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A ferromagnetic liquid or ferrofluid refers to a stable colloidal dispersion or suspension of single
domain magnetic particles coated by a surfactant and suspended in a carrier liquid. The ferrofluid
as referred to in this dissertation is produced in three main stages: oxide precipitation and
magnetite formation. saponification of the surfactant and peptization of the coated particles.
Magnetite (Fe;O,). a ferrimagnetic material. is produced in a precipitation reaction from
ammonium hydroxide and iron salt solutions. The magnetite is coated with oleic acid as the
surfactant and is suspended in kerosene as the carrier liquid.

From this brief description, it appears that the process for the synthesis of ferrofluids is quite
simple. However, some of the basic aspects and key manufacturing parameters are not
understood fully. In this dissertation an attempt is made to explain and offer a more detailed
understanding of some of the steps in the manutacture of ferrofluid.

Magnetite formation is vital for the production of ferrofluids. The formation and transformation
pathways of iron oxides required to form magnetite are, however, more complex. There are
many pathways that could lead to the formation of incorrect species. Possible mechanisms for
the formation of magnetite are discussed. Parameters that could affect the production of
magnetite are discussed and an investigation conducted to confirm what the preferred conditions
are for its production. The investigations appear to provide evidence that magnetite is produced
through the formation of green rust complexes. The green rust complexes are produced from
ferrihydrites and iron (II) ions. Magnetite 1s then produced by the dehydroxylation of the green
rusts. The following parameters favour the formation of magnetite: high pH. rapid addition of
ammonium hydroxide solution, a rapid stirrer speed and sufficient ammonium hydroxide to
ensure that the pH is in the correct range for the dehydroxylation of green rusts and for the
prevention of formation of non-magnetic oxides.
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After precipitation, the aqueous solution in which the precipitate is suspended contains dissolved
salts. Often, in the production of ferrofluids in the laboratory, a third phase has been produced. It
1s suspected that organic-inorganic phase interactions that may cause this third phase are
promoted in some cases by the salts in the mixture containing the precipitate. This may hinder
the final organic/aqueous phase separation. In addition, the salts in solution may increase the
viscosity of the product. It would therefore be beneficial to wash the precipitate to remove these
salts. For water-based ferrofluid production (where the carrier liquid is water), concentration of
the magnetite suspension is essential for the production of a fluid of suitable magnetic properties.
Washing is also important to ensure stability of the water-based fluids.

Two methods for the washing of the precipitate were suggested. The first makes use of what
have been termed sedimentation funnels. Precipitate is fed to four cone-shaped vessels in series.
The funnels are plastic containers around which copper coils are wound. A direct current is
passed through the coils thus generating a magnetic field in the interior of the funnel. When
placed in the funnel and exposed to the magnetic field, the magnetite is attracted towards the
region of greatest magnetic field and becomes concentrated at the base of the funnel. Wastewater
leaves the funnels via an overflow. Computational fluid dynamics (CFD) was used to investigate
the suitability of the funnel design and to determine whether the funnel configuration would
ensure that the salts would be washed from the precipitate and that the magnetite would be
retained in the funnels. From preliminary results obtained from the CFD model. it appears that
the inflowing liquid chums up material that may have settled at the base of the funnel. [t was
initially recommended that the funnel geometry be modified such that the flow into the funnel
does not disturb the particles at the base of the funnel. The second concept that was investigated,
namely. the wet high intensity magnetic separator (WHIMS) was found to function more
effectively and efforts were focused on this new concept instead.

The procedure used for the WHIMS is analogous to that of deep bed filtration with the magnetic
force assisting in particle capture. The WHIMS consists of a funnel shaped vessel containing a
magnetisable matrix or mesh and surrounded by a magnet e.g. solenoid electromagnet. Magnetic
particles (such as the magnetite) fed to the WHIMS are captured in the matrix when the current
to the coils is switched on. The liquid in which the magnetite is contained passes through the
vessel. Water can be added to the vessel to wash the magnetite. An investigation was conducted
on a WHIMS prototype that was built to determine whether or not it would be suitable for the
purposes of washing and concentrating the magnetite. Furthermore, a qualitative estimation of
the suitability of three mesh types was performed and suggestions made as to which mesh would
be most suitable for use in a process to manufacture ferrofluid on a continuous basis.

The particle size of the magnetite which is one of the most important components of the
ferrofluid is critical for fluid stability. Particles must be small enough not to settle or agglomerate
as a result of gravitational and magnetic interaction forces. In addition to ensuring that the
particle size is correct, the coating of the particles is an important factor for maintaining stability.
The coating of particles prevents agglomeration that could occur as a result of Van der Waals
interaction forces. An investigation into the optimunm’ quantity of surfactant required for steric
stabilisation showed that as the percentage oleic acid increases. the volume of magnetite
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remaining suspended above the ferrofluid appears to decrease. This was accompanied by an
increase in the saturation magnetisation of the tluids.

In order to achieve a more rapid phase transfer in the peptization stage of the tluid production,
heat is required to be input into the system. To obtain the maximum heat transfer at the
maximum allowable temperature. the surface area in the column should be at a maximum.
Mathematical optimisation using the dynamic trajectory method was applied to the formulation
of this problem to determine the optimum dimensions of such a column (diameter, height and
glass bead diameter) that would result in maximum heat transfer. Various scenarios were
investigated. It was found that in the simple case where a recommended residence time for the
mixture and a geometric diameter to height constraint are ignored, the solution converges where
the height and diameter of the column are a maximum and the bead diameter is a minimum,
When including the residence time considerations and the height to diameter ratio as constraints,
various valid solutions were obtained for this problem.

Various aspects and key parameters of ferrofluid manufacture were discussed and investigated in
this dissertation. Information was provided regarding the preferred parameters for the formation
of magnetite, precipitate washing and concentration, the volume of surfactant required for
coating magnetite particles and a suggestion of the optimum method for heat transfer in the
peptization reaction. This information clarifies some of the aspects in the production of this
intriguing substance.
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