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 SUMMARY 

EUKARYOTIC RNA POLYMERASE II START SITE DETECTION USING 
ARTIFICIAL NEURAL NETWORKS 

 

Author: Gerbert Myburgh 
Study leader: Prof. E Barnard 

 
Master of Engineering (Computer Engineering) 

 
Faculty of Engineering, the Built Environment and Information Technology 

 

An automated detection process for Eukaryotic ribonucleic acid (RNA) Polymerase II 

Promoter is presented in this dissertation. We employ an artificial neural network (ANN) in 

conjunction with features that were selected using an information-theoretic approach.  

 

Firstly an introduction is given where the problem is described briefly. Some background is 

given about the biological and genetic principles involved in DNA, RNA and Promoter 

detection.  

 

The automation process is described with each step given in detail. This includes the data 

acquisition process, how the different samples were split into different sets and statistical 

information gathering, feature generation, and the full ANN process. The ANN section of the 

project is split up in a generation process, a training section as well as a testing section. 

 

Lastly the final detection program was tested and compared to other promoter detection 

systems. An improvement of at least 10% in positive prediction value (PPV) in comparison 

with current state-of-the-art solutions was obtained. 

 

Note: A Companion CD should accompany this report that contains all the program code and 

some of the source data that was used in this project. All the references to �Companion CD�, 

reference number [18] are references to these programs. 

 

Keywords: Polymerase II, Automated promoter detection, Artificial Neural Network 

application. 
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 OPSOMMING 

EUKARYOTIC RNA POLYMERASE II BEGIN POSISIE DETEKSIE DEUR 
KUNSMATIGE NEURALE NETWERKE 

 

Deur: Gerbert Myburgh 
Studie leier: Prof. E Barnard  

 

Meester van Ingenieurswese (Rekenaar Ingenieurswese) 
 

Fakulteit Ingenieurswese, Bou Omgewing en Inligtings Tegnologie 

 

In díé verslag word �n outomatiese opsporingsproses vir Eukaryotiese �ribonucleic acid� 

(RNA) Polymerase II Promoter gegee. Die projek gebruik �n kunsmatige neurale netwerk 

(KNN) (ANN in Engels) tesame met kenmerke, wat gekies is deur van inligtingsteoretiese 

beginsels om die oplossing te benader. In die inleiding word die probleem beskryf. Volgende 

word die biologiese en genetiese beginsels, wat betrekking het op die projek (DNA, RNA en 

Promoters), kortliks bespreek. Die outomatisasie proses word beskryf met elke stap in 

besonderhede verduidelik. Dit sluit in �n beskrywing in van hoe die verskillende  

klasvoorbeeldmonsters verkry is en hoe die verskillende stelle opgestel is. Die metode 

waarvolgens statistiese inligting, as ook hoe die verskillende opsporingskenmerke vekry is 

word verduidelik. Dan volg die verduideliking van die KNN werking. Die afdeling is verder 

opgedeel in afdelings oor KNN bou, leer proses en toetsing. 

 

In die laaste gedeelte word die finale promoter identifikasie program getoets en vergelyk met 

ander promoter identifikasie stelsels. Verbetering ten opsigte van die huidige standaardstelsels 

van 10% in positiewe identifikasie waarde (PIW) (PPV in Engels) is verkry. 

Nota: Saam met die verslag behoort daar �n CD te wees wat die program kode sowel as van 

die oorspronklike promoter data bevat. Alle verwysings na die �Companion CD�, verwysing 

[18] is na programme op die CD. 

 

Sleutelwoorde: Polymerase II, Outomatiese promoter identifikasie, Kunsmatige Neurale 

Netwerke  

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMyybbuurrgghh,,  GG    ((22000055))  



_________________________________________________________________________ 

_______________________________________________________________________________ 
Electrical, Electronic and Computer Engineering      iii 
 

 ABBREVIATIONS 

DFP � Dragon Promoter Finder 

DNA � Deoxyribonucleic Acid 

E2I � Exon-to-Intron 

EPD � Eukaryotic Promoter Database 

FD � False Detections 

FR � False Rejections 

GpC �  Sequence segment that contains primarily G and C bases 

I2E � Intron-to-Exon 

NCBI � National Center for Biotechnology Information  

PPV � Positive Predictive Value 

RNA � Ribonucleic Acid 

SSE � Sum of Squared Error 

TD � True Detections 

TR � True Rejections 

TSS � Transcription Start Site 
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1 CHAPTER 1: BACKGROUND 
 
 

1.1 Introduction 

The field of pattern recognition is expanding rapidly with productive applications interfacing 

with various other disciplines. Bio-informatics is an area where pattern recognition comes into 

contact with disciplines such as genetics and biochemistry. The resulting study of the 

principles of biological function and organisation is currently one of the most exciting 

domains of scientific enquiry; although work in this field dates back to before 1860, current 

knowledge is still very sketchy. Given the vast quantities of data that are being generated, it is 

crucial that pattern-recognition algorithms be developed to assist in the analysis of genetic 

data. The specific problem studied here is gene expression; that is, how and why particular 

genes in a cell are activated. One of the problems with gene expression that currently receives 

much attention within the pattern-recognition community is that of promoter and TSS1 

detection. 

1.2 Brief Problem Definition 

The problem addressed in this project is developing a reliable automated detection process for 

Eukaryotic RNA2 polymerase II promoters. Promoter detection is a very complex and time-

consuming process that can potentially be sped up significantly through automation. The first 

technical problem addressed was the automation of this complex process. The transcription 

process and the difficulties of automating are described in more detail in the following section 

of this document. The next challenge was to program reliable detection. As with every pattern 

recognition application the final system suffers from limited accuracy. The reliability of the 

system is directly associated with the accuracy of the final detection.  

                                                
1 TSS � Transcription Start Site 
2 RNA � Ribonucleic Acid 
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1.3 Genetic Principles 

1.3.1 Deoxyribonucleic Acid (DNA1) 

Lodish, Darnell and Baltimore [1] describe DNA as a cellular storehouse required to build a 

cell or an organism. DNA contains all the genetic information that describes how and why 

certain cells function. All known DNA is made up of long sequences of molecules called 

nucleotides.  There are only four different nucleotide types, all differing only in a single part 

called the base. Because of this nucleotides are commonly referred to as bases, in other words 

there are four different bases found in DNA. These four bases are adenine (A), guanine (G), 

cytosine (C) and thiamine (T). It is common practice in genetics when writing down a DNA 

molecular sequence to write down only a single letter representing the base contained in the 

nucleotide. In other words a typical DNA sequence might be  

�CCATCTAGATCGGTAGCATGCTAGTGTCGTAG� 

Obviously this is only a small section of the sequence since full sequences are millions of 

bases long, and will cover thousands of pages if given in full in this document. 

A nucleotide has a very specific molecular structure, shown in Figure 1 below. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Diagram of a nucleotide  

� the digits indicate carbon atoms in the pentose component of DNA 

 

Binding between nucleotides that form a DNA sequence always takes place at the same carbon 

molecule. The phosphate or 5� carbon always binds with a free hydroxyl at the 3� carbon. To 

standardise written sequences it is common practice to write down a sequence from the 5� end 

to the 3� end. In other words in a written sequence the first base or nucleotide will have a free 

                                                
1 DNA � Dioxyribonucleic Acid 

Pentose
1� 

2� 3� 

4� 

 5� (O) 
Base Phosphate 
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carbon at the 5� end, and the last nucleotide in the sequence will have a free carbon at the 3� 

end. The typical DNA sequence given earlier becomes: 

(5’) …CCATCTAGATCGGTAGCATGCTAGTGTCGTAG… (3’) For the remainder of this 

document it can be assumed that all given DNA sequences will be in this format. When 

smaller sections of DNA are compared with regards to their location in the DNA they are said 

to be upstream or downstream of one another. For example taking the sample DNA once 

again, the section ATC is upstream of GCTA, while GCTA is downstream of ATC. (5’) 

…CCATCTAGATCGGTAGCATGCTAGTGTCGTAG… (3’) It is also standard practice to use 

numbers to represent how far upstream or downstream a specific section is with relation to 

another section or centre point. For example with transcription the TSS will start at position 1, 

with everything upstream of the TSS having negative numbers, and everything downstream of 

the TSS positive. If, for example, the base T marked as 1 in the sample sequence is the TSS 

then the sequence GCTA starts at position 11, while ATC starts at position �7. 

         -987654321 1 2345678901234567890123 
(5’) … CCATCTAGA T CGGTAGCATGCTAGTGTCGTAG… (3’) 
 

Note that there is no position 0. This is because the reference base is base 1, and the one 

directly upstream of it is base �1, and the base directly downstream of it is base 2. 

 

1.3.2 Transcription 

The previous section states that DNA is only the storehouse of genetic material and does not 

control the functionality of cells directly. Before cells can function correctly the DNA must 

first be changed to RNA, and the RNA must be changed to proteins. Proteins are directly 

responsible for cell functionality. DNA directs RNA synthesis, RNA directs protein synthesis 

and proteins catalyse DNA and RNA synthesis. This circular process - as shown in Figure 2 - 

is known as the central dogma of genetics [2]. 
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DNA RNA Proteins

 
Figure 2: DNA, RNA and Protein relationship. (Central dogma of genetics) 

 

Transcription is the process where RNA is formed from DNA, while the process where 

proteins are formed from RNA is called translation. The focus of this project is on the 

transcription process. The full genetic transcription process will not be explained here, but can 

be found in great detail in the literature, for example [3,4,5,6]. Broadly, what happens is that 

RNA polymerase (Polymerase are the actual molecules responsible for the transcription) 

follows the DNA downstream (5� end to 3� end) until a promoter region is recognised. Then 

binding between the RNA polymerase and the DNA takes place. The polymerase continues its 

downstream movement until the transcription start site is reached where the transcription 

process starts. Obviously this is a very elementary explanation of a process that is quite 

complex in reality, but it does show one of the most important aspects of transcription, which 

is that each protein or gene contains at least one promoter region upstream of the TSS for the 

polymerase to bind with. The TSS is the actual position at which the Polymerase binds, and is 

contained in the promoter segment, usually close to the 3� end. The basic process is the same 

for both prokaryotic and eukaryotic organisms. (Eukaryotic organisms have cells that contain 

true nuclei [2], while prokaryotic organism cells do not.) There is more than one type of 

polymerase, each transcribing different gene types. Polymerase II is responsible for the biggest 

percentage of gene transcription and thus is the focus of this project.  

 

The biggest difference between prokaryotic and eukaryotic transcription lies in the fact that 

eukaryotic gene coding information is split up in multiple sections. With prokaryotic 

transcription polymerase searches the DNA downstream until a promoter region is reached. 

The proteins required for transcription bind with the DNA and transcription takes place until 

the end of the gene, or the tail of the gene, is reached. Each base on the way to the promoter 

region is transcribed. Genes in eukaryotes are separated into intron and exon sections. The 
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introns stay in the nucleotide, and are not transcribed, while exons are transcribed to RNA. 

Figure 3 displays how a typical gene might look in a eukaryotic organism. 

 
Figure 3: Eukaryotic gene split up into intron and exon regions. 

 

In this figure the total length of the gene is from point B to point G, A being the upstream or 5� 

end of the DNA, and G being the downstream or 3� end. But the only sections that actually 

contain coding DNA data for the gene are the exon sections, B-C, D-E and F-G, with section 

C-D and E-F being non-coding intron areas. The gene coding DNA starts at point B, the TSS, 

with the area A-B directly upstream of B the promoter area. Once again this is a simplified 

approximation of the promoter; the next section of this document will provide some insight as 

to why this is only an approximation. G is the tail, or end of the DNA that will be transcribed. 

Every letter given in the figure except for A and B represents the place where the DNA 

changes from intron to exon, or exon to intron. These places are called splices, or splice sites. 

Points C and E are splices where the exon changes over to intron, exon-to-intron splice, and 

points D and F splices where the intron changes over to exon, intron-to-exon splice. These are 

very important features and for the rest of this document they will be abbreviated as I2E1 and 

E2I2 for simplicity. 

 

1.3.3 Complexities of DNA 

Now that the transcription process has been briefly explained, we will investigate why this is 

such a complex process to automate or to model mathematically.  

                                                
1 I2E � Intron to exon splice 
2 E2I � Exon to intron splice 
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The first aspect to consider is the enormous amount of data contained in a single DNA 

sequence. For example the sequenced human chromosome 20 (used as part of the sample 

collection process for this project) spans several million bases. This immediately gives some 

very important implications when writing automated systems that do feature detection. Firstly 

the final system must work very quickly. It is useless to have a system that is 95% or 100% 

accurate, but takes too long per nucleotide to do a reliable detection. Secondly the system has 

to be able to handle large amounts of textual data. This is not such a big problem since 

programs can generally handle large text inputs in the form of files. 

The second problem is that DNA sequences are not entirely unambiguous. When comparing 

DNA sequences that have the same function it can be found that they differ significantly. The 

ambiguity comes from the fact that amino acids are formed by three bases. For three bases 

there are a total of 4x4x4 = 64 total combinations, but there are only 20 different amino acids. 

The encoding for some of the amino acids can take on several forms. Furthermore this is 

because not every base in a given DNA section is relevant. This means that sequences might 

be the same in some parts, and differ in other parts but still perform the same biological 

function. This becomes even worse where sections differ significantly, but still have the same 

function. Since not every base in a given section is relevant it can thus be assumed that there 

are important and garbage DNA parts. (Think of how a gene consists of relevant exon sections 

as well as non-coding intron parts.) This means for any functional DNA feature a consensus 

sequence has to be generated that gives the functioning parts with meaningless, or even 

random, parts in between. The problem arises when the random parts in between functional 

sections are not the same length. For example consider the following two sequences.  

 

If the regions ATGCTA and AGGCTA have some function, but are separated by random 

length DNA garbage they could look like:  

CTAATGCTAATCTGATCGAAGGCTA 

and   

TCCAATGCTACTCGATCAGGCTACA 

Doing a base-by-base comparison, these two look totally different, since the random sections 

are of different length, causing difficulty in developing an exact model. 

The next, and most important aspect addressed, is the promoter region itself. As explained in 

the previous section it can be assumed that every gene has at least one promoter upstream of 
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the TSS for polymerase binding and thus for the transcription to take place. The problem is 

that promoter regions are not very well understood by geneticists. For example in eukaryotic 

transcription it is an accepted fact that there is a promoter region called the TATA-Box. This 

can be found everywhere in literature on this subject [3,4,5,6]. When these four sources were 

consulted a disturbing discovery was made. Each one of the four mentioned the TATA-Box 

and gave a consensus sequence of how it should look, but they all differed on its composition. 

Although all four sources said that the TATA-Box is upstream of the TSS, the exact location 

given for it differs from source to source. Each of the sources contains a small sequence, called 

the consensus sequence, which represents the exact form of the TATA-Box. The consensus 

sequences and position given in all four is shown below. The notation (
Y
X ) means that either 

base X or base Y can occur. 

[3] Gave the TATA-Box as 
T
AA

T
ATATA  at position �30 from the TSS. 

[4] Gave it 
T
AAT

T
ATATAT  at position �25. 

[5] Had it as ATATAA at position �25 to �30. 

[6] Said it should be 
T
AA

T
ATATA  at �25. 

This suggests there is a TATA-Box, containing only bases A and T, somewhere between 25 

and 30 bases upstream of the TSS, but its exact form and location is not known and can thus 

not be accurately modelled. If a simple, well-known promoter like the TATA-Box causes such 

disagreements, it is easy to understand why more complex promoters give an even bigger 

problem. 

1.4 Full Problem Definition and Project Aims 

Simply put, the problem addressed in this project is to develop a reliable automated detection 

process for Eukaryotic RNA polymerase II promoters.  

The first aim, then, is to acquire samples of both promoter and non-promoter DNA that can be 

compared, used to gather statistics, to train and to test a detection system. The main goal of the 

project is to write a program that can read a small section (of 250 to 256 bases long) of DNA 

and determine whether this sequence represents a promoter region or not. The system, called 

NNPromoterFind1.0, must be able to overcome the complexities and the underlying 
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relationship between smaller parts in this 256-base window by means of an artificial neural 

network. The resulting neural network must be able to work through large amounts of DNA 

data in a short enough period to still be useful. For actual data, with sequences spanning 

millions of bases, the detection should at the very least be able to check and classify 500 

sequences per second. The accuracy of the system should improve on current systems so that 

promoters detected from unknown DNA can be trusted and used reliably in other genetic 

work. 

Aims of NNPromoterFind1.0 are to: 

be a working system, 

have reliable detection (improved accuracy when compared to current systems), 

maintain fast detection, 

be able to handle a large amount of DNA data, 

be expandable for future use. 

1.5 Previously Proposed Solutions 

Previous attempts have been made to solve this particular problem such as in Bajic, Seah, 

Chong, Krishnan, Koh and Brusic [7] and Knudsen [8]. Most of the work done in this project 

was based on the process Bajic et al. [7] used for their program, Dragon Promoter Finder 

(DPF1). 

In short, DPF takes a sequence of 250 bases and determines the number of G and C bases to 

see whether this sequence is CpG rich, or CpG poor. (As explained by Cross [9] and Larsen et. 

al [10], CpG islands can be used as an indication of the presence of a promoter.) Two parallel 

processes are then applied, one if the sequence has been determined to be CpG rich, and the 

other if it is CpG poor. The sequence is broken up into smaller 5-base windows. Sensors are 

then applied to these windows to determine whether it is a promoter, intron or exon. The 

outputs of the three sensors are then combined by means of a neural network that does the 

prediction. 

