Adoption of irrigation scheduling methods in South Africa

by

Joseph Benjamin Stevens

Submitted in partial fulfilment of the requirements of the degree of PhD

in the Department of Agricultural Economics, Extension and Rural Development

Faculty of Natural and Agricultural Science

University of Pretoria

Pretoria

2006
DECLARATION

I declare that the thesis, which I hereby submit for the degree Philosophy Doctor at the University of Pretoria is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE DATE
ABSTRACT

ADOPTION OF IRRIGATION SCHEDULING METHODS IN SOUTH AFRICA

By

Joseph Benjamin Stevens

Promoter: Prof GH Düvel
Department: Agricultural Economics, Extension and Rural Development
Degree: Philosophy Doctor

Irrigation scheduling is accepted as the process to decide when to irrigate crops and how much to apply and is assumed to play an important role in the general improvement of water efficiency on the farm. However, the idea that there is a single key to the adoption of irrigation scheduling on the farm is simplistic. It implies that science has all the answers, and “we need just to convince the farmers”.

The objectives of this study were to investigate the adoption process in South Africa with the further purpose to identify the possible human and socio-economic factors that may influence it. In order to appreciate the spectrum of soil-plant-atmosphere irrigation scheduling models and techniques that are available to potential users, it was necessary to quantitatively describe and classify the scheduling methods. The adoption of irrigation scheduling methods among commercial and small-scale farmers was investigated on a scheme (macro) level as well as on-farm (micro) level through a quantitative assessment of scheduling methods on a national basis, semi-structured interviews with irrigation professionals, survey among a stratified sample of commercial farmers and case studies of small scale irrigation farmers.
It was hypothesized that the adoption behaviour of irrigation farmers is determined by socio-economic (independent) and intervening factors. It was also hypothesized that ground level support and effective dialogue between scientist and farmers are conducive for the implementation of irrigation scheduling.

The study indicates that only 18% of irrigation farmers in South Africa make use of objective irrigation scheduling method, while the rest make use of subjective scheduling methods based on intuition, observation, local knowledge and experience. Differential perceptions occur between farmers as well as between farmers and scientists with regard to the concept of “irrigation scheduling” commonly being used. These differences contributed to the communication gap between science and the practice of irrigation scheduling resulting in the unsuccessful communication between farmers and scientists and the ultimate low adoption rate.

The implementation of irrigation scheduling models are predominantly advisor-driven and not farmer-driven, as they are perceived by farmers to be complex and not easy to implement on the farm. Younger farmers are more willing to use irrigation models because of their higher computer literacy levels and positive attitude towards the use of computers in general. The technology level of a farm, size of farming operation and the value of the crop being produced determine the selection of irrigation scheduling methods. The general problems experienced by some farmers with regard to bulk water delivery hampers the implementation of more precise irrigation scheduling.

Farmers’ awareness, flexibility and willingness to change, innovate and step outside of accustomed ways of implementing irrigation, are strongly influenced by their social, economic, cultural and institutional settings, and not merely by irrigation scheduling technology. Perceived indicators of efficient use of irrigation on the farm include increased production levels, decreasing electricity costs, improvement of crop quality and efficiency of fertiliser use. Farmers identified accuracy, reliability, ease of implementing and affordability as important technological characteristics of scheduling methods and devices.
The case studies of small-scale irrigation farming revealed that weak institutional arrangements and handling of farmers’ affairs on the level of several small-scale irrigation schemes hampers sustainable agricultural development. Small-scale irrigators have reported that the lack of competent extension support prevents them from implementing irrigation scheduling. Also, the scientific framework used by scientists and advisors to convey information to irrigators often follows the linear transfer of technology approach instead of following the “learning based approach”.

A significant relationship exists between the number of information sources used and the implementation of the type of scheduling methods. The majority of irrigation farmers are more interested in the use of irrigation scheduling to identify “troubles or problems” experienced with irrigation, and inevitably farmers will differ in their selection of the most appropriate scheduling method and technique.
ACKNOWLEDGEMENTS

In a study of this nature and magnitude a number of people make important contributions.

- First of all I want to thank my Heavenly Father for HIS grace and guidance in writing this. For all things were created by Him, and all things exist through Him and for Him. To God all the glory forever!
- I want to thank my family for their support and many sacrifices through all the stages of this research - Ida, Gerdia, Andre and Mari-Louise.
- I wish to acknowledge my supervisor and mentors: Prof Gustav Düvel, Prof Richard Stirzaker, Prof Gideon Steyn and Dr Fanie Terblanché for their encouragement, support, guidance, constructive comments and friendship.
- I gratefully acknowledge the Water Research Commission for their financial assistance with regard to a project entitled: “The range, distribution and implementation of irrigation scheduling models and methods in South Africa”. My profound thanks to the members of the Steering Committee for their guidance and valuable advice during the research. A special word of thanks goes to Dr Gerhard Backeberg, as project manager and friend for his ideas, encouragement and pressure to finish this study.

