocation and burial were carried out individually. Similarly, no male-female cooperation of Sc. hippias was observed in the field.

In Rustenberg Nature Reserve, 6 female Sc. hippias were each given a whole millipede carcass to observe burial behaviour and to obtain larvae. Locations of each burial site were tagged and recorded with GPS. Two burial techniques were observed: Sc. hippias excavates directly in front of the millipede corpse and draws it into the tunnel as it is excavated. Initially, this is carried out by undermining the millipede either directly underneath or at an angle at one end of the millipede. Tunnels constructed by Sc. hippias are relatively straight and excavated at a 30° angle. A female Scelaigies adamastor was observed at the De Hoop Nature reserve excavating a tunnel wide enough for both beetle and millipede to fit. Once the tunnel was started the beetle aligned the millipede lengthways at its entrance and pushed the millipede in gradually from behind making directional and postural adjustments of the corpse using its head.
Six burial sites were excavated one month later. Four sites contained vacant burrows and/or chambers containing the empty, disarticulated segments of the millipedes presented to the beetles a month earlier. Two sites contained brood chambers with balls and an accompanying adult female. Each brood ball contained a third-instar larva. Chambers were found at a depth of 7 to 14 cm beneath the surface. The tunnel leading to each chamber, and the entrance side of the chambers themselves, were filled with empty, separated millipede exo-skeletal body segments.

Brood balls

Millipedes of different sizes were measured to see how many balls a reproducing female Sc. *hippias* could make from them. Beetles presented with millipedes up to 7 mm in diameter produced a single brood ball. Millipedes around 11 mm in diameter yielded two brood balls. Three millipedes between 7-8 mm in diameter were presented to a single female to test whether she could utilise the entire resource and produce more than the standard 1 or 2 brood balls from a single millipede. Four weeks later, the same female was recovered brooding three balls; two containing third-instar larvae; and a third with a second-instar larva. Brood balls are pear-shaped. The ball is encapsulated by a compact protective layer of soil up to 3.5 mm thick. Soil is also used to make an egg chamber on the side of the ball. The larval food ball of *Sc. hippias* is approximately 12 mm in diameter and constructed from the internal tissues, intestinal dung, and remnant chitinous pieces of the millipede.

Addition of a compacted soil substrate occurs within the brood chamber and is thought to prevent desiccation and protection against pathogens (Halffter and Matthews, 1966). Parental brooding by female *Scelioages* occurs in conjunction with the soil-encrusted balls, a behaviour different to that described for the majority of the Scarabaeini that were thought not to brood or encrust balls with soil (Halffter and Edmonds, 1982: 40).
Figs 80-83. Distribution maps of *Sceliages* Westwood species in southern Africa.
Phylogenetic analysis of the genus *Sceliages* Westwood

Methods and materials

Taxa

A cladistic analysis was performed including all seven species of *Sceliages*. Ingroup taxa character states were polarised against 2 species of *Scarabaeus; S. zambesianus* Péringuey and *S. rusticus* (Boheman). Outgroup selection was based on a combined morphological and molecular phylogenetic analysis of the tribe by Forgie, Bloomer and Scholtz (unpubl.), taking into consideration arguments by Nixon and Carpenter (1993). Twenty-seven characters (including 3 multi-state) were coded from the sclerotised external structures of teneral adults. The aedeagus and virgular sclerite of the internal sac were also utilised (see “Male genitalia” section for preparation). Larval characters were not used due to a lack of material. Morphological characters and their states were described using the terminology of Doyen (1966) and Lawrence and Britton (1991).

Phylogenetic Analysis

A character matrix was compiled in Dada version 1.2.7 (Nixon, 1998). *Sceliages hippias* has several interesting character states (i.e. character 0/state 1,16/0, 19/0 and 21/0) which it shares with at least one of the outgroup taxa. These states are either plesiomorphic or were convergently evolved. Sympleiomorphies are also present in *Sc. adamastor* (26/0), and *Sc. brittoni* (24/0). Autapomorphic character states, whilst informative in describing the uniqueness of each species, are uninformative in the analyses and bias the consistency and retention indices by having zero homoplasy. Autapomorphic character states were therefore avoided during
coding and their absence confirmed using the mop-up option in Dada. Character states unique to *Sceiliages* are informative in differentiating the genus from other genera within the Scarabaeini but are generally uninformative in a species-level phylogenetic study such as this and were therefore not coded.

