AN INDUSTRIAL ENGINEERING PERSPECTIVE OF

BUSINESS INTELLIGENCE

PIETER JACOBUS CONRADIE

A thesis submitted in partial fulfilment of the requirements for the degree

PHILOSOPHIAE DOCTOR (INDUSTRIAL ENGINEERING)

In the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND
INFORMATION TECHNOLOGY

UNIVERSITY OF PRETORIA

October 2004
ABSTRACT

AN INDUSTRIAL ENGINEERING PERSPECTIVE OF

BUSINESS INTELLIGENCE

PIETER JACOBUS CONRADIE

Promoter: Professor PS Kruger
Co-promoter: Professor SJ Claasen
Department: Industrial and Systems Engineering
University: University of Pretoria
Degree: Philosophiae Doctor

Key words:

Summary:

In this thesis the candidate explores the apparent gaps between strategy development and strategy implementation (the strategy alignment question), and between business end-user needs and the suppliers of information technology (IT) related products and services. With business intelligence (BI) emerging as one of the fastest growing fields in IT, the candidate develops a conceptual model in which BI is placed into context with other relevant subjects such as strategy development, enterprise architecture and modelling and performance measurement.

The emphasis is on the development of processes and templates that support a closed loop control system with the following process steps:

- A business strategy is defined.
- The implication of the strategy on business processes, supporting IT resources and organizational structure is formally documented according to enterprise architecture principles.
- This documented blueprint of the organization helps to implement the selected business strategy.
- A performance measurement system is developed and supported by a well-designed data warehouse.
- On a regular basis the measurements that were defined to support the implementation of the strategy, together with information from the external environment are interpreted and this analysis leads to either a new strategy, or refinement of the implementation of the existing strategy. Both options may lead to changes in the enterprise architecture, the execution of business processes and/or the performance measurement system.

Some of the individual components of the model are supported by existing theories, for example the Zachman Framework for enterprise architecture and the Balanced Scorecard from Kaplan and Norton. The contribution of the author was to position them in the bigger picture to indicate how they can add value with regard to the establishment of business
intelligence in organizations. Instead of packaging existing ideas slightly differently under a new name, the author intentionally searched for existing theories to fulfil certain requirements in the Bigger Picture BI Context Model.

Apart from a set of templates that were adapted from various other sources and packaged into practical formats that can be used during facilitation sessions, the author has also developed and described the Fourier Model and the Pots of Money Model. The Fourier Model is a powerful conceptual model that helps a business to package solutions for market related requirements through selections of previously defined building blocks (technical components) that can be delivered through various business entities, depending on the requirements of the opportunity. The Pots of Money Model is a quantitative model embedded in a spreadsheet format to illustrate and communicate the effect of spending decisions in one area of the business on other areas.

The candidate demonstrates the Bigger Picture BI Context Model in several case studies. The thesis is accompanied by a CD ROM, which contains over 700 references to relevant literature (most of them available in full text) and links to internet web sites, as well as examples of the software templates that support some of the steps in the context model.

The following figure depicts the conceptual model in schematic format:
acknowledgements

Various people have assisted the author in many different ways during this learning experience over the last number of years. A mere thank you is probably not enough to show appreciation, but none the less the author wants to acknowledge and show gratitude for the following contributions:

- To an Almighty God who has given me the ability and persistence to travel this journey to the end. A God that does not need any business intelligence to make his decisions, but who gives us the talents to improve ours.
- To Prof. Paul Kruger and Prof. Schalk Claasen, the promoters of this thesis, for their patience, understanding and guidance during the whole process. Thank you also for the necessary pressure to conclude the exercise.
- To all colleagues at the industrial engineering department of the University of Pretoria for their support and encouragement during the years.
- To all colleagues at Fourier Approach for their willingness to experiment and explore, to contribute and learn, to give constructive criticism when necessary and for being the team that they are.
- To Pierre Lombard for his creative role in the technical design and putting the finishing touches to the CD ROM that accompanies the thesis, as well as his initial contributions to start the documentation process.
- To Lenie van der Merwe for taking professional care of the language aspects in the thesis.
- To many friends and family members who have been neglected for a number of years - thank you for support, understanding and encouragement.
- To my parents who have always supported me and who have gone out of their way to assist my family when I was not there.
- To my children, Leandri and Ansoné, who have shown maturity far beyond their age in understanding why I could not always be there for them.
- Last, but definitely not least, to my wife and friend Genie. Without your support and understanding I would not have been able to finish this project - let our lives begin again!
Table of Contents

