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Summary 

Phylogeny of the Scarabaeini 
(Coleoptera: Scarabaeidae) 

The Scarabaeini compnses some 146 speCIes of ball-rolling dung beetles belonging to the 

genera Pachylomerus and Scarabaeus, and Scarabaeus subgenera, Kheper, Pachysoma, 

Scarabaeolus, Scarabaeus and Sceliages. Their distribution extends throughout the Afrotropical 

region (including Madagascar) and southern latitudes of the Palaearctic. In this study, 244 

morphological characters, including 154 multistate, and 3 biological characters were identified 

using 28 morphologically diverse members of the tribe. These taxa were polarized against 4 

members from related tribes. Molecular sequence data from mitochondrial Cytochrome Oxidase 

subunit I (1197 bp) and 16S ribosomal RNA (461bp) genes of 25 of these taxa were also 

obtained in an attempt to further resolve broad phylogenetic relationships inferred from 

morphology-based hypotheses of tribal evolution. 

All data sets were subjected to a battery of weighted and unweighted simultaneous analyses to 

help recover the most accurate representations of phylogeny. Results show poorly resolved trees 

with many of the intermediate and basal nodes forming the backbone of each topology collapsed 

following bootstrap analysis. In concordance with many insect studies involving mitochondrial 

DNA, many sites exhibited strong A+T nucleotide bias and high interlineage divergences 

evolving heterogeneously in both genes with transition: transversion ratios reaching saturation. 

Homoplasious morphological characters appeared to carry more weight than the molecular data 

leading to an over proportional impact on the latter in combined analyses. Despite a lack 

topological congruence, phylogenetic signal was present, however, in a number of well-

supported relationships that were congruent between the molecular and morphological data. 
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Molecular indicates Scarabaeini have origins back to at the mid-upper 

(8-18 Million years ago). During this time members underwent a rapid of 

radiation followed by long periods divergence. Flightlessness In lineages 

along with polyphyletic evolution behaviourai adaptations with 

Vv(Ul'-'Hand including pushing, or combinations these 

techniques. Members of Sceliages Westwood have extreme 

necrophagous behaviour of exclusively on millipedes. Whilst necrophagy 

is an opportunist utilised by scarabaeines, only S. beetles become 

obligate Adaptations reported in this study include a positive vll'_lH'JU""'lv response to 

the f\rnf\nl~" secreted or millipedes. not 

construct food backwards in Scarabaeini fashion. whole or 

portions millipedes are fJ"'''''-'U away buried subsequently 

to access in ternal for food reproduction. 

analyses supported the monophyly of taxa within Scarabaeus , thereby 

providing justification proposed of its 

recovered simultaneous analyses morphological and molecular data thus 

provided a means to review of 
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General Introduction 

Rationale for investigating the mechanisms of evolution of the 


Scarabaeini (Scarabaeidae: Scarabaeinae) 


The Scarabaeini comprise a behaviourally advanced guild of ball-rollers including Scarabaeus 

sacer L., the first described beetle (Linnaeus, 1758: 345). The rolling of prefabricated spherical 

balls of food by these beetles was idolised in ancient Egyptian society via the solar deity 

Khepera, half human and half sacred scarab, who controlled the sun's daily azimuth across the 

sky (Fig. I). 

Fig. 1. Depiction of the ancient Egyptian solar deity, Khepera. 

Systematics 

The tribe includes approximately 146 species belonging to the genera Drepanopodus (Peringuey) 

Kheper Janssens, Pachylomerus Bertoloni, Scarabaeus L. and Sceliages Westwood, and the 

Scarabaeus subgenera Pachysoma M'Leay, Scarabaeolus Balthasar and Scarabaeus sensu 

stricto (s. str.). Their distribution spans the Afrotropical region (including Madagascar) and 

southern latitudes of the Palaearctic from SE Asia to the Iberian Peninsula. Historically, the 

name Scarabaeini is relatively recent (Peringuey, 1901) however the tribe was more or less 

 
 
 



defined by Reiche (1842) when he morphologically differentiated Ateuchides (Scarabaeini) from 

Coprides (Mostert and Scholtz, 1986). Janssens' (1949) division of the Scarabaeini into the 

subtribes Eucraniina, Alloscelina, Gymnopleurina, Canthonina, Sisyphina and Scarabaeina, 

formed the basis for all major subsequent works involving scarabaeine taxonomy (Balthasar, 

1963; Halffter and Matthews, 1966; Ferriera, 1972; Matthews, 1972, 1974; Halffter and 

Edmonds, 1979, 1982; Halffter and Halffter, 1989). The taxonomic definition of the Scarabaeini 

was attributed largely to the monophyletic evolution of horizontal relocation ("rolling") of food 

and often complex nesting behaviours (Halffter and Halffter, 1989). Using Balthasar's (1963) 

classification, Hanski and Cambefort (1991) promoted the subtribes to tribes (excl. Alloscelina) 

using morphological distinctions rather than the behavioural correlates shared by the guild. 

