

EUKARYOTIC RNA POLYMERASE II START SITE DETECTION
USING ARTIFICIAL NEURAL NETWORKS

by

Gerbert Myburgh

Submitted in partial fulfilment of the requirements for the degree
Master of Engineering (Computer Engineering)

in the

Faculty of Engineering, the Built Environment and Information Technology

UNIVERSITY OF PRETORIA

March 2005

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering i

 SUMMARY

EUKARYOTIC RNA POLYMERASE II START SITE DETECTION USING
ARTIFICIAL NEURAL NETWORKS

Author: Gerbert Myburgh
Study leader: Prof. E Barnard

Master of Engineering (Computer Engineering)

Faculty of Engineering, the Built Environment and Information Technology

An automated detection process for Eukaryotic ribonucleic acid (RNA) Polymerase II

Promoter is presented in this dissertation. We employ an artificial neural network (ANN) in

conjunction with features that were selected using an information-theoretic approach.

Firstly an introduction is given where the problem is described briefly. Some background is

given about the biological and genetic principles involved in DNA, RNA and Promoter

detection.

The automation process is described with each step given in detail. This includes the data

acquisition process, how the different samples were split into different sets and statistical

information gathering, feature generation, and the full ANN process. The ANN section of the

project is split up in a generation process, a training section as well as a testing section.

Lastly the final detection program was tested and compared to other promoter detection

systems. An improvement of at least 10% in positive prediction value (PPV) in comparison

with current state-of-the-art solutions was obtained.

Note: A Companion CD should accompany this report that contains all the program code and

some of the source data that was used in this project. All the references to �Companion CD�,

reference number [18] are references to these programs.

Keywords: Polymerase II, Automated promoter detection, Artificial Neural Network

application.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering ii

 OPSOMMING

EUKARYOTIC RNA POLYMERASE II BEGIN POSISIE DETEKSIE DEUR
KUNSMATIGE NEURALE NETWERKE

Deur: Gerbert Myburgh
Studie leier: Prof. E Barnard

Meester van Ingenieurswese (Rekenaar Ingenieurswese)

Fakulteit Ingenieurswese, Bou Omgewing en Inligtings Tegnologie

In díé verslag word �n outomatiese opsporingsproses vir Eukaryotiese �ribonucleic acid�

(RNA) Polymerase II Promoter gegee. Die projek gebruik �n kunsmatige neurale netwerk

(KNN) (ANN in Engels) tesame met kenmerke, wat gekies is deur van inligtingsteoretiese

beginsels om die oplossing te benader. In die inleiding word die probleem beskryf. Volgende

word die biologiese en genetiese beginsels, wat betrekking het op die projek (DNA, RNA en

Promoters), kortliks bespreek. Die outomatisasie proses word beskryf met elke stap in

besonderhede verduidelik. Dit sluit in �n beskrywing in van hoe die verskillende

klasvoorbeeldmonsters verkry is en hoe die verskillende stelle opgestel is. Die metode

waarvolgens statistiese inligting, as ook hoe die verskillende opsporingskenmerke vekry is

word verduidelik. Dan volg die verduideliking van die KNN werking. Die afdeling is verder

opgedeel in afdelings oor KNN bou, leer proses en toetsing.

In die laaste gedeelte word die finale promoter identifikasie program getoets en vergelyk met

ander promoter identifikasie stelsels. Verbetering ten opsigte van die huidige standaardstelsels

van 10% in positiewe identifikasie waarde (PIW) (PPV in Engels) is verkry.

Nota: Saam met die verslag behoort daar �n CD te wees wat die program kode sowel as van

die oorspronklike promoter data bevat. Alle verwysings na die �Companion CD�, verwysing

[18] is na programme op die CD.

Sleutelwoorde: Polymerase II, Outomatiese promoter identifikasie, Kunsmatige Neurale

Netwerke

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering iii

 ABBREVIATIONS

DFP � Dragon Promoter Finder

DNA � Deoxyribonucleic Acid

E2I � Exon-to-Intron

EPD � Eukaryotic Promoter Database

FD � False Detections

FR � False Rejections

GpC � Sequence segment that contains primarily G and C bases

I2E � Intron-to-Exon

NCBI � National Center for Biotechnology Information

PPV � Positive Predictive Value

RNA � Ribonucleic Acid

SSE � Sum of Squared Error

TD � True Detections

TR � True Rejections

TSS � Transcription Start Site

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering iv

 TABLE OF CONTENTS

SUMMARY i
OPSOMMING ii
ABBREVIATIONS iii
TABLE OF CONTENTS iv

1 CHAPTER 1: BACKGROUND 1
1.1 Introduction 1
1.2 Brief Problem Definition 1
1.3 Genetic Principles 2

1.3.1 Dioxyribonucleic Acid (DNA) 2
1.3.2 Transcription 3
1.3.3 Complexities of DNA 5

1.4 Full Problem Definition and Project Aims 7
1.5 Previously Proposed Solutions 8
1.6 Implemented Solution 9

1.6.1 How it was done 9
1.6.2 Contrasts between the current and earlier approaches 9

2 CHAPTER 2: TASK OVERVIEW 11
2.1 Overview of the Entire Process 11
2.2 FU 1: Data Collection and Extraction 12
2.3 FU 1.1: Set and Class Generation 12
2.4 FU 1.2: Statistical Information Gathering 13
2.5 FU 2: Extracting Useful Information 14
2.6 FU 3: Generate an Artificial Neural Network 14
2.7 FU 4: Training Process 15
2.8 FU 5: Testing of the System 15
2.9 FU 6: Further Enhancements 15

3 CHAPTER 3: DATA EXTRACTION 16
3.1 Introduction 16
3.2 Attaining promoter data 16
3.3 Obtaining non-promoter data 18

3.3.1 A closer look at the GBK file format. 19
3.3.2 Developing an extraction program. 22

3.4 Set generation. 27
3.5 Outputs of extraction. 30

4 CHAPTER 4: STATISTICAL INFORMATION GATHERING 31
4.1 Data reduction. 31
4.2 Base-per-position statistics. 31
4.3 Indexing and assigning n-tuple number. 35
4.4 Statistical outputs and results 35
4.5 Using entropy as feature significance indicator: 42
4.6 Results: The selected features. 47

5 CHAPTER 5: THE ARTIFICIAL NEURAL NETWORK 55
5.1 Selecting a neural network. 55
5.2 The network structure. 56

5.2.1 Normal ANN structure. 56

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering v

5.2.2 The three layers. 58
5.2.3 Layer implementation for NNPromoterFind1.0 59
5.2.4 The network training process. 60

5.3 Software implementation. 62
5.3.1 The training program. 62
5.3.2 The percentage of samples used. 65
5.3.3 The testing program. 65

6 CHAPTER 6: SYSTEM TESTS AND RESULTS 68
6.1 Data flow through entire process. 68
6.2 The first outputs. 70

6.2.1 Data files. 70
6.3 Entropy outputs. 70
6.4 ANN Results. 80
6.5 NNPromoterFind1.0 compared to other systems. 88

7 CHAPTER 7: FURTHER ENHANCEMENTS AND CONCLUSION 91
7.1 Suggested system improvements. 91

7.1.1 Feature selection 1 or 2 bases upstream and downstream. 91
7.1.2 Detecting splices first. 92
7.1.3 Using different feature sets. 92
7.1.4 Using independent ANNs. 93
7.1.5 Conclusion on improvement. 93

7.2 Final Conclusion. 94
REFERENCES 95
ADDENDUMS 97

1 Extract.c ! Program used to extract non-promoter sequences from GBK files. 97
2 Length Calculation for sample extraction 97

A2.1 Valid length calculations 98
A2.1.1 All valid. 98
A2.1.2 Only splices valid. 100
A2.1.3 None valid. 101

3 ClassSets.c ! Program used to split each class into 3 different sets. 102
4 PullData.m ! Matlab program used to extract position statistics. 102
5 PullHalf.m ! Second Matlab program used to extract position statistics. 102
6 Statistics.c ! Program used to extract position statistics. 102
7 Funcdraw.m ! Grahical output of statistics. 102

A7.1 Funcdraw.m ! Explanation of the function and its input arguments. 102
8 Entropy calculation. 110

A8.1 GetMax.m ! Function used by GetEnt5.m 110
A8.2 GetEnt5.m Entropy extraction function. 110
A8.3 Entropy function parameters. 110

9 WorkANN.c ! ANN training program. 113
10 ClassCombine.c ! Program that combines classes to one file. 113
11 LoadANN.c ! ANN testing program and final system output. 113

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 1

1 CHAPTER 1: BACKGROUND

1.1 Introduction

The field of pattern recognition is expanding rapidly with productive applications interfacing

with various other disciplines. Bio-informatics is an area where pattern recognition comes into

contact with disciplines such as genetics and biochemistry. The resulting study of the

principles of biological function and organisation is currently one of the most exciting

domains of scientific enquiry; although work in this field dates back to before 1860, current

knowledge is still very sketchy. Given the vast quantities of data that are being generated, it is

crucial that pattern-recognition algorithms be developed to assist in the analysis of genetic

data. The specific problem studied here is gene expression; that is, how and why particular

genes in a cell are activated. One of the problems with gene expression that currently receives

much attention within the pattern-recognition community is that of promoter and TSS1

detection.

1.2 Brief Problem Definition

The problem addressed in this project is developing a reliable automated detection process for

Eukaryotic RNA2 polymerase II promoters. Promoter detection is a very complex and time-

consuming process that can potentially be sped up significantly through automation. The first

technical problem addressed was the automation of this complex process. The transcription

process and the difficulties of automating are described in more detail in the following section

of this document. The next challenge was to program reliable detection. As with every pattern

recognition application the final system suffers from limited accuracy. The reliability of the

system is directly associated with the accuracy of the final detection.

1 TSS � Transcription Start Site
2 RNA � Ribonucleic Acid

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 2

1.3 Genetic Principles

1.3.1 Deoxyribonucleic Acid (DNA1)

Lodish, Darnell and Baltimore [1] describe DNA as a cellular storehouse required to build a

cell or an organism. DNA contains all the genetic information that describes how and why

certain cells function. All known DNA is made up of long sequences of molecules called

nucleotides. There are only four different nucleotide types, all differing only in a single part

called the base. Because of this nucleotides are commonly referred to as bases, in other words

there are four different bases found in DNA. These four bases are adenine (A), guanine (G),

cytosine (C) and thiamine (T). It is common practice in genetics when writing down a DNA

molecular sequence to write down only a single letter representing the base contained in the

nucleotide. In other words a typical DNA sequence might be

�CCATCTAGATCGGTAGCATGCTAGTGTCGTAG�

Obviously this is only a small section of the sequence since full sequences are millions of

bases long, and will cover thousands of pages if given in full in this document.

A nucleotide has a very specific molecular structure, shown in Figure 1 below.

Figure 1. Diagram of a nucleotide

� the digits indicate carbon atoms in the pentose component of DNA

Binding between nucleotides that form a DNA sequence always takes place at the same carbon

molecule. The phosphate or 5� carbon always binds with a free hydroxyl at the 3� carbon. To

standardise written sequences it is common practice to write down a sequence from the 5� end

to the 3� end. In other words in a written sequence the first base or nucleotide will have a free

1 DNA � Dioxyribonucleic Acid

Pentose
1�

2� 3�

4�

 5� (O)
Base Phosphate

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 3

carbon at the 5� end, and the last nucleotide in the sequence will have a free carbon at the 3�

end. The typical DNA sequence given earlier becomes:

(5’) …CCATCTAGATCGGTAGCATGCTAGTGTCGTAG… (3’) For the remainder of this

document it can be assumed that all given DNA sequences will be in this format. When

smaller sections of DNA are compared with regards to their location in the DNA they are said

to be upstream or downstream of one another. For example taking the sample DNA once

again, the section ATC is upstream of GCTA, while GCTA is downstream of ATC. (5’)

…CCATCTAGATCGGTAGCATGCTAGTGTCGTAG… (3’) It is also standard practice to use

numbers to represent how far upstream or downstream a specific section is with relation to

another section or centre point. For example with transcription the TSS will start at position 1,

with everything upstream of the TSS having negative numbers, and everything downstream of

the TSS positive. If, for example, the base T marked as 1 in the sample sequence is the TSS

then the sequence GCTA starts at position 11, while ATC starts at position �7.

 -987654321 1 2345678901234567890123
(5’) … CCATCTAGA T CGGTAGCATGCTAGTGTCGTAG… (3’)

Note that there is no position 0. This is because the reference base is base 1, and the one

directly upstream of it is base �1, and the base directly downstream of it is base 2.

1.3.2 Transcription

The previous section states that DNA is only the storehouse of genetic material and does not

control the functionality of cells directly. Before cells can function correctly the DNA must

first be changed to RNA, and the RNA must be changed to proteins. Proteins are directly

responsible for cell functionality. DNA directs RNA synthesis, RNA directs protein synthesis

and proteins catalyse DNA and RNA synthesis. This circular process - as shown in Figure 2 -

is known as the central dogma of genetics [2].

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 4

DNA RNA Proteins

Figure 2: DNA, RNA and Protein relationship. (Central dogma of genetics)

Transcription is the process where RNA is formed from DNA, while the process where

proteins are formed from RNA is called translation. The focus of this project is on the

transcription process. The full genetic transcription process will not be explained here, but can

be found in great detail in the literature, for example [3,4,5,6]. Broadly, what happens is that

RNA polymerase (Polymerase are the actual molecules responsible for the transcription)

follows the DNA downstream (5� end to 3� end) until a promoter region is recognised. Then

binding between the RNA polymerase and the DNA takes place. The polymerase continues its

downstream movement until the transcription start site is reached where the transcription

process starts. Obviously this is a very elementary explanation of a process that is quite

complex in reality, but it does show one of the most important aspects of transcription, which

is that each protein or gene contains at least one promoter region upstream of the TSS for the

polymerase to bind with. The TSS is the actual position at which the Polymerase binds, and is

contained in the promoter segment, usually close to the 3� end. The basic process is the same

for both prokaryotic and eukaryotic organisms. (Eukaryotic organisms have cells that contain

true nuclei [2], while prokaryotic organism cells do not.) There is more than one type of

polymerase, each transcribing different gene types. Polymerase II is responsible for the biggest

percentage of gene transcription and thus is the focus of this project.

The biggest difference between prokaryotic and eukaryotic transcription lies in the fact that

eukaryotic gene coding information is split up in multiple sections. With prokaryotic

transcription polymerase searches the DNA downstream until a promoter region is reached.

The proteins required for transcription bind with the DNA and transcription takes place until

the end of the gene, or the tail of the gene, is reached. Each base on the way to the promoter

region is transcribed. Genes in eukaryotes are separated into intron and exon sections. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 5

introns stay in the nucleotide, and are not transcribed, while exons are transcribed to RNA.

Figure 3 displays how a typical gene might look in a eukaryotic organism.

Figure 3: Eukaryotic gene split up into intron and exon regions.

In this figure the total length of the gene is from point B to point G, A being the upstream or 5�

end of the DNA, and G being the downstream or 3� end. But the only sections that actually

contain coding DNA data for the gene are the exon sections, B-C, D-E and F-G, with section

C-D and E-F being non-coding intron areas. The gene coding DNA starts at point B, the TSS,

with the area A-B directly upstream of B the promoter area. Once again this is a simplified

approximation of the promoter; the next section of this document will provide some insight as

to why this is only an approximation. G is the tail, or end of the DNA that will be transcribed.

Every letter given in the figure except for A and B represents the place where the DNA

changes from intron to exon, or exon to intron. These places are called splices, or splice sites.

Points C and E are splices where the exon changes over to intron, exon-to-intron splice, and

points D and F splices where the intron changes over to exon, intron-to-exon splice. These are

very important features and for the rest of this document they will be abbreviated as I2E1 and

E2I2 for simplicity.

1.3.3 Complexities of DNA

Now that the transcription process has been briefly explained, we will investigate why this is

such a complex process to automate or to model mathematically.

1 I2E � Intron to exon splice
2 E2I � Exon to intron splice

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 6

The first aspect to consider is the enormous amount of data contained in a single DNA

sequence. For example the sequenced human chromosome 20 (used as part of the sample

collection process for this project) spans several million bases. This immediately gives some

very important implications when writing automated systems that do feature detection. Firstly

the final system must work very quickly. It is useless to have a system that is 95% or 100%

accurate, but takes too long per nucleotide to do a reliable detection. Secondly the system has

to be able to handle large amounts of textual data. This is not such a big problem since

programs can generally handle large text inputs in the form of files.

The second problem is that DNA sequences are not entirely unambiguous. When comparing

DNA sequences that have the same function it can be found that they differ significantly. The

ambiguity comes from the fact that amino acids are formed by three bases. For three bases

there are a total of 4x4x4 = 64 total combinations, but there are only 20 different amino acids.

The encoding for some of the amino acids can take on several forms. Furthermore this is

because not every base in a given DNA section is relevant. This means that sequences might

be the same in some parts, and differ in other parts but still perform the same biological

function. This becomes even worse where sections differ significantly, but still have the same

function. Since not every base in a given section is relevant it can thus be assumed that there

are important and garbage DNA parts. (Think of how a gene consists of relevant exon sections

as well as non-coding intron parts.) This means for any functional DNA feature a consensus

sequence has to be generated that gives the functioning parts with meaningless, or even

random, parts in between. The problem arises when the random parts in between functional

sections are not the same length. For example consider the following two sequences.

If the regions ATGCTA and AGGCTA have some function, but are separated by random

length DNA garbage they could look like:

CTAATGCTAATCTGATCGAAGGCTA

and

TCCAATGCTACTCGATCAGGCTACA

Doing a base-by-base comparison, these two look totally different, since the random sections

are of different length, causing difficulty in developing an exact model.