Steering Committee responsible for the project was made up of the following members:

- Dr Gerhard Backeberg: Water Research Commission (Chairperson)
- Prof. Allan Bennie: University of Free State
- Prof Gavin Fraser: University of Fort Hare
- Prof John Annandale: University of Pretoria
- Mr. Japie Williams: University of Fort Hare
- Mr. Francois vd Merwe: Department of Water Affairs and Forestry
- Dr Nebo Jovanovich: University of the Western Cape
- Mr Nic Opperman: South African Agricultural Union
- Mr Josua Taljaard: Water Research Commission

- I have enjoyed the good fortune of wide network of agricultural scientists and farmers from whom have provided me with information and ideas for this thesis. I thank the farmers and the consultants who patiently provided me information and helped me to understand better the complexity of irrigation scheduling.

- Jo Coertse, for her competent and efficient assistance in preparing the thesis.
TABLE OF CONTENTS

DECLARATION ... I
ABSTRACT ... III
ACKNOWLEDGEMENTS ... V
TABLE OF CONTENTS ... VII
LIST OF TABLES .. XIX
LIST OF FIGURES .. XXV
LIST OF PHOTOS ... XXX
LIST OF ACRONYMS ... XXXII

PART ONE: BACKGROUND AND SCOPE OF THE RESEARCH .. 1

CHAPTER 1: INTRODUCTION AND BACKGROUND TO THE STUDY ... 1

1.1 ROLE OF IRRIGATION IN SEMI-ARID SOUTHERN AFRICA 1
1.1.1 Water use efficiency and the implementation of irrigation scheduling 2

1.2 PROBLEM BACKGROUND AND STATEMENT ... 8

1.3 THEORETICAL OVERVIEW ... 13
1.3.1 Technical and social dimensions of innovations ... 13
1.3.2 Models of behavioural change ... 13

1.4 TOWARDS THE FORMULATION OF HYPOTHESES ... 28

1.5 OBJECTIVES .. 29
CHAPTER 2: DESCRIPTION AND CLASSIFICATION OF IRRIGATION SCHEDULING METHODS AND TECHNIQUES ... 33

2.1 INTRODUCTION ... 33

2.2 RESEARCH METHODOLOGY ... 33

2.3 CLASSIFICATION OF IRRIGATION SCHEDULING MODELS AND METHODS .. 36

2.4 DESCRIPTION OF IRRIGATION SCHEDULING METHODS AND MODELS USED BY IRRIGATORS ... 39
 2.4.1 Intuition or subjective irrigation scheduling............................. 40
 2.4.2 Atmospheric based quantification of evapotranspiration (ET) .. 40
 2.4.2.1 Measurements of evapotranspiration................................. 41
 A. Direct method .. 41
 2.4.2.1.1 Lysimetric methods .. 41
 B. Indirect methods .. 43
 2.4.2.1.2 Micrometeorological methods: ... 43
 2.4.2.2 Estimation of evapotranspiration .. 45
 2.4.2.2.1 Meteorological methods ... 46
 2.4.2.2.2 Evaporation pans ... 47
 2.4.2.2.2.1 Pegboard method ... 49
 2.4.2.2.2.2 Green Book method ... 50
 2.4.2.2.3 FAO Penman-Monteith procedure 51
 2.4.2.2.4 Remote sensing methods .. 53
 2.4.3 Soil water measurement .. 55
 2.4.3.1 Soil water potential (suction) .. 56
 2.4.3.1.1 Tensiometers .. 56
2.4.3.1.2 Porous matrix sensors ... 58
2.4.3.1.3 Heat dissipation sensors .. 61
2.4.3.1.4 Thermocouple psychrometer .. 62
2.4.3.2 Soil water content ... 63
 A. Direct methods of soil water measurement 64
 2.4.3.2.1 Gravimetric method .. 64
 B. Indirect methods of soil water measurement 65
 2.4.3.2.2 Measurement of soil water through observation and “feel”
 method” by use of soil auger / shovel or spade 65
 2.4.3.2.3 Neutron thermalisation ... 66
 2.4.3.2.4 Di-electric sensors: .. 67
2.4.3.3 Wetting Front Detector (WFD) .. 69
2.4.4 Plant based monitoring ... 70
 2.4.4.1 Visual observation of plant appearance 71
 2.4.4.2 Trunk or branch diameter measurements 72
 2.4.4.3 Leaf water potential (LWP) ... 73
 2.4.4.4 Sap flow .. 73
 2.4.4.5 Canopy measurements (Temperature and radiation) 74
 2.4.4.6 Phytomonitoring ... 75
 2.4.4.7 Remote sensing methods .. 77
2.4.5 Integrated soil water balance methods ... 77
 2.4.5.1 Pre-programmed irrigation scheduling methods 79
 2.4.5.1.1 Seasonal calendar .. 79
 2.4.5.1.2 Checkbook method .. 80
 2.4.5.1.3 BEWAB .. 83
 2.4.5.1.4 CROPWAT .. 84
 2.4.5.1.5 SAPWAT .. 85
 2.4.5.1.6 Vinet 1.1 .. 86
 2.4.5.2 Real time irrigation scheduling approach 87
 2.4.5.2.1 Irricheck (BBP17) .. 87
 2.4.5.2.2 PUTU .. 88
 2.4.5.2.3 Probe for Windows (PRWIN) ... 89
 2.4.5.2.4 Donkerhoek Data Irrigation Scheduling Program 90
 2.4.5.2.5 SWB (Soil Water Balance) .. 91
PART TWO: IMPLEMENTATION OF IRRIGATION SCHEDULING AT SCHEME LEVEL

