Contaminant mobilisation by fluid-rock interaction and related transport mechanisms in platinum tailings

Submitted in full requirement for the degree

M.Sc. Engineering- and Environmental Geology

To:

Department of Geology
School of Physical Sciences
Faculty of Natural and Agricultural Sciences
University of Pretoria

By:

Altus Huisamen

Student Number 27188176

2013

© University of Pretoria
Declaration and Acknowledgements:

I, Altus Huisamen, student number 27188176, submit this dissertation to the Department of Geology, University of Pretoria, in accordance with the full requirements and prerequisites for the degree Masters in Sciences (M.Sc. Engineering and Environmental Geology). I declare that everything contained in this dissertation is my own work unless noted otherwise. All external sources have been referenced diligently and all credit for previously published work is acknowledged to the respective authors.

I furthermore acknowledge the following parties:

- My Heavenly Father for guidance and wisdom.
- Mr. Matthys A. Dippenaar and the University of Pretoria for mentorship and valuable input.
- Prof J. Louis van Rooy and the University of Pretoria for mentorship and valuable input.
- Mr. A. Huisamen (snr.) for assistance in the construction of the falling head permeameter.
- Miss. Nelda Breedt for support and motivation.
- Mr. Eduan Hattingh for assistance during the pumping tests.
- Dr. van der Ahee Coetsee and Geo Pollution Technologies for opportunities, mentorship, financial assistance, time and resources.
- Dr. Gideon J. du Toit and Geo Pollution Technologies for opportunities, mentorship, financial assistance, time and resources.
- The entire Geo Pollution Technologies staff for motivation, support and advice.
- Mr. Pieter Badenhorst and the staff of Soil and Groundwater Remediation Services for the direct push probe drilling on the tailings.
- Mr. P.S. Rossouw and the University of Pretoria for mentorship and valuable input.
- Dr. S. Adams and the Water Research Commission for funding.
- Mr. Terry Harck and SolutionHPlus for mentorship and valuable input.
- The relevant personnel at the undisclosed mine site where field work was conducted, for their hospitality and accommodating the research project.
- The Huisamen Family for support and motivation.

Signed:

A. Huisamen
(electronic signature)

27/07/2012
ABSTRACT

Contaminant release and transport in platinum tailings are poorly studied in literature. This study serves to characterise these processes. The tailings facility is located in Steelpoort, Mpumalanga, South Africa on Critical Zone rocks of the Rustenburg Layered Suite in The Bushveld Igneous Complex. Tailings material samples were collected by hand auger- and direct push probe drilling at specific locations to represent the different materials present in the tailings facility. Water samples were collected from monitoring boreholes as well as the Steelpoort River. The samples were analysed using XRD, XRF, ABA, NAG, Reflected Light Microscopy, Acid Leaching Tests and ICP scans. Using the collected data, a geochemical model was constructed for the interpretation of mineral phase dissolution and to trace the mineral phases releasing contaminants. Analysis-, test- and modelling results showed that alteration mineral phases formed within ten years in the tailings material and that the existing alteration phases viz. talc and chlorite, as well as sulphides, are the major contributors of contaminants. Elevated pH values as well as major cation and anion concentrations were found in the fluid discharging from the tailings as well as the in groundwater, with little to no heavy metals, which were traced directly to the chromite phase. This suggests that platinum tailings do not contribute to heavy metal contamination or acid rock drainage but may increase aquifer salinity and alkalinity. The flow through the tailings, underlying vadose zone and fractured rock aquifer was characterised using permeameter- and pumping tests. From the data collected, an unsaturated flow model was developed to characterise the flow through the tailings. From the model, discharge from the tailings was calculated to take place at 0.7m per decade into the underlying vadose zone with fracture flow in the aquifer ranging from 0.46-0.026m/d, as calculated from pumping test results. Contaminant migration into the Steelpoort River is possibly inhibited by the Dwarsriver Fault, based on the chemical data and hydraulic conductivities calculated. Therefore, groundwater is considered to be the major receptor in the system and groundwater users may be negatively impacted by increasing groundwater salinity and major ion concentrations.
LIST OF ABBREVIATIONS