Hanski and Cambefort (1991) also bolstered the number of genera in the tribe to 11 by 

recognising several genera that are synonyms of the genus Scarabaeus. A recent study by Philips 

et al. (submitted) provides evidence to suggest the "rolling" behaviour of these tribes did not 

evol ve monophy letically but two or more times from ancestral "tunnelers". 

Evolution 

The Scarabaeini are likely to have evolved around the same time as other Scarabaeines during 

the Cenozoic, stemming from ancestral lineages thought to date back into the lower Cretaceous 

ca. 98-144 mybp (Krell, 2000) or possibly even the lower Jurassic ca. 180-200 mybp (Scholtz & 

Chown, 1995; Cambefort, 1991 a; Crowson, 1981. However, Krell, 2000, reports there are 

currently no reliable records of fossil Scarabaeoidea existing before the Lower Cretaceous). 

Diversification of these scarabaeoids was thought to coincide with the radiation of both 

angiosperms (Eocene: ca.50 Mya) and mammalian herbivores, particularly artiodactyiforms 

(lower Oligocene: 35 Mya), with a shift from saprophagy and mycetophagy to coprophagy by 

adults and larvae (Cambefort, 1991 b; Scholtz and Chown 1995. In contrast, see; Chin and Gill, 

1996). Fossil dung balls similar to those constructed by modern Scarabaeinae were recovered 
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from lower Oligocene deposits from Chile (Halffter 1959, quoted by Scholtz and Chown, 1995). 

Clay covered brood balls and nests recovered more recently from the Chadian Pliocene 

Australopithecine levels (Duringer et ai., 2000) suggests brood ball construction and nesting 

behaviour seen in modern dung beetles was well established at least 3-3.5 Mya. 

The evolution of habitat use by ancestral scarabaeoids was largely influenced by climatic 

changes taking place during the Cenozoic. Records of grass pollen grains first appeared around 

the Middle Eocene (Van der Hammen, 1983, quoted by Cambefort, 1991b) when grasslands 

developed and expanded giving rise to open habitats exploited by many of the radiating 

artiodactyls and cojointly, coprophagous beetles (Cambefort, 1991b). Modern dung beetles, 

especially the Scarabaeinae are, at present, more abundant in open habitats than in forests 

(Halffter and Matthews, 1966; Cambefort and Walter, 1991). 

Feeding Specialisation 

Whilst the majority of the Scarabaeini consequently specialised in the utilisation of specific food 

types (e.g. ruminant/non-ruminant dung), resources tend to be patchy and ephemeral. Many of 

its members therefore become opportunists in exploiting many types of resources including 

carrion. Equal numbers of Pachylomerus femoralis Kirby, for example, were caught in traps 

baited with carrion, fermenting fruit or several types of dung (Endrody-Younga, 1982; Doube, 

1991). Furthermore, the subgenus Scarabaeus (Scarabaeolus Balthasar) contains species 

utilising dung and/or carrion. A courting pair of S. (Scarabaeolus) xavieri Ferreira have been 

observed rolling a carcass of their larger cousin, P. femora/is (Forgie, pers. observ.). While dung 

is likely the preferred diet of the majority of the Scarabaeini, some degree of opportunism is 

displayed in desert dwelling species. S. (Scarabaeolus) rubripennis (Boheman) has been 

observed rolling pieces of millipede along in the same manner it moves balls of dung (Mostert 

and Scholtz, 1986). 
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In contrast, few species in the tribe have become truly specialist feeders deviating from the 

archetypal feeding strategies of the majority of the tribe and adopting "aberrant" feeding 

behaviours. Moreover, the Scarabaeini contain species that are non-rollers (see Halffter and 

Halffter, 1989) and others that don ' t roll food backwards but push, drag and carry it forwards. 

Flightless Scarabaeus (Pachysoma M'Leay) utilise dry dung pellets and/or detritus that are 

dragged into pre-prepared burrows in sandy soil and buried in moist sand for rehydration in 

feeding and nesting galleries (Holm and Scholtz, 1979; Scholtz, 1989). Whilst unique in the 

Scarabaeini, convergence in this feeding behaviour is reported in the geotrupine, Geotrupes 

(Thorectes) sericeus Jekel (Klemperer and Lumaret, 1985), by most of the 18 species of southern 

neotropical Eucraniini (Zunino, 1983; Zunino et al. ,1989), and by several Western Australian 

canthonines and onthophagines such as Coproecus Reiche, Mentophilus Castelnau, Tesserodon 

Hope, Onthophagus Latrielle (Matthews, 1974). 