The next, and most important aspect addressed, is the promoter region itself. As explained in

the previous section it can be assumed that every gene has at least one promoter upstream of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 7

the TSS for polymerase binding and thus for the transcription to take place. The problem is

that promoter regions are not very well understood by geneticists. For example in eukaryotic

transcription it is an accepted fact that there is a promoter region called the TATA-Box. This

can be found everywhere in literature on this subject [3,4,5,6]. When these four sources were

consulted a disturbing discovery was made. Each one of the four mentioned the TATA-Box

and gave a consensus sequence of how it should look, but they all differed on its composition.

Although all four sources said that the TATA-Box is upstream of the TSS, the exact location

given for it differs from source to source. Each of the sources contains a small sequence, called

the consensus sequence, which represents the exact form of the TATA-Box. The consensus

sequences and position given in all four is shown below. The notation (
Y
X) means that either

base X or base Y can occur.

[3] Gave the TATA-Box as
T
AA

T
ATATA at position �30 from the TSS.

[4] Gave it
T
AAT

T
ATATAT at position �25.

[5] Had it as ATATAA at position �25 to �30.

[6] Said it should be
T
AA

T
ATATA at �25.

This suggests there is a TATA-Box, containing only bases A and T, somewhere between 25

and 30 bases upstream of the TSS, but its exact form and location is not known and can thus

not be accurately modelled. If a simple, well-known promoter like the TATA-Box causes such

disagreements, it is easy to understand why more complex promoters give an even bigger

problem.

1.4 Full Problem Definition and Project Aims

Simply put, the problem addressed in this project is to develop a reliable automated detection

process for Eukaryotic RNA polymerase II promoters.

The first aim, then, is to acquire samples of both promoter and non-promoter DNA that can be

compared, used to gather statistics, to train and to test a detection system. The main goal of the

project is to write a program that can read a small section (of 250 to 256 bases long) of DNA

and determine whether this sequence represents a promoter region or not. The system, called

NNPromoterFind1.0, must be able to overcome the complexities and the underlying

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 8

relationship between smaller parts in this 256-base window by means of an artificial neural

network. The resulting neural network must be able to work through large amounts of DNA

data in a short enough period to still be useful. For actual data, with sequences spanning

millions of bases, the detection should at the very least be able to check and classify 500

sequences per second. The accuracy of the system should improve on current systems so that

promoters detected from unknown DNA can be trusted and used reliably in other genetic

work.

Aims of NNPromoterFind1.0 are to:

be a working system,

have reliable detection (improved accuracy when compared to current systems),

maintain fast detection,

be able to handle a large amount of DNA data,

be expandable for future use.

1.5 Previously Proposed Solutions

Previous attempts have been made to solve this particular problem such as in Bajic, Seah,

Chong, Krishnan, Koh and Brusic [7] and Knudsen [8]. Most of the work done in this project

was based on the process Bajic et al. [7] used for their program, Dragon Promoter Finder

(DPF1).

In short, DPF takes a sequence of 250 bases and determines the number of G and C bases to

see whether this sequence is CpG rich, or CpG poor. (As explained by Cross [9] and Larsen et.

al [10], CpG islands can be used as an indication of the presence of a promoter.) Two parallel

processes are then applied, one if the sequence has been determined to be CpG rich, and the

other if it is CpG poor. The sequence is broken up into smaller 5-base windows. Sensors are

then applied to these windows to determine whether it is a promoter, intron or exon. The

outputs of the three sensors are then combined by means of a neural network that does the

prediction.

Promoter 2.0 written by Knudsen [8] uses a neural network that was trained by a genetic

algorithm to do detection of well-known promoters like the TATA-Box.

1 DPF � Dragon Promoter Finder

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 9

Other approaches include PromoterInspector [11], and NNPP2.1 [12]. All these systems

showed potential, but suffered from limited accuracy (as can be expected from any automated

detection process). When looking at the way these systems work it can be seen that the full

256-length sequence cannot be used as is. It has to be broken into smaller sections to

determine which parts are relevant, and which are not.

1.6 Implemented Solution

1.6.1 How it was done

NNPromoterFind1.0 was designed, implemented and trained to look at a single DNA sample

that is 256-bases long and to determine whether the sample is a promoter or not. Obviously

before a network could be set up a lot of pre-processing and reliable data collection had to be

done. After data collection, statistical methods were used to determine which sections in the

256-base sample contained the information that determines whether it is a promoter or not.

These features were then used to train an ANN that does detection directly on the DNA

sample.

1.6.2 Contrasts between the current and earlier approaches

NNPromoterFind1.0 does not determine whether a given sample is CpG-rich or CpG-poor.

This was excluded in an attempt to build a single system that could be adapted and expanded

in the future to do more than polymerase II promoter detection, and the CpG islands lose

relevance in other research areas. However, nothing prevents us from doing CpG detection

first and then training two ANNs, one for CpG-rich, the other for CpG-poor DNA.

The second difference between NNPromoterFind1.0 and previous solutions is that the entire

256-base sample was not used. After the pre-processing step smaller windows are identified

that contain the useful information for detection. Only these smaller windows are used and

combined by the ANN. This reduces the computational cost of promoter detection, as only

relevant data is calculated; no time is wasted on in-between sections. Also, it allows us to gain

insight into the promoter regions, and is useful in improving generalization.

A third difference is that much pre-processing is done for feature selection. The ANN is used

to do detection directly, based on the selected features. Other programs like Dragon Promoter

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 1: Background

Electrical, Electronic and Computer Engineering 10

Finder [7] use mathematical and statistical methods to do detection, and then simply combine

the detectors with an ANN. With NNPromoterFind1.0 system the ANN is the detector.

Yet another difference is the fact that five classes will be defined instead of two or three. DPF

[7] for example has a detector for introns, exons and promoters. NNPromoterFind1.0 includes

splice sites in both the training and testing process - I2E and E2I splice sites were both

included. As shown later in this document, splice sites share some features with promoters, but

can be detected more reliably. Hence, if splice detection is done, and thus the splice samples

eliminated as possible promoters, it means that more accurate promoter detection can take

place.

1.6.3 Contribution

The work done in the project yields several useful contributions to this research field. At the

very least the groundwork has been laid out for future work. All the work done to get samples

of the different classes was done. A lot of statistics were also generated that can be used in

future work on promoter detection. Lastly, and most importantly a complete ANN was written,

trained and tested (NNPromoterFind1.0) that is a fast, reliable promoter detection program.

When compared to the current state of the art promoter detection programs a total performance

increase of 10% was obtained. This 10% increase is the worse case obtained. Some of the

experiments obtained a performance increase of up to 30%.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 11

2 CHAPTER 2: TASK OVERVIEW

This chapter contains the functional breakdown of the project. The project is broken down into

functional units, and it is shown how the functional units fit together. A brief description of

what was done to accomplish each function is also given. The sequence of functional units

also provides the sequence in which the greater problem was solved.

2.1 Overview of the Entire Process

Figure 4: Process flow diagram.

FU1: Data collection and extraction

FU1.1: Set and class generation FU1.2: Statistical information
gathering

FU2: Extracting useful information

FU3: ANN generation

FU4: ANN training

FU5: ANN testing

FU6: Further enhancements

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 2: Task Overview

Electrical, Electronic and Computer Engineering 12

2.2 FU 1: Data Collection and Extraction

This functional unit handles the process for generating reliable, usable samples of five

different classes. It is one of the most important units of this project since all the other units

are built directly on the data obtained here. Incorrect data collection would have led to

incorrect statistical conclusions. This would result in incorrect network set-up, incorrect

training parameter selection and in the end incorrect detection. Care has been taken in this

functional unit to obtain samples with varying features. Such samples provide improved

generalisation, although some training-set accuracy might be lost. The final system should be

able to recognise and detect a wide variety of promoters, even if some of them are not detected

as easily or strongly as others. The alternative is to select fewer promoters and try to get a

stronger detection on them. Better generalisation means more expandability with regards to

different applications as well as different promoter types. Since promoter features are not

100% known, as seen in Section 1.3.3 where the TATA-Box is discussed, it is more desirable

to design a system that does good promoter finding by looking at various aspects than to

design one that can only detect a certain �known� box. The data collection functional unit

consists of class generation, set generation, as well as statistical calculation processes.

2.3 FU 1.1: Set and Class Generation

In this functional unit the task of generating different classes and sets is handled. The main

aim of this project was to differentiate between promoter features and non-promoter areas in

DNA. Non-promoter areas include every possible DNA section that does not function as a

promoter, including intron, exon, I2E- and E2I-splices. Samples of each of these classes have

to be collected and stored so that they can be compared and studied. All the samples have to

be the same length, 256 bases long, with distinguishing features at a specific position to ensure

that they can be compared with one another. Comparisons had to be made in a given class as

well as between classes.

The second step was to generate three different sets, each with a very specific function. A

training set had to be made containing most of the available data, as defined by Bishop [13].

This set was used for the statistical analysis, and also for training the detection neural network.

A second, smaller testing set had to be generated that could be used for designing the neural

network. To see whether changes in network topology or training methodology changes

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 2: Task Overview

Electrical, Electronic and Computer Engineering 13

system performance a set that was independent of the training set was required. The test set

fulfilled this function. Lastly a validation set was generated. The validation set contained less

data than the other two sets, and was used only once. The only function of the validation set is

to test the final system on data that originates from the same source as the training and testing

sets, but to the moment of testing has remained undetected by the system. This means that the

validation set has no influence on the training or tuning process of the system.

2.4 FU 1.2: Statistical Information Gathering

The raw DNA data starts out as sequences of millions of bases long. These were processed

into different samples of various classes and divided into different sets. The next step was to

gather meta-data on samples to attach some mathematical meaning to each class. Statistical

methods were employed to determine where certain bases occur in the sequences. The

statistics were calculated for each of the five different classes separately so that they could be

compared with one another. The average chance for each base type to occur at each of the 256

positions in the sample sequences had to be calculated and then compared amongst the classes

to determine where certain bases occur more in one class than the others. One of the biggest

problems with the statistical information is that there is practically no useful information when

one looks at single base occurrence only. This is due to the fact that each base type occurs

with a likelihood of about 25%, as shown in greater detail in Chapter 4. This implies that any

one of the four possible base types is as likely to occur as any one of the remaining three.

Hence, we studied the occurrence of base combinations, instead of single bases. Bases were

grouped together in short sequences called n-tuples, where n represents the number of bases

grouped together (for example a 3-tuple is three bases strung together). Neighbouring n-tuples

were selected such that they overlapped, shifting a single base at a time. This drastically

increased the number of statistical calculations made. When looking at four single-base

occurrences, there are 256 (number of positions) multiplied by 4 (number of possible bases),

hence 1024 numbers that have to be calculated. The number of possible n-tuples, on the other

hand, is 4^n). This meant that a very large number of statistics had to be calculated, but also

implied a larger number of values that could be used to search for distinguishing features.

Note that the statistics are gathered only on the training set, to make sure that the test set and

validation set were completely isolated from the training methods of the system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 2: Task Overview

Electrical, Electronic and Computer Engineering 14

2.5 FU 2: Extracting Useful Information

The previous section briefly described what statistics were generated, but still doesn�t explain

how this large quantity of numbers is of any practical use. A reliable, mathematically sound

method had to be used to compare the statistics of the different classes to one another in such a

way that distinguishing features for the promoter class could be identified. Various methods

were attempted: some direct comparisons were made, the number of occurrences were counted

and compared, weighted averages were taken etc. The most useful extraction method was

found to use entropy as described by Bishop [13], and originally developed by Shannon

(1948). Entropy measures the information content of data. The entropy was calculated for each

possible position (1-256) in the sequence, and each n-tuple (1-4n). The lower the entropy

value, the more significant a specific feature. Using entropy, the statistical data was

transformed from numbers to useful information, determining which n-tuples at which

positions could be used to identify promoter sequences. These features were extracted and

stored, for use in the neural network as explained in the following section.

2.6 FU 3: Generate an Artificial Neural Network

As mentioned in Section 1.4, one of the aims of this project was to develop efficient promoter

detection. One of the well-known pattern recognition methods for this purpose uses an

artificial neural network (ANN). The full mathematical background on ANNs is not given

here, but can be found in various sources such as Bishop [13], Negnevistky [14] and Russell

& Norvig [15]. An ANN had to be designed that could take a 256 base sequence, compare it

with the entropy�based features and give a simple yet useful indication whether the sequence

is a promoter or not. A simple 2-layer, feed-forward ANN was developed that was trained

using the back-propagation training method. To speed up the system an adaptive learning rate

as well as a momentum term, both described by Negnevistky [14] was implemented. The

inputs to NNPromoterFind1.0 are the entropically extracted features. The hidden and output

layers use sigmoid transfer functions. The output is a single binary output that approximates a

1 for a promoter sample, and a 0 for a non-promoter. Both the input and the hidden layer have

biasing neurons to make sure that the outputs are biased correctly. NNPromoterFind1.0 is

described in more detail in Chapter 5.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 2: Task Overview

Electrical, Electronic and Computer Engineering 15

2.7 FU 4: Training Process

NNPromoterFind1.0 was trained with the training set generated in FU 1.1. Each sample of the

training set was shown to the ANN, and the error was calculated at the output neuron. The

error was combined for all the samples in the training set, and then after each sample was

introduced to NNPromoterFind1.0 one time, the error was propagated backwards, and all the

necessary weights updated. This process was repeated until a sufficient reduction in the

combined error was obtained, or a constant minimum error was found.

2.8 FU 5: Testing of the System

The last step was to test the ANN to check whether accurate detection is possible. For this

step, the test set was used for the first time. Note that no sample in the test set was used to

determine statistics, generate features with entropy or train NNPromoterFind1.0, thus

providing total isolation. Each sample in the test set was introduced to the ANN, and the ANN

then determined whether the sample is a promoter or not. The number of mistakes made was

noted to determine how accurate the system is. As with any automated detection process there

are various ways to calculate how well the system performs. The method used was originally

designed by Bajic et al. [7] to compare the performance of a promoter detection system. This

method calculates a sensitivity value as well as a positive prediction value to determine

accuracy.

As can be seen in the functional flow diagram (given at the start of this section) the entire

process had to be repeated from various levels: sometimes it had to be repeated from as far

back as statistical extraction and other times only more training was required. This was done

to make sure that different network topologies and different selected features were used to get

the best final results.

2.9 FU 6: Further Enhancements

The last step of this project was to investigate possible future improvements to make the

system more accurate and useful. Some of these methods were tested whilst others were

simply motivated. These include using multiple networks, getting the system to read entire

DNA strings and doing full gene-finding instead of just promoter detection. Chapter 7

discusses these options in more detail.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 16

3 CHAPTER 3: DATA EXTRACTION

3.1 Introduction

In this chapter a full description of the data extraction process is given, as well as an

explanation of how the source data files should be read and interpreted. Obtaining reliable data

is one of the most important steps for any automated detection program because the entire

behaviour of the system is based on the data samples. Faulty samples, or samples that do not

represent the whole truth will lead to an inaccurate or even totally useless detection system.

For that reason great care was taken to obtain accurate samples for generating the detection

system.

3.2 Attaining promoter data

Because the system is designed to detect promoters, the first step was to get good promoter

data. There is one fundamental problem in getting promoter samples, and that is that it cannot

be extracted from raw DNA data using another automated program. If other automated

systems were used to extract the promoter sequences, any system trained with that data would

only look for the same distinguishing features that the source system used instead of looking

for distinguishing features of true promoters. The point is that any system trained on data

extracted by another automated system will be at the best as accurate as the previous system,

and thus of no additional use. Therefore, promoters that have been experimentally determined

by biochemical means should be used. The Eukaryotic Promoter Database (EPD1) [16]

contains exactly that: promoters that were experimentally determined. This also happens to be

the source of the promoter data used to train the Dragon Promoter Finder system developed by

Bajic et al. [7]. The EPD provides eukaryotic promoter sequences of different species with

very specific formatting. The length of the sequence is defined by giving the number of bases

upstream and downstream of the TSS that has to be extracted. Since it was already decided

that 256-base sequences would be used for this system, only the position of the TSS had to be

chosen. Since there might be some promoter information downstream of the TSS it was

1 EPD � Eukaryotic Promoter Database

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 17

decided to include 55 bases downstream in the samples, and thus 200 bases upstream. 200

upstream plus 1 TSS plus 55 downstream gives a total sample length of 256 bases. As

explained in Section 1.3.3, the TATA-Box that is the most commonly accepted promoter is

found at position �50 to �20, but the full 200 bases were extracted to make sure that possible

unknown promoter features will be captured. A total of 1871 Homo sapiens (human) promoter

sequences were downloaded from the EPD. These 1871 samples were all stored in a single

text file called �HSV2.txt�. The downloaded samples are available on the CD that

accompanies this dissertation, and four examples are given below:

>EP17030 (-) Hs snRNA U1 (pU1-6); range -200 to 55
GGGGCTGACGTCTTCGCCACTGGCTGTTTCACCACGAAGGAGCTCCCGTGCCGTGGGAGC
GGGTTCAGGACCGCTGGTCGNACCTGAGGGTCCCAGCTGTGTGTCAGGGCTAGGAAGGCT
CGGGGGTGCGCGGGGCAAGTGACCATGTGTGTAAAGGGTGAGGTATATGGAGCTGTGACA
GGGCAGAAGTGTGTGAAGTCATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTG
GTTTTCCCAGGGCGAG
>EP17031 (-) Hs snRNA U1 (pHU1-1); range -200 to 55
GAGGCTGCTGCTTCGCCACTTGCTGCTTCACCACGAAGGAGTTCCCGTGCCCTGGGAGCG
GGTTCAGGACCGCTGATCGGAAGTGAGAATCCCAGCTGTGTGTCAGGGCTGGAAAGGGCT
CGGGAGTGCGCGGGGCAAGTGACCGTGTGTGTAAAGAGTGAGGCGTATGAGGCTGTGTCG
GGGCAGAGGCCCAAGATCTCATACTTACCTGGCAGGGGAGATACCATGATCACGAAGGTG
GTTTTCCCAGGGCGAG
>EP17036 (+) Hs snRNA U2; range -200 to 55
CCGGGAACGCCGAAGAAGCACGGGTGTAAGATTTCCCTTTTCAAAGGCGGGAGAATAAGA
AATCAGCCCGAGAGTGTAAGGGCGTCAATAGCGCTGTGGACGAGACAGAGGGAATGGGGC
AAGGAGCGAGGCTGGGGCTCTCACCGCGACTTGAATGTGGATGAGAGTGGGACGGTGACG
GCGGGCGCGAAGGCGAGCGCATCGCTTCTCGGCCTTTTGGCTAAGATCAAGTGTAGTATC
TGTTCTTATCAGTTTA
>EP15024 (+) Hs histone H3.3; range -200 to 55
NN
NNNGCGAGCCTTCCCT
CCATTGTGTGTGATTGGCTGCGCGCGGCGGGGGCGGGGCGGCGTGTGTTGGGGGATAGCC
TCGGTGTCAGCCATCTTTCAATTGTGTTCGCAGCCGCCGCCGCGCCGCCGTCGCTCTCCA
ACGCCAGCGCCGCCTC

Extract 1: Example of promoter samples.