ABA = Acid Base Accounting
AH = Auger hole
Al = Aluminium
As = Arsenic
BDL = Below detection limit
BH = Borehole
BIC = Bushveld Igneous Complex
Ca = Calcium
Cl = Chloride
Co = Cobalt
Cr = Chromium
Cu = Copper
EC = Electrical Conductivity
F = Fluoride
Fe = Iron
GRDM = Groundwater Resource Directed Measures
GW = Groundwater
GWB = Geochemist’s Workbench
HCO₃ = Bicarbonate
ICP-OES = Inductively Coupled Plasma Optical Emission Spectroscopy
ICP-MS = Inductively coupled plasma mass spectroscopy
K = Potassium
L = liter
m = meters
mamsl = meters above mean sea level
mbgl = meters below ground level
Mg = Magnesium
mg/l = milligrams per liter
Mn = Manganese
n.a. = not analysed
Na = Sodium
Ni = Nickel
NO₃ = Nitrate
Pb = Lead
ppm = parts per million
Si = Silica
SO₄ = Sulphate
SWL = Static Water Level
TDS = Total Dissolved Solids
Ti = Titanium
TLC = Temperature, Level, Conductivity Meter
TSF = Tailings Storage Facility
V = Vanadium
XRF = X- Ray Fluorescence
XRD = X- Ray Diffraction
Zn = Zinc
TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 Project Background ... 1
 1.2 Objectives .. 1

2. LITERATURE REVIEW ... 2
 2.1 Redox Conditions .. 2
 2.2 Mineral Stability and Metal Liberation ... 3
 2.2.1 Ferrous- and Ferric Hydroxides ... 6
 2.2.2 Ferrous- and Ferric Oxides and- Sulphides ... 7
 2.2.3 Ferrous- and Ferric Oxides and – Silicates ... 8
 2.2.4 The Cu-Fe-S-O-H system ... 9
 2.2.5 Sulphur Speciation .. 11
 2.2.6 Chromite Dissolution and Chromium Speciation .. 12
 2.2.7 Silicate Weathering ... 13
 2.3 Transport mechanisms .. 14
 2.3.1 Molecular Diffusion ... 14
 2.3.2 Mechanical Dispersion .. 15
 2.3.3 Hydrodynamic Dispersion ... 16
 2.3.4 Advection .. 17
 2.4 Analysis methods .. 17
 2.4.1 X-Ray Fluorescence Spectroscopy and X-Ray Diffraction ... 17
 2.4.2 Reflected Light Microscopy ... 18
 2.4.3 Acid-Base Accounting and Net Acid Generation ... 18
 2.4.4 Inductively Coupled Plasma Analyses ... 19
 2.4.5 Permeameter Tests ... 19
 2.4.6 Pumping Tests ... 19

3. STUDY AREA .. 21
 3.1 Tailings Storage Facility ... 23
 3.2 Climate .. 23
 3.3 Regional Hydrology ... 25
 3.4 Regional Geology .. 26
 3.4.1 Lower Critical Zone ... 26
 3.4.2 Middle Critical Zone ... 26
 3.4.3 Upper Critical Zone ... 26
 3.4.4 Geological Structures .. 26
3.5 Conceptual Model