Some of the most specialised members of this tribe belong to the genus Sceliages, which 

exclusively utilise millipedes (Diplopoda) for food and reproduction. Millipede necrophagy has 

long been known in the Scarabaeinae (Halffter and Matthews, 1966: 25-34). Facultative 

opportunistic use of millipede carcasses by Scarabaeus (Neateuchus (syn.)) proboscideus 

Guerin, S. satyrus (Boheman), and S. (Scarabaeolus) flavicornis (Boheman), has been observed 

(Forgie and Scholtz, unpubl.). Necrophagy of millipedes has also been recorded in several 

species in two other tribes. In the Onthophagini, several species of Onthophagus Latreille, 

including 0. bicavifrons d'Orbigny, and O. latigibber d'Orbigny, were attracted to fresh 

millipede car':asses (Krell et al., 1997, 1998: Krell, 1999). Neotropical canthonines, Canthon 

cyanellus cyanellus Le Conte, and C. morsei Howden, utilize both live injured and dead 

diplopods (Villalobos et al., 1998), whilst Deltochilum kolbei Paulian, (Halffter and Matthews, 
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1966) and D. valgum acropyge Bates, (Cano, 1998) are known to actively prey on live 

millipedes. 

Various quinone-based defensive allomones are secreted particularly in spirobolid and 

spirostreptid millipedes to repel attack by predators (Krell et aI., 1998). Two species of the 

orders Spirostreptida and lulida were found to use quinonous defensive secretions as 

pheromones (Haacker, 1974), and is likely to be a secondary function for many species of 

millipedes using these secretions. Necrophagous onthophagine scarabaeids are reported to be 

attracted to millipede secretions used as repellents (Krell et al., 1997, 1998; Krell, 1999) and are 

also likely to be attracted to the quinonous secretions used as pheromones by millipedes during 

copulation (Kon et aI., 1998). Positive chemotaxis to the defensive secretions of millipedes by 

Sceliages has not been tested prior to this study. Live, injured and freshly dead millipedes all 

attract Sceliages suggesting quinone-based secretions play a role in attracting these beetles 

(Krell, 1999; Forgie et aI., 2002). 

With the description of the new species there are now seven in the genus Sceliages, all restricted 

to southern Africa. Members of the genus are rarely encountered in the wild and are likely to be 

mistaken for Scarabaeus L. Furthermore, specimens of Sceliages are rare in collections and often 

llIj::;iueOlifitxl ur uIIiueolifieu. The biulugy uf Sceliages has, LU <.laLe, nut been studied. Zur 

Strassen's (1965) revision of the genus was based on relatively few specimens held in several 

museums in Europe and southern Africa and left many open questions including the locality of 

several of the species types. Thus, the rationale to case study this genus which is perhaps the 

least known yet one of the most specialized of the Scarabaeini is realized. 
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Phylogenetics 

Very few phylogenetic studies have centred exclusively on the Scarabaeini. Mostert and 

Scholtz (1986) considered the flightless Neotropical Eucraniini as the tribe closest to the 

ancestral stock that gave rise to the Scarabaeini. Although species included in the Eucraniini 

possess more plesiomorphic characters than those in the Scarabaeini, both tribes share a number 

of synapomorphies. Mostert and Scholtz (1986) also used members of the Gymnopleurini, 

considered the next closest tribe to the in-group, to test the relative apomorphies of characters in 

the Eucraniini that were effected by changes associated with flightlessness. The close association 

between the Eucraniini and the Scarabaeini was believed to be based on convergence of distinct 

apomorphic characters (Zunino et al., 1989). We test the hypothesis that the close relationship 

between the Eucraniini and the Scarabaeini is the result of morphological convergence and is not 

due to common ancestry. 

Barbero et al. (1998) examined interspecific relationships between 32 species of Scarabaeus 

distributed throughout the whole geographic range of the genus. Three distinct clades 

corresponding to subgenera Scarabaeus, Scarabaeolus and Ateuchetus Bedel, were identified. 