CHAPTER 3: INTRODUCTION AND RESEARCH METHODOLOGY

CHAPTER 4: IMPLEMENTATION OF IRRIGATION SCHEDULING ON IRRIGATION SCHEMES

4.1 CURRENT STATE OF ON-FARM IRRIGATION SCHEDULING

4.2 DIFFERENTIAL PERCEPTION REGARDING THE IMPLEMENTATION OF IRRIGATION SCHEDULING

4.3 STATE OF IRRIGATION SCHEDULING ON DIFFERENT TYPES OF IRRIGATION SCHEMES

4.4 ADOPTION OF ON-FARM IRRIGATION SCHEDULING METHODS
CHAPTER 5: THE INFLUENCE OF INTERNAL FACTORS
ON IMPLEMENTATION OF ON-FARM IRRIGATION SCHEDULING

5.1 TYPE OF FARMING BUSINESS ENTERPRISES

5.2 INFLUENCE OF CROP SELECTION

5.2.1 Cash crops

5.2.2 Intensive horticultural crops

5.2.3 Pastures

5.3 INFLUENCE OF ON-FARM IRRIGATION METHOD

5.3.1 Implementation of on-farm irrigation methods

5.3.2 Influence of on-farm irrigation methods on irrigation scheduling

5.4 SUMMARY

CHAPTER 6: INFLUENCE OF EXTERNAL FACTORS ON
THE IMPLEMENTATION OF ON-FARM IRRIGATION SCHEDULING

6.1 BULK WATER DELIVERY ON IRRIGATION SCHEME

6.2 ALLOCATION OF IRRIGATION WATER
6.3 IRRIGATION TARIFFS.. 143

6.4 SUMMARY... 148

PART THREE: IMPLEMENTATION OF
IRRIGATION SCHEDULING ON COMMERCIAL
FARM LEVEL .. 149

CHAPTER 7: INTRODUCTION AND RESEARCH
METHODOLOGY .. 150

7.1 INTRODUCTION.. 150

7.2 RESEARCH METHODOLOGY ... 151
7.2.1 Research area... 151
7.2.2 Data collection and analysis... 162

CHAPTER 8: SOCIO-ECONOMIC FACTORS
ASSOCIATED WITH THE ADOPTION OF IRRIGATION
SCHEDULING ... 164

8.1 AGE... 164

8.2 EDUCATION AND TRAINING.. 166

8.3 PROPERTY SIZE AND IRRIGATION SCHEDULING............... 168

8.4 FARMING EXPERIENCE... 169

8.5 NON-FARMING EXPERIENCE... 170
CHAPTER 9: INFLUENCE OF INTERVENING VARIABLES ON THE ACCEPTABILITY OF IRRIGATION SCHEDULING