 

Promoter 2.0 written by Knudsen [8] uses a neural network that was trained by a genetic 

algorithm to do detection of well-known promoters like the TATA-Box. 

                                                
1 DPF � Dragon Promoter Finder 
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Other approaches include PromoterInspector [11], and NNPP2.1 [12]. All these systems 

showed potential, but suffered from limited accuracy (as can be expected from any automated 

detection process). When looking at the way these systems work it can be seen that the full 

256-length sequence cannot be used as is. It has to be broken into smaller sections to 

determine which parts are relevant, and which are not.  

 

1.6 Implemented Solution 

1.6.1 How it was done 

NNPromoterFind1.0 was designed, implemented and trained to look at a single DNA sample 

that is 256-bases long and to determine whether the sample is a promoter or not. Obviously 

before a network could be set up a lot of pre-processing and reliable data collection had to be 

done. After data collection, statistical methods were used to determine which sections in the 

256-base sample contained the information that determines whether it is a promoter or not. 

These features were then used to train an ANN that does detection directly on the DNA 

sample. 

 

1.6.2 Contrasts between the current and earlier approaches 

NNPromoterFind1.0 does not determine whether a given sample is CpG-rich or CpG-poor. 

This was excluded in an attempt to build a single system that could be adapted and expanded 

in the future to do more than polymerase II promoter detection, and the CpG islands lose 

relevance in other research areas. However, nothing prevents us from doing CpG detection 

first and then training two ANNs, one for CpG-rich, the other for CpG-poor DNA. 

The second difference between NNPromoterFind1.0 and previous solutions is that the entire 

256-base sample was not used. After the pre-processing step smaller windows are identified 

that contain the useful information for detection. Only these smaller windows are used and 

combined by the ANN. This reduces the computational cost of promoter detection, as only 

relevant data is calculated; no time is wasted on in-between sections. Also, it allows us to gain 

insight into the promoter regions, and is useful in improving generalization. 

A third difference is that much pre-processing is done for feature selection. The ANN is used 

to do detection directly, based on the selected features. Other programs like Dragon Promoter 
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Finder [7] use mathematical and statistical methods to do detection, and then simply combine 

the detectors with an ANN. With NNPromoterFind1.0 system the ANN is the detector. 

Yet another difference is the fact that five classes will be defined instead of two or three. DPF 

[7] for example has a detector for introns, exons and promoters. NNPromoterFind1.0 includes 

splice sites in both the training and testing process - I2E and E2I splice sites were both 

included. As shown later in this document, splice sites share some features with promoters, but 

can be detected more reliably. Hence, if splice detection is done, and thus the splice samples 

eliminated as possible promoters, it means that more accurate promoter detection can take 

place. 

 

1.6.3 Contribution 

The work done in the project yields several useful contributions to this research field. At the 

very least the groundwork has been laid out for future work. All the work done to get samples 

of the different classes was done. A lot of statistics were also generated that can be used in 

future work on promoter detection. Lastly, and most importantly a complete ANN was written, 

trained and tested (NNPromoterFind1.0) that is a fast, reliable promoter detection program. 

 

When compared to the current state of the art promoter detection programs a total performance 

increase of 10% was obtained. This 10% increase is the worse case obtained. Some of the 

experiments obtained a performance increase of up to 30%. 
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2 CHAPTER 2: TASK OVERVIEW 
 

This chapter contains the functional breakdown of the project. The project is broken down into 

functional units, and it is shown how the functional units fit together. A brief description of 

what was done to accomplish each function is also given. The sequence of functional units 

also provides the sequence in which the greater problem was solved. 

2.1 Overview of the Entire Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Process flow diagram. 

FU1: Data collection and extraction 

FU1.1: Set and class generation FU1.2: Statistical information 
gathering 

FU2: Extracting useful information 

FU3: ANN generation 

FU4: ANN training 

FU5: ANN testing 

FU6: Further enhancements 
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2.2 FU 1: Data Collection and Extraction 

This functional unit handles the process for generating reliable, usable samples of five 

different classes. It is one of the most important units of this project since all the other units 

are built directly on the data obtained here. Incorrect data collection would have led to 

incorrect statistical conclusions. This would result in incorrect network set-up, incorrect 

training parameter selection and in the end incorrect detection. Care has been taken in this 

functional unit to obtain samples with varying features. Such samples provide improved 

generalisation, although some training-set accuracy might be lost. The final system should be 

able to recognise and detect a wide variety of promoters, even if some of them are not detected 

as easily or strongly as others. The alternative is to select fewer promoters and try to get a 

stronger detection on them. Better generalisation means more expandability with regards to 

different applications as well as different promoter types. Since promoter features are not 

100% known, as seen in Section 1.3.3 where the TATA-Box is discussed, it is more desirable 

to design a system that does good promoter finding by looking at various aspects than to 

design one that can only detect a certain �known� box. The data collection functional unit 

consists of class generation, set generation, as well as statistical calculation processes. 

2.3 FU 1.1: Set and Class Generation 

In this functional unit the task of generating different classes and sets is handled. The main 

aim of this project was to differentiate between promoter features and non-promoter areas in 

DNA. Non-promoter areas include every possible DNA section that does not function as a 

promoter, including intron, exon, I2E- and E2I-splices. Samples of each of these classes have 

to be collected and stored so that they can be compared and studied. All the samples have to 

be the same length, 256 bases long, with distinguishing features at a specific position to ensure 

that they can be compared with one another. Comparisons had to be made in a given class as 

well as between classes. 

 

The second step was to generate three different sets, each with a very specific function. A 

training set had to be made containing most of the available data, as defined by Bishop [13]. 

This set was used for the statistical analysis, and also for training the detection neural network. 

A second, smaller testing set had to be generated that could be used for designing the neural 

network. To see whether changes in network topology or training methodology changes 
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system performance a set that was independent of the training set was required. The test set 

fulfilled this function. Lastly a validation set was generated. The validation set contained less 

data than the other two sets, and was used only once. The only function of the validation set is 

to test the final system on data that originates from the same source as the training and testing 

sets, but to the moment of testing has remained undetected by the system. This means that the 

validation set has no influence on the training or tuning process of the system. 

2.4 FU 1.2: Statistical Information Gathering 

The raw DNA data starts out as sequences of millions of bases long. These were processed 

into different samples of various classes and divided into different sets. The next step was to 

gather meta-data on samples to attach some mathematical meaning to each class. Statistical 

methods were employed to determine where certain bases occur in the sequences. The 

statistics were calculated for each of the five different classes separately so that they could be 

compared with one another. The average chance for each base type to occur at each of the 256 

positions in the sample sequences had to be calculated and then compared amongst the classes 

to determine where certain bases occur more in one class than the others. One of the biggest 

problems with the statistical information is that there is practically no useful information when 

one looks at single base occurrence only. This is due to the fact that each base type occurs 

with a likelihood of about 25%, as shown in greater detail in Chapter 4. This implies that any 

one of the four possible base types is as likely to occur as any one of the remaining three. 

Hence, we studied the occurrence of base combinations, instead of single bases. Bases were 

grouped together in short sequences called n-tuples, where n represents the number of bases 

grouped together (for example a 3-tuple is three bases strung together). Neighbouring n-tuples 

were selected such that they overlapped, shifting a single base at a time. This drastically 

increased the number of statistical calculations made. When looking at four single-base 

occurrences, there are 256 (number of positions) multiplied by 4 (number of possible bases), 

hence 1024 numbers that have to be calculated. The number of possible n-tuples, on the other 

hand, is  4^n). This meant that a very large number of statistics had to be calculated, but also 

implied a larger number of values that could be used to search for distinguishing features. 

Note that the statistics are gathered only on the training set, to make sure that the test set and 

validation set were completely isolated from the training methods of the system. 
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2.5 FU 2: Extracting Useful Information 

The previous section briefly described what statistics were generated, but still doesn�t explain 

how this large quantity of numbers is of any practical use. A reliable, mathematically sound 

method had to be used to compare the statistics of the different classes to one another in such a 

way that distinguishing features for the promoter class could be identified. Various methods 

were attempted: some direct comparisons were made, the number of occurrences were counted 

and compared, weighted averages were taken etc. The most useful extraction method was 

found to use entropy as described by Bishop [13], and originally developed by Shannon 

(1948). Entropy measures the information content of data. The entropy was calculated for each 

possible position (1-256) in the sequence, and each n-tuple (1-4n). The lower the entropy 

value, the more significant a specific feature. Using entropy, the statistical data was 

transformed from numbers to useful information, determining which n-tuples at which 

positions could be used to identify promoter sequences. These features were extracted and 

stored, for use in the neural network as explained in the following section. 

2.6 FU 3: Generate an Artificial Neural Network 

As mentioned in Section 1.4, one of the aims of this project was to develop efficient promoter 

detection. One of the well-known pattern recognition methods for this purpose uses an 

artificial neural network (ANN). The full mathematical background on ANNs is not given 

here, but can be found in various sources such as Bishop [13], Negnevistky [14] and  Russell 

& Norvig [15]. An ANN had to be designed that could take a 256 base sequence, compare it 

with the entropy�based features and give a simple yet useful indication whether the sequence 

is a promoter or not. A simple 2-layer, feed-forward ANN was developed that was trained 

using the back-propagation training method. To speed up the system an adaptive learning rate 

as well as a momentum term, both described by Negnevistky [14] was implemented. The 

inputs to NNPromoterFind1.0 are the entropically extracted features. The hidden and output 

layers use sigmoid transfer functions. The output is a single binary output that approximates a 

1 for a promoter sample, and a 0 for a non-promoter. Both the input and the hidden layer have 

biasing neurons to make sure that the outputs are biased correctly. NNPromoterFind1.0 is 

described in more detail in Chapter 5. 
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2.7 FU 4: Training Process 

NNPromoterFind1.0 was trained with the training set generated in FU 1.1. Each sample of the 

training set was shown to the ANN, and the error was calculated at the output neuron. The 

error was combined for all the samples in the training set, and then after each sample was 

introduced to NNPromoterFind1.0 one time, the error was propagated backwards, and all the 

necessary weights updated. This process was repeated until a sufficient reduction in the 

combined error was obtained, or a constant minimum error was found. 

 

2.8 FU 5: Testing of the System 

The last step was to test the ANN to check whether accurate detection is possible. For this 

step, the test set was used for the first time. Note that no sample in the test set was used to 

determine statistics, generate features with entropy or train NNPromoterFind1.0, thus 

providing total isolation. Each sample in the test set was introduced to the ANN, and the ANN 

then determined whether the sample is a promoter or not. The number of mistakes made was 

noted to determine how accurate the system is. As with any automated detection process there 

are various ways to calculate how well the system performs. The method used was originally 

designed by Bajic et al. [7] to compare the performance of a promoter detection system. This 

method calculates a sensitivity value as well as a positive prediction value to determine 

accuracy.  

As can be seen in the functional flow diagram (given at the start of this section) the entire 

process had to be repeated from various levels: sometimes it had to be repeated from as far 

back as statistical extraction and other times only more training was required. This was done 

to make sure that different network topologies and different selected features were used to get 

the best final results. 

2.9 FU 6: Further Enhancements 

The last step of this project was to investigate possible future improvements to make the 

system more accurate and useful. Some of these methods were tested whilst others were 

simply motivated. These include using multiple networks, getting the system to read entire 

DNA strings and doing full gene-finding instead of just promoter detection. Chapter 7 

discusses these options in more detail. 
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3 CHAPTER 3: DATA EXTRACTION 
 
 

3.1 Introduction 

In this chapter a full description of the data extraction process is given, as well as an 

explanation of how the source data files should be read and interpreted. Obtaining reliable data 

is one of the most important steps for any automated detection program because the entire 

behaviour of the system is based on the data samples. Faulty samples, or samples that do not 

represent the whole truth will lead to an inaccurate or even totally useless detection system. 

For that reason great care was taken to obtain accurate samples for generating the detection 

system. 

3.2 Attaining promoter data 

Because the system is designed to detect promoters, the first step was to get good promoter 

data. There is one fundamental problem in getting promoter samples, and that is that it cannot 

be extracted from raw DNA data using another automated program. If other automated 

systems were used to extract the promoter sequences, any system trained with that data would 

only look for the same distinguishing features that the source system used instead of looking 

for distinguishing features of true promoters. The point is that any system trained on data 

extracted by another automated system will be at the best as accurate as the previous system, 

and thus of no additional use. Therefore, promoters that have been experimentally determined 

by biochemical means should be used.  The Eukaryotic Promoter Database (EPD1) [16] 

contains exactly that: promoters that were experimentally determined. This also happens to be 

the source of the promoter data used to train the Dragon Promoter Finder system developed by 

Bajic et al. [7]. The EPD provides eukaryotic promoter sequences of different species with 

very specific formatting. The length of the sequence is defined by giving the number of bases 

upstream and downstream of the TSS that has to be extracted. Since it was already decided 

that 256-base sequences would be used for this system, only the position of the TSS had to be 

chosen. Since there might be some promoter information downstream of the TSS it was 

                                                
1 EPD � Eukaryotic Promoter Database 
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decided to include 55 bases downstream in the samples, and thus 200 bases upstream. 200 

upstream plus 1 TSS plus 55 downstream gives a total sample length of 256 bases. As 

explained in Section 1.3.3, the TATA-Box that is the most commonly accepted promoter is 

found at position �50 to �20, but the full 200 bases were extracted to make sure that possible 

unknown promoter features will be captured. A total of 1871 Homo sapiens (human) promoter 

sequences were downloaded from the EPD. These 1871 samples were all stored in a single 

text file called �HSV2.txt�.  The downloaded samples are available on the CD that 

accompanies this dissertation, and four examples are given below: 

 
>EP17030 (-) Hs snRNA U1 (pU1-6); range -200 to 55 
GGGGCTGACGTCTTCGCCACTGGCTGTTTCACCACGAAGGAGCTCCCGTGCCGTGGGAGC 
GGGTTCAGGACCGCTGGTCGNACCTGAGGGTCCCAGCTGTGTGTCAGGGCTAGGAAGGCT 
CGGGGGTGCGCGGGGCAAGTGACCATGTGTGTAAAGGGTGAGGTATATGGAGCTGTGACA 
GGGCAGAAGTGTGTGAAGTCATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTG 
GTTTTCCCAGGGCGAG 
>EP17031 (-) Hs snRNA U1 (pHU1-1); range -200 to 55 
GAGGCTGCTGCTTCGCCACTTGCTGCTTCACCACGAAGGAGTTCCCGTGCCCTGGGAGCG 
GGTTCAGGACCGCTGATCGGAAGTGAGAATCCCAGCTGTGTGTCAGGGCTGGAAAGGGCT 
CGGGAGTGCGCGGGGCAAGTGACCGTGTGTGTAAAGAGTGAGGCGTATGAGGCTGTGTCG 
GGGCAGAGGCCCAAGATCTCATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTG 
GTTTTCCCAGGGCGAG 
>EP17036 (+) Hs snRNA U2; range -200 to 55 
CCGGGAACGCCGAAGAAGCACGGGTGTAAGATTTCCCTTTTCAAAGGCGGGAGAATAAGA 
AATCAGCCCGAGAGTGTAAGGGCGTCAATAGCGCTGTGGACGAGACAGAGGGAATGGGGC 
AAGGAGCGAGGCTGGGGCTCTCACCGCGACTTGAATGTGGATGAGAGTGGGACGGTGACG 
GCGGGCGCGAAGGCGAGCGCATCGCTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATC 
TGTTCTTATCAGTTTA 
>EP15024 (+) Hs histone H3.3; range -200 to 55 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGCGAGCCTTCCCT 
CCATTGTGTGTGATTGGCTGCGCGCGGCGGGGGCGGGGCGGCGTGTGTTGGGGGATAGCC 
TCGGTGTCAGCCATCTTTCAATTGTGTTCGCAGCCGCCGCCGCGCCGCCGTCGCTCTCCA 
ACGCCAGCGCCGCCTC 

Extract 1: Example of promoter samples. 

 

The first line of each sample, starting with a �>� gives the name of the gene where the 

promoter was found. Each following line contains the base sequence of the DNA, with each 

line containing a maximum of 60 bases. This 60-base maximum per line format was adopted 

as the standard throughout the rest of the project, since it was easier simply to make sure all 

the generated samples look the same than to attempt to reformat each promoter sample. These 

adopted formatting rules also included the first line starting with a �>� where any description 

text could be inserted. 

The fourth sample starts with a long sequence of �N� characters, which is obviously not one of 

the four possible base types A, C, G or T. This is how the EPD indicates sequences that are 

unknown or not transcribed. Many of the 1871 downloaded promoter samples started or ended 
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with these �N� characters. There was no way to get the true sequence values for those 

positions, so a method had to be devised that could generate statistics but could ignore the 

segments where the sequence was not known.  

3.3 Obtaining non-promoter data 

For the promoter data no actual work was required, since they could simply be downloaded. 

No such database exists for the non-promoter data that was required, so a different approach 

had to be taken: an automated method was used to extract the non-promoter data from 

sequenced DNA data. The first step was to simply get raw DNA data from the NCBI 

download site [17]. From this site the entire human chromosome DNA sequences could be 

downloaded. This is an enormous amount of data as can be seen from the table below: 

 

Table 1: Chromosome file sizes. 