The first line of each sample, starting with a �>� gives the name of the gene where the

promoter was found. Each following line contains the base sequence of the DNA, with each

line containing a maximum of 60 bases. This 60-base maximum per line format was adopted

as the standard throughout the rest of the project, since it was easier simply to make sure all

the generated samples look the same than to attempt to reformat each promoter sample. These

adopted formatting rules also included the first line starting with a �>� where any description

text could be inserted.

The fourth sample starts with a long sequence of �N� characters, which is obviously not one of

the four possible base types A, C, G or T. This is how the EPD indicates sequences that are

unknown or not transcribed. Many of the 1871 downloaded promoter samples started or ended

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 18

with these �N� characters. There was no way to get the true sequence values for those

positions, so a method had to be devised that could generate statistics but could ignore the

segments where the sequence was not known.

3.3 Obtaining non-promoter data

For the promoter data no actual work was required, since they could simply be downloaded.

No such database exists for the non-promoter data that was required, so a different approach

had to be taken: an automated method was used to extract the non-promoter data from

sequenced DNA data. The first step was to simply get raw DNA data from the NCBI

download site [17]. From this site the entire human chromosome DNA sequences could be

downloaded. This is an enormous amount of data as can be seen from the table below:

Table 1: Chromosome file sizes.

Chromosome Zipped File size (MB)
1 71.6
2 70.3
3 81.3
4 78
5 74.2
6 70.9
7 129
8 59.8
9 49.6

10 55.3
11 55
12 54.1
13 39.5
14 35.9
15 34.5
16 33.1
17 32.1
18 30.7
19 23
20 25.7
21 14.8
22 14.7
X 62.9
Y 7.76

Total 1203.76

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 19

The smallest chromosome � excluding the X and Y-chromosomes � chromosome 21, spans

over more than 15000 pages, and over more than 28 million bases, and some of the longer

chromosomes are up to eight times this length.

3.3.1 A closer look at the GBK file format.

The downloaded files are in GBK format. Such files contain not only DNA sequence data, but

also some source, variation and annotation information. For illustration, a closer look will be

taken at chromosome 21. The file starts with header information, describing the source of the

data as well as when, where and how the sequencing was done. Different sections were

sequenced by different institutes as shown in the example �source� sections.

LOCUS NT_011512 28602116 bp DNA linear CON 07-OCT-2003
DEFINITION Homo sapiens chromosome 21 genomic contig.
ACCESSION NT_011512
VERSION NT_011512.9 GI:37558541
KEYWORDS .
SOURCE Homo sapiens
 ORGANISM Homo sapiens
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 28602116)
 AUTHORS International Human Genome Sequencing Consortium.
 TITLE The DNA sequence of Homo sapiens
 JOURNAL Unpublished (2003)
COMMENT GENOME ANNOTATION REFSEQ: Features on this sequence have been
 produced for build 34.0 of the NCBI's genome annotation [see
 documentation].
 On Oct 7, 2003 this sequence version replaced gi:29806267.
 The DNA sequence is part of the second release of the finished
 human reference genome. It was assembled from individual clone
 sequences by the Human Genome Sequencing Consortium in consultation
 with NCBI staff.
 COMPLETENESS: not full length.
FEATURES Location/Qualifiers
 source 1..28602116
 /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /chromosome="21"
 source 1..106559
 /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /clone="21B49A22"
 /note="Accession AP001464 sequenced by RIKEN Genomic
 Sciences Center"
 source 106560..218367
 /organism="Homo sapiens"
 /mol_type="genomic DNA"
 /db_xref="taxon:9606"
 /clone="RP1-133G21"
 /note="Accession AJ239321 sequenced by Max Planck
 Institute for Molecular Genetics"

Extract 2: Example of GBK file start.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 20

The header information gives authentication information, and is not of direct use for the

extraction process. The next section in the file contains all the possible variations:
 variation 13212
 /allele="A"
 /allele="G"
 /db_xref="dbSNP:4086405"
 variation 13230
 /allele="C"
 /allele="A"
 /db_xref="dbSNP:7509718"
 variation 13374
 /allele="A"
 /allele="G"
 /db_xref="dbSNP:4086404"
 variation 13380
 /allele="C"
 /allele="A"
 /db_xref="dbSNP:7510510"

Extract 3: Example of GBK variation of bases.

This means that the sequence is given with a specific base type, but that a different base type

can possibly occur at that position. This information could be very relevant to the extraction

process, since a sequence might be extracted as �TTGTC� but the �G� base in the middle

might have a �C� and an �A� variation. This complicates the extraction process and it was

decided that the variations would not be used for the sake of simplicity. The main aim of this

project is to get accurate promoters and the assumption has been made that if there are no

variations on the promoter data some small variations on the non-promoter samples can be

tolerated.

The next section in the file contains the coding gene and mRNA sequences. mRNA is a

complementary copy of a gene according to Tamarin [2]. In other words the mRNA sequence

is the sequence that should be transcribed to RNA for the transcription process and the

position where the mRNA starts can also be seen as the TSS. Although they technically differ,

for this project �mRNA�, �a gene� and the �section that has to be transcribed� are seen as

equivalents.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 21

Gene encoding section:
gene complement(1405307..1417342)
 /gene="STCH"
 /note="Derived by automated computational analysis using
 gene prediction method: BestRefseq. Supporting evidence
 includes similarity to: 1 mRNA"
 /db_xref="GeneID:6782"
 /db_xref="LocusID:6782"
 /db_xref="MIM:601100"

Extract 4: Example of GBK gene positioning.

Followed by the mRNA encoding section:
 mRNA complement(join(1405307..1408476,1409844..1410011,
 1412391..1412604,1415395..1415735,1417287..1417342))
 /gene="STCH"
 /product="stress 70 protein chaperone,
 microsome-associated, 60kDa"
 /note="unclassified transcription discrepancy; Derived by
 automated computational analysis using gene prediction
 method: BestRefseq. Supporting evidence includes
 similarity to: 1 mRNA"
 /transcript_id="NM_006948.2"
 /db_xref="GI:24431965"
 /db_xref="GeneID:6782"
 /db_xref="LocusID:6782"
 /db_xref="MIM:601100"

Extract 5: Example of GBK mRNA positioning.

It can easily be seen from this example that the gene start- (1405307) and stop- (1417342)

position are the same as the first and last positions given in the mRNA section. The gene

section gives the locations of the entire gene, while the mRNA section gives the exon sections.

This means that exon, intron, I2E and E2I positions can be established from these numbers. In

the example above the TSS is at base position 1405307 in the sequence. As displayed all the

sequence sections are given as a pair of numbers separated by two full stops:

�XXXX..YYYY�. XXXX is the start of the exon region and YYYY is the end. This also gives

the I2E and E2I splice regions accordingly. The first number is the TSS. The second number

will then be the first exon-to-intron splice site. From the third number every second number

given is an I2E splice, and every other number an E2I splice.

In our notation, the format is therefore ((TSS..E2I,I2E..E2I,I2E..E2I)).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 22

The next section in the file is the most important one, containing all the actual sequence

information that spans most of the file:

ORIGIN
 1 catgtttcca cttacagatc cttcaaaaag agtgtttcaa aactgctcta tgaaaaggaa
 61 tgttcaactc tgtgagttaa ataaaagcat caaaaaaaag tttctgagaa tgcttctgtc
 121 tagtttttat gtgaagatat ttccattttc tctataagcc tcaaagctgt ccaaatgtcc
 181 acttgcagat actacaaaaa gagtgtttca aaagtgctca atgaaaagga atgttcagct
 241 ctgtgagtta aatgcaaaca tcacaaataa gtttctgaga atgcttctgt ctagttttta
 301 tgggaagata attccgtgtc cagcgaaggc ttcaaagctt tcaaaatatc cacttgcaaa
 361 ttctacaaaa agagtgtttc aaagctgctt tatcaaaaga aagtttcaac tctgtgagtt
 421 gaatgtgcac atcacaaaga agtttctgag aatgccttca gtctggtttt tatgtgaaga
 481 tattcccttt tccaacgaaa gcctcgaagc tgtccaaata tccacttgta agtgctgcaa

Extract 6: Example of GBK actual sequence.

Each line starts with the base position followed by 60 base types. The 60-bases per line is

exactly the same as the format used by the EPD for storing the promoters as was seen in

Section 3.2, with the only exception that the EPD did not start each line with a base number.

3.3.2 Developing an extraction program.

Since gene and mRNA data was available directly in the GBK files a program could now be

written that can read through these enormous files and generate samples for each of the non-

promoter classes. Five classes were extracted: Introns, Exons, I2E, E2I as well as mRNA start

samples. The mRNA start class was extracted, and some statistics were computed from it, but

it was not considered a regular non-promoter region since it could contain a promoter. It was

also not used as a promoter, because of the automated annotation process used to mark it. It

can be seen that most of the gene annotation was done by a program called BestRefSeq. This

might cause concerns, as one now has to assume once again that this program is accurate and

correct. It was assumed that this program could be trusted to generate splice sites that are

accurate enough for the purposes proposed as it is only used for the non-promoter data. Also, a

very large set of non-promoter sequences were generated, far more than the 1871 promoter

samples, and therefore if some of them are not 100% correct the average error should be low

enough for the construction of a reliable system.

The samples extracted with the program Extract.exe (extract.c - Addendum 1) will always be

256 bases long. The sample will also have the same format as the promoters downloaded from

the EPD, in other words it will be �200 to +55 from the �marking� feature. mRNA start

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 23

positions, I2E and E2I splices will always be exactly at position 0. Introns and Exons don�t

have specific distinguishing features at position 0, but will still be 256 bases long.

The samples extracted for the different classes should not contain the same base information;

therefore a length detection process was created to determine whether an 256-length sample

can be extracted without crossing into neighbouring samples. The main reason for keeping the

regions non-overlapping is to prevent the same features from occurring in different classes.

Although the positions will differ it is still preferable to keep the samples non-overlapping for

future use where the position information might not be used, and only the actual base

information will be used. This is best described with the help of a diagram, and is also given in

slightly more detail in Addendum 2. Figures 5-A and B show the DNA (nucleotide detail

excluded) and the intron and exon regions. The splice markings in Figure 5-B are the values

read directly from the GBK file. In Figure 5-C the mRNA sample is shown. The sample starts

200 bases upstream from the actual mRNA value given in the GBK file, and ends 55 bases

downstream of it. The same applies for E2I (Figure 5-D) and I2E (Figure 5-E) splice sites. The

intron sample (Figure 5-F) and the exon sample (Figure 5-G) are any areas that are at least 256

bases long between two following splice sites.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 24

Figure 5: Different 255 base sequence selections for different sample types.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 25

The extraction program is a multi-step process, with the simplified flow diagram, Figure 6

showing the broad steps taken.

Figure 6: Extraction program flow diagram.

As seen in this diagram the entire GBK file is processed twice during the extraction process.

Initially, the mRNA and splice positions are read from the file, and stored in their adapted

form (position �200) to five different files, one for each class. Positions are only stored if a

valid 256 base length sequence can be extracted without passing over into neighbouring

samples. The second pass is actually 5 passes, once for each class type, where the positions

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 26

read from the first set of files are located in the sequence section of the GBK file. The samples

are then read from the correct position and stored in a class-sample file in the same format as

the promoter file hsv2.txt. The first line of each sample (where the promoter starts with a �>�

symbol and the gene origin location) gives the position in the GBK file from where the sample

was extracted.

The five files are:

�intronD.txt�, �exonD.txt�, �i2esplice.txt�, �e2isplice.txt� and �startseq.txt�

The extraction program extracts samples from one of the 24 (22 + X + Y) available

chromosome GBK files at a time. The position text files that are created during the first run

through the GBK file are rewritten every time the program is run. The sample files are

expanded every time the program is run so that the total samples come from all the available

source files. Table 2 gives the numbers of each sample type that was extracted from each of

the used source files. The files for chromosome 1-5 and 12 as well as chromosome X and Y

were not used, because these files were either corrupted during download, or had some

unknown parameters that caused extraction to fail. Chromosome 9, 15 and 20 were also

skipped for use as a final, second validation set. This second validation was never actually

implemented as no further promoter samples were available that were not part of the training

or testing set. These numbers were not the final number of samples used, because sample

duplicates had to be removed first to ensure that the sets do not contain duplicates. After

duplicate removal, and excluding the samples of chromosome 9, 15 and 20 there were 50450

samples left.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 27

Table 2: Number of each sample for each class extracted from the different chromosomes.

Chromosome Intron Exon I2E Splice E2I Splice mRNA start Totals
5 1022 895 946 404 1016 4283
6 1017 974 1128 589 1165 4873
7 2400 1785 1996 954 2226 9361
8 823 653 695 309 824 3304
9 784 684 804 382 915 3569
10 1103 749 933 447 931 4163
11 969 970 1146 557 1327 4969
13 651 384 473 237 740 2485
14 708 620 766 391 974 3459
15 747 659 724 369 711 3210
16 934 863 893 464 1286 4440
17 1057 1078 1249 580 1627 5591
18 584 369 464 230 640 2287
19 862 1122 1389 715 1686 5774
20 648 578 655 293 912 3086
21 254 234 241 107 252 1088
22 505 510 545 225 726 2511

Totals 15068 13127 15047 7253 17958 68453

3.4 Set generation.

The final step before statistical data could be extracted was to split the extracted data into the

three separate sets: a training set containing most of the data, a test set used to fine-tune the

detection process and a validation set for final system testing. At this point there were exactly

1871 promoter samples in the file hsv2.txt and 50450 other samples in five different files. This

suggests another interesting problem, namely that the ratio of promoter samples compared to

the non-promoters. is 1871:50450, or about 1:27. The problem with this value is that the true

ratio between promoters and non-promoters in the source Eukaryotic DNA is not known at all,

and in all likelihood the ratio should be even larger, meaning much more non-promoters for

each promoter. Furthermore, when designing a detection system or classifier like this the ratio

of samples can influence the final decision boundaries. Usually the method used to overcome

ratio problems is to pre-bias the system or to include ratio calculations into the training

process, but for that the true ratio needs to be known. To help overcome this problem two

separate sets were generated: the first set contained all the available samples, while the second

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 28

set was generated so that there were exactly 1871 samples of each class (1871 being the

smallest number of samples between all six class types). The first group was generated to get

the more accurate representation of the promoter:non-promoter ratio, while the second group

was generated to have equal numbers of samples for each class. From here on the first set will

be referred to as the large set, and the second set will be referred to as the equal sized set.

Table 3: Number of samples per set (2 different groupes used).

 Train Test Validate Total
Promoter 1294 383 194 1871

Intron 7669 2286 1006 10984
Exon 3760 1755 442 5289

I2E Splice 8096 2309 956 11338
E2I Splice 6398 1087 834 8987

mRNA 9857 2742 1253 13852
 50450

Promoter 1300 350 221 1871

Intron 1300 350 221 1871
Exon 1300 350 221 1871

I2E Splice 1300 350 221 1871
E2I Splice 1300 350 221 1871

mRNA 1300 350 221 1871
 9355

The program used to split up the extracted source files into the three different sets is given in

Addendum 3, with the flow diagram given below in Figure 7.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 29

Figure 7: ClassSets program flow diagram.

This program only operates on one class file at a time, in order to minimize its complexity. At

the start of the program the user selects the class that has to be split into sets. The samples are

read one by one from the source file and randomly distributed between three files, one for

each set. The program automatically creates a subdirectory for each of the three classes, and

creates a text file with the same name as the original source text file. A random number is

generated and used to select the output set in such a way that 70% of all the samples go to the

training set, 20% go to the test set and the remaining 10% go to the validation set. If the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 3: Data Extraction

Electrical, Electronic and Computer Engineering 30

maximum number of samples for each set has already been reached a new number is selected.

The first line of each sample contains descriptive information: for promoter, the gene that they

activate and for non-promoters, the position in the chromosome file from which they were

extracted. This information is subsequently replaced by a single number, showing the class to

which the sample belongs (0 indicates non-promoters while 1 indicates promoters).

3.5 Outputs of extraction.

The final outputs of the extraction process were eighteen files, six classes in three sets. The

file names used for each class amongst the three different sets were identical, but the files

were stored in three different directories.

The three directories:

Train, Test and Validate,

each containing the six text files:

 hsv2.txt, intronD.txt, exonD.txt, i2esplice.txt, e2isplice.txt and startseq.txt.

Each text file contained a number of samples, ranging between 221 and 9875 samples per file.

Each sample in the format:
> <Promoter / Non-promoter>
Nucleotide 1 to 60
Nucleotide 61 to 120
Nucleotide 121 to 180
Nucleotide 181 to 240
Nucleotide 241 to 256
> 0
tattacaagaaatggtttgaggggcaccaaatagctcagcaccacaagctcaatgtgttc
ttcactctcgcctaattggaatagtgcacggcaccagtaagattccccatcttcctccaa
aagttgtgttatcttcagctttgtttcgttagcatatgttccattgatcacatatttatt
catttgaacaccaacaggaacctaatatgaggagacattaaaatccattcctatcatagc
acataaaagatacatg

Extract 7: Final sample format.