9.1 INTRODUCTION

9.2 AWARENESS OF THE NEED FOR IRRIGATION SCHEDULING

9.2.1 Perception of the concept “irrigation scheduling”

9.2.2 Perceived need for on-farm implementation of irrigation scheduling

9.2.3 Perceived need for the implementation of irrigation scheduling by fellow farmers

9.2.4 Perceived reasons for implementation of irrigation scheduling

9.3 INFLUENCE OF PERCEIVED IRRIGATION SCHEDULING EFFICIENCY ON ADOPTION BEHAVIOUR

9.3.1 Perception regarding the efficiency of on-farm irrigation scheduling

9.3.2 Perceived satisfaction with current level of on-farm irrigation scheduling

9.4 PERCEPTION REGARDING IRRIGATION OPERATIONAL COSTS

9.4.1 Relationship between source of irrigation and irrigation operational costs

9.4.2 Perception regarding implementation of volumetric irrigation water tariffs
9.5 INFLUENCE OF PERCEIVED INNOVATION CHARACTERISTICS ON IRRIGATION SCHEDULING ADOPTION .. 192

9.5.1 Perception regarding irrigation technology attributes 192

9.5.2 Perception regarding the potential benefits with the implementation of irrigation scheduling ... 196

9.5.3 Perception regarding the complexity of irrigation scheduling practices ... 209

9.5.4 Perception regarding the compatibility of irrigation scheduling practices ... 213

9.6 ADOPTION AND/OR DISCONTINUANCE OF ON-FARM IRRIGATION SCHEDULING .. 215

9.6.1 Perceived usefulness of irrigation scheduling models 215

9.6.2 Reasons for changing irrigation scheduling practices 220

9.6.3 Reasons for discontinuing objective irrigation scheduling methods ... 223

9.7 SUMMARY ... 225

PART FOUR: IRRIGATION SCHEDULING ON SMALL-SCALE FARM LEVEL ... 228

CHAPTER 10: BACKGROUND AND RESEARCH METHODOLOGY ... 229

10.1 INTRODUCTION AND BACKGROUND ... 229

10.2 RESEARCH METHODOLOGY ... 232
CHAPTER 11: IRRIGATION SCHEDULING IN THE EASTERN CAPE: CASE STUDY 1 ... 235

11.1 EASTERN CAPE SMALL-SCALE IRRIGATION .. 235

11.2 CASE STUDY 1: ZANYOKWE IRRIGATION SCHEME .. 239

11.2.1 Background .. 239

11.2.2 Irrigation methods and scheduling ... 242

11.2.3 Lessons learned .. 248

CHAPTER 12: IRRIGATION SCHEDULING IN THE LIMPOPO: CASE STUDY 2 .. 252

12.1 LIMPOPO SMALL-SCALE IRRIGATION ... 252

12.2 CASE STUDY 2: TSHIOMBO IRRIGATION SCHEME 254

12.2.1 Background ... 254

12.2.2 Irrigation methods and scheduling ... 255

CHAPTER 13: IRRIGATION SCHEDULING IN MPUMALANGA: CASE STUDY 3 ... 263

13.1 MPUMALANGA SMALL-SCALE IRRIGATION ... 263

13.2 Case study 3: Nkomazi Irrigation Project (Low’s Creek, Walda, Figtree, Boschfontein) ... 263

13.2.1 Background ... 264

13.2.2 Walda Irrigation Scheme .. 266

13.2.3 Low’s Creek Irrigation Scheme ... 267

13.2.4 Figtree, Boschfontein (1&2) Irrigation Scheme 268

13.2.5 Lessons learned ... 271
CHAPTER 14: IRRIGATION SCHEDULING IN
NORTHERN CAPE AND FREE STATE: CASE STUDY 4 274

14.1 NORTHERN CAPE AND FREE STATE SMALL-SCALE IRRIGATION ... 274

14.2 CASE STUDY 4: APPLE PROJECT IN BETHLEHEM 275
14.2.1 Background ... 276
14.2.2 Irrigation method and scheduling .. 277
14.2.3 Lessons learned ... 279

CHAPTER 15: IRRIGATION SCHEDULING IN
NORTHWEST: CASE STUDY 5 .. 282

15.1 NORTHWEST SMALL-SCALE IRRIGATION............................. 282

15.2 CASE STUDY 5: TAUNG IRRIGATION SCHEME, NORTHWEST ... 283
15.2.1 Background ... 283
15.2.2 Irrigation methods and scheduling .. 284
15.2.3 Lessons learned ... 287