1 Introduction

1.1 BACKGROUND ... 1

1.2 MAJOR ROLE PLAYERS ... 1

1.2.1 Industrial engineers ... 1

1.2.2 Management science ... 2

1.2.3 Information and communication technology ... 2

1.3 THE GAP BETWEEN DIFFERENT WORLDS .. 3

1.4 PROBLEM STATEMENT ... 4

1.5 RESEARCH METHODOLOGY ... 5

1.6 ORGANIZATION OF THIS THESIS .. 5

1.6.1 Document structure ... 5

1.6.2 CD-ROM ... 6

2 Literature Study

2.1 INTRODUCTION .. 7

2.2 INFORMATION ... 9

2.2.1 Defining information .. 9

2.2.2 Types of information .. 11

2.2.3 Information in organizations .. 12

2.2.3.1 Sophistication of use of information ... 12

2.2.3.2 Levels of corporate information focus .. 12

2.3 BUSINESS STRATEGY AND SCENARIO PLANNING .. 14

2.3.1 Life cycles .. 15

2.3.2 Innovation Matrix .. 18

2.3.3 Innovation in strategic planning .. 20

2.3.4 Strategy – an ongoing conversation .. 22

2.3.4.1 Creating the right context ... 22

2.3.4.2 Important business concepts ... 23

2.3.4.3 A strategy creating process .. 28

2.3.5 Scenario planning .. 34

2.4 ENTERPRISE INTEGRATION AND ARCHITECTURE .. 37

2.4.1 Overview .. 37

2.4.2 PERA ... 38

2.4.3 GERAM ... 41

2.4.4 The Zachman Framework .. 42

2.4.5 CuTS (culture, technology and skills) .. 45

2.4.6 Other architectures ... 47

2.4.6.1 GRAI-GIM ... 47

2.4.6.2 CIMOSA ... 50

2.4.6.3 ARIS ... 51

2.4.7 Summary .. 52

2.5 DATA WAREHOUSING .. 53

2.5.1 The Corporate Information Factory (CIF) - Inmon .. 53

2.5.1.1 Information ecosystem .. 53

2.5.1.2 Visualizing the CIF ... 54

2.5.1.3 Components of the CIF ... 55
2.5.1.4 Migrating to the CIF ...63
2.5.1.5 Enhanced CIF picture ...65
2.5.2 The data warehouse - Kimball ..67
2.5.2.1 Components of a data warehouse ..67
2.5.2.2 Implementing the components of the data warehouse71
2.5.2.3 Business Dimensional Lifecycle ...72
2.5.2.4 Handling changes to dimensions ...73
2.5.2.5 Fact table types ..74
2.5.3 Comparing Inmon and Kimball ..75
2.6 KNOWLEDGE MANAGEMENT ..77
2.7 PERFORMANCE MEASUREMENT ..78
2.7.1 Why do we need to measure performance?78
2.7.2 Performance measurement or management?78
2.7.3 Link between strategic management and performance management.78
2.7.4 Cross-functional management ..79
2.7.4.1 The organization level (I) ..80
2.7.4.2 The process level (II) ..82
2.7.4.3 The job/performer Level (III) ..86
2.7.4.4 A holistic view of performance ...86
2.7.5 The Balanced Scorecard (BSC) ..88
2.7.5.1 Financial perspective ..89
2.7.5.2 Customer perspective ...90
2.7.5.3 The internal business process perspective91
2.7.5.4 The learning and growth perspective92
2.7.5.5 Linking BSC measures to the business strategy92
2.7.6 Key performance indicators (KPIs) ...94
2.7.6.1 24 Ways by Richard Connelly et al.94
2.7.6.2 PIs and MIs by Absolute Information96
2.7.7 Summary ...98
2.8 MERGING BUSINESS INTELLIGENCE (BI) WITH TECHNOLOGY99
2.8.1 Business intelligence ...99
2.8.2 The decision-making process ..99
2.8.3 Business intelligence tools ...102
2.8.3.1 Views from Gartner Research ..102
2.8.3.2 Views from the OLAP Report ..106
2.8.3.3 Views from Ventana Research ...106
2.8.4 The role of chief information officer107
2.8.5 Summary ...110
2.9 CONCLUSION OF LITERATURE STUDY ...111