Chromosome Zipped File size (MB) 
1 71.6 
2 70.3 
3 81.3 
4 78 
5 74.2 
6 70.9 
7 129 
8 59.8 
9 49.6 

10 55.3 
11 55 
12 54.1 
13 39.5 
14 35.9 
15 34.5 
16 33.1 
17 32.1 
18 30.7 
19 23 
20 25.7 
21 14.8 
22 14.7 
X 62.9 
Y 7.76 

Total 1203.76 
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The smallest chromosome � excluding the X and Y-chromosomes � chromosome 21, spans 

over more than 15000 pages, and over more than 28 million bases, and some of the longer 

chromosomes are up to eight times this length. 

3.3.1 A closer look at the GBK file format. 

The downloaded files are in GBK format. Such files contain not only DNA sequence data, but 

also some source, variation and annotation information. For illustration, a closer look will be 

taken at chromosome 21. The file starts with header information, describing the source of the 

data as well as when, where and how the sequencing was done. Different sections were 

sequenced by different institutes as shown in the example �source� sections. 

 
LOCUS       NT_011512           28602116 bp    DNA     linear   CON 07-OCT-2003 
DEFINITION  Homo sapiens chromosome 21 genomic contig. 
ACCESSION   NT_011512 
VERSION     NT_011512.9  GI:37558541 
KEYWORDS    . 
SOURCE      Homo sapiens 
  ORGANISM  Homo sapiens 
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; 
            Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 
REFERENCE   1  (bases 1 to 28602116) 
  AUTHORS   International Human Genome Sequencing Consortium. 
  TITLE     The DNA sequence of Homo sapiens 
  JOURNAL   Unpublished (2003) 
COMMENT     GENOME ANNOTATION REFSEQ:  Features on this sequence have been 
            produced for build 34.0 of the NCBI's genome annotation [see 
            documentation]. 
            On Oct 7, 2003 this sequence version replaced gi:29806267. 
            The DNA sequence is part of the second release of the finished 
            human reference genome. It was assembled from individual clone 
            sequences by the Human Genome Sequencing Consortium in consultation 
            with NCBI staff. 
            COMPLETENESS: not full length. 
FEATURES             Location/Qualifiers 
     source          1..28602116 
                     /organism="Homo sapiens" 
                     /mol_type="genomic DNA" 
                     /db_xref="taxon:9606" 
                     /chromosome="21" 
     source          1..106559 
                     /organism="Homo sapiens" 
                     /mol_type="genomic DNA" 
                     /db_xref="taxon:9606" 
                     /clone="21B49A22" 
                     /note="Accession AP001464 sequenced by RIKEN Genomic 
                     Sciences Center" 
     source          106560..218367 
                     /organism="Homo sapiens" 
                     /mol_type="genomic DNA" 
                     /db_xref="taxon:9606" 
                     /clone="RP1-133G21" 
                     /note="Accession AJ239321 sequenced by Max Planck 
                     Institute for Molecular Genetics" 

 

Extract 2: Example of GBK file start. 
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The header information gives authentication information, and is not of direct use for the 

extraction process. The next section in the file contains all the possible variations: 
     variation       13212 
                     /allele="A" 
                     /allele="G" 
                     /db_xref="dbSNP:4086405" 
     variation       13230 
                     /allele="C" 
                     /allele="A" 
                     /db_xref="dbSNP:7509718" 
     variation       13374 
                     /allele="A" 
                     /allele="G" 
                     /db_xref="dbSNP:4086404" 
     variation       13380 
                     /allele="C" 
                     /allele="A" 
                     /db_xref="dbSNP:7510510" 

 

Extract 3: Example of GBK variation of bases. 

 

This means that the sequence is given with a specific base type, but that a different base type 

can possibly occur at that position. This information could be very relevant to the extraction 

process, since a sequence might be extracted as �TTGTC� but the �G� base in the middle 

might have a �C� and an �A� variation. This complicates the extraction process and it was 

decided that the variations would not be used for the sake of simplicity. The main aim of this 

project is to get accurate promoters and the assumption has been made that if there are no 

variations on the promoter data some small variations on the non-promoter samples can be 

tolerated. 

 

The next section in the file contains the coding gene and mRNA sequences. mRNA is a 

complementary copy of a gene according to Tamarin [2]. In other words the mRNA sequence 

is the sequence that should be transcribed to RNA for the transcription process and the 

position where the mRNA starts can also be seen as the TSS. Although they technically differ, 

for this project �mRNA�, �a gene� and the �section that has to be transcribed� are seen as 

equivalents. 
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Gene encoding section: 
gene            complement(1405307..1417342) 
                     /gene="STCH" 
                     /note="Derived by automated computational analysis using 
                     gene prediction method: BestRefseq. Supporting evidence 
                     includes similarity to: 1 mRNA" 
                     /db_xref="GeneID:6782" 
                     /db_xref="LocusID:6782" 
                     /db_xref="MIM:601100" 
 

Extract 4: Example of GBK gene positioning. 
 
 
 

Followed by the mRNA encoding section: 
     mRNA            complement(join(1405307..1408476,1409844..1410011, 
                     1412391..1412604,1415395..1415735,1417287..1417342)) 
                     /gene="STCH" 
                     /product="stress 70 protein chaperone, 
                     microsome-associated, 60kDa" 
                     /note="unclassified transcription discrepancy; Derived by 
                     automated computational analysis using gene prediction 
                     method: BestRefseq. Supporting evidence includes 
                     similarity to: 1 mRNA" 
                     /transcript_id="NM_006948.2" 
                     /db_xref="GI:24431965" 
                     /db_xref="GeneID:6782" 
                     /db_xref="LocusID:6782" 
                     /db_xref="MIM:601100" 
 

Extract 5: Example of GBK mRNA positioning. 
 

It can easily be seen from this example that the gene start- (1405307) and stop- (1417342) 

position are the same as the first and last positions given in the mRNA section. The gene 

section gives the locations of the entire gene, while the mRNA section gives the exon sections. 

This means that exon, intron, I2E and E2I positions can be established from these numbers. In 

the example above the TSS is at base position 1405307 in the sequence. As displayed all the 

sequence sections are given as a pair of numbers separated by two full stops: 

�XXXX..YYYY�. XXXX is the start of the exon region and YYYY is the end. This also gives 

the I2E and E2I splice regions accordingly. The first number is the TSS. The second number 

will then be the first exon-to-intron splice site. From the third number every second number 

given is an I2E splice, and every other number an E2I splice. 

In our notation, the format is therefore ((TSS..E2I,I2E..E2I,I2E..E2I)). 
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The next section in the file is the most important one, containing all the actual sequence 

information that spans most of the file: 
 
ORIGIN       
        1 catgtttcca cttacagatc cttcaaaaag agtgtttcaa aactgctcta tgaaaaggaa 
       61 tgttcaactc tgtgagttaa ataaaagcat caaaaaaaag tttctgagaa tgcttctgtc 
      121 tagtttttat gtgaagatat ttccattttc tctataagcc tcaaagctgt ccaaatgtcc 
      181 acttgcagat actacaaaaa gagtgtttca aaagtgctca atgaaaagga atgttcagct 
      241 ctgtgagtta aatgcaaaca tcacaaataa gtttctgaga atgcttctgt ctagttttta 
      301 tgggaagata attccgtgtc cagcgaaggc ttcaaagctt tcaaaatatc cacttgcaaa 
      361 ttctacaaaa agagtgtttc aaagctgctt tatcaaaaga aagtttcaac tctgtgagtt 
      421 gaatgtgcac atcacaaaga agtttctgag aatgccttca gtctggtttt tatgtgaaga 
      481 tattcccttt tccaacgaaa gcctcgaagc tgtccaaata tccacttgta agtgctgcaa 

 

Extract 6: Example of GBK actual sequence. 

Each line starts with the base position followed by 60 base types. The 60-bases per line is 

exactly the same as the format used by the EPD for storing the promoters as was seen in 

Section 3.2, with the only exception that the EPD did not start each line with a base number. 

 

3.3.2 Developing an extraction program. 

Since gene and mRNA data was available directly in the GBK files a program could now be 

written that can read through these enormous files and generate samples for each of the non-

promoter classes. Five classes were extracted: Introns, Exons, I2E, E2I as well as mRNA start 

samples. The mRNA start class was extracted, and some statistics were computed from it, but 

it was not considered a regular non-promoter region since it could contain a promoter. It was 

also not used as a promoter, because of the automated annotation process used to mark it. It 

can be seen that most of the gene annotation was done by a program called BestRefSeq. This 

might cause concerns, as one now has to assume once again that this program is accurate and 

correct. It was assumed that this program could be trusted to generate splice sites that are 

accurate enough for the purposes proposed as it is only used for the non-promoter data. Also, a 

very large set of non-promoter sequences were generated, far more than the 1871 promoter 

samples, and therefore if some of them are not 100% correct the average error should be low 

enough for the construction of a reliable system.  

 

The samples extracted with the program Extract.exe (extract.c - Addendum 1) will always be 

256 bases long. The sample will also have the same format as the promoters downloaded from 

the EPD, in other words it will be �200 to +55 from the �marking� feature. mRNA start 
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positions, I2E and E2I splices will always be exactly at position 0. Introns and Exons don�t 

have specific distinguishing features at position 0, but will still be 256 bases long.  

 

The samples extracted for the different classes should not contain the same base information; 

therefore a length detection process was created to determine whether an 256-length sample 

can be extracted without crossing into neighbouring samples. The main reason for keeping the 

regions non-overlapping is to prevent the same features from occurring in different classes. 

Although the positions will differ it is still preferable to keep the samples non-overlapping for 

future use where the position information might not be used, and only the actual base 

information will be used. This is best described with the help of a diagram, and is also given in 

slightly more detail in Addendum 2. Figures 5-A and B show the DNA (nucleotide detail 

excluded) and the intron and exon regions. The splice markings in Figure 5-B are the values 

read directly from the GBK file. In Figure 5-C the mRNA sample is shown. The sample starts 

200 bases upstream from the actual mRNA value given in the GBK file, and ends 55 bases 

downstream of it. The same applies for E2I (Figure 5-D) and I2E (Figure 5-E) splice sites. The 

intron sample (Figure 5-F) and the exon sample (Figure 5-G) are any areas that are at least 256 

bases long between two following splice sites. 
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Figure 5: Different 255 base sequence selections for different sample types. 
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The extraction program is a multi-step process, with the simplified flow diagram, Figure 6 

showing the broad steps taken. 

 
 

 

Figure 6: Extraction program flow diagram.  

 

As seen in this diagram the entire GBK file is processed twice during the extraction process. 

Initially, the mRNA and splice positions are read from the file, and stored in their adapted 

form (position �200) to five different files, one for each class. Positions are only stored if a 

valid 256 base length sequence can be extracted without passing over into neighbouring 

samples. The second pass is actually 5 passes, once for each class type, where the positions 
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read from the first set of files are located in the sequence section of the GBK file. The samples 

are then read from the correct position and stored in a class-sample file in the same format as 

the promoter file hsv2.txt. The first line of each sample (where the promoter starts with a �>� 

symbol and the gene origin location) gives the position in the GBK file from where the sample 

was extracted. 

The five files are: 

�intronD.txt�, �exonD.txt�, �i2esplice.txt�, �e2isplice.txt� and �startseq.txt� 

 

The extraction program extracts samples from one of the 24 (22 + X + Y) available 

chromosome GBK files at a time. The position text files that are created during the first run 

through the GBK file are rewritten every time the program is run. The sample files are 

expanded every time the program is run so that the total samples come from all the available 

source files. Table 2 gives the numbers of each sample type that was extracted from each of 

the used source files. The files for chromosome 1-5 and 12 as well as chromosome X and Y 

were not used, because these files were either corrupted during download, or had some 

unknown parameters that caused extraction to fail. Chromosome 9, 15 and 20 were also 

skipped for use as a final, second validation set. This second validation was never actually 

implemented as no further promoter samples were available that were not part of the training 

or testing set. These numbers were not the final number of samples used, because sample 

duplicates had to be removed first to ensure that the sets do not contain duplicates. After 

duplicate removal, and excluding the samples of chromosome 9, 15 and 20 there were 50450 

samples left. 
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Table 2: Number of each sample for each class extracted from the different chromosomes. 

Chromosome Intron Exon I2E Splice E2I Splice mRNA start Totals 
5 1022 895 946 404 1016 4283 
6 1017 974 1128 589 1165 4873 
7 2400 1785 1996 954 2226 9361 
8 823 653 695 309 824 3304 
9 784 684 804 382 915 3569 
10 1103 749 933 447 931 4163 
11 969 970 1146 557 1327 4969 
13 651 384 473 237 740 2485 
14 708 620 766 391 974 3459 
15 747 659 724 369 711 3210 
16 934 863 893 464 1286 4440 
17 1057 1078 1249 580 1627 5591 
18 584 369 464 230 640 2287 
19 862 1122 1389 715 1686 5774 
20 648 578 655 293 912 3086 
21 254 234 241 107 252 1088 
22 505 510 545 225 726 2511 

Totals 15068 13127 15047 7253 17958 68453 

 

 

3.4 Set generation.  

The final step before statistical data could be extracted was to split the extracted data into the 

three separate sets: a training set containing most of the data, a test set used to fine-tune the 

detection process and a validation set for final system testing. At this point there were exactly 

1871 promoter samples in the file hsv2.txt and 50450 other samples in five different files. This 

suggests another interesting problem, namely that the ratio of promoter samples compared to 

the non-promoters. is 1871:50450, or about 1:27. The problem with this value is that the true 

ratio between promoters and non-promoters in the source Eukaryotic DNA is not known at all, 

and in all likelihood the ratio should be even larger, meaning much more non-promoters for 

each promoter. Furthermore, when designing a detection system or classifier like this the ratio 

of samples can influence the final decision boundaries. Usually the method used to overcome 

ratio problems is to pre-bias the system or to include ratio calculations into the training 

process, but for that the true ratio needs to be known. To help overcome this problem two 

separate sets were generated: the first set contained all the available samples, while the second 
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set was generated so that there were exactly 1871 samples of each class (1871 being the 

smallest number of samples between all six class types). The first group was generated to get 

the more accurate representation of the promoter:non-promoter ratio, while the second group 

was generated to have equal numbers of samples for each class. From here on the first set will 

be referred to as the large set, and the second set will be referred to as the equal sized set. 

 

Table 3: Number of samples per set (2 different groupes used). 

 Train Test Validate Total 
Promoter 1294 383 194 1871 

     
Intron 7669 2286 1006 10984 
Exon 3760 1755 442 5289 

I2E Splice 8096 2309 956 11338 
E2I Splice 6398 1087 834 8987 

mRNA 9857 2742 1253 13852 
    50450 
     

Promoter 1300 350 221 1871 
     

Intron 1300 350 221 1871 
Exon 1300 350 221 1871 

I2E Splice 1300 350 221 1871 
E2I Splice 1300 350 221 1871 

mRNA 1300 350 221 1871 
    9355 

 

The program used to split up the extracted source files into the three different sets is given in 

Addendum 3, with the flow diagram given below in Figure 7. 
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Figure 7: ClassSets program flow diagram. 

 

This program only operates on one class file at a time, in order to minimize its complexity. At 

the start of the program the user selects the class that has to be split into sets. The samples are 

read one by one from the source file and randomly distributed between three files, one for 

each set. The program automatically creates a subdirectory for each of the three classes, and 

creates a text file with the same name as the original source text file. A random number is 

generated and used to select the output set in such a way that 70% of all the samples go to the 

training set, 20% go to the test set and the remaining 10% go to the validation set. If the 
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maximum number of samples for each set has already been reached a new number is selected. 

The first line of each sample contains descriptive information: for promoter, the gene that they 

activate and for non-promoters, the position in the chromosome file from which they were 

extracted. This information is subsequently replaced by a single number, showing the class to 

which the sample belongs (0 indicates non-promoters while 1 indicates promoters). 

3.5 Outputs of extraction. 

The final outputs of the extraction process were eighteen files, six classes in three sets. The 

file names used for each class amongst the three different sets were identical, but the files 

were stored in three different directories. 

 

The three directories:  

Train, Test and Validate, 

each containing the six text files: 

 hsv2.txt, intronD.txt, exonD.txt, i2esplice.txt, e2isplice.txt and startseq.txt. 

 

Each text file contained a number of samples, ranging between 221 and 9875 samples per file. 

Each sample in the format: 
> <Promoter / Non-promoter>  
Nucleotide 1   to 60 
Nucleotide 61  to 120 
Nucleotide 121 to 180 
Nucleotide 181 to 240 
Nucleotide 241 to 256 
> 0 
tattacaagaaatggtttgaggggcaccaaatagctcagcaccacaagctcaatgtgttc 
ttcactctcgcctaattggaatagtgcacggcaccagtaagattccccatcttcctccaa 
aagttgtgttatcttcagctttgtttcgttagcatatgttccattgatcacatatttatt 
catttgaacaccaacaggaacctaatatgaggagacattaaaatccattcctatcatagc 
acataaaagatacatg 

 

Extract 7: Final sample format. 