CHAPTER 16: IRRIGATION SCHEDULING IN OTHER PROVINCES... 290

16.1 WESTERN CAPE SMALL-SCALE IRRIGATION 290

16.2 KWAZULU NATAL SMALL-SCALE IRRIGATION 291

16.3 GAUTENG SMALL-SCALE IRRIGATION 295

CHAPTER 17: SUMMARY ... 296
PART FIVE: INFORMATION SUPPORT
SYSTEMS USED FOR IMPLEMENTATION OF IRRIGATION SCHEDULING 299

CHAPTER 18: AGRICULTURAL KNOWLEDGE SUPPORT SYSTEMS USED FOR IRRIGATION SCHEDULING ... 300

18.1 INTRODUCTION ... 300
18.2 AGRICULTURAL KNOWLEDGE INFORMATION SYSTEMS USED BY IRRIGATION FARMERS ... 300
18.3 CATEGORIZING THE LEARNING FOCUS .. 308
18.4 PERCEIVED ATTRIBUTES FOR EFFECTIVE KNOWLEDGE SUPPORT .. 313
18.5 SUMMARY ... 316

CHAPTER 19: THE ROLE OF PRIVATE IRRIGATION CONSULTANTS AS A SOURCE OF LEARNING 319

19.1 INTRODUCTION ... 319
19.2 RESEARCH METHODOLOGY .. 319
19.3 GEOGRAPHICAL DISTRIBUTION .. 321
19.4 TECHNICAL QUALIFICATIONS .. 321
19.5 EXPERIENCE ... 322
19.6 IRRIGATION CONSULTATION SERVICE FEE 323
19.7 PROFILE OF POTENTIAL CLIENTELE 324
19.8 IDEAL NUMBER OF CLIENTS 325
19.9 PROFILE OF SERVICE DELIVERY BY IRRIGATION CONSULTANTS .. 326
19.10 REQUIREMENTS OF AN EFFECTIVE IRRIGATION SCHEDULING CONSULTANCY 327
19.11 PERCEIVED REASONS OFFERED BY CONSULTANTS AS TO WHY FARMERS ARE NOT MAKING USE OF IRRIGATION SCHEDULING .. 329
19.12 PROMOTING IRRIGATION SCHEDULING 330
19.13 SUMMARY ... 332

CHAPTER 20: THE POTENTIAL ROLE OF INSTITUTIONS AS LEARNING SYSTEMS IN THE PROMOTION OF EFFICIENT WATER USE PRACTICES .. 333

PART SIX: CONCLUSIONS AND RECOMMENDATIONS ... 335
CHAPTER 21: CRITICAL FACTORS THAT INFLUENCE THE ADOPTION OF IRRIGATION SCHEDULING

21.1 FACTORS THAT INFLUENCE THE ADOPTION OF IRRIGATION SCHEDULING

21.2 FACTORS THAT INFLUENCE THE PROPAGATION OF IRRIGATION SCHEDULING AMONG SMALL-SCALE IRRIGATION FARMERS

REFERENCES

APPENDIX 1: QUESTIONNAIRE ON IRRIGATION SCHEDULING AMONGST FARMERS

APPENDIX 2: QUESTIONNAIRE TO COMMERCIAL IRRIGATORS

APPENDIX 3: SEMI-STRUCTURED INTERVIEWS
LIST OF TABLES

Table 1.1: Irrigated land and water demand for SADC countries (2004) .. 2

Table 1.2: Potential water saving options to improve water use efficiencies (CSIRO, 2005) ... 6

Table 2.1: List of persons serving on the steering committee as selected by the WRC (2000-2005) .. 36

Table 3.1: The response rate from irrigation schemes in the different provinces (N=332) ... 99

Table 3.2: Total area reported for the survey under irrigation and the number of irrigation farmers per Province (N=297) ... 100

Table 4.1: Frequency distribution according to the types of irrigation schemes included in the survey (2003) (N=297) .. 108

Table 4.2: Relationship between the adoption of computer irrigation scheduling models and programs and ground level support as reflected in a test of association (N=297) ... 117

Table 4.3: Distribution of irrigation computer models and programs in the nine provinces according to their adoption as indicated by respondents (N=297) 118

Table 5.1: Distribution of respondents according to occurrence of corporate enterprises (N=297) 121

Table 5.2: Distribution of respondents according to the types of farming operations and the implementation of irrigation scheduling methods (N=291) 122

Table 5.3: Frequency of irrigation schemes under different crops and combination of crops (N=297) 125

Table 5.4: Percentage distribution of irrigation schemes according to the types of crops and irrigation scheduling methods used (N=297) ... 126
Table 5.5: Relationships between on-farm irrigation methods and the implementation of objective irrigation scheduling (N=297).................................134