3 BI IN CONTEXT – A CONCEPTUAL MODEL ...113
3.1 INTRODUCTION ...113
3.2 OVERVIEW OF THE BIGGER PICTURE BI CONTEXT MODEL113
3.2.1 Strategy development ..114
3.2.2 Enterprise architecture ..117
3.2.2.1 Selection of methodology ...117
3.2.2.2 Selection of a case tool ..118
3.2.2.3 Process simulation modelling ..120
3.2.3 Strategy implementation and execution121
3.2.3.1 The move from planning to doing121
3.2.3.2 Business processes management (BPM)121
3.2.3.3 Workflow impact on business processes122
3.2.4 Performance measurement from a data warehouse 125
3.2.4.1 Rummler and Brache framework .. 125
3.2.4.2 Balanced Scorecard approach .. 126
3.2.4.3 Data warehousing approach .. 126
3.2.4.4 Business intelligence tools .. 127
3.2.5 Interpretation of business intelligence 129
3.2.6 Updating of the enterprise architecture 130
3.3 SUPPORTING TEMPLATES .. 131
3.4 CONCLUSION OF BI IN CONTEXT .. 131

4 CASE STUDY – CONCEPTUAL MODEL DEMONSTRATED 134
4.1 INTRODUCTION ... 134
4.2 BACKGROUND OF THE CONSULTING FIRM 134
4.3 STRATEGY DEVELOPMENT ... 137
4.4 ENTERPRISE ARCHITECTURE ... 141
4.5 IMPLEMENT AND EXECUTE STRATEGY 148
4.5.1 Using the Balanced Scorecard 148
4.5.2 Using the Fourier Model 151
4.5.3 Using the Pots of Money Model 152
4.6 PERFORMANCE MEASUREMENT .. 155
4.7 INTERPRET FEEDBACK ... 160
4.8 DISCUSSION OF OTHER CASE STUDIES 161
4.8.1 Data warehousing in a facility management environment 161
4.8.2 Applying BI in a typical academic environment 166
4.9 CONCLUSION ... 167

5 THESIS SUMMARY 168
5.1 CONTRIBUTION TO THE BODY OF KNOWLEDGE 168
5.2 RETROSPECTION ON THE PROCESS ... 169
5.3 MATERIAL FOR FURTHER INVESTIGATION 170