Each file also starts and stops with a new line, which is required for compatibility with 

programs using these files later to determine statistics. 
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4 CHAPTER 4: STATISTICAL 

INFORMATION GATHERING 
 
 
 

4.1 Data reduction. 

After data extraction, the number of bases was reduced by several orders of magnitude. The 

raw chromosome data contained more than 26 million bases each, so in total there were more 

than 26 000 000 * 24 = 624 million bases. The largest training set (see Table 3, Section 3.4) 

contained only 37074 samples, so only 37074 * 256 = 9490944 bases. This is already an 

immense reduction in data, but it still does not provide any directly useful information as to 

what the differences between promoters and non-promoters are. Doing a base-by-base 

comparison between the promoter samples shows that there is not a very good correlation 

between them  (see Section 1.3.3. for the reason) and the same is true for the non-promoter 

samples.  

To be able to find the sections in the 256-base window that describes promoters it was 

required to do relevant statistical analysis on the occurrence of the four different nucleotides at 

the 256 different positions in the file. 

4.2 Base-per-position statistics. 

A program was written that could read in the six text files created in the data extraction 

process and could generate a number of arrays that contain the occurrence percentages for 

each n-tuple (from lengths n=1 to n=8) at each position in the sample. The program consists of 

a Matlab section as well as a C-section, which are given in Addendum 4 and 6 respectively. 

The Matlab program, pullData.m, generates the arrays, and calls the C�compiled program 

statistics.c, as a Matlab function. Most of the actual computation is done by the C-section 

because the file handling and computation time in C is much faster than in Matlab. Along with 

the arrays a very large text file is also created that simply stores all of the base count 

information. The number of times each base occurs at each position in each of the samples is 

stored one after the other in the text file. The reason why this very large linear file is generated 
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is because the actual base extraction process takes a long time, so storing it helps when re-

using the data. This text file is called �baseCntN.txt� where N is the n-tuple length (1 for base-

by-base). A second Matlab program pullHalf.m (given in Addendum 5) was written so that it 

is almost identical to pullData.m, with the exception that pullHalf.m does not run the C 

program, but instead extracts the required arrays from the baseCntN.txt text file. Note that the 

size of this text file increases exponentially with n, resulting in very large files for n larger 

than six. The second program cannot be used unless pullData.m had already been used at an 

earlier stage to create the text file. (IN) When calling the Matlab programs pullData.m or 

pullHalf.m the program prompts the user to enter the length of n. This is required to ensure 

that the arrays are the correct size. 

 

All the outputs generated by the Matlab programs are temporary, and stored as Matlab 

variables in memory only; they are never stored in file. The arrays generated by these two 

programs are identical, the only difference is that one (pullData.m) first generates the 

baseCntN.txt text file from the class text files generated in the extraction process, while the 

second (pullHalf.m) only uses the baseCntN .txt text files. 

 

The following six arrays were created, one for each class: 

PositionDataIntron, PositionDataExon, PositionDataE2I, PositionDataI2E, 

PositionDataPromoter,  PositionDataMRNA. 

 

Each Array has 4^n+1 rows and 256-n+1 columns. Each row keeps one of the 4^n possible 

combinations of base length n. All the data are stored as percentage of occurrences, not total 

number of occurrences. The last row (4^n + 1) is used simply as a double-checking measure, 

containing the sum of each column. This value should be 100 for every entry since every 

combination is stored and added; this is not true for the promoter class, however, because 

some of the promoter samples contain unknown bases (marked as N in the sequence) that do 

no contribute to the percentage. The 256-n+1 rows correspond to the possible positions at 

which an n-tuple of length n can occur. For example, there are 256-1+1 = 256 possible 

positions to store a single base, but there are only 256-5+1 = 252 possible starting positions for 

a 5-tuple. 
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Further arrays generated were CountIntron, CountExon, CountI2E, CountE2I, CountPromoter 

and CountMRNA, each with one row only and 4^n columns. They contain the total number of 

times (as a percentage) each n-tuple occurs, disregarding specified position in each of the 

classes. This was used to see if any n-tuple occurs more often, across all positions, in one of 

the classes. 

 

The number of samples used from each of the classes to generate the statistics is also stored in 

the values a-e.  The program flow diagram is given in Figure 8 below. 
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Set n-tuple length

Delete any previous baseCntN.txt files

Call C compiled functon, statistics.c

Load the baseCntN.txt file to a Matlab variable

Select first class, position and n-tuple

Read occurance count

Set to percentage

Store in appropriate array position

Calculate all additional values

All positions done?

Increase position

All n-tuples done?

Change n-tuple

All classes done?

Select next class

Exit program

 Yes 

 Yes 

 Yes 

 
Figure 8: Matlab statistics extraction flow diagram.   
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4.3 Indexing and assigning n-tuple number. 

The flow diagram for the statistics.c program is not given, but the full program can be seen in 

Addendum 6. NNPromoterFind1.0 works through the samples of each class one by one, 

counting the number of times each n-tuple occurs at each position. While the program is active 

the values are stored in a large memory array, and after the program exits it is stored as the 

text file baseCntN.txt. This text file is then loaded into Matlab memory and the separate class 

statistics are extracted to the arrays in the format described earlier. As mentioned previously, 

the statistics program was developed to work with n-tuples ranging from length one to eight. 

For each increase in n, the number of data points stored is multiplied by four. A method had to 

be devised to keep track of each n-tuple, and where it should be stored in the array. To keep 

working with various length text strings directly is too complex, so a unique way to assign a 

number to each n-tuple was developed. The numbering is done in a base-4 mathematics 

system, directly using the four base symbols A, C, G and T with a value assigned to each of 

them. A = 0, C =1, G =2 and T = 3. The method for converting strings to a value is the same as 

converting a decimal value to a binary value. As the base-4 number for each string is unique, 

and ranges from 0 to n^4-1, the number was also used as the index value for all the arrays. 

This reduced complexity and keeps track of where n-tuple strings are stored. The function 

seq2comb() on the CD accompanying this thesis performs this mapping of a string of bases to 

a unique index, whereas the converse function is achieved with the function comb2seq(). 

4.4 Statistical outputs and results 

The programs described in the previous section take the six class text files, created during the 

extraction process, then do a base-by-base (or n-tuple by n-tuple) count and create large arrays 

containing percentage values of how often each n-tuple occurs. For the 1-tuple, for example, 

the following values were obtained: 
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Table 4: Single base statistics 

Variable name:  %A  %C  %G  %T 

countIntron =    28.1184    21.9026    21.6785    28.3005 

countExon  =    24.0237    25.7332    25.1529    25.0901 

countI2E =     24.9636    24.7963    23.5679    26.6722 

countE2I =    22.6953    26.7275    28.8017    21.7755 

countPromoter =    18.2521    30.6166    32.0649    18.7389 

countMRNA =    25.6163   24.7641    25.2560    24.3636 

 

 

From these values one sees that bases C and G seem to be more likely to occur in promoter 

samples, whereas all four bases are almost equally likely in Exons. However, these differences 

are not large enough to form the basis for reliable promoter detection. In order to extract the 

meaningful statistics, further processing is required. 

 

The Matlab function funcDraw.m was written to represent this information graphically. This 

helped to get a better view of the magnitude of the differences that occur within the data. The 

full function is given in Addendum 7, and the input arguments and function options are 

described in Addendum 8.  

 

The main function of the graphs was simply to see where (which position) in the sequence 

there were significant differences between the classes that could be used as distinguishing 

features. Each of the lines in the graph represents one n-tuple (or base). The X-axis for the 

graphs contains the position in the samples, while the Y-axis contains the percentage 

occurrence for the selected n-tuple. The graphs for n-tuples 1 to 5 are given below for the 

equal sized training set (see Table 3, Section 3.4). 

 

From all the n-tuples comparable information can be extracted. All n-tuples are more or less 

equally likely to occur, no matter the position in the sample. For promoters there seem to be 

strong features at position 200, as well as something between position 150 and 200 

(approximately 175). For the mRNA start class the same positions seem to have features (175 

and 200) but the features are less prominent than for the promoters. The I2E splice site shows 
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strong features from 175 to 200, and E2I splices show strong features from 200 to 250. Introns 

and exons show no significant features whatsoever, and each n-tuple seems to be as likely to 

occur as any other. The occurrence percentage for intron and exon samples seems to be 

approximately %100

4 n
for all positions, and all n-tuples.  
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Figure 9: Matlab statistics 1-tuple,  

showing the %occurrence of each of the 4 1-tuples position 1 to 256. 
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Figure 10: Matlab statistics 2-tuple, 

showing the %occurrence of each of the 16 2-tuples position 1 to 255. 
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Figure 11: Matlab statistics 3-tuple, 

showing the %occurrence of each of the 64 3-tuples position 1 to 254. 
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Figure 12: Matlab statistics 4-tuple, 

showing the %occurrence of each of the 256 4-tuples position 1 to 253. 
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Figure 13: Matlab statistics 5-tuple, 

showing the %occurrence of each of the 1024 5-tuples position 1 to 252. 

 

The graphs for the other training sets (see Table 3, Section 3.4) are not given here; they 

contain very similar results.  

 

The conclusions that can be drawn from these graphs are: 

 

Some features (a feature is a specific n-tuple occurring at a specific position) exist that might 

help distinguish between the different classes. 

Most features seem to be within 50 bases from position 200. Remember that the original 

samples were selected in such a manner that the transcription start site, or the exact splice site 

is at position 200. 
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The exact n-tuple and position can be determined with this function using the full function 

capabilities (see Addendum 7.1), but this process is far too complex and slow to determine 

features one by one. 

A better, more reliable method is required to extract the useful features from the statistical 

data. 

4.5 Using entropy as feature significance indicator:  

A quick review on the process so far: 

Samples were generated from EPD and NCBI data. 

The samples were separated into six different classes and into three different sets. 

n-Tuple occurrence statistics were generated on a position specific basis. 

A function was written that displays the position specific statistics in graphs. 

More refinement is required to get useful indicator features from the statistics. 

 

The next section addresses point 5 given above. A well-established method to extract 

meaningful data from a large number of statistical values, based on the entropy of the partition 

induced by a particular feature, was used. We used the definition 









+++−= ...)ln(*)()ln(*)()ln(*)(),(

z
C

z
C

z
B

z
B

z
A

z
A

YXEnt xyxyxyxyxyxy ,  (eq 1) 

where Ent(X,Y) is the entropy of n-tuple X at position Y, and Axy, Bxy and Cxy are the number 

of times n-tuple X occurs at position Y for sample type A, B and C., (In the rest of this 

document, such an XY combination will be called a bin). A, B and C can be any of the classes, 

and the equation can be extended to include all the class types by simply adding terms. Z is the 

sum of Axy, Bxy and Cxy. The most obvious way to use the equation is to use the classes 

Promoter, Intron and Exon for A, B, and C respectively. The lower the entropy, the more 

likely it is for a specific feature to be a useful class indicator, since a low entropy corresponds 

to one of the classes being preponderant. Using entropy is more reliable than simply doing a 

direct comparison between classes, because entropy is based on the relationships between all 

class occurrences. For example, compare the relationship A:B:C = 10:30:10 to A:B:C = 

2:45:3. For both the cases it is obvious that the n-tuple in class B occurs much more frequently 

than both classes A and C. But for the first case the n-tuple occurs only three times as much in 
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class B as in class A and C, while the relationship is more significant for the second example. 

The entropy calculation bears out this expectation. 

Ent(Example 1) = �10/50* ln(10/50) � 30/50*ln(30/50) � 10/50*ln(10/50)  

   = 0.2*1.609 + 0.6*0.511 + 0.2*1.609 

   = 0.9502 

 

Ent (Example 2) = �ln(2/50) � ln(45/50) � ln(3/50)  

   = 0.04*3.219 + 0.9*0.105 + 0.06*2.813 

   = 0.39204 

 

Thus, entropy gives a straightforward indication of the better discriminatory power of example 

2. A Matlab program getEnt5.m (Addendum 8) was written to automatically calculate the 

entropy for each n-tuple at each position for a given length n. This program takes in several 

parameters explained in Addendum 8.3  - amongst others, the n-tuple length, decision 

boundary parameters and, the class for which one is trying to extract features. 

When calculating entropy there is a very important thing to keep in mind, and that is that the 

logarithm of 0 cannot be calculated. That means for each bin a check has to be made to make 

sure that it is not zero, and when it is zero the term should just be ignored. If all the terms are 

zero the entropy cannot be calculated, but obviously if a certain n-tuple does not occur in any 

of the classes it cannot be used as a useful indicator. However it cannot be simply set to zero, 

since entropy works on an inversed scale, where 0 is the best entropy. To overcome this the 

program was written to simply set the entropy to 1 if there is no class that contains at least one 

sample. 

A second problem was that if the total number of occurrences summing the bins for a given 

feature (Z in Equation 1) is not high enough, the feature is not a good indicator even if it 

shows low entropy. For example if Axy = 1, Bxy = 0 and Cxy = 0 then the total entropy would 

be zero, because the Bxy and Cxy terms would be ignored, and the entropy of 1/1*ln(1/1) = 1*0 

= 0. So for all the samples only one contained the feature, but as none of the other classes 

contained it a relationship of A:B:C = (100%) : (0%) : (0%). This seems to be a good feature, 

but, to the contrary, it is not because if there were, say, 1 300 training samples and only one 

contained the feature it is obviously not a good feature to use for classification. This results in 

the problem that low entropy is used to indicate good features, but if the bins do not contain 
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enough values a low entropy is automatically found. To overcome this problem, a minimum 

threshold for bin content was enforced, enforced by the �significance� parameter. Hence, all 

bins containing fewer than a prescribed number of samples were disregarded, even if the 

entropy seems to be low enough to indicate a significant feature. 

 

Note that a low entropy value indicates a good feature, but does not directly indicate which 

class is suggested by the feature. Fortunately, one can simply check which of the bins 

contained the most samples; the class that contains the most samples for the feature is 

suggested by the presence of the feature. 

 

Another thing to keep in mind is that the entropy, when comparing all classes, differs from the 

entropy when comparing only say promoters with introns and exons. Currently, the program 

has only two modes of operation (as seen in Addendum 8.2) for selecting classes. In the one 

mode, it uses the three classes (Promoter, Intron and Exon), and in the second mode the I2E 

and E2I splice classes are added. The mRNA class is never used for entropy calculation, but as 

explained in Chapter 3 this class was only extracted to compare with the promoters 

downloaded from the EPD, and due to automated generation cannot be trusted in any case. 

 

The last phase of the entropy calculation showed the results graphically. Different graphical 

formats were examined to aid in the search for good features. One option was to make a 3-

dimensional plot, with the position on the X-axis, the n-tuple number on the Y-axis and the 

entropy on the Z-axis. Using this one can easily see where the features with low entropy are 

located. In Figure 14 below, the entropy for the 2-tuple training data is given. It can be seen 

that 2-tuple 7 (meaning string �CT� using function comb2seq from Section 4.3.2) has a lower 

entropy, and also that there are several 2-tuples near position 200 that show either very low or 

very high entropy. Rotating the figure so that it is seen directly from above (from the positive 

Z-axis direction), as shown in Figure 15, the same conclusions as above can be drawn by using 

the change in colour as indication. This is useful but not 100% accurate, as the change in 

colour indicates a change in entropy values, but does not give a clear indication of where 

exactly the high and low entropy values are. 
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Figure 14: Sample of 3D entropy plot.   

 

 
Figure 15: Sample of 3D entropy plot, rotated for clearer view. 

2 � Tuple index 
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The next graph was developed (Figure 16) to give the entropy on the Y-axis and the total 

number of occurrences of the tuple (in other words Z in Equation 1) on the X-axis. On this 

graph it is not possible to directly identify features, but it is possible to see what the general 

trend and relationship between feature and their corresponding bin values were. Any point on 

the bottom right of this graph is a good feature, while any point on the top left is a bad feature, 

since data points with low entropy that occur frequently are useful for discrimination.  

 
Figure 16: Sample of 2D entropy plot, including threshold line (parameters �20, 0.9). 

 

The line on the figure indicates a threshold boundary. Every feature below, and to the right of 

the line is identified as a useful feature, while everything above and to the left of the line is 

ignored. The line is mathematically calculated using parameters of the entropy function (see 

Addendum 8.3 for details) and compared with the entropy values calculated. If the entropy 

value is less than the line function value the feature is a good class identifier. Matlab 

automatically generates a text output as shown below. 
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Mean entropy: 1.05433 Min entropy: 0.65833 Max entropy: 1.09861 
 
[199,4,2,0.13552]      0 
[10,6,2,0.23135]      1 
[59,6,2,0.26826]      2 
[92,6,2,0.26674]      3 
[99,6,2,0.28710]      4 
[109,6,2,0.32581]      5 
[113,6,2,0.26112]      6 
.. .. .. 

Extract 8: Matlab entropy outputs. 

 

The text output of Matlab gives the entropy mean, maximum and minimum values for the n-

tuple used. It also provides feature outputs in a format that will later be used directly by the 

artificial neural network. These text outputs are available in Matlab and are also written to a 

text file �features.txt�. The text file also includes all the parameters used to extract the features 

so that it can easily be reproduced at a later stage if required. 

 

The format of the features is: 

[Position, n-tuple #, n-tuple length, 1-Entropy] Sample number. 