4. DATA ACQUISITION

4.1 Sampling Methods

4.1.1 Hand Auger Drilling

4.1.2 Direct Push Probe Drilling

4.2 Sampling Locations

4.3 Sampling Depth and Frequency

4.4 Sample Containment

4.5 Analyses Performed

4.5.1 Quantitative and Qualitative X-Ray Diffraction

4.5.2 X-Ray Fluorescence Spectroscopy

4.5.3 Reflected Light Microscopy

4.5.4 Acid-Base Accounting and Net Acid Generation Potential

4.5.5 Acid Leach Tests and Inductively Coupled Plasma- Mass Spectroscopy

4.6 Hydraulic Testing

4.6.1 Permeameter Tests

4.6.2 Pumping Tests – AQTESOLV

4.7 Geochemical and Flow Modelling

4.7.1 Geochemical Modelling – The Geochemist’s Workbench 9.0 Standard

4.7.2 Unsaturated Flow Modelling – HYDRUS

5. RESULTS AND DISCUSSION

5.1 Analytical Results

5.1.1 X-Ray Diffraction

5.1.2 X-Ray Fluorescence Spectroscopy

5.1.3 XRF Element Correlations and Mineral Tracing

5.1.4 Reflected Light Microscopy

5.1.5 Acid-Base Accounting and Net Acid Generation Potential

5.1.6 Acid Leach Tests

5.1.7 Inductively Coupled Plasma Scans

5.2 Hydraulic Testing

5.2.1 Permeameter Tests

5.2.2 Pumping Tests – AQTESOLV

5.3 Geochemical and Unsaturated Flow Modelling

5.3.1 Geochemical Modelling – The Geochemist’s Workbench

5.3.2 Unsaturated Flow Modelling – HYDRUS

6. CONCLUSIONS
7. REFERENCES .. 84
8. APPENDICES .. 88

FIGURES

Figure 1: Redox conditions in different waters under 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965). .. 2
Figure 2: Logarithmic mineral dissolution rates at different pH levels (Yadav and Chakrapani, 2006). 5
Figure 3: Concentrations of ions in solution under different pH conditions (Geelhoed, 2007) 5
Figure 4: Eh-PH stability diagram of the Fe-O-H system 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 6
Figure 5: Eh-PH stability diagram of the Fe-S-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 7
Figure 6: Eh-PH stability diagram of solid phases in the Fe-S-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 8
Figure 7: Eh-PH stability diagram of the Fe-Si-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 9
Figure 8: Eh-PH stability diagram of the Fe-Cu-S-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 10
Figure 9: Eh-PH stability diagram for the S-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Garrels and Christ, 1965) .. 11
Figure 10: Eh-PH stability diagram of the Cr-O-H system at 1 atmosphere total pressure and temperature of 25 °C (Indiana.edu, 2011) .. 12
Figure 11: Scatter plot indicating Cr⁶⁺ concentration against pH value (Geelhoed, 2002) 13
Figure 12: Schematic representation of mechanical contaminant dispersion through a matrix (Keller, 2004) ... 16
Figure 13: Conceptual model indicating contaminant transport by advection (Strassberg et al. 2011). ... 17
Figure 14: Schematic representation of a cone of depression and subsequent drawdown caused by a pumped well ... 20
Figure 15: Study area located on critical zone lithologies of the eastern limb of the Bushveld Igneous Complex ... 20
Figure 16: Annual rainfall in mm from 2001 to 2011, in the Steelpoort catchment, as measured by the SAWS weather station near Lydenburg ... 24
Figure 17:Average monthly rainfall in mm from 2001 to 2011 in the Steelpoort catchment, as measured by the SAWS weather station near Lydenburg ... 24
Figure 18: Simulated flooding indicating surface drainage to the northeast ... 25
Figure 19: Conceptual Model of the Platinum Tailings Storage Facility ... 28
Figure 20: (a) Standard T- piece, (b) Auger extension rod, (c) Auger bucket head (Johnson Soil, 2011) ... 29
Figure 21: Direct push probe drilling on the tailings storage facility on 20 February 2012 30
Figure 22: Aerial photograph of the tailings storage facility indicating sampling positions 31
Figure 23: Schematic representation of the falling head permeameter used to obtain transport- and hydraulic properties of the tailings material ... 35
Figure 24: Mineral phase abundances with depth in TAH01 .. 39
Figure 25: Mineral phase abundances with depth in TAH02 .. 40
Figure 26: Mineral phase abundances with depth in TAH03 .. 41
Figure 27: Mineral phase abundances with depth in TPH .. 42
Figure 33: Correlation of major and trace element abundances obtained from XRF analysis.