Each file also starts and stops with a new line, which is required for compatibility with

programs using these files later to determine statistics.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 31

4 CHAPTER 4: STATISTICAL

INFORMATION GATHERING

4.1 Data reduction.

After data extraction, the number of bases was reduced by several orders of magnitude. The

raw chromosome data contained more than 26 million bases each, so in total there were more

than 26 000 000 * 24 = 624 million bases. The largest training set (see Table 3, Section 3.4)

contained only 37074 samples, so only 37074 * 256 = 9490944 bases. This is already an

immense reduction in data, but it still does not provide any directly useful information as to

what the differences between promoters and non-promoters are. Doing a base-by-base

comparison between the promoter samples shows that there is not a very good correlation

between them (see Section 1.3.3. for the reason) and the same is true for the non-promoter

samples.

To be able to find the sections in the 256-base window that describes promoters it was

required to do relevant statistical analysis on the occurrence of the four different nucleotides at

the 256 different positions in the file.

4.2 Base-per-position statistics.

A program was written that could read in the six text files created in the data extraction

process and could generate a number of arrays that contain the occurrence percentages for

each n-tuple (from lengths n=1 to n=8) at each position in the sample. The program consists of

a Matlab section as well as a C-section, which are given in Addendum 4 and 6 respectively.

The Matlab program, pullData.m, generates the arrays, and calls the C�compiled program

statistics.c, as a Matlab function. Most of the actual computation is done by the C-section

because the file handling and computation time in C is much faster than in Matlab. Along with

the arrays a very large text file is also created that simply stores all of the base count

information. The number of times each base occurs at each position in each of the samples is

stored one after the other in the text file. The reason why this very large linear file is generated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 32

is because the actual base extraction process takes a long time, so storing it helps when re-

using the data. This text file is called �baseCntN.txt� where N is the n-tuple length (1 for base-

by-base). A second Matlab program pullHalf.m (given in Addendum 5) was written so that it

is almost identical to pullData.m, with the exception that pullHalf.m does not run the C

program, but instead extracts the required arrays from the baseCntN.txt text file. Note that the

size of this text file increases exponentially with n, resulting in very large files for n larger

than six. The second program cannot be used unless pullData.m had already been used at an

earlier stage to create the text file. (IN) When calling the Matlab programs pullData.m or

pullHalf.m the program prompts the user to enter the length of n. This is required to ensure

that the arrays are the correct size.

All the outputs generated by the Matlab programs are temporary, and stored as Matlab

variables in memory only; they are never stored in file. The arrays generated by these two

programs are identical, the only difference is that one (pullData.m) first generates the

baseCntN.txt text file from the class text files generated in the extraction process, while the

second (pullHalf.m) only uses the baseCntN .txt text files.

The following six arrays were created, one for each class:

PositionDataIntron, PositionDataExon, PositionDataE2I, PositionDataI2E,

PositionDataPromoter, PositionDataMRNA.

Each Array has 4^n+1 rows and 256-n+1 columns. Each row keeps one of the 4^n possible

combinations of base length n. All the data are stored as percentage of occurrences, not total

number of occurrences. The last row (4^n + 1) is used simply as a double-checking measure,

containing the sum of each column. This value should be 100 for every entry since every

combination is stored and added; this is not true for the promoter class, however, because

some of the promoter samples contain unknown bases (marked as N in the sequence) that do

no contribute to the percentage. The 256-n+1 rows correspond to the possible positions at

which an n-tuple of length n can occur. For example, there are 256-1+1 = 256 possible

positions to store a single base, but there are only 256-5+1 = 252 possible starting positions for

a 5-tuple.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 33

Further arrays generated were CountIntron, CountExon, CountI2E, CountE2I, CountPromoter

and CountMRNA, each with one row only and 4^n columns. They contain the total number of

times (as a percentage) each n-tuple occurs, disregarding specified position in each of the

classes. This was used to see if any n-tuple occurs more often, across all positions, in one of

the classes.

The number of samples used from each of the classes to generate the statistics is also stored in

the values a-e. The program flow diagram is given in Figure 8 below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 34

Set n-tuple length

Delete any previous baseCntN.txt files

Call C compiled functon, statistics.c

Load the baseCntN.txt file to a Matlab variable

Select first class, position and n-tuple

Read occurance count

Set to percentage

Store in appropriate array position

Calculate all additional values

All positions done?

Increase position

All n-tuples done?

Change n-tuple

All classes done?

Select next class

Exit program

 Yes

 Yes

 Yes

Figure 8: Matlab statistics extraction flow diagram.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 35

4.3 Indexing and assigning n-tuple number.

The flow diagram for the statistics.c program is not given, but the full program can be seen in

Addendum 6. NNPromoterFind1.0 works through the samples of each class one by one,

counting the number of times each n-tuple occurs at each position. While the program is active

the values are stored in a large memory array, and after the program exits it is stored as the

text file baseCntN.txt. This text file is then loaded into Matlab memory and the separate class

statistics are extracted to the arrays in the format described earlier. As mentioned previously,

the statistics program was developed to work with n-tuples ranging from length one to eight.

For each increase in n, the number of data points stored is multiplied by four. A method had to

be devised to keep track of each n-tuple, and where it should be stored in the array. To keep

working with various length text strings directly is too complex, so a unique way to assign a

number to each n-tuple was developed. The numbering is done in a base-4 mathematics

system, directly using the four base symbols A, C, G and T with a value assigned to each of

them. A = 0, C =1, G =2 and T = 3. The method for converting strings to a value is the same as

converting a decimal value to a binary value. As the base-4 number for each string is unique,

and ranges from 0 to n^4-1, the number was also used as the index value for all the arrays.

This reduced complexity and keeps track of where n-tuple strings are stored. The function

seq2comb() on the CD accompanying this thesis performs this mapping of a string of bases to

a unique index, whereas the converse function is achieved with the function comb2seq().

4.4 Statistical outputs and results

The programs described in the previous section take the six class text files, created during the

extraction process, then do a base-by-base (or n-tuple by n-tuple) count and create large arrays

containing percentage values of how often each n-tuple occurs. For the 1-tuple, for example,

the following values were obtained:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 36

Table 4: Single base statistics

Variable name: %A %C %G %T

countIntron = 28.1184 21.9026 21.6785 28.3005

countExon = 24.0237 25.7332 25.1529 25.0901

countI2E = 24.9636 24.7963 23.5679 26.6722

countE2I = 22.6953 26.7275 28.8017 21.7755

countPromoter = 18.2521 30.6166 32.0649 18.7389

countMRNA = 25.6163 24.7641 25.2560 24.3636

From these values one sees that bases C and G seem to be more likely to occur in promoter

samples, whereas all four bases are almost equally likely in Exons. However, these differences

are not large enough to form the basis for reliable promoter detection. In order to extract the

meaningful statistics, further processing is required.

The Matlab function funcDraw.m was written to represent this information graphically. This

helped to get a better view of the magnitude of the differences that occur within the data. The

full function is given in Addendum 7, and the input arguments and function options are

described in Addendum 8.

The main function of the graphs was simply to see where (which position) in the sequence

there were significant differences between the classes that could be used as distinguishing

features. Each of the lines in the graph represents one n-tuple (or base). The X-axis for the

graphs contains the position in the samples, while the Y-axis contains the percentage

occurrence for the selected n-tuple. The graphs for n-tuples 1 to 5 are given below for the

equal sized training set (see Table 3, Section 3.4).

From all the n-tuples comparable information can be extracted. All n-tuples are more or less

equally likely to occur, no matter the position in the sample. For promoters there seem to be

strong features at position 200, as well as something between position 150 and 200

(approximately 175). For the mRNA start class the same positions seem to have features (175

and 200) but the features are less prominent than for the promoters. The I2E splice site shows

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 37

strong features from 175 to 200, and E2I splices show strong features from 200 to 250. Introns

and exons show no significant features whatsoever, and each n-tuple seems to be as likely to

occur as any other. The occurrence percentage for intron and exon samples seems to be

approximately %100

4 n
for all positions, and all n-tuples.

0 50 100 150 200 250
0

20

40

60

80

100

Promoters

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

80

100

mRNA Start

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

20

40

60

80

100

I2E Splice

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

80

100

E2I Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

20

40

60

80

100

Introns

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

80

100

Exons

%
 O

cc
ur

an
ce

Position

Figure 9: Matlab statistics 1-tuple,

showing the %occurrence of each of the 4 1-tuples position 1 to 256.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 38

0 50 100 150 200 250
0

20

40

60

Promoters

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

mRNA Start

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

20

40

60

I2E Splice

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

E2I Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

20

40

60

Introns

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

20

40

60

Exons

%
 O

cc
ur

an
ce

Position

Figure 10: Matlab statistics 2-tuple,

showing the %occurrence of each of the 16 2-tuples position 1 to 255.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 39

0 50 100 150 200 250
0

10

20

30

40

Promoters

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

40

mRNA Start

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

10

20

30

40

I2E Splice

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

40

E2I Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

10

20

30

40

Introns

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

40

Exons

%
 O

cc
ur

an
ce

Position

Figure 11: Matlab statistics 3-tuple,

showing the %occurrence of each of the 64 3-tuples position 1 to 254.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 40

0 50 100 150 200 250
0

10

20

30

Promoters

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

mRNA Start

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

10

20

30

I2E Splice

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

E2I Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

10

20

30

Introns

%
 O

cc
ur

an
ce

Position
0 50 100 150 200 250

0

10

20

30

Exons

%
 O

cc
ur

an
ce

Position

Figure 12: Matlab statistics 4-tuple,

showing the %occurrence of each of the 256 4-tuples position 1 to 253.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 41

0 50 100 150 200 250
0

5

10

15

20

Promoters

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

5

10

15

20

mRNA Start

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

5

10

15

20

I2E Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

5

10

15

20

E2I Splice

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

5

10

15

20

Introns

%
 O

cc
ur

an
ce

Position

0 50 100 150 200 250
0

5

10

15

20

Exons

%
 O

cc
ur

an
ce

Position

Figure 13: Matlab statistics 5-tuple,

showing the %occurrence of each of the 1024 5-tuples position 1 to 252.

The graphs for the other training sets (see Table 3, Section 3.4) are not given here; they

contain very similar results.

The conclusions that can be drawn from these graphs are:

Some features (a feature is a specific n-tuple occurring at a specific position) exist that might

help distinguish between the different classes.

Most features seem to be within 50 bases from position 200. Remember that the original

samples were selected in such a manner that the transcription start site, or the exact splice site

is at position 200.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 42

The exact n-tuple and position can be determined with this function using the full function

capabilities (see Addendum 7.1), but this process is far too complex and slow to determine

features one by one.

A better, more reliable method is required to extract the useful features from the statistical

data.

4.5 Using entropy as feature significance indicator:

A quick review on the process so far:

Samples were generated from EPD and NCBI data.

The samples were separated into six different classes and into three different sets.

n-Tuple occurrence statistics were generated on a position specific basis.

A function was written that displays the position specific statistics in graphs.

More refinement is required to get useful indicator features from the statistics.

The next section addresses point 5 given above. A well-established method to extract

meaningful data from a large number of statistical values, based on the entropy of the partition

induced by a particular feature, was used. We used the definition









+++−= ...)ln(*)()ln(*)()ln(*)(),(

z
C

z
C

z
B

z
B

z
A

z
A

YXEnt xyxyxyxyxyxy , (eq 1)

where Ent(X,Y) is the entropy of n-tuple X at position Y, and Axy, Bxy and Cxy are the number

of times n-tuple X occurs at position Y for sample type A, B and C., (In the rest of this

document, such an XY combination will be called a bin). A, B and C can be any of the classes,

and the equation can be extended to include all the class types by simply adding terms. Z is the

sum of Axy, Bxy and Cxy. The most obvious way to use the equation is to use the classes

Promoter, Intron and Exon for A, B, and C respectively. The lower the entropy, the more

likely it is for a specific feature to be a useful class indicator, since a low entropy corresponds

to one of the classes being preponderant. Using entropy is more reliable than simply doing a

direct comparison between classes, because entropy is based on the relationships between all

class occurrences. For example, compare the relationship A:B:C = 10:30:10 to A:B:C =

2:45:3. For both the cases it is obvious that the n-tuple in class B occurs much more frequently

than both classes A and C. But for the first case the n-tuple occurs only three times as much in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 43

class B as in class A and C, while the relationship is more significant for the second example.

The entropy calculation bears out this expectation.

Ent(Example 1) = �10/50* ln(10/50) � 30/50*ln(30/50) � 10/50*ln(10/50)

 = 0.2*1.609 + 0.6*0.511 + 0.2*1.609

 = 0.9502

Ent (Example 2) = �ln(2/50) � ln(45/50) � ln(3/50)

 = 0.04*3.219 + 0.9*0.105 + 0.06*2.813

 = 0.39204

Thus, entropy gives a straightforward indication of the better discriminatory power of example

2. A Matlab program getEnt5.m (Addendum 8) was written to automatically calculate the

entropy for each n-tuple at each position for a given length n. This program takes in several

parameters explained in Addendum 8.3 - amongst others, the n-tuple length, decision

boundary parameters and, the class for which one is trying to extract features.

When calculating entropy there is a very important thing to keep in mind, and that is that the

logarithm of 0 cannot be calculated. That means for each bin a check has to be made to make

sure that it is not zero, and when it is zero the term should just be ignored. If all the terms are

zero the entropy cannot be calculated, but obviously if a certain n-tuple does not occur in any

of the classes it cannot be used as a useful indicator. However it cannot be simply set to zero,

since entropy works on an inversed scale, where 0 is the best entropy. To overcome this the

program was written to simply set the entropy to 1 if there is no class that contains at least one

sample.

A second problem was that if the total number of occurrences summing the bins for a given

feature (Z in Equation 1) is not high enough, the feature is not a good indicator even if it

shows low entropy. For example if Axy = 1, Bxy = 0 and Cxy = 0 then the total entropy would

be zero, because the Bxy and Cxy terms would be ignored, and the entropy of 1/1*ln(1/1) = 1*0

= 0. So for all the samples only one contained the feature, but as none of the other classes

contained it a relationship of A:B:C = (100%) : (0%) : (0%). This seems to be a good feature,

but, to the contrary, it is not because if there were, say, 1 300 training samples and only one

contained the feature it is obviously not a good feature to use for classification. This results in

the problem that low entropy is used to indicate good features, but if the bins do not contain

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 44

enough values a low entropy is automatically found. To overcome this problem, a minimum

threshold for bin content was enforced, enforced by the �significance� parameter. Hence, all

bins containing fewer than a prescribed number of samples were disregarded, even if the

entropy seems to be low enough to indicate a significant feature.

Note that a low entropy value indicates a good feature, but does not directly indicate which

class is suggested by the feature. Fortunately, one can simply check which of the bins

contained the most samples; the class that contains the most samples for the feature is

suggested by the presence of the feature.

Another thing to keep in mind is that the entropy, when comparing all classes, differs from the

entropy when comparing only say promoters with introns and exons. Currently, the program

has only two modes of operation (as seen in Addendum 8.2) for selecting classes. In the one

mode, it uses the three classes (Promoter, Intron and Exon), and in the second mode the I2E

and E2I splice classes are added. The mRNA class is never used for entropy calculation, but as

explained in Chapter 3 this class was only extracted to compare with the promoters

downloaded from the EPD, and due to automated generation cannot be trusted in any case.

The last phase of the entropy calculation showed the results graphically. Different graphical

formats were examined to aid in the search for good features. One option was to make a 3-

dimensional plot, with the position on the X-axis, the n-tuple number on the Y-axis and the

entropy on the Z-axis. Using this one can easily see where the features with low entropy are

located. In Figure 14 below, the entropy for the 2-tuple training data is given. It can be seen

that 2-tuple 7 (meaning string �CT� using function comb2seq from Section 4.3.2) has a lower

entropy, and also that there are several 2-tuples near position 200 that show either very low or

very high entropy. Rotating the figure so that it is seen directly from above (from the positive

Z-axis direction), as shown in Figure 15, the same conclusions as above can be drawn by using

the change in colour as indication. This is useful but not 100% accurate, as the change in

colour indicates a change in entropy values, but does not give a clear indication of where

exactly the high and low entropy values are.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 45

Figure 14: Sample of 3D entropy plot.

Figure 15: Sample of 3D entropy plot, rotated for clearer view.

2 � Tuple index

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 46

The next graph was developed (Figure 16) to give the entropy on the Y-axis and the total

number of occurrences of the tuple (in other words Z in Equation 1) on the X-axis. On this

graph it is not possible to directly identify features, but it is possible to see what the general

trend and relationship between feature and their corresponding bin values were. Any point on

the bottom right of this graph is a good feature, while any point on the top left is a bad feature,

since data points with low entropy that occur frequently are useful for discrimination.

Figure 16: Sample of 2D entropy plot, including threshold line (parameters �20, 0.9).

The line on the figure indicates a threshold boundary. Every feature below, and to the right of

the line is identified as a useful feature, while everything above and to the left of the line is

ignored. The line is mathematically calculated using parameters of the entropy function (see

Addendum 8.3 for details) and compared with the entropy values calculated. If the entropy

value is less than the line function value the feature is a good class identifier. Matlab

automatically generates a text output as shown below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 47

Mean entropy: 1.05433 Min entropy: 0.65833 Max entropy: 1.09861

[199,4,2,0.13552] 0
[10,6,2,0.23135] 1
[59,6,2,0.26826] 2
[92,6,2,0.26674] 3
[99,6,2,0.28710] 4
[109,6,2,0.32581] 5
[113,6,2,0.26112] 6
..

Extract 8: Matlab entropy outputs.

The text output of Matlab gives the entropy mean, maximum and minimum values for the n-

tuple used. It also provides feature outputs in a format that will later be used directly by the

artificial neural network. These text outputs are available in Matlab and are also written to a

text file �features.txt�. The text file also includes all the parameters used to extract the features

so that it can easily be reproduced at a later stage if required.