The value 1-Entropy is used to get an indication of the strength of the feature. The higher the 

number, the better the feature. No feature with an entropy of more than one will be selected by 

the threshold function, so 1 - Entropy will always be positive. The sample number given after 

the brackets is just to get an indication of how many features for a given n-tuple were selected 

in total. 

 

4.6 Results: The selected features. 

After doing entropy calculations for n-tuples of length one to five, two different sets of 

features were identified that could be used as detection features. Only features that can be used 

to identify promoters were selected at first. Different threshold detection boundaries were used 

for the different n-tuple lengths. In each case an attempt was made to select the optimal 

boundary where all the features have a large number of samples per bin, but still have a low 

entropy value. 
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The following two tables give the two feature sets that were selected for promoter detection. 

All the sets shown below were generated based on the equal sized set, Table 3, using only the 

intron, exon and promoter data sets. Some of the extraction entropy graphs are shown in 

Section 6, but were excluded here to save space. The values in the table are: Firstly, the unique 

n-tuple identification number. Secondly the actual sequence, followed by the position and 

length; then the probability is given that it is a promoter given the n-tuple and position 

combination. The last column is simply the number of the feature in the list. 
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Table 5: 54 Features extracted with entropy calculation. 

 

n-Tuple # String Position Length Probability Feature 
number 

18 CAG 199 3 0.7433 1 
19 CAT 199 3 0.6614 2 
22 CCG 216 3 0.7286 3 
25 CGC 147 3 0.7568 4 
25 CGC 166 3 0.7174 5 
25 CGC 184 3 0.7424 6 
25 CGC 199 3 0.8169 7 
26 CGG 148 3 0.8056 8 
26 CGG 164 3 0.8158 9 
36 GCA 198 3 0.6978 10 
38 GCG 138 3 0.8158 11 
38 GCG 147 3 0.8312 12 
38 GCG 155 3 0.7722 13 
38 GCG 157 3 0.8485 14 
38 GCG 162 3 0.9079 15 
38 GCG 178 3 0.8539 16 
38 GCG 190 3 0.8243 17 
38 GCG 191 3 0.8462 18 
38 GCG 195 3 0.8272 19 
38 GCG 216 3 0.8378 20 
52 TCA 198 3 0.7030 21 
48 ATAA 172 4 0.7887 22 
72 CAGA 199 4 0.8272 23 
75 CAGT 199 4 0.8636 24 
89 CCGC 156 4 0.8919 25 
89 CCGC 216 4 0.9600 26 

100 CGCA 197 4 0.8889 27 
101 CGCC 185 4 0.9143 28 
101 CGCC 196 4 0.8780 29 
105 CGGC 211 4 0.8611 30 
106 CGGG 141 4 0.9615 31 
116 CTCA 197 4 0.8116 32 
146 GCAG 198 4 0.8209 33 
148 GCCA 197 4 0.8281 34 
153 GCGC 166 4 0.9310 35 
153 GCGC 178 4 0.9643 36 
153 GCGC 190 4 0.9600 37 
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154 GCGG 147 4 0.9355 38 
154 GCGG 156 4 0.9333 39 
154 GCGG 157 4 0.9630 40 
154 GCGG 210 4 0.9091 41 
166 GGCG 134 4 0.9286 42 
166 GGCG 146 4 0.9143 43 
166 GGCG 152 4 0.8919 44 
166 GGCG 154 4 0.9118 45 
166 GGCG 156 4 0.9032 46 
166 GGCG 159 4 0.9615 47 
166 GGCG 211 4 0.9118 48 
169 GGGC 110 4 0.9615 49 
170 GGGG 142 4 0.8542 50 
210 TCAG 198 4 0.8209 51 
192 ATAAA 172 5 0.8511 52 
816 TATAA 170 5 0.9512 53 
816 TATAA 171 5 0.9000 54 
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Table 6: 133 Features extracted with entropy calculation. 

 

n-Tuple # String Position Length Probability Total features
11 AGT 200 3 0.7213 1 
17 CAC 199 3 0.6148 2 
18 CAG 199 3 0.7433 3 
19 CAT 199 3 0.6614 4 
20 CCA 198 3 0.6736 5 
21 CCC 62 3 0.5956 6 
21 CCC 158 3 0.5288 7 
22 CCG 145 3 0.6829 8 
22 CCG 182 3 0.7667 9 
22 CCG 216 3 0.7286 10 
24 CGA 199 3 0.7000 11 
25 CGC 10 3 0.8491 12 
25 CGC 43 3 0.6935 13 
25 CGC 82 3 0.6721 14 
25 CGC 123 3 0.7966 15 
25 CGC 139 3 0.8308 16 
25 CGC 146 3 0.7407 17 
25 CGC 147 3 0.7568 18 
25 CGC 157 3 0.7975 19 
25 CGC 166 3 0.7174 20 
25 CGC 184 3 0.7424 21 
25 CGC 185 3 0.7727 22 
25 CGC 190 3 0.8364 23 
25 CGC 196 3 0.8382 24 
25 CGC 199 3 0.8169 25 
25 CGC 210 3 0.7647 26 
26 CGG 141 3 0.6721 27 
26 CGG 148 3 0.8056 28 
26 CGG 164 3 0.8158 29 
26 CGG 183 3 0.8333 30 
26 CGG 196 3 0.8026 31 
26 CGG 219 3 0.7671 32 
29 CTC 197 3 0.5790 33 
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36 GCA 198 3 0.6978 34 
37 GCC 186 3 0.6036 35 
37 GCC 197 3 0.7000 36 
38 GCG 55 3 0.7647 37 
38 GCG 105 3 0.6765 38 
38 GCG 113 3 0.6406 39 
38 GCG 120 3 0.8182 40 
38 GCG 125 3 0.8980 41 
38 GCG 135 3 0.7313 42 
38 GCG 138 3 0.8158 43 
38 GCG 145 3 0.8182 44 
38 GCG 152 3 0.7037 45 
38 GCG 155 3 0.7722 46 
38 GCG 157 3 0.8485 47 
38 GCG 162 3 0.9079 48 
38 GCG 177 3 0.8219 49 
38 GCG 178 3 0.8539 50 
38 GCG 186 3 0.8312 51 
38 GCG 190 3 0.8243 52 
38 GCG 191 3 0.8462 53 
38 GCG 195 3 0.8272 54 
38 GCG 214 3 0.7692 55 
38 GCG 216 3 0.8378 56 
41 GGC 71 3 0.6263 57 
41 GGC 101 3 0.5932 58 
41 GGC 159 3 0.5798 59 
41 GGC 176 3 0.5776 60 
41 GGC 211 3 0.6250 61 
41 GGC 212 3 0.5913 62 
41 GGC 227 3 0.6224 63 
42 GGG 70 3 0.5946 64 
42 GGG 91 3 0.5776 65 
42 GGG 92 3 0.5437 66 
42 GGG 114 3 0.5660 67 
42 GGG 116 3 0.5161 68 
42 GGG 123 3 0.5323 69 
42 GGG 124 3 0.5893 70 
42 GGG 142 3 0.5963 71 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMyybbuurrgghh,,  GG    ((22000055))  



Chapter 4:   Statistical Information Gathering  

_______________________________________________________________________________ 
Electrical, Electronic and Computer Engineering      53 
 

42 GGG 143 3 0.6855 72 
42 GGG 145 3 0.6330 73 
42 GGG 149 3 0.5455 74 
42 GGG 155 3 0.5714 75 
42 GGG 178 3 0.5167 76 
52 TCA 198 3 0.7030 77 
54 TCG 244 3 0.6129 78 
63 TTT 147 3 0.5375 79 
48 ATAA 172 4 0.7887 80 
72 CAGA 199 4 0.8272 81 
75 CAGT 199 4 0.8636 82 
89 CCGC 102 4 0.8966 83 
89 CCGC 138 4 0.9231 84 
89 CCGC 156 4 0.8919 85 
89 CCGC 216 4 0.9600 86 
89 CCGC 246 4 0.9231 87 
100 CGCA 197 4 0.8889 88 
101 CGCC 185 4 0.9143 89 
101 CGCC 196 4 0.8780 90 
102 CGCG 136 4 0.9259 91 
102 CGCG 177 4 0.9286 92 
105 CGGC 211 4 0.8611 93 
106 CGGG 141 4 0.9615 94 
106 CGGG 157 4 0.9231 95 
116 CTCA 197 4 0.8116 96 
146 GCAG 198 4 0.8209 97 
148 GCCA 197 4 0.8281 98 
153 GCGC 166 4 0.9310 99 
153 GCGC 178 4 0.9643 100 
153 GCGC 190 4 0.9600 101 
154 GCGG 122 4 0.8378 102 
154 GCGG 141 4 0.8571 103 
154 GCGG 147 4 0.9355 104 
154 GCGG 153 4 0.9310 105 
154 GCGG 155 4 0.9231 106 
154 GCGG 156 4 0.9333 107 
154 GCGG 157 4 0.9630 108 
154 GCGG 181 4 0.8966 109 
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154 GCGG 195 4 0.8966 110 
154 GCGG 210 4 0.9091 111 
154 GCGG 220 4 0.9286 112 
166 GGCG 71 4 0.8966 113 
166 GGCG 124 4 0.9000 114 
166 GGCG 134 4 0.9286 115 
166 GGCG 146 4 0.9143 116 
166 GGCG 152 4 0.8919 117 
166 GGCG 154 4 0.9118 118 
166 GGCG 156 4 0.9032 119 
166 GGCG 159 4 0.9615 120 
166 GGCG 211 4 0.9118 121 
169 GGGC 110 4 0.9615 122 
169 GGGC 143 4 0.8571 123 
170 GGGG 142 4 0.8542 124 
170 GGGG 155 4 0.8571 125 
210 TCAG 198 4 0.8209 126 
192 ATAAA 171 5 0.8750 127 
192 ATAAA 172 5 0.8511 128 
290 CAGAG 199 5 0.8710 129 
331 CCAGT 198 5 0.8621 130 
816 TATAA 170 5 0.9512 131 
816 TATAA 171 5 0.9000 132 
840 TCAGA 198 5 0.8846 133 

 

 

From these features it can be seen that most promoters seem to come from regions with higher 

GC values. This corresponds to the theoretical evidence that one might have to look for GC-

rich areas. The second thing to notice is that there does seem to be some form of TAT box at 

position 170 or 171. This was also predicted from earlier experimental work. 
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5 CHAPTER 5: THE ARTIFICIAL 

NEURAL NETWORK 
 
 
 
 

5.1 Selecting a neural network. 

After creation of the features, a suitable classifier was selected for classification of the 

samples. The main reason for selecting an artificial neural network was based on the fact that 

the underlying relationship between the features is unknown, as mentioned in the discussion of 

the relevant literature. Statistically, the selected features occur more frequently, but we do not 

know anything about their interrelationships. An ANN is easy to implement, and can create a 

model of arbitrarily complex interrelationships [Bishop]. ANNs are commonly used and have 

well-understood training algorithms. As the aim of this project is not to develop new 

classification algorithms, but rather to classify accurately, using an ANN was a logical choice. 

 

Using ANNs does require a certain amount of care. They can suffer from over-training, which 

leads to bad generalisation. This happens when a training set is not very large compared to the 

number of parameters in the network. A network trained on a small training set can learn the 

exact set instead of learning the underlying features. An over-trained network can be seen as 

something equivalent to a lookup table, where each input simply corresponds to a pre-defined 

output. When the network is presented with previously unseen samples, however, it will then 

not necessarily make a good classification. 

A second problem, illustrated below with the case of a simple 2 input XOR system is that an 

incomplete set of training inputs can give unwanted results. If, for example, only cases (1), (2) 

and (3) below were used to train a classification network the network will learn that if the first 

value is a 1 the input is always 1, and if the first input is 0 the output is equal to the second 

input.  
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This will lead to an incorrect conclusion that 1 XOR 1 should be 1. 

(1) 0 XOR 0 = 0  

(2) 0 XOR 1 =1 

(3) 1 XOR 0 = 1  

(4) 1 XOR 1 = 0 

This illustrates the problem in that a large enough training set is a requirement to create a 

reliable classification system when using a neural network (or any other trainable classifier). 

 

5.2 The network structure. 

5.2.1 Normal ANN structure. 

A detailed description of artificial neural networks and the relevant mathematical derivations 

are given in Bishop [13], Negnevistky [14] and Russell [15] and will only be summarized 

here.  An artificial neural network consists of several layers of neurons, with all the neurons in 

a layer typically having the same transfer function. A neuron is the basic component of the 

neural network, and each layer in the network contains at least one neuron. These neurons are 

abstractions of the neurons found in the human brain in both structure and functionality. 

Figure 17, below, shows the structure of a single neuron. 

 
 

Figure 17: A single neuron structure as used in an ANN. 
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Briefly, it takes several inputs, multiplies each input with an independent weight factor, 

calculates the sum of these products, and then passes the answer through an activation (or 

transfer) function. The output of the neuron is the value of this activation function. 

 

For example, the Sigmoid activation function is  

 

 

Ze
Ysig −+

=
1

1
 (eq 2) 

with 

∑
=

=
n

i
iiwxZ

1
  (eq 3) 

the weighted sum of the inputs. 

Other activation functions exist, for instance the step function, sign function and linear 

activation function [13-15].  

 

These neurons are combined in layers to form the total neural network structure as shown in 

Figure 18 below. 
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Figure 18: Total artificial neural network structure. 

 

 

 

5.2.2 The three layers. 

The three layers of the ANN are the input-, hidden- and output layers. The input layer simply 

takes a single feature vector from each sample and propagates it to all the hidden neurons via 

the input-to-hidden weights. Note that there is no activation function in the input layer � each 

input neuron equals the value of one of the features in the feature vector.  
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The hidden layer is the first actual calculation layer. It takes all the weighted inputs, and 

performs the sigmoid activation function on the weighted sum. Note that each line in Figure 

18 can be seen as both a path of information travel as well as a unique weight. When working 

with ANNs it is common practice to use the subscript numbers to address each of the weights. 

That is, we refer to weightSource Destination with both the source and the destination being neuron 

numbers; the source is in the input layer and the destination in the hidden layer The function 

of the hidden layer is to mathematically combine all the input features. Each unit derives a 

different, unique combination of inputs. This information is then transferred to the output 

neuron. 

 

The output layer can, in general, consist of several neurons, but for the classification network 

used by NNPromoterFind1.0 a single output neuron is used. This neuron takes the 

combinations from the hidden neuron, once again applying weighting and an activation 

function and comes up with a single value. This is the output of the ANN. 

 

The input and hidden layers should also contain one biasing neuron. While each neuron in the 

network can be seen as a �soft� threshold function between different inputs the biasing neuron 

is used to move around the threshold to ensure that the threshold is not simply a line through 

the origin, but a line that can be located appropriately in n-dimensional space. The value for 

the bias neuron is a constant �1, but the weights are used exactly as for normal inputs. 

 

5.2.3 Layer implementation for NNPromoterFind1.0 

The implementation of the input layer is done based directly on the features derived in Section 

4.6. on a one-to-one basis. For each feature a single input neuron is used plus one additional 

input for biasing. That means that two different ANNs were implemented, one with 55 inputs 

and one with 134 inputs. 
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There is no mathematically proven way to select the number of hidden neurons. For each 

hidden neuron a unique combination of inputs is calculated, and there can be an infinite 

number of combinations. The assumption was made that the number of combinations should 

be about one third of the number of inputs. This assumption was made after several different 

numbers of hidden neurons were used and tested. 

 

A single output is used and the output simply states whether a sample belongs to the promoter 

class or not. Ideally the output should be 1 for promoters and 0 for non-promoters. 

 

5.2.4 The network training process. 

Much research has been performed on the training of neural networks. The simple back-

propagation training method was selected for NNPromoterFind1.0 because it is easy to 

implement and proven to be effective. The flow diagram shown below can be used to get an 

abbreviated idea of how the training process works. The samples are selected one by one from 

the training set, and the features are then extracted. The features selected by the entropy 

measure are kept in a list so that they can easily be found in each sample. If a feature is found 

in a sample the corresponding input is set to 1, otherwise it is set to 0. The features are then 

propagated to the hidden layer. The hidden neuron applies the appropriate weight multiplier to 

each input, and sums the totals. The Sigmoid activation function is then applied to the sum and 

the output is propagated further to the output layer. This is done for each hidden neuron in 

turn, each applying a unique set of weights. The output neuron repeats the weighting, 

summing and activation to get the final output. The final output is then compared to the 

desired output. For each sample in the training set the output is known beforehand, as the class 

is known. If the sample is from the promoter class the desired output is 1, otherwise it is 0.  

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMyybbuurrgghh,,  GG    ((22000055))  



Chapter 5:   Artificial Neural Network  

_______________________________________________________________________________ 
Electrical, Electronic and Computer Engineering      61 
 

Extract the features

Copy feature values to Input neurons

Propagate Inputs to Hidden layer

Weight, Sum and calculate activation

Compare calculated output with desired output

Add to total error

Was all the samples used yet?

Select first sample

Select next sample

Stop error reached?

Propagate Hidden layer outputs to Output layer

Weight, Sum and calculate activation

 Yes 

Calculate output and hidden error gradient

Max number of epochs reached?