6 BIBLIOGRAPHY 171
list of figures

Figure 1. Translation gap between IT and business ... 3
Figure 2. Strategic alignment ... 3
Figure 3. Attributes of information. (Adapted from Swanborough 2002) 11
Figure 4. The three financial management "absolutes" .. 11
Figure 5. The four informational management "absolutes" ... 11
Figure 6. Levels of corporate information focus .. 13
Figure 7. Economic cycles (Kondratieff, as referred to by Grulke 2001) 15
Figure 8. Schumpeter's waves (as referred to by Grulke 2001) .. 16
Figure 9. Business cycle (Grulke 2001).. 17
Figure 10. Innovation Matrix (Grulke 2001) ... 18
Figure 11. Learning from the future (As adapted from Grulke 2001) 21
Figure 12. Hustling with a purpose (Manning 2001) ... 23
Figure 13. Unaligned stakeholders (Manning 2001) ... 25
Figure 14. Aligned stakeholders (Manning 2001) ... 25
Figure 15. Effect of human spirit on strategy (Manning 2001) ... 26
Figure 16. Four steps to implement change (Manning 2001) ... 27
Figure 17. Does the business logic add up? (Manning 2001) .. 29
Figure 18. Two frameworks to explore your business environment ... 31
Figure 19. Five building blocks of a strategic plan (Manning 2001) ... 32
Figure 20. The 7 Ps Model (Manning 2001) ... 33
Figure 21. The Strategy Wheel to identify top priority issues .. 34
Figure 22. Foxy Matrix (Ilbury and Sunter 2001) .. 35
Figure 23. Purdue Enterprise Reference Architecture ... 39
Figure 24. GERAM framework components (Adapted from Williams and Li 1998) 42
Figure 25. Zachman Framework for enterprise architecture (Zachman 1987) 43
Figure 26. Zachman Framework for enterprise architecture (Zachman and Sowa 1992) 45
Figure 27. The CuTS model (Absolute Information 2001) .. 46
Figure 28. Defining information needs (Absolute Information 2001) 47
Figure 29. GRAI Global Model (http://www.abh-bremen.de/projects/prosme/Doku/oqm/GRAI.htm) ... 48
Figure 30. GRAI-GIM Enterprise Life Cycle (Adapted from Koorts 2000) 49
Figure 31. The Corporate Information Factory (Inmon et al. 2001) 55
Figure 32. Applications feed data into the I and T layer (Inmon et al. 2001) 56
Figure 33. The feeds into and out of the I and T layer (Inmon et al. 2001) 57
Figure 34. A data warehouse in the context of the CIF (Inmon et al. 2001) 58
Figure 35. The data warehouse feeds to the data marts (Inmon et al. 2001) 60
Figure 36. The essential components of the web and the CIF (Inmon et al. 2001) 62
Figure 37. First three steps to building the CIF (Inmon et al. 2001) .. 64
Figure 38. The next steps to building the CIF (Inmon et al. 2001) .. 65
Figure 39. Enhanced CIF picture (Inmon and Imhoff 2001) .. 66
Figure 40. The basic elements of the data warehouse (Kimball et al. 1998) 68
Figure 41. Star schema (Kimball et al. 1998) ... 69
Figure 42. The data mart matrix showing the Data Warehouse Bus Architecture (Adapted from Kimball et al. 1998) ... 71
Figure 43. Business Dimensional Lifecycle diagram (Kimball et al. 1998) 72
Figure 44. Traditional (vertical) view of an organization .. 79
Figure 45. The "silos" phenomenon (Rummier and Brache 1995) ... 80
Figure 46. Systems (horizontal) view of an organization ... 81
Figure 47. An organization as an adaptive system ... 82
Figure 48. The organization level of performance ... 83
Figure 49. The process level of performance ... 83
Figure 50. Computec order filling: "As-is" process map (Rummier and Brache 1995) 85