The format of the features is:

[Position, n-tuple #, n-tuple length, 1-Entropy] Sample number.

The value 1-Entropy is used to get an indication of the strength of the feature. The higher the

number, the better the feature. No feature with an entropy of more than one will be selected by

the threshold function, so 1 - Entropy will always be positive. The sample number given after

the brackets is just to get an indication of how many features for a given n-tuple were selected

in total.

4.6 Results: The selected features.

After doing entropy calculations for n-tuples of length one to five, two different sets of

features were identified that could be used as detection features. Only features that can be used

to identify promoters were selected at first. Different threshold detection boundaries were used

for the different n-tuple lengths. In each case an attempt was made to select the optimal

boundary where all the features have a large number of samples per bin, but still have a low

entropy value.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 48

The following two tables give the two feature sets that were selected for promoter detection.

All the sets shown below were generated based on the equal sized set, Table 3, using only the

intron, exon and promoter data sets. Some of the extraction entropy graphs are shown in

Section 6, but were excluded here to save space. The values in the table are: Firstly, the unique

n-tuple identification number. Secondly the actual sequence, followed by the position and

length; then the probability is given that it is a promoter given the n-tuple and position

combination. The last column is simply the number of the feature in the list.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 49

Table 5: 54 Features extracted with entropy calculation.

n-Tuple # String Position Length Probability Feature
number

18 CAG 199 3 0.7433 1
19 CAT 199 3 0.6614 2
22 CCG 216 3 0.7286 3
25 CGC 147 3 0.7568 4
25 CGC 166 3 0.7174 5
25 CGC 184 3 0.7424 6
25 CGC 199 3 0.8169 7
26 CGG 148 3 0.8056 8
26 CGG 164 3 0.8158 9
36 GCA 198 3 0.6978 10
38 GCG 138 3 0.8158 11
38 GCG 147 3 0.8312 12
38 GCG 155 3 0.7722 13
38 GCG 157 3 0.8485 14
38 GCG 162 3 0.9079 15
38 GCG 178 3 0.8539 16
38 GCG 190 3 0.8243 17
38 GCG 191 3 0.8462 18
38 GCG 195 3 0.8272 19
38 GCG 216 3 0.8378 20
52 TCA 198 3 0.7030 21
48 ATAA 172 4 0.7887 22
72 CAGA 199 4 0.8272 23
75 CAGT 199 4 0.8636 24
89 CCGC 156 4 0.8919 25
89 CCGC 216 4 0.9600 26

100 CGCA 197 4 0.8889 27
101 CGCC 185 4 0.9143 28
101 CGCC 196 4 0.8780 29
105 CGGC 211 4 0.8611 30
106 CGGG 141 4 0.9615 31
116 CTCA 197 4 0.8116 32
146 GCAG 198 4 0.8209 33
148 GCCA 197 4 0.8281 34
153 GCGC 166 4 0.9310 35
153 GCGC 178 4 0.9643 36
153 GCGC 190 4 0.9600 37

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 50

154 GCGG 147 4 0.9355 38
154 GCGG 156 4 0.9333 39
154 GCGG 157 4 0.9630 40
154 GCGG 210 4 0.9091 41
166 GGCG 134 4 0.9286 42
166 GGCG 146 4 0.9143 43
166 GGCG 152 4 0.8919 44
166 GGCG 154 4 0.9118 45
166 GGCG 156 4 0.9032 46
166 GGCG 159 4 0.9615 47
166 GGCG 211 4 0.9118 48
169 GGGC 110 4 0.9615 49
170 GGGG 142 4 0.8542 50
210 TCAG 198 4 0.8209 51
192 ATAAA 172 5 0.8511 52
816 TATAA 170 5 0.9512 53
816 TATAA 171 5 0.9000 54

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 51

Table 6: 133 Features extracted with entropy calculation.

n-Tuple # String Position Length Probability Total features
11 AGT 200 3 0.7213 1
17 CAC 199 3 0.6148 2
18 CAG 199 3 0.7433 3
19 CAT 199 3 0.6614 4
20 CCA 198 3 0.6736 5
21 CCC 62 3 0.5956 6
21 CCC 158 3 0.5288 7
22 CCG 145 3 0.6829 8
22 CCG 182 3 0.7667 9
22 CCG 216 3 0.7286 10
24 CGA 199 3 0.7000 11
25 CGC 10 3 0.8491 12
25 CGC 43 3 0.6935 13
25 CGC 82 3 0.6721 14
25 CGC 123 3 0.7966 15
25 CGC 139 3 0.8308 16
25 CGC 146 3 0.7407 17
25 CGC 147 3 0.7568 18
25 CGC 157 3 0.7975 19
25 CGC 166 3 0.7174 20
25 CGC 184 3 0.7424 21
25 CGC 185 3 0.7727 22
25 CGC 190 3 0.8364 23
25 CGC 196 3 0.8382 24
25 CGC 199 3 0.8169 25
25 CGC 210 3 0.7647 26
26 CGG 141 3 0.6721 27
26 CGG 148 3 0.8056 28
26 CGG 164 3 0.8158 29
26 CGG 183 3 0.8333 30
26 CGG 196 3 0.8026 31
26 CGG 219 3 0.7671 32
29 CTC 197 3 0.5790 33

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 52

36 GCA 198 3 0.6978 34
37 GCC 186 3 0.6036 35
37 GCC 197 3 0.7000 36
38 GCG 55 3 0.7647 37
38 GCG 105 3 0.6765 38
38 GCG 113 3 0.6406 39
38 GCG 120 3 0.8182 40
38 GCG 125 3 0.8980 41
38 GCG 135 3 0.7313 42
38 GCG 138 3 0.8158 43
38 GCG 145 3 0.8182 44
38 GCG 152 3 0.7037 45
38 GCG 155 3 0.7722 46
38 GCG 157 3 0.8485 47
38 GCG 162 3 0.9079 48
38 GCG 177 3 0.8219 49
38 GCG 178 3 0.8539 50
38 GCG 186 3 0.8312 51
38 GCG 190 3 0.8243 52
38 GCG 191 3 0.8462 53
38 GCG 195 3 0.8272 54
38 GCG 214 3 0.7692 55
38 GCG 216 3 0.8378 56
41 GGC 71 3 0.6263 57
41 GGC 101 3 0.5932 58
41 GGC 159 3 0.5798 59
41 GGC 176 3 0.5776 60
41 GGC 211 3 0.6250 61
41 GGC 212 3 0.5913 62
41 GGC 227 3 0.6224 63
42 GGG 70 3 0.5946 64
42 GGG 91 3 0.5776 65
42 GGG 92 3 0.5437 66
42 GGG 114 3 0.5660 67
42 GGG 116 3 0.5161 68
42 GGG 123 3 0.5323 69
42 GGG 124 3 0.5893 70
42 GGG 142 3 0.5963 71

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 53

42 GGG 143 3 0.6855 72
42 GGG 145 3 0.6330 73
42 GGG 149 3 0.5455 74
42 GGG 155 3 0.5714 75
42 GGG 178 3 0.5167 76
52 TCA 198 3 0.7030 77
54 TCG 244 3 0.6129 78
63 TTT 147 3 0.5375 79
48 ATAA 172 4 0.7887 80
72 CAGA 199 4 0.8272 81
75 CAGT 199 4 0.8636 82
89 CCGC 102 4 0.8966 83
89 CCGC 138 4 0.9231 84
89 CCGC 156 4 0.8919 85
89 CCGC 216 4 0.9600 86
89 CCGC 246 4 0.9231 87
100 CGCA 197 4 0.8889 88
101 CGCC 185 4 0.9143 89
101 CGCC 196 4 0.8780 90
102 CGCG 136 4 0.9259 91
102 CGCG 177 4 0.9286 92
105 CGGC 211 4 0.8611 93
106 CGGG 141 4 0.9615 94
106 CGGG 157 4 0.9231 95
116 CTCA 197 4 0.8116 96
146 GCAG 198 4 0.8209 97
148 GCCA 197 4 0.8281 98
153 GCGC 166 4 0.9310 99
153 GCGC 178 4 0.9643 100
153 GCGC 190 4 0.9600 101
154 GCGG 122 4 0.8378 102
154 GCGG 141 4 0.8571 103
154 GCGG 147 4 0.9355 104
154 GCGG 153 4 0.9310 105
154 GCGG 155 4 0.9231 106
154 GCGG 156 4 0.9333 107
154 GCGG 157 4 0.9630 108
154 GCGG 181 4 0.8966 109

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 4: Statistical Information Gathering

Electrical, Electronic and Computer Engineering 54

154 GCGG 195 4 0.8966 110
154 GCGG 210 4 0.9091 111
154 GCGG 220 4 0.9286 112
166 GGCG 71 4 0.8966 113
166 GGCG 124 4 0.9000 114
166 GGCG 134 4 0.9286 115
166 GGCG 146 4 0.9143 116
166 GGCG 152 4 0.8919 117
166 GGCG 154 4 0.9118 118
166 GGCG 156 4 0.9032 119
166 GGCG 159 4 0.9615 120
166 GGCG 211 4 0.9118 121
169 GGGC 110 4 0.9615 122
169 GGGC 143 4 0.8571 123
170 GGGG 142 4 0.8542 124
170 GGGG 155 4 0.8571 125
210 TCAG 198 4 0.8209 126
192 ATAAA 171 5 0.8750 127
192 ATAAA 172 5 0.8511 128
290 CAGAG 199 5 0.8710 129
331 CCAGT 198 5 0.8621 130
816 TATAA 170 5 0.9512 131
816 TATAA 171 5 0.9000 132
840 TCAGA 198 5 0.8846 133

From these features it can be seen that most promoters seem to come from regions with higher

GC values. This corresponds to the theoretical evidence that one might have to look for GC-

rich areas. The second thing to notice is that there does seem to be some form of TAT box at

position 170 or 171. This was also predicted from earlier experimental work.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 55

5 CHAPTER 5: THE ARTIFICIAL

NEURAL NETWORK

5.1 Selecting a neural network.

After creation of the features, a suitable classifier was selected for classification of the

samples. The main reason for selecting an artificial neural network was based on the fact that

the underlying relationship between the features is unknown, as mentioned in the discussion of

the relevant literature. Statistically, the selected features occur more frequently, but we do not

know anything about their interrelationships. An ANN is easy to implement, and can create a

model of arbitrarily complex interrelationships [Bishop]. ANNs are commonly used and have

well-understood training algorithms. As the aim of this project is not to develop new

classification algorithms, but rather to classify accurately, using an ANN was a logical choice.

Using ANNs does require a certain amount of care. They can suffer from over-training, which

leads to bad generalisation. This happens when a training set is not very large compared to the

number of parameters in the network. A network trained on a small training set can learn the

exact set instead of learning the underlying features. An over-trained network can be seen as

something equivalent to a lookup table, where each input simply corresponds to a pre-defined

output. When the network is presented with previously unseen samples, however, it will then

not necessarily make a good classification.

A second problem, illustrated below with the case of a simple 2 input XOR system is that an

incomplete set of training inputs can give unwanted results. If, for example, only cases (1), (2)

and (3) below were used to train a classification network the network will learn that if the first

value is a 1 the input is always 1, and if the first input is 0 the output is equal to the second

input.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 56

This will lead to an incorrect conclusion that 1 XOR 1 should be 1.

(1) 0 XOR 0 = 0

(2) 0 XOR 1 =1

(3) 1 XOR 0 = 1

(4) 1 XOR 1 = 0

This illustrates the problem in that a large enough training set is a requirement to create a

reliable classification system when using a neural network (or any other trainable classifier).

5.2 The network structure.

5.2.1 Normal ANN structure.

A detailed description of artificial neural networks and the relevant mathematical derivations

are given in Bishop [13], Negnevistky [14] and Russell [15] and will only be summarized

here. An artificial neural network consists of several layers of neurons, with all the neurons in

a layer typically having the same transfer function. A neuron is the basic component of the

neural network, and each layer in the network contains at least one neuron. These neurons are

abstractions of the neurons found in the human brain in both structure and functionality.

Figure 17, below, shows the structure of a single neuron.

Figure 17: A single neuron structure as used in an ANN.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 57

Briefly, it takes several inputs, multiplies each input with an independent weight factor,

calculates the sum of these products, and then passes the answer through an activation (or

transfer) function. The output of the neuron is the value of this activation function.

For example, the Sigmoid activation function is

Ze
Ysig −+

=
1

1
 (eq 2)

with

∑
=

=
n

i
iiwxZ

1
 (eq 3)

the weighted sum of the inputs.

Other activation functions exist, for instance the step function, sign function and linear

activation function [13-15].

These neurons are combined in layers to form the total neural network structure as shown in

Figure 18 below.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 58

Figure 18: Total artificial neural network structure.

5.2.2 The three layers.

The three layers of the ANN are the input-, hidden- and output layers. The input layer simply

takes a single feature vector from each sample and propagates it to all the hidden neurons via

the input-to-hidden weights. Note that there is no activation function in the input layer � each

input neuron equals the value of one of the features in the feature vector.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 59

The hidden layer is the first actual calculation layer. It takes all the weighted inputs, and

performs the sigmoid activation function on the weighted sum. Note that each line in Figure

18 can be seen as both a path of information travel as well as a unique weight. When working

with ANNs it is common practice to use the subscript numbers to address each of the weights.

That is, we refer to weightSource Destination with both the source and the destination being neuron

numbers; the source is in the input layer and the destination in the hidden layer The function

of the hidden layer is to mathematically combine all the input features. Each unit derives a

different, unique combination of inputs. This information is then transferred to the output

neuron.

The output layer can, in general, consist of several neurons, but for the classification network

used by NNPromoterFind1.0 a single output neuron is used. This neuron takes the

combinations from the hidden neuron, once again applying weighting and an activation

function and comes up with a single value. This is the output of the ANN.

The input and hidden layers should also contain one biasing neuron. While each neuron in the

network can be seen as a �soft� threshold function between different inputs the biasing neuron

is used to move around the threshold to ensure that the threshold is not simply a line through

the origin, but a line that can be located appropriately in n-dimensional space. The value for

the bias neuron is a constant �1, but the weights are used exactly as for normal inputs.

5.2.3 Layer implementation for NNPromoterFind1.0

The implementation of the input layer is done based directly on the features derived in Section

4.6. on a one-to-one basis. For each feature a single input neuron is used plus one additional

input for biasing. That means that two different ANNs were implemented, one with 55 inputs

and one with 134 inputs.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 60

There is no mathematically proven way to select the number of hidden neurons. For each

hidden neuron a unique combination of inputs is calculated, and there can be an infinite

number of combinations. The assumption was made that the number of combinations should

be about one third of the number of inputs. This assumption was made after several different

numbers of hidden neurons were used and tested.

A single output is used and the output simply states whether a sample belongs to the promoter

class or not. Ideally the output should be 1 for promoters and 0 for non-promoters.

5.2.4 The network training process.

Much research has been performed on the training of neural networks. The simple back-

propagation training method was selected for NNPromoterFind1.0 because it is easy to

implement and proven to be effective. The flow diagram shown below can be used to get an

abbreviated idea of how the training process works. The samples are selected one by one from

the training set, and the features are then extracted. The features selected by the entropy

measure are kept in a list so that they can easily be found in each sample. If a feature is found

in a sample the corresponding input is set to 1, otherwise it is set to 0. The features are then

propagated to the hidden layer. The hidden neuron applies the appropriate weight multiplier to

each input, and sums the totals. The Sigmoid activation function is then applied to the sum and

the output is propagated further to the output layer. This is done for each hidden neuron in

turn, each applying a unique set of weights. The output neuron repeats the weighting,

summing and activation to get the final output. The final output is then compared to the

desired output. For each sample in the training set the output is known beforehand, as the class

is known. If the sample is from the promoter class the desired output is 1, otherwise it is 0.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 61

Extract the features

Copy feature values to Input neurons

Propagate Inputs to Hidden layer

Weight, Sum and calculate activation

Compare calculated output with desired output

Add to total error

Was all the samples used yet?

Select first sample

Select next sample

Stop error reached?

Propagate Hidden layer outputs to Output layer

Weight, Sum and calculate activation

 Yes

Calculate output and hidden error gradient

Max number of epochs reached?

Increase Epoch

Stop

Update weights

 Yes

 Yes

Figure 19: Network training process.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 62

The difference between the calculated output and desired output is then calculated by

subtraction and squaring. This error is calculated for each of the samples in the training set,

and added together. This is called the sum of squared errors, SSE1. The desired SSE should be

close to 0 if the network has been trained well, with a fully trained, 100% effective network

resulting in an SSE of exactly 0. The scale of the error is set by the fact that there are 1300 * 5

= 6500 samples, the worst-case SSE therefore being 6500. (If this arises every sample is

classified incorrectly.) A stopping SSE of about 220 was reached, meaning a total error of

about 3.5%. This error is propagated backwards from the output layer to the input layer, hence

the algorithm name: back-propagation. This is done by first calculating the output layer error

gradient, then the hidden layer error gradient.

Because the SSE can possibly never reach the minimum stopping requirement [Bishop] a

second method is required to stop the training process. This is done by simply setting a

maximum number to the epochs after which the training is stopped. (An epoch is one

presentation of each sample in the training set,). Each weight in the system is changed once

during each epoch to attempt to get a smaller SSE. If the network topology is known the

network can easily be reproduced if all the weights in the network are stored.

5.3 Software implementation.

5.3.1 The training program.

A program �workANN.c� given in Addendum 9 was written to implement the training process

as described in the flowchart in Figure 19. Before the training process can begin an additional

step is required: combining the different classes into one single file. For this purpose the

program �ClassCombine.c� given in Addendum 10 was written. This program is very similar

to the program �ClassSets.c� given in Addendum 3. ClassSets.c was used to split a single

class into the three different sets. ClassCombine.c is used to take all the class files for a single

set and combine it into one sample file. The different classes in the output file, samples.txt are

randomly distributed in the output file for training purposes. Note that this program should be

run once for each of the three sets. All three times the output filename will be the same:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 63

samples.txt. The test set file should then be manually renamed to testsamp.txt for use in the

ANN training and testing programs.