Increase Epoch

Stop

Update weights

 Yes 

 Yes 

 
Figure 19: Network training process. 
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The difference between the calculated output and desired output is then calculated by 

subtraction and squaring. This error is calculated for each of the samples in the training set, 

and added together. This is called the sum of squared errors, SSE1.  The desired SSE should be 

close to 0 if the network has been trained well, with a fully trained, 100% effective network 

resulting in an SSE of exactly 0. The scale of the error is set by the fact that there are 1300 * 5 

= 6500 samples, the worst-case SSE therefore being 6500. (If this arises every sample is 

classified incorrectly.) A stopping SSE of about 220 was reached, meaning a total error of 

about 3.5%. This error is propagated backwards from the output layer to the input layer, hence 

the algorithm name: back-propagation. This is done by first calculating the output layer error 

gradient, then the hidden layer error gradient. 

 

Because the SSE can possibly never reach the minimum stopping requirement [Bishop] a 

second method is required to stop the training process. This is done by simply setting a 

maximum number to the epochs after which the training is stopped. (An epoch is one 

presentation of each sample in the training set,).  Each weight in the system is changed once 

during each epoch to attempt to get a smaller SSE. If the network topology is known the 

network can easily be reproduced if all the weights in the network are stored. 

 

5.3 Software implementation. 

5.3.1 The training program. 

A program �workANN.c� given in Addendum 9 was written to implement the training process 

as described in the flowchart in Figure 19. Before the training process can begin an additional 

step is required: combining the different classes into one single file. For this purpose the 

program �ClassCombine.c� given in Addendum 10 was written. This program is very similar 

to the program �ClassSets.c� given in Addendum 3.  ClassSets.c was used to split a single 

class into the three different sets. ClassCombine.c is used to take all the class files for a single 

set and combine it into one sample file. The different classes in the output file, samples.txt are 

randomly distributed in the output file for training purposes. Note that this program should be 

run once for each of the three sets. All three times the output filename will be the same: 
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samples.txt. The test set file should then be manually renamed to testsamp.txt for use in the 

ANN training and testing programs. 

 

This text file that contains all the samples for a certain class is one of the inputs required to 

perform the training process. The other required inputs are shown in Figure 20 below. 

Changing these inputs allows one to work with various options and for various training depths. 

One important shortcoming of this version of the training program is that the size of the 

network, in other words the number of input and hidden neurons, cannot be changed directly 

by the user. The only way to change these is to manually change them in the program code 

and then recompile the program. This obvious limitation is addressed in Chapter 7. 

User Inputs

Number of epochs

First SSE for output

Last SSE for output

File inputs

Samples.txt

TestSamp.txt

Features.txt

Pre-Compile inputs

Number of Inputs

Number of Hidden units

File Output

OutFile.txt

ANN Training

 
Figure 20: ANN file and user I/O. 

The program opens the feature.txt file to extract and store a list of the features that will be 

used as network inputs. Next, the samples.txt file containing all the samples from the complete 

training set is opened, and the features from the feature list are extracted from the samples. A 

list of features for each sample is then stored in memory. This uses a large amount of memory 

but drastically decreases the training time. The training process is then done as described 

earlier, training until either the maximum selected number of epochs is reached, or the 

minimum required SSE is obtained. The training process is then stopped and the final output 

file is generated.  
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The output file generated during the training step is a text list of all the weights generated by 

the ANN configuration. For each weight a single number is stored, one per line. The file also 

contains some information of when the weights were stored during the training process, as 

well as the number of input and hidden units used. The output file is rewritten multiple times 

during the training process. This is done to ensure that if a run is prematurely terminated (e.g. 

due to a power failure) , the entire training process is not lost. Starting with the initial SSE, 

and then for every SSE reduction of 10 units, all system weights are written to the output fie. 

Text files were used rather than binary files to enable the user to inspect and manually change 

the weights. Inspection is useful, since it allows the user to see how the different features 

interact by looking at where the weights are combined to make a neuron fire. 

 

The following extract shows the text output that is produced when the training program is run. 

The current SSE is given along with the epoch number. The last value displayed is the 

learning rate of the training algorithm (alpha). This value is adapted after each epoch so that 

that the training rate is increased when going in the right direction, and decreased when 

negative changes are made. Each time the weights are written to the output file a prompt is 

displayed showing the user what the exact SSE was for that specific case. 

 
Training started: . 
SSE: 403.6532   Epoch: 0 of 100 Alpha 0.105000. 
SSE: 429.2585   Epoch: 1 of 100 Alpha 0.073500. 
SSE: 432.0001   Epoch: 2 of 100 Alpha 0.077175. 
SSE: 403.4374   Epoch: 3 of 100 Alpha 0.081034. 
SSE: 371.8850   Epoch: 4 of 100 Alpha 0.085085. 
SSE: 338.7242   Epoch: 5 of 100 Alpha 0.089340. 
SSE: 316.4705   Epoch: 6 of 100 Alpha 0.093807. 
SSE: 304.8020   Epoch: 7 of 100 Alpha 0.098497. 
SSE: 298.4278   Epoch: 8 of 100 Alpha 0.103422 
Train output file opened on error 298.428(300.000). 
SSE: 294.5162   Epoch: 9 of 100 Alpha 0.108593. 
SSE: 291.9166   Epoch: 10 of 100        Alpha 0.114023. 

 

Extract 9: Training process output. 
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5.3.2 The percentage of samples used. 

When the program workANN.c is run only some of the promoter training samples are actually 

used. This is a direct result from the way the features were selected based on the entropy. 

Some of the actual promoters do not contain any of the classification features. In the example 

shown in Extract 12, below, there were 341 of the 1300 promoters that did not contain a single 

feature. This is very bad for the training process as 26% of the promoters contain inputs of 0 

for all the features, which is the same inputs found in the typical non-promoter. This means 

negative training will take place for these features. A check is also performed to see how many 

of the non-promoter samples contain non-zero inputs. In the example shown only 13.13 % of 

the non-promoters have features that are the same as the actual promoters. The other 86.87% 

have all-zero inputs. 

 
Undetectable samples: 341, train on 73.77 percent of the samples. 
Perfect negative samples: 4517, (13.13 percent needs training) 

Extract 10: Training percentages. 

 

These numbers were taken from the ANN with 55 inputs and 20 hidden units. When the larger 

system was implemented and 134 inputs were used, both these numbers were increased. That 

means that more promoters were actually used for the training (which is good) but also that 

more non-promoters contained positive features (which is bad). In Chapter 6, where the final 

results are given, this will be addressed again. The percentage of promoter samples used were 

increased from 73.77% to 93.23%, which is useful, but suggests that there is still more room 

for improvement. 

 

5.3.3 The testing program. 

The final step in our development was to test the trained network using the test and validation 

set.s A last program, LoadANN.c, given in Addendum 11, was written to test the network 

performance. The user must supply the number of input and hidden units used in the network. 

This program uses the weight output file that was generated during the training process as 

input. An ANN is configured, and the weights are read from the file outFile.txt. The feature 

file with the detection features selected by the entropy process is then opened and the desired 

features are loaded into the program. The file testSamp.txt, which contains the randomly 

distributed test set samples, is then opened and a feature list is again generated in memory. 
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The final step is for the user to input a threshold value used for the final classification. The 

aim of the program is to generate an output of 1 for all promoter classes and 0 for all non-

promoters, but the final system supplies a number between 0 and 1 for all samples introduced, 

and unfortunately most of these values are very similar for samples from both classes. All 

values higher than the user-selected threshold are classified as promoters and all values below 

the threshold are classified as non-promoters. 

 

The samples are then introduced to the ANN one by one for classification. The number of 

false detections (FD1) and false rejections (FR2), as well as the number of true detections  

(TD3) and true rejections (TR4) are counted and saved. These values are required to make a 

final assessment of how accurate the classifier is. The performance measure is computed based 

on the equations used by Bajic et al. [7] that define sensitivity and positive prediction values 

(PPV5). This is done to ensure that different detection systems can reliably be compared with 

one another. The sensitivity is a measure of how many actual promoters are detected and 

correctly classified. The sensitivity value is calculated by 

FRTD
TDSen

+
= *100    (eq 4) 

Higher sensitivity values mean that more promoters are correctly classified. 

The other measure of accuracy is the positive prediction value calculated by 

FDTD
TDPPV

+
= *100 ,  (eq 5) 

which is a measure of how many non-promoters were incorrectly classified as promoters.  

All of these values are supplied directly to the user in the form of text output as shown in the 

example below. 
True detections:  113   True rejections:  686 
False detections: 14    False rejections: 237 
PPV: 88.976378 
Se: 32.285714 
Detection threshold: 0.950000 

Extract 11: Performance output. 

                                                
1 FD � False detections 
2 FR � False rejections 
3 TD � True detections 
4 TR � True rejections 
5 PPV � Positive prediction value 
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There is usually a very strong trade-off between sensitivity and PPV. Lowering the detection 

threshold increases the sensitivity because more promoters are correctly identified, but it 

lowers the PPV since more non-promoters are also identified as promoters.
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6 CHAPTER 6: SYSTEM TESTS AND 

RESULTS 
 
 
 

6.1 Data flow through entire process. 

The following three figures show the entire data lifetime from raw data through to the final 

sensitivity and PPV calculations for NNPromoterFind1.0. 

NCBI Chromosomes
IntronD.txt

e2iSplice.txt

i2eSplice.txt

startSeq.txt

hsv2.txtEPD Promoters

Extract.c ClassSets.c Test Set

Training Set

Validation Set

ExonD.txt

 
 
Figure 21: Raw data files to sets. 
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Test Set

Training Set

Validation Set

ClassCombine.c Samples.txt

PullData.m

Statistics.c

Matlab Arrays

BaseCntN.txt

getMax.m

getEnt5.m

funcDraw.m

Entropy Graphs

Output Graphs

Features.txt

ClassCombine.c TestSamp.txt

 
Figure 22: Sets to statistic graphs and entropy features. 

 

 

Samples.txt

TestSamp.txt

Features.txt

User Inputs
# Inputs

# Hidden Units

WorkANN.c

LoadANN.c

OutFile.txt

#FD #FR #TR #TD

PPVSensitivity
 

Figure 23: Features and sample data to sensitivity and PPV. 
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6.2 The first outputs. 

6.2.1 Data files. 

The first outputs of the system are the six text files containing the samples for each class. 

These results are not shown here - they are long lists of nucleotide sequences with no obvious 

meaning. These were then split into three sets with the numbers as shown in Figure 3. Most of 

the work was done on the equal- sized,  since the prior probabilities are not known for real 

genetic DNA.  

 
6.2.2 Statistics graphs. 

The next outputs obtained were the statistical graphs that were presented in Section 4.4. These 

graphs can be directly used to establish a good idea of where the actual classification features 

are located in the samples. Although of little direct use, they are useful to guide the search for 

features, and to confirm the average frequency of the different n-tuples. 

6.3 Entropy outputs. 

The first directly useful outputs were the entropy outputs given in the following few pages. 

These graphs display the entropy outputs used to extract the 54 input features of the ANN. The 

54 features are given in the exact format used in features.txt as given by the Matlab program 

getEnt5.m. Each graph is the entropy for a single selected n-tuple with the threshold function 

parameters given as well. Only the first 3D-plot is given since the second graph along with the 

text output is more significant. They were extracted from the equal sized data set (See Table 3) 

using only the intron, exon and promoter samples. When the I2E and E2I-splices were 

included for entropy calculations it was found that they have very strong features, so strong 

that the promoter features are totally dwarfed. Because the main aim is to extract promoters 

not splices, the splice features were excluded. A better system, which incorporates the splice 

features, is suggested in Chapter 7. 
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Figure 24: 3D- plot of the 3-tuple entropy data. 

 

Entropy selection parameters: 

3-tuple      

Threshold parameters �16; 0.7 

Equal sized training set.    

Search for promoter. 

Note that the strongest features seem to be at n-tuple 25 and 38 judging by the dip in the 

graph. This is confirmed by the outputs of the second graph, Figure 25. 
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Figure 25: Entropy plot of 3-tuple data. Selected samples under the threshold line. 

 

Entropy selection parameters: 

3-tuple      

Threshold parameters �16; 0.7 

Equal sized training set.    

Search for promoter. 

Entropy, significance 25 

 
[216,22,3,0.57501]     0 
[147,25,3,0.60624]     1 
[199,25,3,0.61417]     2 
[148,26,3,0.61546]     3 
[138,38,3,0.56251]     4 
[147,38,3,0.56127]     5 
[155,38,3,0.67544]     6 
[157,38,3,0.57613]     7 
[162,38,3,0.52142]     8 
[178,38,3,0.52142]     9 
[190,38,3,0.58469]     10 
[191,38,3,0.63418]     11 
[195,38,3,0.56251]     12 
[216,38,3,0.51444]     13 
Useable points: 14 
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Figure 26: Entropy plot of 3-tuple data, different threshold settings. 

 

Entropy selection parameters: 

3-tuple 

Threshold parameters  �16; 0.9 

Equal sized training set.    

Search for promoter. 

Entropy, significance 80 
[199,18,3,0.28021]     0 
[199,19,3,0.23532]     1 
[166,25,3,0.40770]     2 
[184,25,3,0.30368]     3 
[164,26,3,0.41248]     4 
[198,36,3,0.32044]     5 
[198,52,3,0.20369]     6 
Useable points: 7 
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Figure 27: Entropy plot of 4-tuple data. 

Entropy selection parameters: 

4-tuple   

Threshold parameters  �16; 0.85 

Entropy, significance 25 
[172,48,4,0.37865]     0 
[199,72,4,0.41984]     1 
[199,75,4,0.50717]     2 
[156,89,4,0.58252]     3 
[216,89,4,0.83206]     4 
[197,100,4,0.57639]     5 
[185,101,4,0.65293]     6 
[196,101,4,0.56818]     7 
[211,105,4,0.59706]     8 
[141,106,4,0.83698]     9 
[197,116,4,0.39057]     10 
[198,146,4,0.42925]     11 
[197,148,4,0.42849]     12 
[166,153,4,0.74905]     13 
[178,153,4,0.84592]     14 
[190,153,4,0.83206]     15 
[147,154,4,0.76078]     16 
[156,154,4,0.75507]     17 
[157,154,4,0.84159]     18 
[210,154,4,0.63750]     19 
[134,166,4,0.74268]     20 
[146,166,4,0.70749]     21 
[152,166,4,0.58252]     22 
[154,166,4,0.70156]     23 
[156,166,4,0.68206]     24 
[159,166,4,0.83698]     25 
[211,166,4,0.64540]     26 
[110,169,4,0.83698]     27 
[142,170,4,0.48500]     28 
[198,210,4,0.40832]     29 
Useable points: 30 
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Figure 28: Entropy plot of 5-tuple data. 

 

Entropy selection parameters: 

5-tuple      

Threshold parameters �16; 0.85 

Equal sized training set.    

Search for promoter. 

Entropy, significance 25 

 
[172,192,5,0.51806]     0 
[170,816,5,0.80509]     1 
[171,816,5,0.61868]     2 
Useable points: 3 

 

The features shown above are those that were finally selected for the detection ANN. By 

changing the parameters of the threshold function the number of features can be increased or 

decreased.  For example, in Figure 28 a feature is shown for a bin containing 43 points, whose 

entropy falls just above the threshold line. However the feature selected from the bin 

containing 47 points (on the edge of the graph) has the same entropy, but falls below the 

selection threshold. By raising the threshold slightly, both these points can be included. A few 
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different feature sets were chosen, but only the 54-feature (55 input) and 133-feature (134 

input) ANNs were fully trained and tested. 

This is one of the areas where further work can still be done as discussed in Chapter 7. 

Another thing to note is that if the larger training set, which contains more than 37 000 

samples, is used, a different feature set might arise. This is due to the fact that the number of 

promoters is kept more or less the same in the region of 1 300, while the non-promoters are 

raised from 5 200 to about five times that number.  

 
Figure 29: Entropy plot of 3-tuple data, large data set. 

Entropy selection parameters: 

3-tuple 

Threshold parameters  �16; 0.7 

Equal sized training set.    

Search for promoter. 

Entropy, significance 25 

0 -Promoter points 

14 -Intron points 

0 -Exon points 
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Figure 30: Entropy plot of 3-tuple data, large data set, shifted threshold 

 

Entropy selection parameters: 

3-tuple 

Threshold parameters  �16; 0.9 

Equal sized training set.    

Search for promoter. 

Entropy, significance 80 

0 -Promoter points 

3782 -Intron points 

398 -Exon points 

 

This is also a clear example of a bad threshold. The aim of the threshold in the entropy 

calculations is to isolate the most significant data points. In the case shown above it simply 

cuts the main cluster of data points in two. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMyybbuurrgghh,,  GG    ((22000055))  



Chapter 6:   System Tests and Results  

_______________________________________________________________________________ 
Electrical, Electronic and Computer Engineering      78 
 

 
Figure 31: Entropy plot of 4-tuple data, large data set. 

 

Entropy selection parameters: 

4-tuple 

Threshold parameters  �16; 0.85 

Equal sized training set.    

Search for promoter. 

Entropy, significance 25 

0 -Promoter points 

1053 -Intron points 

4 -Exon points 

  

These three graphs show exactly why the smaller set was selected to get the classification 

features and not the larger ones. In the larger sets the non-promoter samples outnumber the 

promoter samples by six to one and five to one, respectively. This means that the entropy 

equation is dominated by the contribution of the non-promoters. To get a more useful 

calculation of entropy, the number of intron samples in each position-n-tuple bin should be 
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divided by six, and the number of exon samples should be divided by five before they are 

inserted into the entropy calculation. This can be done in the current case, since the 

relationships are known, but if other data sets are used then the program getEnt5.m has to be 

manually changed to adapt to the prior probabilities of the classes. In this fashion, the 3-tuple 

case was recalculated with a modified version of getEnt5.m (with the prior probabilities 

included). 