All characters were spawned in Nona (Goloboff, 1993) with 1000 repititions to ensure all the shortest cladograms were found utilising branch and bound search options with randomised taxon order in each run. A single tree found in Nona was submitted to Hennig86 version 1.5 (Farris, 1988) and subjected to successive approximations weighting, hennig tree construction and branch breaker options (xs w; mh*; and bb*; commands respectively). Bremer support (decay index) was calculated with Nona up to a value of 5, i.e. searching for trees up to 5 steps longer in the tree(s) submitted for calculation. Trees were also calculated in Parsimony and Implied Weights (PIWE) version 2.6 (Goloboff, 1993, 1997). Five levels of concavity (0, 1, 2, 3 [default], 4, 5) where applied to the characters using rs0; hold1000; hold/100; mult*100 commands. High repetitions run in Nona ensured the best PIWE trees were generated. All DOS-based analysis programmes were run through WinClada (BETA), Version 0.9.9 (Nixon, 1999a).

Consistency (CI) and retention indices (R.I.) (see Farris, 1989), are indicated for each character in the ‘morphological characters and their states’ provided in Appendix 1. A table of character states of the taxa is provided in Table 1.
Results and Discussion

Unweighted vs weighted trees

A single most parsimonious tree generated with unweighted data had a length of 58 steps and consistency and retention indices of 0.51 and 0.57 respectively (Fig. 84). Weighting of data was applied two ways; successively in Hennig86 (Farris, 1988), and in PIWE (Goloboff, 1997), with the latter assigned 5 levels of weight (1-5) towards character homoplasy (see Goloboff, 1993). Both methods generated single trees with identical ingroup topologies. In addition, there were no differences in the ingroup topologies between weighted and unweighted analyses. *Scarabaeus rusticus* always appears as sister to the *Sceliages s. str.* clade in all trees except the successive approximations weighting tree in which a basal trichotomy occurs.

Tree support

While the data is obviously very stable, low overall Bremer support in the tree topology is likely to result from a low number of characters and the relatively high consistency and retention indices (CI = 0.51, RI = 0.57) generated (Fig. 84). One of the highest decay values in the tree topology supports the genus thereby indicating its monophyly. Very high decay index and bootstrap values support the monophyly of *Sceliages* in morphological and molecular phylogenetic studies of the Scarabaeini (Forgie, Bloomer and Scholtz, unpubl.). The apical *Sc. brittoni* and *Sc. adamastor* clade also shares the greater support than the remaining nodes of the tree. This close relationship is also well supported in both phylogenetic studies by Forgie *et al.* (submitted) and Forgie, Bloomer and Scholtz (unpubl.). Four characters (i.e. 0, 15, 24, 26) had retention indices of zero suggesting their states were uninformative and therefore unable to support the branch topology of the species in the genus. Their deactivation did not significantly
Setation on the posterior surface of the mesofemora evolved from a plesiomorphic condition of one row (19/0) to two rows with a medial and sparsely pubescent third row present or not (19/1), to 3 or more uneven rows of setae (19/2) as a synapomorphy for *Sc. augias* (Casonda, Angola exemplar), *Sc. difficilis*, *Sc. adamastor* and *Sc. brittoni*. Such a condition, although variable in development both intra-and inter-specifically, evolved after the shift to millipede necrophagy since the plesiomorphic condition persists in *Sc. hippias*, the most ancestral member of the genus. The function of increased pubescence is unclear when sparsely pubescent species such as *Sc. hippias* are as successful in millipede necrophagy as species like *Sc. brittoni* that have dense pubescence on the posterior surface of the mesofemora.