Table 6.1: Relationships between implementation of irrigation scheduling methods and irrigation water allocations as reflected in a test of association (N=297)142

Table 6.2: The distribution of respondents according to the irrigation tariffs reported as per province (N=297)145

Table 6.3: Relationship between the implementation of irrigation scheduling methods and irrigation tariffs (N=297)..147

Table 7.1: Distribution of respondents according to province and irrigation area (N=134)...163

Table 8.1: Percentage distribution of respondents according to the attendance of training courses in irrigation management and irrigation scheduling implementation (N=134)..167

Table 8.2: Percentage distribution of respondents according to their non-farming experience and the association with irrigation scheduling implementation (N=50)........171

Table 9.1: Information sources through which farmers become aware of irrigation scheduling (N=134)175

Table 9.2: Percentage distribution of respondents according to their perceived understanding of the definition irrigation scheduling (N=134)..176

Table 9.3: Percentage distribution of respondents according to their perceived importance of the implementation of irrigation scheduling by fellow farmers and their on-farm irrigation scheduling (N= 134)...............................179

Table 9.4: Percentage distribution of respondents according to the perceived reasons for the implementation of irrigation scheduling practices (N= 134)...............................180
Table 9.5: Percentage distribution of respondents perception of the accuracy level of on-farm implementation of irrigation scheduling (N=134) ... 182

Table 9.6: Percentage distribution of perceived irrigation operational irrigation costs with regard to the production of cash and high value/high input crops (N=134) ... 185

Table 9.7: The perceived importance rank order of operational irrigation costs relative to the other production cost factors in terms of cash and high value crop production as expressed by weighted average score * (N=134) ... 186

Table 9.8: Irrigation operational costs for the production of wheat with a target yield of 6t/ha and a crop water requirement of 540 mm/ha, using different water sources and irrigation systems in the Northwest Province (2003) .. 188

Table 9.9: Percentage distribution of respondents according to their perception regarding the technological characteristics of irrigation scheduling devices and their style of irrigation scheduling implementation (N=134) .. 194

Table 9.10: The perceived contribution of aspects of on-farm irrigation scheduling to on-farm production efficiency expressed as mean scale point (*)(N= 134) ... 203

Table 9.11: Relationship between perceived improvement of production efficiency and on-farm irrigation method as reflected in a test of association (N=134) ... 205

Table 9.12: Percentage distribution of respondents according to their frequency of testing for distribution uniformity (N=122) .. 207
Table 9. 13: The perceptions of respondents related to the easiness of the implementation of irrigation scheduling (N=134).. 210

Table 9. 14: Percentage distribution of respondents’ perception regarding the required level of knowledge needed for effective on-farm irrigation scheduling (N=134)... 212

Table 9. 15: Percentage distribution of respondents according to the perceived problems experienced with the use of on-farm irrigation scheduling methods (N=134)... 214

Table 9. 16: Percentage distribution of respondents’ use of computer models and programs for on-farm irrigation scheduling (N = 20).. 216

Table 9. 17: Percentage distribution of respondents according to their perceived reasons for the lack of aspiration to use computer models for on-farm irrigation scheduling (N=99).. 218

Table 9. 18: Percentage distribution of respondents’ perceived reasons for the need to change irrigation scheduling practices (N=134).. 222

Table 10. 1: Small-scale farming in South Africa (de Lange, 2004) .. 230

Table 11. 1: Eastern Cape Irrigation Schemes (Bembridge, 2000; Eloff, 2001 and Williams, 2004)............................. 235

Table 11. 2: Rank order of the major problems that farmers experience on the Eastern Cape irrigation schemes (Bembridge, 2000; Vusani, 2004; Dlulane, 2004, Dlovo, 2005) .. 239

Table 11. 3: Preferential ranking of problems that influence optimum crop production of irrigation farmers from Zanyokwe (N=20).. 247
Table 12.1: Percentage distribution of crop types found on the Small-Scale Irrigation (SSI) in the Limpopo (N=171) ... 253

Table 12.2: Timetable followed for irrigation on Tshiombo (Netangaheni, 2003)... 256

Table 12.3: The importance rank order of perceived problems representing constraints in crop production (Netangaheni, 2003)... 258

Table 13.1: Small-scale irrigation schemes in Mpumalanga (2003) .. 264

Table 13.2: Crops grown in the Low’s Creek Irrigation Scheme........ 267

Table 13.3: A statement of income and expenses of a small-scale sugarcane grower at Walda for the 2003/2004 season (Swart, 2004)... 270