 
Figure 32: Entropy plot of 3-tuple data, large data set with prior-probabilities. 

 

Entropy selection parameters: 

3-tuple 

Threshold parameters  �16; 0.7 

Equal sized training set.    

Search for promoter. 

Entropy, significance 25 

1 -Promoter points 

[162,38,3,0.50049]     0 
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Although this graph only selected a single feature as a good promoter feature the entire data 

clustering looks a lot more like it had when the equal sized set was used. The point extracted: 

3-tuple number 38 at position 162 is one of the features that had been selected by the equal 

sized training set as well, the point marked 8 below Figure 25. 

 

In the end, however, only the features given in Table 5 were used to train the 55-input ANN, 

and the features given in Table 6 were used to train the 134-input ANN. 

 

6.4 ANN Results. 

This section contains the final result if our research. The performance of the entire 

classification system is reflected here, in terms of the sensitivity and PPV measures obtained. 

Many different combinations of inputs and hidden units were tried, and the results of all the 

various trials will not be given here. The 55 input-, 20 hidden ANN configuration gave the 

best final results but used only 73% of the training promoter samples. The 134 input-, 49 

hidden ANN configurations gave similar results but used 20% more of the input training 

samples, so in the end the second configuration should give a better generalization but with 

much longer training periods. 

 

The first results were generated using the ANN with 55 Inputs, 20 Hidden Units, 1 Output, 

trained with the equal-sized training set. It trained for 164 epochs, resulting in a final SSE of 

250. Table 6 and Figure 33 below give the results using different detection thresholds. The 

first group of results used only the promoter, intron and exon data of the test set. The second 

group used the same test set again, but with the splice samples included. The third set used the 

equal-sized validation set with the splices excluded once again, and lastly all the samples in 

the validation set were used.  This format is used for the next three results as well. 

 

The second set of results are from the same ANN, 55 Inputs, 20 Hidden units, 1 Output but 

trained on the large training set. It trained for 115 epochs to a final SSE of 640. The results are 

shown in Table 7 and Figure 34. 
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The third was taken from the large ANN, 134 Inputs, 49 Hidden units, 1 Output, trained on the 

equal sized training data. This time the training lasted for 84 epochs resulting in a final SSE of 

180. Table 8 and Figure 35 below give the final output results. 

 

Lastly, the large ANN was trained using the large training data. The ANN was trained for only 

19 epochs, to a SSE of 590. This looks far worse than the first small ANN, but each epoch 

involves far more weight training than the small ANN and small data set. The results are given 

in Table 9 and Figure 36. 

 

Table 7: Final results on equal sized training set, 50-20-1 ANN. 

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 350 700 1050 0.98 339 689 11 11 96.86 32.98 

          350 700 1050 0.985 239 80 620 111 68.29 74.92 

          350 700 1050 0.99 233 74 626 117 66.57 75.90 

          350 700 1050 0.999 137 20 680 213 39.14 87.26 

          350 700 1050 0.9999 91 6 694 259 26.00 93.81 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 350 1400 1750 0.98 339 1383 17 11 96.86 19.69 

          350 1400 1750 0.985 239 177 1223 111 68.29 57.45 

          350 1400 1750 0.99 233 164 1236 117 66.57 58.69 

          350 1400 1750 0.999 137 44 1356 213 39.14 75.69 

          350 1400 1750 0.9999 91 18 1382 259 26.00 83.49 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 221 442 663 0.98 211 437 5 10 95.48 32.56 

          221 442 663 0.985 136 72 370 85 61.54 65.38 

          221 442 663 0.99 134 71 371 87 60.63 65.37 

          221 442 663 0.999 65 13 429 156 29.41 83.33 

          221 442 663 0.9999 47 7 435 174 21.27 87.04 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 221 884 1105 0.98 211 868 16 10 95.48 19.56 

          221 884 1105 0.985 136 129 755 85 61.54 51.32 

          221 884 1105 0.99 134 124 760 87 60.63 51.94 

          221 884 1105 0.999 65 32 852 156 29.41 67.01 

          221 884 1105 0.9999 47 17 867 174 21.27 73.44 
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Result Plot: Equal sized data set. 55-20-1 ANN

Test set, splices excluded.      
Full test set.                   
Validation set, splices excluded.
Full validation set.             

 
Figure 33: Sensitivity VS. PPV of equal size training set, small ANN. 
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Table 8: Final results on large training set, 50-20-1 ANN. 

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 383 3396 3779 0.00001 380 3385 11 3 99.22 10.09 

          383 3396 3779 0.000015 253 512 2884 130 66.06 33.07 

          383 3396 3779 0.00004 239 498 2898 144 62.40 32.43 

          383 3396 3779 0.0001 204 338 3058 179 53.26 37.64 

          383 3396 3779 0.0004 155 238 3158 228 40.47 39.44 

          383 3396 3779 0.001 130 145 3251 253 33.94 47.27 

          383 3396 3779 0.01 44 11 3385 339 11.49 80.00 

                              

Yes Yes Yes Yes Yes 383 7437 7820 0.00001 380 7417 20 3 99.22 4.87 

          383 7437 7820 0.000015 253 1075 6362 130 66.06 19.05 

          383 7437 7820 0.00004 239 1025 6412 144 62.40 18.91 

          383 7437 7820 0.0001 204 691 6746 179 53.26 22.79 

          383 7437 7820 0.0004 155 447 6990 228 40.47 25.75 

          383 7437 7820 0.001 130 278 7159 253 33.94 31.86 

          383 7437 7820 0.01 44 28 7409 339 11.49 61.11 

                              

Yes Yes Yes No No 194 1448 1642 0.00001 189 1441 7 5 97.42 11.60 

          194 1448 1642 0.000015 131 214 1234 63 67.53 37.97 

          194 1448 1642 0.00004 125 201 1247 69 64.43 38.34 

          194 1448 1642 0.0001 108 148 1300 86 55.67 42.19 

          194 1448 1642 0.0004 83 113 1335 111 42.78 42.35 

          194 1448 1642 0.001 69 69 1379 125 35.57 50.00 

          194 1448 1642 0.01 31 6 1442 163 15.98 83.78 

                              

Yes Yes Yes Yes Yes 194 3238 3432 0.00001 189 3229 9 5 97.42 5.53 

          194 3238 3432 0.000015 131 475 2763 63 67.53 21.62 

          194 3238 3432 0.00004 125 444 2794 69 64.43 21.97 

          194 3238 3432 0.0001 108 317 2921 86 55.67 25.41 

          194 3238 3432 0.0004 83 213 3025 111 42.78 28.04 

          194 3238 3432 0.001 69 124 3114 125 35.57 35.75 

          194 3238 3432 0.01 31 10 3228 163 15.98 75.61 
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Test set, splices excluded.      
Full test set.                   
Validation set, splices excluded.
Full validation set.             

 
Figure 34: Sensitivity vs. PPV of large training set, small ANN. 
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Table 9: Final results on equal sized training set, 134-49-1 ANN. 

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 350 700 1050 0.98 318 275 425 32 90.86 53.63 

          350 700 1050 0.985 316 268 432 34 90.29 54.11 

          350 700 1050 0.99 307 220 480 43 87.71 58.25 

          350 700 1050 0.999 272 127 573 78 77.71 68.17 

          350 700 1050 0.9999 222 65 635 128 63.43 77.35 

          350 700 1050 0.99999 184 40 660 166 52.57 82.14 

          350 700 1050 0.999999 159 25 675 191 45.43 86.41 

          350 700 1050 1 6 0 700 344 1.71 100.00

                              

Yes Yes Yes Yes Yes 350 1400 1750 0.98 318 536 864 32 90.86 37.24 

          350 1400 1750 0.985 316 524 876 34 90.29 37.62 

          350 1400 1750 0.99 307 438 962 43 87.71 41.21 

          350 1400 1750 0.999 272 246 1154 78 77.71 52.51 

          350 1400 1750 0.9999 222 132 1268 128 63.43 62.71 

          350 1400 1750 0.99999 184 79 1321 166 52.57 69.96 

          350 1400 1750 0.999999 159 45 1355 191 45.43 77.94 

          350 1400 1750 1 6 0 1400 344 1.71 100.00

                              

Yes Yes Yes No No 221 442 663 0.98 196 206 236 25 88.69 48.76 

          221 442 663 0.985 192 199 243 29 86.88 49.10 

          221 442 663 0.99 181 173 269 40 81.90 51.13 

          221 442 663 0.999 156 100 342 65 70.59 60.94 

          221 442 663 0.9999 134 65 377 87 60.63 67.34 

          221 442 663 0.99999 103 48 394 118 46.61 68.21 

          221 442 663 0.999999 88 32 410 133 39.82 73.33 

          221 442 663 1 7 0 442 214 3.17 100.00

                              

Yes Yes Yes Yes Yes 221 884 1105 0.98 196 392 492 25 88.69 33.33 

          221 884 1105 0.985 192 379 505 29 86.88 33.63 

          221 884 1105 0.99 181 320 564 40 81.90 36.13 

          221 884 1105 0.999 156 177 707 65 70.59 46.85 

          221 884 1105 0.9999 134 111 773 87 60.63 54.69 

          221 884 1105 0.99999 103 73 811 118 46.61 58.52 

          221 884 1105 0.999999 88 46 838 133 39.82 65.67 

          221 884 1105 1 7 1 883 214 3.17 87.50 
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Result Plot: Equal data set. 134-49-1 ANN

Test set, splices excluded.      
Full test set.                   
Validation set, splices excluded.
Full validation set.             

 
Figure 35: Sensitivity vs. PPV of equal sized training set, large ANN. 
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Table 10: Final results on large training set, 134-49-1 ANN. 

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 383 3396 3779 0.000005 312 886 2510 71 81.46 26.04 

          383 3396 3779 0.00001 286 559 2837 97 74.67 33.85 

          383 3396 3779 0.00005 221 217 3179 162 57.70 50.46 

          383 3396 3779 0.0001 194 147 3249 189 50.65 56.89 

          383 3396 3779 0.0005 133 60 3336 250 34.73 68.91 

          383 3396 3779 0.001 103 36 3360 280 26.89 74.10 

          383 3396 3779 0.005 60 15 3381 323 15.67 80.00 

          383 3396 3779 0.01 52 6 3390 331 13.58 89.66 

          383 3396 3779 0.05 31 1 3395 352 8.09 96.88 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 383 7437 7820 0.000005 312 1769 5668 71 81.46 14.99 

          383 7437 7820 0.00001 286 1166 6271 97 74.67 19.70 

          383 7437 7820 0.00005 221 459 6978 162 57.70 32.50 

          383 7437 7820 0.0001 194 298 7139 189 50.65 39.43 

          383 7437 7820 0.0005 133 122 7315 250 34.73 52.16 

          383 7437 7820 0.001 103 72 7365 280 26.89 58.86 

          383 7437 7820 0.005 60 30 7407 323 15.67 66.67 

          383 7437 7820 0.01 52 15 7422 331 13.58 77.61 

          383 7437 7820 0.05 31 4 7433 352 8.09 88.57 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 194 1448 1642 0.000005 165 391 1057 29 85.05 29.68 

          194 1448 1642 0.00001 159 269 1179 35 81.96 37.15 

          194 1448 1642 0.00005 125 108 1340 69 64.43 53.65 

          194 1448 1642 0.0001 106 69 1379 88 54.64 60.57 

          194 1448 1642 0.0005 65 25 1423 129 33.51 72.22 

          194 1448 1642 0.001 52 16 1432 142 26.80 76.47 

          194 1448 1642 0.005 27 8 1440 167 13.92 77.14 

          194 1448 1642 0.01 20 2 1446 174 10.31 90.91 

          194 1448 1642 0.05 7 1 1447 187 3.61 87.50 

                              

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 194 3238 3432 0.000005 165 812 2426 29 85.05 16.89 

          194 3238 3432 0.00001 159 544 2694 35 81.96 22.62 

          194 3238 3432 0.00005 125 203 3035 69 64.43 38.11 

          194 3238 3432 0.0001 106 133 3105 88 54.64 44.35 

          194 3238 3432 0.0005 65 47 3191 129 33.51 58.04 

          194 3238 3432 0.001 52 30 3208 142 26.80 63.41 

          194 3238 3432 0.005 27 11 3227 167 13.92 71.05 

          194 3238 3432 0.01 20 3 3235 174 10.31 86.96 

          194 3238 3432 0.05 7 2 3236 187 3.61 77.78 
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Full test set.                   
Validation set, splices excluded.
Full validation set.             

 
Figure 36: Sensitivity VS. PPV of large training set, large ANN. 

 

For both the ANNs it was found that the final validation set results were slightly worse than 

the test set outputs. This suggests that the system still does not generalise very well, but 

overall the results follow similar trends. 

6.5 NNPromoterFind1.0 compared to other systems. 

To evaluate the quality of NNPromoterFind1.0, it will now be compared with other similar 

promoter finding algorithms and programs. Unfortunately the exact validation set used by 

other authors could not be obtained, so the comparison method is not 100% reliable. To ensure 

accurate comparisons can be made the result graph used by Bajic et al. [7] in their published 

paper is used directly, given as Figure 37 below. Although a few different systems are given 

on the graph, Dragon Promoter Finder (DPF1) is clearly the best of these systems (and is also 

claimed to be the state of the art in [7]). Hence, our comparison will focus on the results 

obtained with this system. 

                                                
1 DPF � Dragon Promoter Finder 
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Figure 37: Other promoter detection systems. 

Figure taken directly from the paper published by Bajic et al. [7].  p329 
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Table 11: DPV v1.3 VS. NNPromoterFind1.0. 

 

  
DPV v1.3 

PPV NNPromoterFind1.0 PPV 
    50-20-1 ANN 134-49-1 ANN 

Sensitivity   Equal set Large set Equal set Large set 
20 53 74 68 77 68 
30 43 68 47 72 61 
40 34 63 32 65 54 
50 28 58 27 57 47 
60 26 53 24 55 41 
70 23 44 20 48 34 
80 19 24 15 38 25 

 

 

By looking at the final results shown in Table 10, above, it can be seen that 

NNPromoterFind1.0 gave superior results. Only one of the tested ANN combinations proved 

to be less accurate: the small ANN tested on the large data set. This result is not unexpected as 

the small ANN had too few features to discriminate against the large number of non-promoters 

(it was trained using only 73% of the available promoters). Even with all of this it performed 

only slightly worse (maximum of 4% worse) than DPF. The large ANN (134 input features) 

displays the most realistic results, because of the larger number of non-promoters used. The 

large ANN performed better than DPF with performance increases of between 6% and 20% 

found at different sensitivity levels. 
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7 CHAPTER 7: FURTHER 

ENHANCEMENTS AND 

CONCLUSION 
 
 
 
 

7.1 Suggested system improvements. 

7.1.1 Feature selection 1 or 2 bases upstream and downstream. 

Selecting features based on entropy introduces a new problem to the classification system, 

namely the positioning of the features. As mentioned in the beginning of this document, DNA 

features are separated by DNA segments of random length. This means that the way features 

were selected in NNPromterFind1.0 can be improved by not only checking features at a 

specified position, but also including checks for the same feature at the positions one or two 

bases upstream as well as downstream. By simply looking at the surrounding positions in 

close vicinity more actual promoters might be correctly classified. 

This is only suggested, and not implemented because it is the opinion of the author that this 

suggestion by itself will have limited impact. The reason for this is that the features were 

carefully selected based on entropy, and this process did actually look at ALL the positions, 

already including the ones 1 and 2 bases up-/downstream. So although it might help to 

correctly identify one or two samples the overall effect will probably be limited, or even 

negative(because many non-promoters may also be incorrectly identified as promoters). To 

make this idea practical, additional refinements will be required. 
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7.1.2 Detecting  splices first. 

 

While doing entropy calculations it was found that the splice sites, both I2E and E2I actually 

had stronger features than the promoter samples. This was the main reason for not including 

the splice sites in the entropy calculations in the first place. A possible method to improve the 

entire classification system is to first extract the splice site features using the entropy 

calculations, then to develop an entire splice detecting ANN, one for each splice. Unknown 

samples can then first be checked using the splice detecting ANNs. If a sample is not 

classified by these ANNs as being either of the splices it is forwarded further to the main 

promoter detecting ANN.  As an experiment two feature sets were extracted for the two splice 

networks. 77 features were selected for the I2E ANN and 71 features for the E2I ANN. The 55 

input small promoter ANN was used. 

 

Using the 55-20-1 promoter ANN a sensitivity of 70.86% was used to get a PPV of 57.54% 

when used on its own, when the splice detecting ANNs were not used. When the test samples 

were first checked by the splice detecting ANNs, the sensitivity dropped slightly to 70.00% 

but the PPV was increased to 67.31%. This is a PPV increase of about 10% by simply filtering 

out the splice sites first. This is due to the fact that some of the splice sites contain some 

features that were selected as promoter classifier features. By detecting and eliminating these 

samples first a much better promoter PPV can be obtained. 