A waxy indumentum on the surface of the elytra (7/1) is synapomorphic for the clade excluding *Sc. hippias*, *Sc. adamastor* and *Sc. brittoni*. The latter two species exhibit an evolutionary reversal back to the ancestral condition where a waxy indumentum is lacking (7/0). The semi-arid species, *Sc. granulatus*, exhibits the highest degree of wax indumentation in the genus and
Distribution

The ancestral lineage of *Sceliages* was distributed centrally within the geographical range of the genus from which subsequent lineages dispersed, morphologically adapting to the habitats they are currently distributed in (Figs 80-83). The sister relationship of *Sc. adamastor* + *Sc. brittoni* is reflected in their sympatric distributions (Fig. 83). Both species are adapted to similar habitats and exhibit the most congruency in derived morphological character states in the genus. The phylogenetic derivation of the common ancestor of *Sc. adamastor* and *Sc. brittoni* from that leading to *Sc. difficilis* is biogeographically feasible with a break between a north-eastern extension of the ancestral populations of the common ancestor of these species. The topological positioning of the remaining members of the genus as successive sisters to one another suggests their radiation from the ancestral lineage leading to *Sc. hippias* occurred on several independent occasions.

Conclusions

The majority of external morphological characters of *Sceliages* are shared with the genus *Scarabaeus*, however, a few synapomorphic character states are unique to *Sceliages* (see “Diagnosis” of the genus). The presence of a second mesotibial spur in this phylogenetic study appears as the single unique character state, yet it is present in other members of the Scarabaeini including *Scarabaeus s. str.* The degree of development of the second spur in *Sceliages* is unique however. Moreover, whilst necrophagy in the Scarabaeini is not unique to *Sceliages*, the apparent obligate utilisation of millipedes is and further strengthens the monophyly of the genus. Mostert and Scholtz (1986) likened *Sceliages* as the genus closest to the hypothetical common ancestor of the genera of the Scarabaeini, having undergone the least morphological evolution. In
contrast, a current phylogenetic analysis of the Scarabaeini by Forgie *et al.* (submitted) suggests the genus *Sceliages* is among the more derived members of the tribe. Evidence from both studies support the monophyly of the genus.

In this paper we were able to describe some behavioural characteristics of the adult beetles provisioning nests with millipedes for nidification. Many questions, however, remain unanswered: We know quinonous secretions of millipedes are responsible for attracting *Sceliages*, however, this was tested by stimulating a defensive reaction by millipedes. In a natural situation, are *Sceliages* beetles attracted to these secretions produced as allomones in response to the millipede being threatened or injured, and/or to these secretions being used as pheromones during millipede mate attraction and copulation? Do *Sceliages* beetles kill uninjured millipedes they may have been attracted to, or, must they rely solely on the demise of injured millipedes? Is *Sceliages* truly an obligate necrophage or are other food types also utilized? Are millipedes utilized for maturation feeding or nuptial courtship? Exactly how is the millipede disarticulated? A leverage action using the clypeal teeth and protibial external denticles is inferred (Villalobos *et al.*, 1998) but has not been witnessed. We hope that these questions will stimulate further study on the biology of *Sceliages*.

Acknowledgments

The authors would like to make special thanks to Darren Mann and to Frank Krell for assisting with location of type specimens, and also Keith Philips and Frank Krell for helpful comments on the manuscript. Ute Kryger and Sybylle Gussmann translated parts of zur Strassen's 1965 revision of the genus *Sceliages* into English. Barend Erasmus assisted with the species distribution maps. Michelle Hamer identified the species of millipedes utilized by *Sceliages hippias* and *Sc. adamastor*. Claudia Medina helped with fieldwork of *Sc. hippias*. Thanks to the
museum curators responsible for issuing loan material; Richard Newberry (North West Parks and Tourism Board) and Magda Goosen (Rustenberg Nature Reserve) for permitting research of Sc. hippias in the Rustenberg Nature Reserve; Andre Olwage for the habitus illustration of Sc. granulatus and Pam Prowse for inking the illustrations. This research was funded by National Research Foundation of South Africa and the University of Pretoria.

References

Ferreira, M.C. (1967) Os escaravelhidos de Moçambique. I. Revista de Entomologia de Moçambique, 10, 5-778.