Figure 51. The job/performer level of performance ... 86
Figure 52. The customer perspective .. 91
Figure 53. The generic value model (Kaplan and Norton 1996) .. 92
Figure 54. Cause-and-effect example (Kaplan and Norton 1996) 93
Figure 55. Typical current situation - old focus .. 100
Figure 56. Traditional approach - old focus ... 101
Figure 57. Re-engineering approach - new focus ... 101
Figure 58. Hype cycle for BI (Buijendijk et al. 2003) ... 103
Figure 59. EBIS Magic Quadrant August 2003 (Dresner et al. 2003) 104
Figure 60. EBIS Magic Quadrant April 2004 (Dresner et al. 2004) 104
Figure 61. BI Platform Magic Quadrant August 2003 (Dresner et al. 2003) 105
Figure 62. BI Platform Magic Quadrant April 2004 (Dresner et al. 2004) 105
Figure 63. Evolution of information management .. 108
Figure 64. Traditional IT manager roles .. 108
Figure 65. The traditional MIS manager .. 109
Figure 66. The CIO structure (Absolute Information 2001) 109
Figure 67. An overview of the Bigger Picture BI Context Model 114
Figure 68. The Fourier Model .. 116
Figure 69. Logical ERD of the Fourier Model .. 117
Figure 70. Zachman Framework embedded in Casewise .. 119
Figure 71. Various formats to capture and associate entities in Casewise 122
Figure 72. A typical generic process ... 122
Figure 73. Typical paperwork during activities ... 123
Figure 74. Typical "hand-offs" between human resources 123
Figure 75. Estimated time for the total process ... 123
Figure 76. Improved system .. 124
Figure 77. The Microsoft BI tool offering (Microsoft partner information 2004) 128
Figure 78. An overview of the Bigger Picture BI Context Model 131
Figure 79. Focus areas to bridge the gap ... 136
Figure 80. An example of the Foxy Matrix applied to Fourier Approach 138
Figure 81. The 7Ps model applied to Fourier Approach .. 139
Figure 82. Innovative Matrix applied to Fourier Approach 140
Figure 83. Example of a Strategy Wheel for Fourier Approach 140
Figure 84. Definition of strategic goals ... 142
Figure 85. Fourier external organizational context ... 143
Figure 86. Breakdown of Fourier related enterprise group 143
Figure 87. An object can be part of various hierarchies .. 144
Figure 88. Application software associated with finance management 144
Figure 89. Value chain of Fourier Approach .. 145
Figure 90. Hierarchy of financial processes .. 146
Figure 91. Example of a business dynamic model .. 146
Figure 92. Example of a system dynamic model .. 147
Figure 93. Simplified version of the value chains .. 149
Figure 94. Strategy map for Fourier Approach ... 150
Figure 95. The Fourier Model .. 151
Figure 96. Overview of the Pots of Money Model .. 153
Figure 97. Detailed example of Pots of Money Model ... 154
Figure 98. Context of the project management data marts 155
Figure 99. Extract from Bus Matrix for Fourier data warehouse 156
Figure 100. Star scheme of the actual project transaction mart 157
Figure 101. An example of a typical Sagent ETL plan .. 159
Figure 102. Typical overall robot screen ... 162
Figure 103. Detail figures for a specific KPI .. 163
Figure 104. Typical trend report for a specific KPI .. 163
Figure 105. KPI definition and management application .. 164
Figure 106. English definition versus SQL statement ... 164
Figure 107. The Bigger Picture BI Context Model .. 168
list of tables