This text file that contains all the samples for a certain class is one of the inputs required to

perform the training process. The other required inputs are shown in Figure 20 below.

Changing these inputs allows one to work with various options and for various training depths.

One important shortcoming of this version of the training program is that the size of the

network, in other words the number of input and hidden neurons, cannot be changed directly

by the user. The only way to change these is to manually change them in the program code

and then recompile the program. This obvious limitation is addressed in Chapter 7.

User Inputs

Number of epochs

First SSE for output

Last SSE for output

File inputs

Samples.txt

TestSamp.txt

Features.txt

Pre-Compile inputs

Number of Inputs

Number of Hidden units

File Output

OutFile.txt

ANN Training

Figure 20: ANN file and user I/O.

The program opens the feature.txt file to extract and store a list of the features that will be

used as network inputs. Next, the samples.txt file containing all the samples from the complete

training set is opened, and the features from the feature list are extracted from the samples. A

list of features for each sample is then stored in memory. This uses a large amount of memory

but drastically decreases the training time. The training process is then done as described

earlier, training until either the maximum selected number of epochs is reached, or the

minimum required SSE is obtained. The training process is then stopped and the final output

file is generated.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 64

The output file generated during the training step is a text list of all the weights generated by

the ANN configuration. For each weight a single number is stored, one per line. The file also

contains some information of when the weights were stored during the training process, as

well as the number of input and hidden units used. The output file is rewritten multiple times

during the training process. This is done to ensure that if a run is prematurely terminated (e.g.

due to a power failure) , the entire training process is not lost. Starting with the initial SSE,

and then for every SSE reduction of 10 units, all system weights are written to the output fie.

Text files were used rather than binary files to enable the user to inspect and manually change

the weights. Inspection is useful, since it allows the user to see how the different features

interact by looking at where the weights are combined to make a neuron fire.

The following extract shows the text output that is produced when the training program is run.

The current SSE is given along with the epoch number. The last value displayed is the

learning rate of the training algorithm (alpha). This value is adapted after each epoch so that

that the training rate is increased when going in the right direction, and decreased when

negative changes are made. Each time the weights are written to the output file a prompt is

displayed showing the user what the exact SSE was for that specific case.

Training started: .
SSE: 403.6532 Epoch: 0 of 100 Alpha 0.105000.
SSE: 429.2585 Epoch: 1 of 100 Alpha 0.073500.
SSE: 432.0001 Epoch: 2 of 100 Alpha 0.077175.
SSE: 403.4374 Epoch: 3 of 100 Alpha 0.081034.
SSE: 371.8850 Epoch: 4 of 100 Alpha 0.085085.
SSE: 338.7242 Epoch: 5 of 100 Alpha 0.089340.
SSE: 316.4705 Epoch: 6 of 100 Alpha 0.093807.
SSE: 304.8020 Epoch: 7 of 100 Alpha 0.098497.
SSE: 298.4278 Epoch: 8 of 100 Alpha 0.103422
Train output file opened on error 298.428(300.000).
SSE: 294.5162 Epoch: 9 of 100 Alpha 0.108593.
SSE: 291.9166 Epoch: 10 of 100 Alpha 0.114023.

Extract 9: Training process output.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 65

5.3.2 The percentage of samples used.

When the program workANN.c is run only some of the promoter training samples are actually

used. This is a direct result from the way the features were selected based on the entropy.

Some of the actual promoters do not contain any of the classification features. In the example

shown in Extract 12, below, there were 341 of the 1300 promoters that did not contain a single

feature. This is very bad for the training process as 26% of the promoters contain inputs of 0

for all the features, which is the same inputs found in the typical non-promoter. This means

negative training will take place for these features. A check is also performed to see how many

of the non-promoter samples contain non-zero inputs. In the example shown only 13.13 % of

the non-promoters have features that are the same as the actual promoters. The other 86.87%

have all-zero inputs.

Undetectable samples: 341, train on 73.77 percent of the samples.
Perfect negative samples: 4517, (13.13 percent needs training)

Extract 10: Training percentages.

These numbers were taken from the ANN with 55 inputs and 20 hidden units. When the larger

system was implemented and 134 inputs were used, both these numbers were increased. That

means that more promoters were actually used for the training (which is good) but also that

more non-promoters contained positive features (which is bad). In Chapter 6, where the final

results are given, this will be addressed again. The percentage of promoter samples used were

increased from 73.77% to 93.23%, which is useful, but suggests that there is still more room

for improvement.

5.3.3 The testing program.

The final step in our development was to test the trained network using the test and validation

set.s A last program, LoadANN.c, given in Addendum 11, was written to test the network

performance. The user must supply the number of input and hidden units used in the network.

This program uses the weight output file that was generated during the training process as

input. An ANN is configured, and the weights are read from the file outFile.txt. The feature

file with the detection features selected by the entropy process is then opened and the desired

features are loaded into the program. The file testSamp.txt, which contains the randomly

distributed test set samples, is then opened and a feature list is again generated in memory.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 66

The final step is for the user to input a threshold value used for the final classification. The

aim of the program is to generate an output of 1 for all promoter classes and 0 for all non-

promoters, but the final system supplies a number between 0 and 1 for all samples introduced,

and unfortunately most of these values are very similar for samples from both classes. All

values higher than the user-selected threshold are classified as promoters and all values below

the threshold are classified as non-promoters.

The samples are then introduced to the ANN one by one for classification. The number of

false detections (FD1) and false rejections (FR2), as well as the number of true detections

(TD3) and true rejections (TR4) are counted and saved. These values are required to make a

final assessment of how accurate the classifier is. The performance measure is computed based

on the equations used by Bajic et al. [7] that define sensitivity and positive prediction values

(PPV5). This is done to ensure that different detection systems can reliably be compared with

one another. The sensitivity is a measure of how many actual promoters are detected and

correctly classified. The sensitivity value is calculated by

FRTD
TDSen

+
= *100 (eq 4)

Higher sensitivity values mean that more promoters are correctly classified.

The other measure of accuracy is the positive prediction value calculated by

FDTD
TDPPV

+
= *100 , (eq 5)

which is a measure of how many non-promoters were incorrectly classified as promoters.

All of these values are supplied directly to the user in the form of text output as shown in the

example below.
True detections: 113 True rejections: 686
False detections: 14 False rejections: 237
PPV: 88.976378
Se: 32.285714
Detection threshold: 0.950000

Extract 11: Performance output.

1 FD � False detections
2 FR � False rejections
3 TD � True detections
4 TR � True rejections
5 PPV � Positive prediction value

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 5: Artificial Neural Network

Electrical, Electronic and Computer Engineering 67

There is usually a very strong trade-off between sensitivity and PPV. Lowering the detection

threshold increases the sensitivity because more promoters are correctly identified, but it

lowers the PPV since more non-promoters are also identified as promoters.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 68

6 CHAPTER 6: SYSTEM TESTS AND

RESULTS

6.1 Data flow through entire process.

The following three figures show the entire data lifetime from raw data through to the final

sensitivity and PPV calculations for NNPromoterFind1.0.

NCBI Chromosomes
IntronD.txt

e2iSplice.txt

i2eSplice.txt

startSeq.txt

hsv2.txtEPD Promoters

Extract.c ClassSets.c Test Set

Training Set

Validation Set

ExonD.txt

Figure 21: Raw data files to sets.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 69

Test Set

Training Set

Validation Set

ClassCombine.c Samples.txt

PullData.m

Statistics.c

Matlab Arrays

BaseCntN.txt

getMax.m

getEnt5.m

funcDraw.m

Entropy Graphs

Output Graphs

Features.txt

ClassCombine.c TestSamp.txt

Figure 22: Sets to statistic graphs and entropy features.

Samples.txt

TestSamp.txt

Features.txt

User Inputs
Inputs

Hidden Units

WorkANN.c

LoadANN.c

OutFile.txt

#FD #FR #TR #TD

PPVSensitivity

Figure 23: Features and sample data to sensitivity and PPV.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 70

6.2 The first outputs.

6.2.1 Data files.

The first outputs of the system are the six text files containing the samples for each class.

These results are not shown here - they are long lists of nucleotide sequences with no obvious

meaning. These were then split into three sets with the numbers as shown in Figure 3. Most of

the work was done on the equal- sized, since the prior probabilities are not known for real

genetic DNA.

6.2.2 Statistics graphs.

The next outputs obtained were the statistical graphs that were presented in Section 4.4. These

graphs can be directly used to establish a good idea of where the actual classification features

are located in the samples. Although of little direct use, they are useful to guide the search for

features, and to confirm the average frequency of the different n-tuples.

6.3 Entropy outputs.

The first directly useful outputs were the entropy outputs given in the following few pages.

These graphs display the entropy outputs used to extract the 54 input features of the ANN. The

54 features are given in the exact format used in features.txt as given by the Matlab program

getEnt5.m. Each graph is the entropy for a single selected n-tuple with the threshold function

parameters given as well. Only the first 3D-plot is given since the second graph along with the

text output is more significant. They were extracted from the equal sized data set (See Table 3)

using only the intron, exon and promoter samples. When the I2E and E2I-splices were

included for entropy calculations it was found that they have very strong features, so strong

that the promoter features are totally dwarfed. Because the main aim is to extract promoters

not splices, the splice features were excluded. A better system, which incorporates the splice

features, is suggested in Chapter 7.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 71

Figure 24: 3D- plot of the 3-tuple entropy data.

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.7

Equal sized training set.

Search for promoter.

Note that the strongest features seem to be at n-tuple 25 and 38 judging by the dip in the

graph. This is confirmed by the outputs of the second graph, Figure 25.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 72

Figure 25: Entropy plot of 3-tuple data. Selected samples under the threshold line.

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.7

Equal sized training set.

Search for promoter.

Entropy, significance 25

[216,22,3,0.57501] 0
[147,25,3,0.60624] 1
[199,25,3,0.61417] 2
[148,26,3,0.61546] 3
[138,38,3,0.56251] 4
[147,38,3,0.56127] 5
[155,38,3,0.67544] 6
[157,38,3,0.57613] 7
[162,38,3,0.52142] 8
[178,38,3,0.52142] 9
[190,38,3,0.58469] 10
[191,38,3,0.63418] 11
[195,38,3,0.56251] 12
[216,38,3,0.51444] 13
Useable points: 14

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 73

Figure 26: Entropy plot of 3-tuple data, different threshold settings.

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.9

Equal sized training set.

Search for promoter.

Entropy, significance 80
[199,18,3,0.28021] 0
[199,19,3,0.23532] 1
[166,25,3,0.40770] 2
[184,25,3,0.30368] 3
[164,26,3,0.41248] 4
[198,36,3,0.32044] 5
[198,52,3,0.20369] 6
Useable points: 7

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 74

Figure 27: Entropy plot of 4-tuple data.

Entropy selection parameters:

4-tuple

Threshold parameters �16; 0.85

Entropy, significance 25
[172,48,4,0.37865] 0
[199,72,4,0.41984] 1
[199,75,4,0.50717] 2
[156,89,4,0.58252] 3
[216,89,4,0.83206] 4
[197,100,4,0.57639] 5
[185,101,4,0.65293] 6
[196,101,4,0.56818] 7
[211,105,4,0.59706] 8
[141,106,4,0.83698] 9
[197,116,4,0.39057] 10
[198,146,4,0.42925] 11
[197,148,4,0.42849] 12
[166,153,4,0.74905] 13
[178,153,4,0.84592] 14
[190,153,4,0.83206] 15
[147,154,4,0.76078] 16
[156,154,4,0.75507] 17
[157,154,4,0.84159] 18
[210,154,4,0.63750] 19
[134,166,4,0.74268] 20
[146,166,4,0.70749] 21
[152,166,4,0.58252] 22
[154,166,4,0.70156] 23
[156,166,4,0.68206] 24
[159,166,4,0.83698] 25
[211,166,4,0.64540] 26
[110,169,4,0.83698] 27
[142,170,4,0.48500] 28
[198,210,4,0.40832] 29
Useable points: 30

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 75

Figure 28: Entropy plot of 5-tuple data.

Entropy selection parameters:

5-tuple

Threshold parameters �16; 0.85

Equal sized training set.

Search for promoter.

Entropy, significance 25

[172,192,5,0.51806] 0
[170,816,5,0.80509] 1
[171,816,5,0.61868] 2
Useable points: 3

The features shown above are those that were finally selected for the detection ANN. By

changing the parameters of the threshold function the number of features can be increased or

decreased. For example, in Figure 28 a feature is shown for a bin containing 43 points, whose

entropy falls just above the threshold line. However the feature selected from the bin

containing 47 points (on the edge of the graph) has the same entropy, but falls below the

selection threshold. By raising the threshold slightly, both these points can be included. A few

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 76

different feature sets were chosen, but only the 54-feature (55 input) and 133-feature (134

input) ANNs were fully trained and tested.

This is one of the areas where further work can still be done as discussed in Chapter 7.

Another thing to note is that if the larger training set, which contains more than 37 000

samples, is used, a different feature set might arise. This is due to the fact that the number of

promoters is kept more or less the same in the region of 1 300, while the non-promoters are

raised from 5 200 to about five times that number.

Figure 29: Entropy plot of 3-tuple data, large data set.

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.7

Equal sized training set.

Search for promoter.

Entropy, significance 25

0 -Promoter points

14 -Intron points

0 -Exon points

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 77

Figure 30: Entropy plot of 3-tuple data, large data set, shifted threshold

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.9

Equal sized training set.

Search for promoter.

Entropy, significance 80

0 -Promoter points

3782 -Intron points

398 -Exon points

This is also a clear example of a bad threshold. The aim of the threshold in the entropy

calculations is to isolate the most significant data points. In the case shown above it simply

cuts the main cluster of data points in two.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 78

Figure 31: Entropy plot of 4-tuple data, large data set.

Entropy selection parameters:

4-tuple

Threshold parameters �16; 0.85

Equal sized training set.

Search for promoter.

Entropy, significance 25

0 -Promoter points

1053 -Intron points

4 -Exon points

These three graphs show exactly why the smaller set was selected to get the classification

features and not the larger ones. In the larger sets the non-promoter samples outnumber the

promoter samples by six to one and five to one, respectively. This means that the entropy

equation is dominated by the contribution of the non-promoters. To get a more useful

calculation of entropy, the number of intron samples in each position-n-tuple bin should be

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 79

divided by six, and the number of exon samples should be divided by five before they are

inserted into the entropy calculation. This can be done in the current case, since the

relationships are known, but if other data sets are used then the program getEnt5.m has to be

manually changed to adapt to the prior probabilities of the classes. In this fashion, the 3-tuple

case was recalculated with a modified version of getEnt5.m (with the prior probabilities

included).

Figure 32: Entropy plot of 3-tuple data, large data set with prior-probabilities.

Entropy selection parameters:

3-tuple

Threshold parameters �16; 0.7

Equal sized training set.

Search for promoter.

Entropy, significance 25

1 -Promoter points

[162,38,3,0.50049] 0

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 80

Although this graph only selected a single feature as a good promoter feature the entire data

clustering looks a lot more like it had when the equal sized set was used. The point extracted:

3-tuple number 38 at position 162 is one of the features that had been selected by the equal

sized training set as well, the point marked 8 below Figure 25.

In the end, however, only the features given in Table 5 were used to train the 55-input ANN,

and the features given in Table 6 were used to train the 134-input ANN.

6.4 ANN Results.

This section contains the final result if our research. The performance of the entire

classification system is reflected here, in terms of the sensitivity and PPV measures obtained.

Many different combinations of inputs and hidden units were tried, and the results of all the

various trials will not be given here. The 55 input-, 20 hidden ANN configuration gave the

best final results but used only 73% of the training promoter samples. The 134 input-, 49

hidden ANN configurations gave similar results but used 20% more of the input training

samples, so in the end the second configuration should give a better generalization but with

much longer training periods.

The first results were generated using the ANN with 55 Inputs, 20 Hidden Units, 1 Output,

trained with the equal-sized training set. It trained for 164 epochs, resulting in a final SSE of

250. Table 6 and Figure 33 below give the results using different detection thresholds. The

first group of results used only the promoter, intron and exon data of the test set. The second

group used the same test set again, but with the splice samples included. The third set used the

equal-sized validation set with the splices excluded once again, and lastly all the samples in

the validation set were used. This format is used for the next three results as well.

The second set of results are from the same ANN, 55 Inputs, 20 Hidden units, 1 Output but

trained on the large training set. It trained for 115 epochs to a final SSE of 640. The results are

shown in Table 7 and Figure 34.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 81

The third was taken from the large ANN, 134 Inputs, 49 Hidden units, 1 Output, trained on the

equal sized training data. This time the training lasted for 84 epochs resulting in a final SSE of

180. Table 8 and Figure 35 below give the final output results.

Lastly, the large ANN was trained using the large training data. The ANN was trained for only

19 epochs, to a SSE of 590. This looks far worse than the first small ANN, but each epoch

involves far more weight training than the small ANN and small data set. The results are given

in Table 9 and Figure 36.

Table 7: Final results on equal sized training set, 50-20-1 ANN.