0. **Apical antennomeres:** (0) brown to black; (1) yellow to orange. CI 0.50, RI 0.00

1. **Medio-longitudinal hump-like process on clypeus:** (0) extending anteriorly; (1) absent anteriorly (clypeus ca. flat). CI 0.50, RI 0.50

2. **Geno-clypeal sutures:** (0) curved medially; (1) ca. straight. CI 0.50, RI 0.50

3. **Punctations on dorsum of head plates:** (0) uneven and irregular; (1) even and regular. CI 0.50, RI 0.66

4. **Head plate dorsal surface:** (0) rugosissimus; (1) rugulosus. CI 0.50, RI 0.66

5. **Lateral margins of pronotum:** (0) evenly rounded; (1) obtuse. CI 0.50, RI 0.66

6. **‘Epipleura’ of the lateral margins of pronotum:** (0) even thickness throughout; (1) not so. CI 0.33, RI 0.33

7. **Indumentum on surface of elytra:** (0) absent (appearing glossy); (1) present. CI 0.50, RI 0.66

8. **Elytra surface:** (0) smooth (without raised granulation or corrugation); (1) complex (with raised granulation or corrugation). CI 0.50, RI 0.50

9. **Striae on elytra:** (0) markedly defined with bordering microcariniae; (1) not so. CI 0.33, RI 0.33

10. **Mesobasisternum punctation:** (0) facet of puncture forming a raised tubercle-like protrusion (punctuation usually crescent-shaped and may be vestigial); (1) not so. CI 0.50, RI 0.50

11. **Mesobasisternum surface (due to size, density and arrangement of punctations):** (0) rugose; (1) not so. CI 0.33, RI 0.33

12. **Width between sclerotised medial margins of aedeagus paramere (anterior frontal view):** (0) uneven, widening in apical half; (1) relatively even throughout. CI 0.50, RI 0.50

13. **Dorsal margin at distal terminus of union between handle of virgular sclerite and circular sclerite:** (0) downward turned (slight to markedly), discontinuous with remainder of dorsal margin; (1) not downward turned, forming a continuous uninterrupted curve with remainder of dorsal margin. CI 0.33, RI 0.33

14. **Baso-ventral corner of handle of virgular sclerite:** (0) forming a protruding extension (slight to markedly); (1) no protrusion. CI 0.33, RI 0.33

15. **Thickness of handle of virgular sclerite:** (0) uneven, thickest at basal and/or apical termini; (1) even throughout. CI 0.30, RI 0.00
16. Anterior-ventral margin of profemora adjacent to protrochanter: (0) uniform and unmodified; (1) armed with markedly developed spur; (2) armed with a vestigial spur. CI 0.66, RI 0.75

17. Width of protibia: (0) progressive increase in width from thinnest proximally to thickest distally; (1) abrupt increase in width distally between second and third external denticle. CI 1.00, RI 1.00

18. Inward angulation of medial facet of protibia: (0) between or at external denticles 1 and 2; (1) between external denticles 2 and 3 or at external denticle 3. CI 1.00, RI 1.00

19. Setae on posterior surface of mesofemora: (0) forming a single evenly spaced row of setae paralleling ventral margin; (1) forming two even rows of individually positioned setae (not clustered) parallel to dorsal and ventral margins with a medial third row containing fewer setae present or not; (2) three or more uneven rows of even or unevenly spaced setae. CI 1.00, RI 1.00

20. Setae on posterior surface of mesofemora: (0) sparse; (1) dense. CI 1.00, RI 1.00

21. Shape of mesotibia: (0) uncurved; (1) curved inwards. CI 1.00, RI 1.00

22. Tapering/truncation through length of mesotibia: (0) even; (1) uneven, truncation in apical half or third. CI 1.00, RI 1.00

23. Number of mesotibial spurs: (0) one; (1) two. CI 1.00, RI 1.00

24. Length of major (or outer) mesotibial spur: (0) ca. ½ length of mesotibia; (1) ca. ½ length of mesotibia; (2) much less than ½ length of mesotibia. CI 0.40, RI 0.00

25. Length of mesotarsi: (0) ca. ⅓ length of mesotibia; (1) less than ⅓ length of mesotibia. CI 0.50, RI 0.50

26. Curvature of metatibia: (0) markedly bowed inwards; (1) ca. straight. CI 0.50, RI 0.00