Table 14.1: Small-scale irrigation schemes in Northern Cape and Free State (2003)... 275

Table 15.1: Small-scale irrigation schemes in the Northwest Province (2003).. 282

Table 15.2: Different irrigation scheduling methods applied on Taung Irrigation Scheme... 286

Table 16.1: Small-scale irrigation schemes in the Western Cape (Saaiman, 2003)... 290

Table 16.2: Small-scale irrigation schemes in KwaZulu Natal (2003).. 292

Table 16.3: Small-scale irrigation schemes in Gauteng (2003)........ 295

Table 17.1: Institutional framework of water delivery necessary for irrigation scheduling ... 297

Table 18.1: Percentage distribution of respondents according to the perceived attributes of irrigation extensionists/advisors to be critical (N=134)......................... 314

Table 19.1: Technical qualification of irrigation consultants and extensionists (N=37).. 322

Table 19.2: Experience level of respondents in irrigation management (N=37)... 323

XXIII
Table 19.3: Characteristics and attributes of clientele served by irrigation consultants and extensionists (N=37) ... 324

Table 19.4: Competencies and personal attributes perceived by consultants necessary for delivery of a successful irrigation consultancy (N=37) 327

Table 19.5: Reasons, as perceived by consultants, why farmers fail to make use of objective irrigation scheduling (N=37) .. 329

Table 19.6: Aspects or essential elements regarding irrigation scheduling used by irrigation consultants to persuade farmers (N=37) ... 331
LIST OF FIGURES

Figure 1.1: Water use efficiency parameters applicable for the different sub-systems of water management 5
Figure 1.2: A paradigm of individual decision-making and adoption (Campbell, 1966) .. 16
Figure 1.3: The innovation-decision process (Rogers, 1983) 18
Figure 1.4: Behaviour change model of Lewin (1951) (Düvel
(1974) .. 20
Figure 1.5: The Tolman model (1967) .. 22
Figure 1.6: Theory of Reasoned Action (Fishbein & Ajzen, 1975) 24
Figure 1.7: Technology acceptance Model (Davis et al., 1989) 25
Figure 1.8: Düvel's behavioural analysis model (1975) 27
Figure 2.1: Classification of irrigation scheduling models and
methods used in South Africa .. 38
Figure 4.1: The perceived percentage implementation of irrigation scheduling as indicated per province
(N=297) .. 101
Figure 4.2: Percentage distribution of irrigation groups
(schemes) according to the reported percentage implementation of irrigation scheduling (N=297) 103
Figure 4.3: Percentage distribution of respondents according
to the perceived percentage irrigation scheduling
applied and the percentage ratio between subjective
and objective irrigation scheduling (N=297) 104
Figure 4.4: Percentage distribution of respondents according
to the percentage ratio between subjective and
objective irrigation scheduling implemented on
the different types of irrigation schemes (N=297). 110
Figure 4.5: Implementation of different irrigation scheduling
methods by irrigation farmers according to figures recorded and figures reported by representative

respondents from the different irrigation schemes (N=297)... 112

Figure 4. 6: Implementation of different irrigation scheduling methods by scheduling groups 1-5 (N=165)........... 114

Figure 4. 7: The implementation of irrigation scheduling models by farmers (N=297).................................. 116

Figure 5. 1: Percentage irrigation schemes on which various cash crops are produced (N=297)..................... 123

Figure 5. 2: Percentage irrigation schemes on which the different intensive horticulture crops are grown (N=297).. 124

Figure 5. 3: Percentage distribution of respondents according to the implementation of different irrigation methods (N=297).. 128

Figure 5. 4: Frequency distribution of irrigation schemes according to the use of different irrigation methods and percentage irrigation scheduling (N=297).. 133

Figure 6. 1: Percentage distribution of irrigation schemes according to the percentage irrigation scheduling applied and the percentage ratio between perceived flexible and inflexible water delivery (N=297)................. 138

Figure 6. 2: Distribution of respondents regarding irrigation water allocation in South Africa (N=297).................... 142

Figure 6. 3: Percentage distribution of the irrigation schemes according to the irrigation tariffs applicable (N = 297).. 146

Figure 7. 1: Base map of the Fish to Tsitsikama water management area (DWAF, 2004)................................... 153

Figure 7. 2: Location map of the Upper Orange water management area (DWAF, 2004)................................. 154

Figure 7. 3: Location map of the Orange Riet River catchment area (DWAF, 2003).. 155
Figure 7.4: Base map of the Inkomati water management area (DWAF, 2004) ... 156