Figure 34: Reflected light microscopy images for sample TPH1.2T at 50x magnification.

Figure 35: Reflected light microscopy images for sample TPH2.4B at 50x magnification (left) and 10x magnification (right).

Figure 36: Correlation of modelled and analysed concentrations of chemical constituents in contaminated water.

Figure 37: Model-calculated precipitating major mineral phases.

Figure 38: Leachable cations in samples collected from TAH01.

Figure 39: Leachable anions in samples collected from TAH01.

Figure 40: Leachable cations in samples collected from TAH02.

Figure 41: Leachable anions in samples collected from TAH02.

Figure 42: Leachable cations in samples collected from TAH03.

Figure 43: Leachable anions in samples collected from TAH03.

Figure 44: ICP-OES analysis results for collected water samples.

Figure 45: Water sampling positions around the tailings storage facility.

Figure 46: Tiff diagrams of major cations and anions in groundwater and surface water samples.

Figure 47: Piper diagram of groundwater sample chemical evolution.

Figure 48: Pumping test data for TRPGWM06S fitted with Gringarten-Witherspoon on logarithmic axes.

Figure 49: Derivative plot of TRPGWM06S.

Figure 50: Pumping test data for TRPGWM09S fitted with Gringarten-Witherspoon.

Figure 51: Derivative plot of TRPGWM09S.

Figure 52: Piper diagram comparing groundwater, toedrain, river and tailings pore fluid compositions.

Figure 53: Modelled mineral phase breakdown.

Figure 54: Precipitated salts and minerals on the tailings bank.

Figure 55: Model-calculated precipitating major mineral phases.

Figure 56: Model-calculated precipitated minor mineral phases.

Figure 57: Modelled contaminant release from the tailings material as mg/L of constituents in contaminated water.

Figure 58: Correlation of modelled and analysed concentrations of chemical constituents in TOEDRAIN sample.

Figure 59: Correlation of modelled and analysed concentrations of chemical constituents in TOEDRAIN sample.

Figure 60: Cumulative rainfall infiltration per decade for the tailings material.

Figure 61: Tailings water content at different depths and times.

Figure 62: Water content at profile observation nodes at different simulation times.

Figure 63: Cumulative fluid flux from the foot of the tailings as a conservative case.

Figure 64: Unsaturated hydraulic conductivities at different water contents in the tailings material (M1) and the underlying, natural gravelly sand vadose zone (M2).
TABLES

Table 1: Fluid-mineral reaction constants of various minerals in mafic tailings material (Appelo and Postma, 2012) .. 4

Table 2: Screening method for classifying the acid generation potential of rock material (Price, 1997) .. 19

Table 3: GRDM Data .. 25

Table 4: Samples collected from the Tailings Storage Facility by Hand Auger 32

Table 5: Samples collected from the Tailings Storage Facility by Direct Push probe Drilling 33

Table 6: Mineral phases present in the tailings material on site .. 38

Table 7: Mineral phases present in the vadose zone on site .. 38

Table 8: Major element oxides as detected by XRF .. 43

Table 9: Trace elements as detected by XRF ... 43

Table 10: Samples selected from different depths in the TPH direct push probe hole for reflected light microscopy ... 52

Table 11: Acid-Base Accounting Laboratory Results .. 55

Table 12: Elements analysed for during acid leach tests conducted in August 2011 56

Table 13: Summarised falling head permeameter test results ... 64

Table 14: Modelled and analysed concentrations of chemical constituents in TOEDRAIN sample 75

Table 15: Modelled and analysed concentrations of chemical constituents in TRPGWM6S sample ... 76

Table 16: Measured gravimetric water contents from the TPH sampling locality 77