The later, with the exception of S. catenatus (Gerstaecker) and S. savignyi M'Leay, being 

restricted to the western Palaearctic. Most recently, Harrison and Philips (2003) investigated the 

evolution of flightless Scarabaeus (Pachysoma) restricted to western coastal regions of Southern 

Africa. Their phylogenetic analysis showed a clear basal dichotomy in the tribe's evolution 

between members of the scarabaeini that retained flight and those who lost it. Members of the 

subgenus Pachysoma were depicted as the most evolved of the flightless clade sharing with other 

flightless lineages a complex of convergent morphological characters associated with existence 

in arid desert environments. 
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1 

To date, only morphological character sets been in phylogenetic studies to infer 

intra-generic relationships among members of the (Mostert and 

1986; Barbero et aI., Harrison Philips, 2003). studies were based on relatively 

small amounts that may have rr",",,,,,',, inaccurate or biased 

1998; Grandcolas et ai., 2001). A recent study of Scarabaeinae (Philips et , 2004) 

was based on large morphological sets comprising more than 200 characters in an attempt to 

phylogenetic signal more Both support 

polyphyletic evolution of ball-rolling and behaviours deviating from 

However, a high ",,,,,,,rAA of homoplasy is reported in the scarabaeines, 

likely product of nonheritable information brought by environmental influences 

Molecules and Morphology 

The of Polymerase Chain Reaction Saiki et 1988) a proliferation 

use of sequenced regions within mitochondrial DNA , 1994), and more 

nuclear DNA in insect molecular Caterino, Cho and 2000). 

Within former these the Cytochrome subunit I (COl) and 

historically proven in providing sufficient phylogenetic m estimating 

relationships corresponding to interspecific of recent wi thin Coleoptera (e.g. \/pr'OPI(I('P 

and Wallis, 1995; Langor and Sperling, 1997; Kobayashi et aI., 1998; Cognato and 

2000) within (Villalba et ,2002). In contrast, highly 

conserved 31 region the large ribosomal subunit (l6S) mitochondrial DNA has more 

at deep of divergence evident among related taxa 

1992; Den et al., 1992) Similarly, 1 nuclear RNA also useful for 

basal relationships higher phylogenetic studies (Chalwatzis et at., 1996; Caterino et 
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2002). Given that different genes evolve at different rates and the same gene may have different 

rates of evolution in different lineages (Lunt et al., 1996), the quest to obtain suitable levels of 

variability has become increasingly important in attempting to resolve close, intermediate and 

deep levels of divergence where possible in any phylogenetic study. 

Thus, the value of a total evidence approach to utilising multiple data sets and analysing them 

separately (Bull et al., 1993; Miyamoto and Fitch, 1995), or combined (Kluge, 1998) and 

analysed simultaneously (Nixon and Carpenter, 1996; Baker and DeSalle, 1997) has become 

apparent. Indeed, multiple data sets are integral in many phylogenetic studies using molecular 

markers (Vogler and DeSalle, 1993; Funk et al., 1995; Vogler and Welsh, 1997; Funk, 1999; 

Mardulyn and Whitfield, 1999; Durando, et al., 2000) and morphology (Lafay et al., 1995; 

Whiting et al., 1997; Silvain and Delobel, 1998; Joy and Conn, 2001; Wieblen, 2001; Wiegmann 

et al., 2002). 

Thesis Format 

Each of the three chapters are compiled as ~ndividual papers for publication. Each chapter 

contains its own reference list and appendices. Both the general introduction and conclusion are 

tailored from the introduction and conclusions of the respective chapters to pull together the 

autonomy of chapters written as papers. The first chapter is published in Invertebrate 

Systematics (formerly Invertebrate Taxonomy) appearing in the December 2002 issue (Vol. 

16(6». It comprises a revision and phylogeny of the genus Sceliages Westwood. A new species 

is described f:om the semi-arid western parts of Southern Africa (habitus illustration appears on 

the cover of Invertebrate Systematics, 16(6» and neotypes are assigned to 2 species following a 

detailed search for missing types. Moreover, the authors provide for first time a larval 
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description of one and give details the remarkable of the 

feeding on Diplopoda. 

second is accepted and in at Systematic Entomology at of binding. It 

forms the phylogenetic analysis the tribe based a of 246 adult 

morphological and characters ......"'''''''f'Q hypotheses are and discussed 

relation to flightlessness, and A new 

classification orc~Doses maintainance only 2 Scarabaeus Pachylomerus and 3 

sub-genera Str., Scarabaeolus and Pachysoma, remammg genera, 

Kheper and are demoted to and Drepanopodus is synonymised with 

Scarabaeus. 

third chapter is to Molecular and Evolution in 2004. This 

chapter introduces a molecular component to tribal phylogeny by portions the 

COl and 16S rRNA mitochondrial genes as candidates for with and 

without morphological to resolve as relationships as the 

and not so In doing so, authors associated with 

paper the molecular and phylogenetic utility these two genes 

and assess the congruence these hold with the morphology-based hypotheses 

presented in chapter and the relatedness "''''T''''''''''"' the Scarabaeini 

similar eucraniines, molecular are to assess tribal 

CCI''''',r\nn chapter. 
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