 

 

 

7.1.3 Using different feature sets. 

Another way to improve the overall system performance is to spend more time selecting the 

features. The entropy method works fairly well, as seen in the results given, but the threshold 

line parameters in the entropy program were selected heuristically. Selecting a different 

threshold function will result in different features. The features selected are good entropy 

features according to the training set, but might not necessarily be good generalisation 

features.  There seems to be much scope for developing a more sophisticated way of trading 

off entropy against the number of occurrences observed. 
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7.1.4 Using independent ANNs. 

One last possibility to improve overall performance is to have a few independent ANNs. The 

unknown samples are then introduced to all of the ANNs, and only if all of them classify an 

unknown feature as being a promoter it is classified as such. The independent ANNs could all 

have a different feature set, resulting in smaller, faster trainable ANNs. Alternatively each 

ANN could have the same feature set, but trained for different periods, or on different training 

data. This results in better generalisation, as shown by Wolpert []. 

 

7.1.5 Conclusion on improvement. 

In conclusion, although the current system works fairly well, there is reason to believe that it 

can be improved more sophisticated feature-selection schemes. If good feature selection is 

done a better classifier can be trained. Better features can also be obtained if more promoter 

and better promoter samples are available. Currently the number of promoter samples is a 

constant of 1 871. When compared to the thousands of possible introns, exons and splice 

samples it is obvious that this is not sufficient, especially when one considers the millions of 

actual bases in the real chromosome data. 
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7.2 Final Conclusion. 

The overall problem of automated promoter detection was solved with comparative success. 

An automated system was developed that could be implemented to train a classifier system 

with ease. The feature selection and training process is quite time-consuming, but the final 

classifier is very fast. The system also showed good improvement when compared to its 

current state of the art competitors. 

 

The most significant hurdle towards writing a reliable automated promoter detection algorithm 

is to obtain a sufficient number of promoter samples. More samples, and more diverse 

samples, will improve the overall performance of the classifier system. Beyond that, improved 

understanding of the biochemistry of promoters is required for further improvements. 

 

Our novel approach, which uses only certain features in the sample instead of the entire 256 

base length sequence proved to be very useful, but much further work can be done to obtain 

better and more reliable features. When analysing the results, it was shown that feature 

selection can be improved substantially to make sure that the ANN is trained correctly on all 

of the data, not only on some of the samples as was the case with NNPromoterFind1.0.  

 

Overall the project was a success, but with numerous suggestions for future work. We have 

made some progress in terms of performance and understanding of automated promoter 

detection, but much remains to be done. 
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 ADDENDUMS 

1 Extract.c ! Program used to extract non-promoter sequences from 

GBK files. 

See companion cd-rom. (cd-drive:\Programs\Extract\Extract.c) 
 

2 Length Calculation for sample extraction 

To ensure that there is no overlap in the data some careful considerations had to be made 

during the extraction process. In the first run through the GBK file the program extract.c 

(Addendum 1) marks the start of all the available splice borders in different files. The splice 

borders occur in the original GBK file in the format:  

((mRNA..E2I),(I2E..E2I)�(I2E..E2I)) 

 

These splice borders were extracted, checked for validation and then written to files, one file 

for each different sample type. 

exo2int.txt => Stores all the E2I splice sample start positions. 

int2exo.txt  => Stores all the I2E splice sample start positions. 

start  => Stores all the mRNA start site positions. 

Intron  => Stores all the Intron sample start positions. 

Exon  => Stores all the Exon sample start positions. 

 

Each sample contains the data �200 to +55 with reference to the actual splice. This means that 

the value read in the GBK file should firstly be decreased by 200 to get the position in the 

sequence where the sample starts. To make sure that each sample is a valid 256-bases long 

without overlapping with neighbouring samples a few different scenarios should be 

considered. As the splice sites and mRNA start position samples are more specific than intron 

or exon samples these three classes were extracted and validated first. The values stored in the 

abovementioned text files are the actual start positions of the sample, and thus not the value 

read directly from the GBK file, but rather the value read minus 200. 
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A2.1 Valid length calculations 

Consider the gene sequence in Figure A1 with markings (A), (B), (C), (D) and (E) extracted 

from the GBK file. 

Intron IntronExon Exon

(A) mRNA start (C) I2E Splice

(B) E2I Splice

Intron Exon

Gene

(D) E2I Splice

(E) I2E Splice

 
Figure A1: Calculation of valid sample length. 

A2.1.1 All valid. 

For a sample to be valid it must contain 256 bases without overlapping into the previous or the 

next sample. The easiest way to make certain that all samples are valid is to use only splice 

markings that are at least 2*256 = 512 bases from each other as seen in Figure A2. This 

unfortunately does not leave many valid samples, so the process has to be refined by looking 

at different scenarios. 

Intron

(A) mRNA start

(B) E2I Splice

Exon

256
-200 to +55

256
-200 to +55

256
-200 to +55

Intron Exon

256
-200 to +55

256
-200 to +55

256
-200 to +55

256
-200 to +55

(D) E2I Splice

(C) I2E Splice

Valid E2IValid exonValid mRNA Valid intron Valid I2E

 
Figure A2: All valid length samples. Splices are more than 512 bases from each other. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  MMyybbuurrgghh,,  GG    ((22000055))  



_________________________________________________________________________ 

_______________________________________________________________________________ 
Electrical, Electronic and Computer Engineering      99 
 

 
In cases like this care should be taken to ensure that each sample is non-overlapping by doing 

boundary checking. For example, if one wanted to extract the exon sample between points (A) 

and (B) one has to make sure that the exon sample starts at least 55 bases after point (A), and 

ends at least 200 bases away from point (B). 

Exon = Valid if and only if Exon-Start  > (A)+55 and Exon-End < (B)-200. 
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A2.1.2 Only splices  valid. 

The first other possibility is that both the intron and the exon are more than 256 bases, but less 

than 512 bases. In these cases valid splice site (and mRNA site) samples can be extracted, but 

intron and exon samples cannot be extracted. This is shown in Figure A3. 

Intron

(A) mRNA start

256
-200 to +55

Valid mRNA

Exon

(B) E2I Splice

256
-200 to +55

Intron Exon

256
-200 to +55

(C) I2E Splice

256
-200 to +55

(D) E2I Splice

Valid E2I Valid I2E

 
Figure A3: Valid splices. 256 bases < Splice separation < 512 bases. 

 
There will be cases where, say, the intron before (C) is more than 512 bases long, but the exon 

after (C) is only 256 bases long. In such a case (C) is still a valid I2E splice sample, the intron 

before it contains a valid intron sample but the exon area will not contain a valid sample. The 

same is true for the other way around where the intron is too short and but the exon is long 

enough to contain a sample. For splices (B) and (D) the same can happen, with the positions of 

the intron and exon simply reversed. 
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A2.1.3 None valid. 

The last case to consider is when splice sites are closer than 256 bases from each other. In 

such cases it is obviously not possible to extract intron or exon data since a 256 sample cannot 

fit between the splice. It is also not possible to extract splice samples, as the end of the first 

sample will overlap with the start of the next one. For example if one takes Figure A1 again 

and let (B) and (C) be only, say, 210 (anything less than 256) bases from each other. Now the 

E2I sample centred at (B) ends at (B)+55, while the I2E sample centred around (C) starts at 

(C)-200.  

But (C) � (B) = 180 < 256, and in other words (C) = 180 + (B), and (B) = (C) � 180. 

Start position of the I2E sample:   End position of the E2I sample: 

 

 Start  = (C) � 200     End = (B) + 55 

             = [210 + (B)]- 200     = [(C) � 210] + 55 

  = (B) + 10.      = (C) � 155. 

 

So if the intron between (B) and (C) is only 210 bases from each other the I2E sample 

overlaps the E2I sample with 45 (210 � 10 � 155 = 45) bases.  

 

256 � 210 = 46. Thus the minimum distance between two splices is exactly the same length as 

the samples, 256 bases long. 
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3 ClassSets.c ! Program used to split each class into 3 different sets. 

See companion cd-rom. (cd-drive:\Programs\Sets\ClassSets.c) 
 

4 PullData.m  ! Matlab program used to extract position statistics. 

See companion cd-rom. (cd-drive:\Programs\Statistics\PullData.m) 
 

5 PullHalf.m ! Second Matlab program used to extract position 

statistics. 

See companion cd-rom. (cd-drive:\Programs\Statistics\PullHalf.m) 

6 Statistics.c ! Program used to extract position statistics. 

See companion cd-rom. (cd-drive:\Programs\Statistics\Statistics.c) 
 

7 Funcdraw.m ! Grahical output of statistics. 

See companion cd-rom. (cd-drive:\Programs\Statistics\Funcdraw.m) 
 

A7.1 Funcdraw.m ! Explanation of the function and its input arguments. 

function 
funcDraw=funcDraw(n,what,start,stop,percentage,percentage2,positionDataPromoter,posi
tionDataMRNA,positionDataI2E,positionDataE2I,positionDataIntron,positionDataExon,cou
ntPromoter,countMRNA,countI2E,countE2I,countIntron,countExon) 

 

Input arguments: 

n:  integer with the n-tuple length 

What:   Integer value that determines the graph type, explained in more detail later 

since it is one of the most important parameters. 

Start:   start n-tuple (See what = 2,3 and 4) 

Stop:   stop n-tuple (See what = 2,3 and 4) 

Percentage:  minimum plot percentage (See what = 9) 

Percentage2: maximum plot percentage (See what = 10) 
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The next six parameters are the arrays containing the position data for each class as generated 

by the programs pullData.m or pullHalf.m 

The dimensions of these arrays are (4^n+1) rows and (256-n+1) columns. 

PositionDataPromoter:  

PositionDataMRNA: 

PositionDataI2E: 

PositionDataE2I: 

PositionDataIntron: 

PositionDataExon: 

 

The next six parameters are the vectors containing the percentage times each n-tuple occurred 

in each of the classes, once again generated by the programs pullData.m or pullHalf.m 

They contain (4^n) entries each, corresponding to the 4^n possible n-tuples of length n. 

CountPromoter: 

CountMRNA: 

CountI2E: 

CountE2I: 

CountIntron: 

CountExon: 

 

 

The possible options of the what parameter 

What == 1. 

Plot 6 graphs, each containing on of the class types. This was the option used to generate the 

graphs shown in Section 4.4. 
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Figure A4: FuncDraw with parameter what == 1. 

 

What == 2. 

Uses the parameters Start and Stop. 

Plots the total occurrence of each n-tuple between Start and Stop for promoters and splices. 

Note that the parameter n is ignored for bounds calculation.  
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Figure A5: FuncDraw with parameter what == 2. 

 

What == 3. 

The same as What==2, but the Intron and Exon classes are included. 
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Intron   

 
Figure A6: FuncDraw with parameter what == 3. 
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What == 4. 

The same as What==3, with the inclusion of the mRNA class. Thus all 6 classes are drawn 

when the What parameter is set to 4. 

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

All features, total occurance count.

Promotors
mRNA     
I2E      
E2I      
Exon     
Intron   

 
 

Figure A7: FuncDraw with parameter what == 4. 
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What == 5. 

This gives a similar graph to 2-4, but with the difference that only the promoters and the 

mRNA samples are used. This was done to see the correlation between the actual downloaded 

promoters and the ones extracted from the computer marked files. 
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Figure A8: FuncDraw with parameter what == 5. 

 

From this figure it can be seen that the actual promoters differ quite a lot from the mRNA 

samples. 
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What == 6. 

This option provides an output similar to What==4, but with two differences. Firstly the value 

of n is actually used to calculate borders. Secondly, and much more importantly is that all the 

values are normalised to be between 0 and 1. This option also provides borders that determine 

where possible features could be. 

 

For example, in the figure there is an Intron at n-tuple 55 that is below the 0.25 line, with all 

the other classes marked above the line. This could mean that the absence of this feature is an 

indicator of Introns. This was a very crude method used to extract features before the Entropy 

calculations were used. 
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Figure A9: FuncDraw with parameter what == 6. 
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What == 7. 

This option draws a graph similar to What==1, but where What==1 draws all the n-tuples of 

length n, this option only draws the n-tuples between the Start and Stop values. A single n-

tuple can be isolated and plotted down by setting the Start and Stop parameters to the same 

value. 
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Figure A10: FuncDraw with parameter what == 7. 

For example the 3-tuple number 37 was isolated and plotted. This 3-tuple is a possible feature 

for extraction when one looks at position 200 on the promoter graph. 

 

What == 8. 

It is the same as What==1, except that only n-tuples that have a percentage value greater than 

the Percentage parameter are shown on the plot. 

 

What == 9. 

It is also the same as What==1, except that only n-tuples that have a maximum percentage 

value greater than the Percentage parameter, AND smaller than the Percentage2 parameter are 

shown on the plot. 
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8 Entropy calculation. 

A8.1 GetMax.m ! Function used by GetEnt5.m 

See companion cd-rom. (cd-drive:\Programs\Entropy\GetMax.m) 
 
%getMax(6,199,positionDataPromoter,positionDataIntron,positionDataExon,posi
tionDataI2E,positionDataE2I) 
 
function 
[maxType]=getMax2(nTuple,Pos,positionDataPromoter,positionDataIntron,positi
onDataExon) 
 
maxType = 0; 
max = -1; 
 
if (positionDataPromoter(nTuple,Pos) > max)  
 max = positionDataPromoter(nTuple,Pos); 
 maxType = 1; 
end; 
 
if (positionDataIntron(nTuple,Pos) > max)  
 max = positionDataIntron(nTuple,Pos); 
 maxType = 2; 
end; 
 
if (positionDataExon(nTuple,Pos) > max)  
 max = positionDataExon(nTuple,Pos); 
 maxType = 3; 
end; 
 

A8.2 GetEnt5.m Entropy extraction function. 

See companion cd-rom. (cd-drive:\Programs\Entropy\GetEnt5.m) 
 
 
 

A8.3 Entropy function parameters. 

function 
[realEnt2,value]=getEnt5(dataType,useAll5,Var1,Var2,n,start,stop,nStart,nSt
op,significance,positionDataPromoter,positionDataMRNA,positionDataI2E,posit
ionDataE2I,positionDataIntron,positionDataExon,countPromoter,countMRNA,coun
tI2E,countE2I,countIntron,countExon,a,b,c,d,e,f); 
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Input Parameters: 

DataType:  Integer value that selects the class for which the entropy is calculated. 

1=Promoter, 2=Intron, 3=Exon, 4=I2E, 5=E2I 

useAll5: Flag that selects to use all five the classes for entropy calculation or only the 

promoters, introns and exons. 1 = All 5, 0 = Exclude splices. 

Var1:  Used to determine the threshold border. 

Var2:  Used to determine the threshold border. 

  Border value at n-tuple �i� = Var1/I + Var2; 

N:  Like all other functions the n-tuple length. 

Start:  The start postion for which entropy is calculated. 

Stop:  The stop position for which entropy is calculated. 

NStart: The start n-tuple for which entropy is calculated. 

NStop:  The stop n-tuple for which entropy is calculated. 

 

The entropy is calculated only for the position beginning at Start and ending at Stop and 

for the n-tuples between nStart and nStop. 

 

Significance: The minimum number of samples per bin before entropy is considered good. 

 

The next six parameters are the arrays containing the position data for each class as generated 

by the programs pullData.m or pullHalf.m 

The dimentions of these arrays are (4^n+1) rows and (256-n+1) columns. 

PositionDataPromoter:  

PositionDataMRNA: 

PositionDataI2E: 

PositionDataE2I: 

PositionDataIntron: 

PositionDataExon: 
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The next six parameters are the vectors containing the percentage times each n-tuple occurred 

in each of the  classes, once again generated by the programs pullData.m or pullHalf.m 

They contain (4^n) entries each, corresponding to the 4^n possible n-tuples of length n. 

CountPromoter: 

CountMRNA: 

CountI2E: 

CountE2I: 

CountIntron: 

CountExon: 

 

And the last six parameters are integer values containing the number of samples available  

for each class. 

A:  Number of Introns 

B:  Number of Exons 

C:  Number of I2E 

D:  Number of E2I 

E:  Number of Promoters 

F:  Number of mRNA 

 

 

Output Parameters: 

RealEnt2: Contains an array with the entropy values for the area between the border 

parameters Start, Stop, nStart and nStop. 

 

Value: Contains an array with the same dimensions as the RealEnt2 array, but with flag values 

of 0 or 1. 0 indicating that the entropy is not valid because the position � n-tuple bin did not 

contain enough samples (Enough being the value given in the parameter �significance�), and a 

1 indicating that there was enough samples. 
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9 WorkANN.c ! ANN training program. 

See companion cd-rom. (cd-drive:\Programs\ANN\WorkANN.c) 
 

10 ClassCombine.c ! Program that combines classes to one file. 

See companion cd-rom. (cd-drive:\Programs\ANN\ClassCombine.c) 
 

11 LoadANN.c ! ANN testing program and final system output. 

See companion cd-rom. (cd-drive:\Programs\ANN\LoadANN.c) 
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Inventory of the companion CD-Rom. 

 

Extract.c   and  Extract.exe 

ClassSets.c  and  ClassSets.exe 

Pulldata.m   

Pullhalf.m 

Statistics.c  and  Statistics.dll 

Funcdraw.m 

GetMax.m 

GetEnt5.m 

WorkANN.c  and  WorkANN.exe 

ClassCombine.c 

LoadANN.c 
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