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 350 700 1050 0.98 339 689 11 11 96.86 32.98

 350 700 1050 0.985 239 80 620 111 68.29 74.92

 350 700 1050 0.99 233 74 626 117 66.57 75.90

 350 700 1050 0.999 137 20 680 213 39.14 87.26

 350 700 1050 0.9999 91 6 694 259 26.00 93.81

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 350 1400 1750 0.98 339 1383 17 11 96.86 19.69

 350 1400 1750 0.985 239 177 1223 111 68.29 57.45

 350 1400 1750 0.99 233 164 1236 117 66.57 58.69

 350 1400 1750 0.999 137 44 1356 213 39.14 75.69

 350 1400 1750 0.9999 91 18 1382 259 26.00 83.49

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 221 442 663 0.98 211 437 5 10 95.48 32.56

 221 442 663 0.985 136 72 370 85 61.54 65.38

 221 442 663 0.99 134 71 371 87 60.63 65.37

 221 442 663 0.999 65 13 429 156 29.41 83.33

 221 442 663 0.9999 47 7 435 174 21.27 87.04

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 221 884 1105 0.98 211 868 16 10 95.48 19.56

 221 884 1105 0.985 136 129 755 85 61.54 51.32

 221 884 1105 0.99 134 124 760 87 60.63 51.94

 221 884 1105 0.999 65 32 852 156 29.41 67.01

 221 884 1105 0.9999 47 17 867 174 21.27 73.44

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 82

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
P

V
 P

er
ce

nt
ag

e

Sensitivity Percentage

Result Plot: Equal sized data set. 55-20-1 ANN

Test set, splices excluded.
Full test set.
Validation set, splices excluded.
Full validation set.

Figure 33: Sensitivity VS. PPV of equal size training set, small ANN.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 83

Table 8: Final results on large training set, 50-20-1 ANN.

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 383 3396 3779 0.00001 380 3385 11 3 99.22 10.09

 383 3396 3779 0.000015 253 512 2884 130 66.06 33.07

 383 3396 3779 0.00004 239 498 2898 144 62.40 32.43

 383 3396 3779 0.0001 204 338 3058 179 53.26 37.64

 383 3396 3779 0.0004 155 238 3158 228 40.47 39.44

 383 3396 3779 0.001 130 145 3251 253 33.94 47.27

 383 3396 3779 0.01 44 11 3385 339 11.49 80.00

Yes Yes Yes Yes Yes 383 7437 7820 0.00001 380 7417 20 3 99.22 4.87

 383 7437 7820 0.000015 253 1075 6362 130 66.06 19.05

 383 7437 7820 0.00004 239 1025 6412 144 62.40 18.91

 383 7437 7820 0.0001 204 691 6746 179 53.26 22.79

 383 7437 7820 0.0004 155 447 6990 228 40.47 25.75

 383 7437 7820 0.001 130 278 7159 253 33.94 31.86

 383 7437 7820 0.01 44 28 7409 339 11.49 61.11

Yes Yes Yes No No 194 1448 1642 0.00001 189 1441 7 5 97.42 11.60

 194 1448 1642 0.000015 131 214 1234 63 67.53 37.97

 194 1448 1642 0.00004 125 201 1247 69 64.43 38.34

 194 1448 1642 0.0001 108 148 1300 86 55.67 42.19

 194 1448 1642 0.0004 83 113 1335 111 42.78 42.35

 194 1448 1642 0.001 69 69 1379 125 35.57 50.00

 194 1448 1642 0.01 31 6 1442 163 15.98 83.78

Yes Yes Yes Yes Yes 194 3238 3432 0.00001 189 3229 9 5 97.42 5.53

 194 3238 3432 0.000015 131 475 2763 63 67.53 21.62

 194 3238 3432 0.00004 125 444 2794 69 64.43 21.97

 194 3238 3432 0.0001 108 317 2921 86 55.67 25.41

 194 3238 3432 0.0004 83 213 3025 111 42.78 28.04

 194 3238 3432 0.001 69 124 3114 125 35.57 35.75

 194 3238 3432 0.01 31 10 3228 163 15.98 75.61

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 84

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
P

V
 P

er
ce

nt
ag

e

Sensitivity Percentage

Result Plot: Large data set. 55-20-1 ANN

Test set, splices excluded.
Full test set.
Validation set, splices excluded.
Full validation set.

Figure 34: Sensitivity vs. PPV of large training set, small ANN.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 85

Table 9: Final results on equal sized training set, 134-49-1 ANN.

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 350 700 1050 0.98 318 275 425 32 90.86 53.63

 350 700 1050 0.985 316 268 432 34 90.29 54.11

 350 700 1050 0.99 307 220 480 43 87.71 58.25

 350 700 1050 0.999 272 127 573 78 77.71 68.17

 350 700 1050 0.9999 222 65 635 128 63.43 77.35

 350 700 1050 0.99999 184 40 660 166 52.57 82.14

 350 700 1050 0.999999 159 25 675 191 45.43 86.41

 350 700 1050 1 6 0 700 344 1.71 100.00

Yes Yes Yes Yes Yes 350 1400 1750 0.98 318 536 864 32 90.86 37.24

 350 1400 1750 0.985 316 524 876 34 90.29 37.62

 350 1400 1750 0.99 307 438 962 43 87.71 41.21

 350 1400 1750 0.999 272 246 1154 78 77.71 52.51

 350 1400 1750 0.9999 222 132 1268 128 63.43 62.71

 350 1400 1750 0.99999 184 79 1321 166 52.57 69.96

 350 1400 1750 0.999999 159 45 1355 191 45.43 77.94

 350 1400 1750 1 6 0 1400 344 1.71 100.00

Yes Yes Yes No No 221 442 663 0.98 196 206 236 25 88.69 48.76

 221 442 663 0.985 192 199 243 29 86.88 49.10

 221 442 663 0.99 181 173 269 40 81.90 51.13

 221 442 663 0.999 156 100 342 65 70.59 60.94

 221 442 663 0.9999 134 65 377 87 60.63 67.34

 221 442 663 0.99999 103 48 394 118 46.61 68.21

 221 442 663 0.999999 88 32 410 133 39.82 73.33

 221 442 663 1 7 0 442 214 3.17 100.00

Yes Yes Yes Yes Yes 221 884 1105 0.98 196 392 492 25 88.69 33.33

 221 884 1105 0.985 192 379 505 29 86.88 33.63

 221 884 1105 0.99 181 320 564 40 81.90 36.13

 221 884 1105 0.999 156 177 707 65 70.59 46.85

 221 884 1105 0.9999 134 111 773 87 60.63 54.69

 221 884 1105 0.99999 103 73 811 118 46.61 58.52

 221 884 1105 0.999999 88 46 838 133 39.82 65.67

 221 884 1105 1 7 1 883 214 3.17 87.50

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 86

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
P

P
V

 P
er

ce
nt

ag
e

Sensitivity Percentage

Result Plot: Equal data set. 134-49-1 ANN

Test set, splices excluded.
Full test set.
Validation set, splices excluded.
Full validation set.

Figure 35: Sensitivity vs. PPV of equal sized training set, large ANN.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 87

Table 10: Final results on large training set, 134-49-1 ANN.

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 383 3396 3779 0.000005 312 886 2510 71 81.46 26.04

 383 3396 3779 0.00001 286 559 2837 97 74.67 33.85

 383 3396 3779 0.00005 221 217 3179 162 57.70 50.46

 383 3396 3779 0.0001 194 147 3249 189 50.65 56.89

 383 3396 3779 0.0005 133 60 3336 250 34.73 68.91

 383 3396 3779 0.001 103 36 3360 280 26.89 74.10

 383 3396 3779 0.005 60 15 3381 323 15.67 80.00

 383 3396 3779 0.01 52 6 3390 331 13.58 89.66

 383 3396 3779 0.05 31 1 3395 352 8.09 96.88

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 383 7437 7820 0.000005 312 1769 5668 71 81.46 14.99

 383 7437 7820 0.00001 286 1166 6271 97 74.67 19.70

 383 7437 7820 0.00005 221 459 6978 162 57.70 32.50

 383 7437 7820 0.0001 194 298 7139 189 50.65 39.43

 383 7437 7820 0.0005 133 122 7315 250 34.73 52.16

 383 7437 7820 0.001 103 72 7365 280 26.89 58.86

 383 7437 7820 0.005 60 30 7407 323 15.67 66.67

 383 7437 7820 0.01 52 15 7422 331 13.58 77.61

 383 7437 7820 0.05 31 4 7433 352 8.09 88.57

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes No No 194 1448 1642 0.000005 165 391 1057 29 85.05 29.68

 194 1448 1642 0.00001 159 269 1179 35 81.96 37.15

 194 1448 1642 0.00005 125 108 1340 69 64.43 53.65

 194 1448 1642 0.0001 106 69 1379 88 54.64 60.57

 194 1448 1642 0.0005 65 25 1423 129 33.51 72.22

 194 1448 1642 0.001 52 16 1432 142 26.80 76.47

 194 1448 1642 0.005 27 8 1440 167 13.92 77.14

 194 1448 1642 0.01 20 2 1446 174 10.31 90.91

 194 1448 1642 0.05 7 1 1447 187 3.61 87.50

Prom Intron Exon I2E E2I # Promoters # Non-Promoters Total Threshold TD FD TR FR Sens% PPV%

Yes Yes Yes Yes Yes 194 3238 3432 0.000005 165 812 2426 29 85.05 16.89

 194 3238 3432 0.00001 159 544 2694 35 81.96 22.62

 194 3238 3432 0.00005 125 203 3035 69 64.43 38.11

 194 3238 3432 0.0001 106 133 3105 88 54.64 44.35

 194 3238 3432 0.0005 65 47 3191 129 33.51 58.04

 194 3238 3432 0.001 52 30 3208 142 26.80 63.41

 194 3238 3432 0.005 27 11 3227 167 13.92 71.05

 194 3238 3432 0.01 20 3 3235 174 10.31 86.96

 194 3238 3432 0.05 7 2 3236 187 3.61 77.78

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 88

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

P
P

V
 P

er
ce

nt
ag

e

Sensitivity Percentage

Result Plot: Large data set. 134-49-1 ANN

Test set, splices excluded.
Full test set.
Validation set, splices excluded.
Full validation set.

Figure 36: Sensitivity VS. PPV of large training set, large ANN.

For both the ANNs it was found that the final validation set results were slightly worse than

the test set outputs. This suggests that the system still does not generalise very well, but

overall the results follow similar trends.

6.5 NNPromoterFind1.0 compared to other systems.

To evaluate the quality of NNPromoterFind1.0, it will now be compared with other similar

promoter finding algorithms and programs. Unfortunately the exact validation set used by

other authors could not be obtained, so the comparison method is not 100% reliable. To ensure

accurate comparisons can be made the result graph used by Bajic et al. [7] in their published

paper is used directly, given as Figure 37 below. Although a few different systems are given

on the graph, Dragon Promoter Finder (DPF1) is clearly the best of these systems (and is also

claimed to be the state of the art in [7]). Hence, our comparison will focus on the results

obtained with this system.

1 DPF � Dragon Promoter Finder

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 89

Figure 37: Other promoter detection systems.

Figure taken directly from the paper published by Bajic et al. [7]. p329

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 6: System Tests and Results

Electrical, Electronic and Computer Engineering 90

Table 11: DPV v1.3 VS. NNPromoterFind1.0.

DPV v1.3

PPV NNPromoterFind1.0 PPV
 50-20-1 ANN 134-49-1 ANN

Sensitivity Equal set Large set Equal set Large set
20 53 74 68 77 68
30 43 68 47 72 61
40 34 63 32 65 54
50 28 58 27 57 47
60 26 53 24 55 41
70 23 44 20 48 34
80 19 24 15 38 25

By looking at the final results shown in Table 10, above, it can be seen that

NNPromoterFind1.0 gave superior results. Only one of the tested ANN combinations proved

to be less accurate: the small ANN tested on the large data set. This result is not unexpected as

the small ANN had too few features to discriminate against the large number of non-promoters

(it was trained using only 73% of the available promoters). Even with all of this it performed

only slightly worse (maximum of 4% worse) than DPF. The large ANN (134 input features)

displays the most realistic results, because of the larger number of non-promoters used. The

large ANN performed better than DPF with performance increases of between 6% and 20%

found at different sensitivity levels.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 91

7 CHAPTER 7: FURTHER

ENHANCEMENTS AND

CONCLUSION

7.1 Suggested system improvements.

7.1.1 Feature selection 1 or 2 bases upstream and downstream.

Selecting features based on entropy introduces a new problem to the classification system,

namely the positioning of the features. As mentioned in the beginning of this document, DNA

features are separated by DNA segments of random length. This means that the way features

were selected in NNPromterFind1.0 can be improved by not only checking features at a

specified position, but also including checks for the same feature at the positions one or two

bases upstream as well as downstream. By simply looking at the surrounding positions in

close vicinity more actual promoters might be correctly classified.

This is only suggested, and not implemented because it is the opinion of the author that this

suggestion by itself will have limited impact. The reason for this is that the features were

carefully selected based on entropy, and this process did actually look at ALL the positions,

already including the ones 1 and 2 bases up-/downstream. So although it might help to

correctly identify one or two samples the overall effect will probably be limited, or even

negative(because many non-promoters may also be incorrectly identified as promoters). To

make this idea practical, additional refinements will be required.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 7: Further Enhancements

Electrical, Electronic and Computer Engineering 92

7.1.2 Detecting splices first.

While doing entropy calculations it was found that the splice sites, both I2E and E2I actually

had stronger features than the promoter samples. This was the main reason for not including

the splice sites in the entropy calculations in the first place. A possible method to improve the

entire classification system is to first extract the splice site features using the entropy

calculations, then to develop an entire splice detecting ANN, one for each splice. Unknown

samples can then first be checked using the splice detecting ANNs. If a sample is not

classified by these ANNs as being either of the splices it is forwarded further to the main

promoter detecting ANN. As an experiment two feature sets were extracted for the two splice

networks. 77 features were selected for the I2E ANN and 71 features for the E2I ANN. The 55

input small promoter ANN was used.

Using the 55-20-1 promoter ANN a sensitivity of 70.86% was used to get a PPV of 57.54%

when used on its own, when the splice detecting ANNs were not used. When the test samples

were first checked by the splice detecting ANNs, the sensitivity dropped slightly to 70.00%

but the PPV was increased to 67.31%. This is a PPV increase of about 10% by simply filtering

out the splice sites first. This is due to the fact that some of the splice sites contain some

features that were selected as promoter classifier features. By detecting and eliminating these

samples first a much better promoter PPV can be obtained.

7.1.3 Using different feature sets.

Another way to improve the overall system performance is to spend more time selecting the

features. The entropy method works fairly well, as seen in the results given, but the threshold

line parameters in the entropy program were selected heuristically. Selecting a different

threshold function will result in different features. The features selected are good entropy

features according to the training set, but might not necessarily be good generalisation

features. There seems to be much scope for developing a more sophisticated way of trading

off entropy against the number of occurrences observed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 7: Further Enhancements

Electrical, Electronic and Computer Engineering 93

7.1.4 Using independent ANNs.

One last possibility to improve overall performance is to have a few independent ANNs. The

unknown samples are then introduced to all of the ANNs, and only if all of them classify an

unknown feature as being a promoter it is classified as such. The independent ANNs could all

have a different feature set, resulting in smaller, faster trainable ANNs. Alternatively each

ANN could have the same feature set, but trained for different periods, or on different training

data. This results in better generalisation, as shown by Wolpert [].

7.1.5 Conclusion on improvement.

In conclusion, although the current system works fairly well, there is reason to believe that it

can be improved more sophisticated feature-selection schemes. If good feature selection is

done a better classifier can be trained. Better features can also be obtained if more promoter

and better promoter samples are available. Currently the number of promoter samples is a

constant of 1 871. When compared to the thousands of possible introns, exons and splice

samples it is obvious that this is not sufficient, especially when one considers the millions of

actual bases in the real chromosome data.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Chapter 7: Further Enhancements

Electrical, Electronic and Computer Engineering 94

7.2 Final Conclusion.

The overall problem of automated promoter detection was solved with comparative success.

An automated system was developed that could be implemented to train a classifier system

with ease. The feature selection and training process is quite time-consuming, but the final

classifier is very fast. The system also showed good improvement when compared to its

current state of the art competitors.

The most significant hurdle towards writing a reliable automated promoter detection algorithm

is to obtain a sufficient number of promoter samples. More samples, and more diverse

samples, will improve the overall performance of the classifier system. Beyond that, improved

understanding of the biochemistry of promoters is required for further improvements.

Our novel approach, which uses only certain features in the sample instead of the entire 256

base length sequence proved to be very useful, but much further work can be done to obtain

better and more reliable features. When analysing the results, it was shown that feature

selection can be improved substantially to make sure that the ANN is trained correctly on all

of the data, not only on some of the samples as was the case with NNPromoterFind1.0.

Overall the project was a success, but with numerous suggestions for future work. We have

made some progress in terms of performance and understanding of automated promoter

detection, but much remains to be done.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 95

 REFERENCES

[1] HF Lodish, JE Darnell and D Baltimore, Molecular Cell Biology, 3rd ed, Scientific

American Books, New York. 1995.

[2] RH Tamarin, Principles of Genetics, 6th ed, McGraw-Hill Boston. pp. 243-279, 1999.

[3] D Latchman, Gene Regulation � A Eukaryotic perspecrive, 3rd ed, Stanley Thornes,

Cheltenham. 1998.

[4] T Beebee and J Burke, Gene structure and transcription, 2nd ed, IRL Press, New York.

1992.

[5] RP Wagner, MP Maguire and RL Stallings, Chromosomes � A Synthesis, Wiley-Liss, New

York. 1993.

[6] A Kornberg and TA Baker, DNA Replication, 2nd ed, WH. Freeman, New York. 1992.

[7] VB Bajic, SH Seah, A Chong, SPT Krishnan, JLY Koh and V Brusic, Computer model for

recognition of functional transcription start sites in RNA polymerase II promoters of

vertebrates, Journal of Molecular Graphics and Modelling, Vol 21, pp 323�332, 2003.

[8] S Knudsen, Promoter2.0: for the recognition of PolII promoter sequences, Bioinformatics,

Vol 15. no. 5, pp 356-361, 1999.

[9] SH Cross and AP Bird, CpG islands and genes, Curr. Opin. Genet. Dev., 309-314, 1995.

[10] F Larsen, G Gundersen, R Lopez and H Prydz, CpG islands as gene markers in the human

genome, Genomics Vol 13, pp 1095-1107, 1992.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 96

[11] M Scherf, A Klingenhoff and T Werner, Highly specific localisation of promoter regions

in large genomic sequences by PromoterInspector: a novel context analysis approach, J. Mol.