Table 1. Types of Information (Absolute Information 2001) .. 12
Table 2. The sophistication of use of information ... 12
Table 3. Creative destruction of job opportunities (Grulke 2001) .. 16
Table 4. Enterprise entity life cycle (Adapted from Williams and Li 1998) 40
Table 5. CIMOSA - Dimension of genericity .. 51
Table 6. CIMOSA - Dimension of model ... 51
Table 7. CIMOSA - Dimension of view .. 51
Table 8. Fact table type comparison (Adapted from Kimball and Ross 2002) 74
Table 9. The Nine Performance Variables with questions (Rummler and Brache 1995) 87
Table 10. Selected functional goals based on Computec order-filling process goals (Rummler and Brache 1995) .. 88
Table 11. Measuring strategic financial themes (Kaplan and Norton 1996) 90
Table 12. Growth in the OLAP market worldwide (www.olapreport.com 2004) 106
Table 13. Definition of dimensions ... 156
Table 14. Fact definitions for actual project transaction data mart ... 157
Table 15. Detailed specification of the client dimension ... 158
Table 16. Expectations of KPIs from various subject areas .. 165
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>Absolute information management</td>
</tr>
<tr>
<td>B2B</td>
<td>Business to business</td>
</tr>
<tr>
<td>BAM</td>
<td>Business activity monitoring</td>
</tr>
<tr>
<td>BP</td>
<td>Business process</td>
</tr>
<tr>
<td>BPM</td>
<td>Business performance management</td>
</tr>
<tr>
<td>BPM</td>
<td>Business performance measurement</td>
</tr>
<tr>
<td>BPM</td>
<td>Business process management</td>
</tr>
<tr>
<td>BI</td>
<td>Business intelligence</td>
</tr>
<tr>
<td>BSC</td>
<td>Balanced scorecard</td>
</tr>
<tr>
<td>CD</td>
<td>Compact disk</td>
</tr>
<tr>
<td>CD ROM</td>
<td>Compact disk read only memory</td>
</tr>
<tr>
<td>CIF</td>
<td>Corporate information factory</td>
</tr>
<tr>
<td>CIM</td>
<td>Computer integrated manufacturing</td>
</tr>
<tr>
<td>CORS</td>
<td>Cognitive, operit, revit and synit</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer relationship management</td>
</tr>
<tr>
<td>CSF</td>
<td>Critical success factor</td>
</tr>
<tr>
<td>CuTS</td>
<td>Culture, technology and skills</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision support system</td>
</tr>
<tr>
<td>DW</td>
<td>Data warehouse</td>
</tr>
<tr>
<td>EA</td>
<td>Enterprise architecture</td>
</tr>
<tr>
<td>EAI</td>
<td>Enterprise application integration</td>
</tr>
<tr>
<td>EBIS</td>
<td>Enterprise business intelligence suite</td>
</tr>
<tr>
<td>EDW</td>
<td>Enterprise data warehouse</td>
</tr>
<tr>
<td>EII</td>
<td>Enterprise information integration</td>
</tr>
<tr>
<td>ER</td>
<td>Entity relationship</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise resource planning</td>
</tr>
<tr>
<td>ETL</td>
<td>Extraction, transformation, loading</td>
</tr>
<tr>
<td>FK</td>
<td>Foreign key</td>
</tr>
<tr>
<td>GERAM</td>
<td>Generalized enterprise reference architecture and methodology</td>
</tr>
<tr>
<td>IE</td>
<td>Information ecosystem</td>
</tr>
<tr>
<td>IS</td>
<td>Information system</td>
</tr>
<tr>
<td>I and T Layer</td>
<td>Integration and transformation layer</td>
</tr>
<tr>
<td>IT</td>
<td>Information technology</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and communication technology</td>
</tr>
<tr>
<td>JIT</td>
<td>Just in time</td>
</tr>
<tr>
<td>KM</td>
<td>Knowledge management</td>
</tr>
<tr>
<td>KPI</td>
<td>Key performance indicator</td>
</tr>
<tr>
<td>MBO</td>
<td>Management by objectives</td>
</tr>
<tr>
<td>MIS</td>
<td>Management information system</td>
</tr>
<tr>
<td>MOLAP</td>
<td>Multidimensional OLAP</td>
</tr>
<tr>
<td>OLAP</td>
<td>Online analytical processing</td>
</tr>
<tr>
<td>OLTP</td>
<td>Online transactional processing</td>
</tr>
<tr>
<td>ODS</td>
<td>Operational data store</td>
</tr>
<tr>
<td>PERA</td>
<td>Purdue enterprise reference architecture</td>
</tr>
<tr>
<td>PK</td>
<td>Primary key</td>
</tr>
<tr>
<td>ROLAP</td>
<td>Relational OLAP</td>
</tr>
<tr>
<td>RSA</td>
<td>Republic of South Africa</td>
</tr>
<tr>
<td>SCM</td>
<td>Supply chain management</td>
</tr>
<tr>
<td>SIG</td>
<td>Swanborough information grid</td>
</tr>
<tr>
<td>SWOT</td>
<td>Strengths, weaknesses, opportunities and threats</td>
</tr>
<tr>
<td>TQM</td>
<td>Total quality management</td>
</tr>
<tr>
<td>UI</td>
<td>User interface</td>
</tr>
</tbody>
</table>