Boil. Vol 297, pp 599-606, 2000.

[12] U Ohler, H Niemman, GC Liao and GM Rubin, Joint modelling of DNA sequence and

physical properties to improve eukaryotic promoter recognition, Bioinformatics, Vol 17

(Suppl. 1), pp 199-206, 2001.

[13] CM Bishop, Neural Networks for Pattern Recognition, Oxford university press, New

York. 2003.

[14] M Negnevistky, Artificial Intelligence � A Guide to Intelligent Systems, Addison-

Wesley, pp 163-216, 2002.

[15] S Russell and P Norvig, Artificial Intelligence � A Modern Approach, 2nd ed, Prentice

Hall, Upper Saddle River, USA. pp. 736-748, 2003.

[16] RC Périer, V Praz, T Junier, C Bonnard and P Bucher, The Eukaryotic Promoter

Database (EPD), Nucl. Acid Res. Vol 28, pp 302-303, 2000.

[17] ftp://ftp.ncbi.nih.gov/genomes/H_Sapiens, 24 Augustus 2003.

[18] G Myburgh, Report companion CD-Rom, 26-February 2005.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 97

 ADDENDUMS

1 Extract.c ! Program used to extract non-promoter sequences from

GBK files.

See companion cd-rom. (cd-drive:\Programs\Extract\Extract.c)

2 Length Calculation for sample extraction

To ensure that there is no overlap in the data some careful considerations had to be made

during the extraction process. In the first run through the GBK file the program extract.c

(Addendum 1) marks the start of all the available splice borders in different files. The splice

borders occur in the original GBK file in the format:

((mRNA..E2I),(I2E..E2I)�(I2E..E2I))

These splice borders were extracted, checked for validation and then written to files, one file

for each different sample type.

exo2int.txt => Stores all the E2I splice sample start positions.

int2exo.txt => Stores all the I2E splice sample start positions.

start => Stores all the mRNA start site positions.

Intron => Stores all the Intron sample start positions.

Exon => Stores all the Exon sample start positions.

Each sample contains the data �200 to +55 with reference to the actual splice. This means that

the value read in the GBK file should firstly be decreased by 200 to get the position in the

sequence where the sample starts. To make sure that each sample is a valid 256-bases long

without overlapping with neighbouring samples a few different scenarios should be

considered. As the splice sites and mRNA start position samples are more specific than intron

or exon samples these three classes were extracted and validated first. The values stored in the

abovementioned text files are the actual start positions of the sample, and thus not the value

read directly from the GBK file, but rather the value read minus 200.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 98

A2.1 Valid length calculations

Consider the gene sequence in Figure A1 with markings (A), (B), (C), (D) and (E) extracted

from the GBK file.

Intron IntronExon Exon

(A) mRNA start (C) I2E Splice

(B) E2I Splice

Intron Exon

Gene

(D) E2I Splice

(E) I2E Splice

Figure A1: Calculation of valid sample length.

A2.1.1 All valid.

For a sample to be valid it must contain 256 bases without overlapping into the previous or the

next sample. The easiest way to make certain that all samples are valid is to use only splice

markings that are at least 2*256 = 512 bases from each other as seen in Figure A2. This

unfortunately does not leave many valid samples, so the process has to be refined by looking

at different scenarios.

Intron

(A) mRNA start

(B) E2I Splice

Exon

256
-200 to +55

256
-200 to +55

256
-200 to +55

Intron Exon

256
-200 to +55

256
-200 to +55

256
-200 to +55

256
-200 to +55

(D) E2I Splice

(C) I2E Splice

Valid E2IValid exonValid mRNA Valid intron Valid I2E

Figure A2: All valid length samples. Splices are more than 512 bases from each other.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 99

In cases like this care should be taken to ensure that each sample is non-overlapping by doing

boundary checking. For example, if one wanted to extract the exon sample between points (A)

and (B) one has to make sure that the exon sample starts at least 55 bases after point (A), and

ends at least 200 bases away from point (B).

Exon = Valid if and only if Exon-Start > (A)+55 and Exon-End < (B)-200.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 100

A2.1.2 Only splices valid.

The first other possibility is that both the intron and the exon are more than 256 bases, but less

than 512 bases. In these cases valid splice site (and mRNA site) samples can be extracted, but

intron and exon samples cannot be extracted. This is shown in Figure A3.

Intron

(A) mRNA start

256
-200 to +55

Valid mRNA

Exon

(B) E2I Splice

256
-200 to +55

Intron Exon

256
-200 to +55

(C) I2E Splice

256
-200 to +55

(D) E2I Splice

Valid E2I Valid I2E

Figure A3: Valid splices. 256 bases < Splice separation < 512 bases.

There will be cases where, say, the intron before (C) is more than 512 bases long, but the exon

after (C) is only 256 bases long. In such a case (C) is still a valid I2E splice sample, the intron

before it contains a valid intron sample but the exon area will not contain a valid sample. The

same is true for the other way around where the intron is too short and but the exon is long

enough to contain a sample. For splices (B) and (D) the same can happen, with the positions of

the intron and exon simply reversed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 101

A2.1.3 None valid.

The last case to consider is when splice sites are closer than 256 bases from each other. In

such cases it is obviously not possible to extract intron or exon data since a 256 sample cannot

fit between the splice. It is also not possible to extract splice samples, as the end of the first

sample will overlap with the start of the next one. For example if one takes Figure A1 again

and let (B) and (C) be only, say, 210 (anything less than 256) bases from each other. Now the

E2I sample centred at (B) ends at (B)+55, while the I2E sample centred around (C) starts at

(C)-200.

But (C) � (B) = 180 < 256, and in other words (C) = 180 + (B), and (B) = (C) � 180.

Start position of the I2E sample: End position of the E2I sample:

 Start = (C) � 200 End = (B) + 55

 = [210 + (B)]- 200 = [(C) � 210] + 55

 = (B) + 10. = (C) � 155.

So if the intron between (B) and (C) is only 210 bases from each other the I2E sample

overlaps the E2I sample with 45 (210 � 10 � 155 = 45) bases.

256 � 210 = 46. Thus the minimum distance between two splices is exactly the same length as

the samples, 256 bases long.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 102

3 ClassSets.c ! Program used to split each class into 3 different sets.

See companion cd-rom. (cd-drive:\Programs\Sets\ClassSets.c)

4 PullData.m ! Matlab program used to extract position statistics.

See companion cd-rom. (cd-drive:\Programs\Statistics\PullData.m)

5 PullHalf.m ! Second Matlab program used to extract position

statistics.

See companion cd-rom. (cd-drive:\Programs\Statistics\PullHalf.m)

6 Statistics.c ! Program used to extract position statistics.

See companion cd-rom. (cd-drive:\Programs\Statistics\Statistics.c)

7 Funcdraw.m ! Grahical output of statistics.

See companion cd-rom. (cd-drive:\Programs\Statistics\Funcdraw.m)

A7.1 Funcdraw.m ! Explanation of the function and its input arguments.

function
funcDraw=funcDraw(n,what,start,stop,percentage,percentage2,positionDataPromoter,posi
tionDataMRNA,positionDataI2E,positionDataE2I,positionDataIntron,positionDataExon,cou
ntPromoter,countMRNA,countI2E,countE2I,countIntron,countExon)

Input arguments:

n: integer with the n-tuple length

What: Integer value that determines the graph type, explained in more detail later

since it is one of the most important parameters.

Start: start n-tuple (See what = 2,3 and 4)

Stop: stop n-tuple (See what = 2,3 and 4)

Percentage: minimum plot percentage (See what = 9)

Percentage2: maximum plot percentage (See what = 10)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 103

The next six parameters are the arrays containing the position data for each class as generated

by the programs pullData.m or pullHalf.m

The dimensions of these arrays are (4^n+1) rows and (256-n+1) columns.

PositionDataPromoter:

PositionDataMRNA:

PositionDataI2E:

PositionDataE2I:

PositionDataIntron:

PositionDataExon:

The next six parameters are the vectors containing the percentage times each n-tuple occurred

in each of the classes, once again generated by the programs pullData.m or pullHalf.m

They contain (4^n) entries each, corresponding to the 4^n possible n-tuples of length n.

CountPromoter:

CountMRNA:

CountI2E:

CountE2I:

CountIntron:

CountExon:

The possible options of the what parameter

What == 1.

Plot 6 graphs, each containing on of the class types. This was the option used to generate the

graphs shown in Section 4.4.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 104

0 50 100 150 200 250
0

10

20

30

40

Promotors

0 50 100 150 200 250
0

10

20

30

40

mRNA Start

0 50 100 150 200 250
0

10

20

30

40

I2E Splice

0 50 100 150 200 250
0

10

20

30

40

E2I Splice

0 50 100 150 200 250
0

10

20

30

40

Introns

0 50 100 150 200 250
0

10

20

30

40

Exons

Figure A4: FuncDraw with parameter what == 1.

What == 2.

Uses the parameters Start and Stop.

Plots the total occurrence of each n-tuple between Start and Stop for promoters and splices.

Note that the parameter n is ignored for bounds calculation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 105

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Promotor ans splice total occurance count.

Promotors
I2E
E2I

Figure A5: FuncDraw with parameter what == 2.

What == 3.

The same as What==2, but the Intron and Exon classes are included.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

All features (Excluding mRNA), total occurance count.

Promotors
I2E
E2I
Exon
Intron

Figure A6: FuncDraw with parameter what == 3.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 106

What == 4.

The same as What==3, with the inclusion of the mRNA class. Thus all 6 classes are drawn

when the What parameter is set to 4.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

All features, total occurance count.

Promotors
mRNA
I2E
E2I
Exon
Intron

Figure A7: FuncDraw with parameter what == 4.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 107

What == 5.

This gives a similar graph to 2-4, but with the difference that only the promoters and the

mRNA samples are used. This was done to see the correlation between the actual downloaded

promoters and the ones extracted from the computer marked files.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Comparison of experimental and computed TSS (total occurance count)

Promotors
mRNA

Figure A8: FuncDraw with parameter what == 5.

From this figure it can be seen that the actual promoters differ quite a lot from the mRNA

samples.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 108

What == 6.

This option provides an output similar to What==4, but with two differences. Firstly the value

of n is actually used to calculate borders. Secondly, and much more importantly is that all the

values are normalised to be between 0 and 1. This option also provides borders that determine

where possible features could be.

For example, in the figure there is an Intron at n-tuple 55 that is below the 0.25 line, with all

the other classes marked above the line. This could mean that the absence of this feature is an

indicator of Introns. This was a very crude method used to extract features before the Entropy

calculations were used.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
All features, Normalised total occurance count.

Promotors
mRNA
I2E
E2I
Exon
Intron

Figure A9: FuncDraw with parameter what == 6.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 109

What == 7.

This option draws a graph similar to What==1, but where What==1 draws all the n-tuples of

length n, this option only draws the n-tuples between the Start and Stop values. A single n-

tuple can be isolated and plotted down by setting the Start and Stop parameters to the same

value.

0 50 100 150 200 250
0

5

10

Promotors

0 50 100 150 200 250
0

5

10

mRNA Start

0 50 100 150 200 250
0

5

10

I2E Splice

0 50 100 150 200 250
0

5

10

E2I Splice

0 50 100 150 200 250
0

5

10

Introns

0 50 100 150 200 250
0

5

10

Exons

Figure A10: FuncDraw with parameter what == 7.

For example the 3-tuple number 37 was isolated and plotted. This 3-tuple is a possible feature

for extraction when one looks at position 200 on the promoter graph.

What == 8.

It is the same as What==1, except that only n-tuples that have a percentage value greater than

the Percentage parameter are shown on the plot.

What == 9.

It is also the same as What==1, except that only n-tuples that have a maximum percentage

value greater than the Percentage parameter, AND smaller than the Percentage2 parameter are

shown on the plot.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 110

8 Entropy calculation.

A8.1 GetMax.m ! Function used by GetEnt5.m

See companion cd-rom. (cd-drive:\Programs\Entropy\GetMax.m)

%getMax(6,199,positionDataPromoter,positionDataIntron,positionDataExon,posi
tionDataI2E,positionDataE2I)

function
[maxType]=getMax2(nTuple,Pos,positionDataPromoter,positionDataIntron,positi
onDataExon)

maxType = 0;
max = -1;

if (positionDataPromoter(nTuple,Pos) > max)
 max = positionDataPromoter(nTuple,Pos);
 maxType = 1;
end;

if (positionDataIntron(nTuple,Pos) > max)
 max = positionDataIntron(nTuple,Pos);
 maxType = 2;
end;

if (positionDataExon(nTuple,Pos) > max)
 max = positionDataExon(nTuple,Pos);
 maxType = 3;
end;

A8.2 GetEnt5.m Entropy extraction function.

See companion cd-rom. (cd-drive:\Programs\Entropy\GetEnt5.m)

A8.3 Entropy function parameters.

function
[realEnt2,value]=getEnt5(dataType,useAll5,Var1,Var2,n,start,stop,nStart,nSt
op,significance,positionDataPromoter,positionDataMRNA,positionDataI2E,posit
ionDataE2I,positionDataIntron,positionDataExon,countPromoter,countMRNA,coun
tI2E,countE2I,countIntron,countExon,a,b,c,d,e,f);

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 111

Input Parameters:

DataType: Integer value that selects the class for which the entropy is calculated.

1=Promoter, 2=Intron, 3=Exon, 4=I2E, 5=E2I

useAll5: Flag that selects to use all five the classes for entropy calculation or only the

promoters, introns and exons. 1 = All 5, 0 = Exclude splices.

Var1: Used to determine the threshold border.

Var2: Used to determine the threshold border.

 Border value at n-tuple �i� = Var1/I + Var2;

N: Like all other functions the n-tuple length.

Start: The start postion for which entropy is calculated.

Stop: The stop position for which entropy is calculated.

NStart: The start n-tuple for which entropy is calculated.

NStop: The stop n-tuple for which entropy is calculated.

The entropy is calculated only for the position beginning at Start and ending at Stop and

for the n-tuples between nStart and nStop.

Significance: The minimum number of samples per bin before entropy is considered good.

The next six parameters are the arrays containing the position data for each class as generated

by the programs pullData.m or pullHalf.m

The dimentions of these arrays are (4^n+1) rows and (256-n+1) columns.

PositionDataPromoter:

PositionDataMRNA:

PositionDataI2E:

PositionDataE2I:

PositionDataIntron:

PositionDataExon:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 112

The next six parameters are the vectors containing the percentage times each n-tuple occurred

in each of the classes, once again generated by the programs pullData.m or pullHalf.m

They contain (4^n) entries each, corresponding to the 4^n possible n-tuples of length n.

CountPromoter:

CountMRNA:

CountI2E:

CountE2I:

CountIntron:

CountExon:

And the last six parameters are integer values containing the number of samples available

for each class.

A: Number of Introns

B: Number of Exons

C: Number of I2E

D: Number of E2I

E: Number of Promoters

F: Number of mRNA

Output Parameters:

RealEnt2: Contains an array with the entropy values for the area between the border

parameters Start, Stop, nStart and nStop.

Value: Contains an array with the same dimensions as the RealEnt2 array, but with flag values

of 0 or 1. 0 indicating that the entropy is not valid because the position � n-tuple bin did not

contain enough samples (Enough being the value given in the parameter �significance�), and a

1 indicating that there was enough samples.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 113

9 WorkANN.c ! ANN training program.

See companion cd-rom. (cd-drive:\Programs\ANN\WorkANN.c)

10 ClassCombine.c ! Program that combines classes to one file.

See companion cd-rom. (cd-drive:\Programs\ANN\ClassCombine.c)

11 LoadANN.c ! ANN testing program and final system output.

See companion cd-rom. (cd-drive:\Programs\ANN\LoadANN.c)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

Electrical, Electronic and Computer Engineering 114

Inventory of the companion CD-Rom.

Extract.c and Extract.exe

ClassSets.c and ClassSets.exe

Pulldata.m

Pullhalf.m

Statistics.c and Statistics.dll

Funcdraw.m

GetMax.m

GetEnt5.m

WorkANN.c and WorkANN.exe

ClassCombine.c

LoadANN.c

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– MMyybbuurrgghh,, GG ((22000055))

	FRONT
	Title page
	Summary
	Opsomming
	Table of contents
	Abbreviations

	CHAPTER 1
	1.1 Introduction
	1.2 Brief Problem Definition
	1.3 Genetic Principles
	1.4 Full Problem Definition and Project Aims
	1.5 Previously Proposed Solutions
	1.6 Implemented Solution

	CHAPTER 2
	2.1 Overview of the Entire Process
	2.2 FU 1: Data Collection and Extraction
	2.3 FU 1.1: Set and Class Generation
	2.4 FU 1.2: Statistical Information Gathering
	2.5 FU 2: Extracting Useful Information
	2.6 FU 3: Generate an Artificial Neural Network
	2.7 FU 4: Training Process
	2.8 FU 5: Testing of the System
	2.9 FU 6: Further Enhancements

	CHAPTER 3
	3.1 Introduction
	3.2 Attaining promoter data
	3.3 Obtaining non-promoter data
	3.4 Set generation
	3.5 Outputs of extraction

	CHAPTER 4
	4.1 Data reduction
	4.2 Base-per-position statistics
	4.3 Indexing and assigning n-tuple number
	4.4 Statistical outputs and results
	4.5 Using entropy as feature significance indicator
	4.6 Results: The selected features

	CHAPTER 5
	5.1 Selecting a neural network
	5.2 The network structure
	5.3 Software implementation

	CHAPTER 6
	6.1 Data flow through entire process
	6.2 The first outputs
	6.3 Entropy outputs
	6.4 ANN Results
	6.5 NNPromoterFind1.0 compared to other systems

	CHAPTER 7
	7.1 Suggested system improvements
	7.2 Final Conclusion

	 REFERENCES
	ADDENDA