Figure 7.5: Base map of the Mzimvubu to Keiskamma water management area (DWAF, 2004) ... 158

Figure 7.6: Base map of the Crocodile and Marico water management area (DWAF, 2004) .. 159

Figure 7.7: Location map of the Middle Vaal water management area (DWAF, 2004) ... 160

Figure 7.8: Base map of the Breede water management area (DWAF, 2004) ... 161

Figure 7.9: Base map of the Luvuvhu/Letaba water management area (DWAF, 2004) ... 161

Figure 8.1: Percentage distribution of respondents according to age (N=134) .. 164

Figure 8.2: Distribution of respondents according to age and the implementation of irrigation scheduling (N=134)..... 165

Figure 8.3: Percentage distribution of the adoption of irrigation scheduling methods according to the education levels of respondents (N=134) ... 166

Figure 8.4: Interrelationship between irrigation area and implementation of irrigation scheduling (N=134) 169

Figure 8.5: Percentage distribution of irrigation farmers according to their farming experience and implementation of irrigation scheduling practices (N=134) ... 170

Figure 9.1: Percentage distribution of respondents according to their perception regarding the importance of irrigation scheduling and their application of different irrigation scheduling methods (N=134) 177

Figure 9.2: Percentage distribution of respondents according to their perceived satisfaction with on-farm irrigation scheduling and the implementation of different irrigation scheduling methods (N=134) 183
Figure 9.3: Percentage distribution of respondents according to their attitudes towards the application of volumetric water tariffs (N=134)................................. 190

Figure 9.4: Percentage distribution of respondents according to their perceived relative advantages with regard to on-farm irrigation scheduling based on a 10-point semantic scale (N=134).. 198

Figure 9.5: Percentage distributions of respondents regarding their perceived importance of the visibility of the wetting front after irrigation. (N=134)............................... 200

Figure 9.6: Percentage distribution of respondents according to their perceived improvement in production efficiency since on-farm irrigation scheduling (N=84).. 201

Figure 9.7: Percentage distribution of respondents according to their perceived improvement of production efficiency and irrigation methods used on the farm (N=84).. 205

Figure 9.8: Percentage distribution of respondents from provinces according to their perceived increase in production efficiency due to the implementation of irrigation scheduling (N=84)... 209

Figure 9.9: Percentage distribution of respondents according to their perceived effectiveness of irrigation scheduling models (N = 76)... 217

Figure 9.10: Percentage distribution of respondents according to the time lapse since the inception of irrigation scheduling (N=90)... 221

Figure 10.1: Typical layout of a short-furrow irrigation scheme (Crosby et al., 2000).. 232

Figure 11.1: Schematic diagram of Zanyokwe Irrigation Scheme..... 241

Figure 11.2: Example of the rain gauge layout used for distribution tests at Zanyokwe irrigation plots 245

XXVIII
Figure 12.1: Base map of Levuvhu/Mutale water management area indicating the location of Tshiombo irrigation scheme near Thoyandou (DWAF, 2004)...................... 255

Figure 13.1: Base map of the Nkomazi irrigation scheme within the Inkomati water management area (DWAF, 2004)........... 265

Figure 14.1: Location map of the AFGRI Bethlehem Apple project outside Bethlehem ... 276

Figure 15.1: Base map of the Taung Irrigation Scheme within the Lower Vaal water management area (DWAF, 2004).. 284

Figure 18.1: Distribution of respondents according to their use of various information and support system regarding irrigation scheduling (N=297)...................... 303

Figure 18.2: Perception by respondents of fellow farmers as an important information source for irrigation scheduling (N=134).. 304

Figure 18.3: Percentage distributions of respondents according to their assessment of the importance of irrigation consultants as information source for irrigation scheduling (N=134).. 306

Figure 18.4: Distribution of farmers according to their use of multitudes of learning sources (N=134).......................... 312

Figure 18.5: The percentage distribution of respondents according to type of irrigation scheduling used and the number of learning sources consulted (N=134).................. 313

Figure 19.1: Distribution of irrigation consultants as per province (N=37)... 321

Figure 19.2: Distribution of respondents according to the number of clients served (N=37)................................. 325

Figure 20.1: Percentage distribution of respondents according to their assessment of the potential role of Water User Associations (WUAs) in promoting awareness of irrigation scheduling (N=137)................................. 334

Figure 21.1: Input -response curve for irrigation decisions............. 341
LIST OF PHOTOS

Photo 5. 1: Short furrow irrigation implemented by the majority of small-scale irrigation farmers.. 129

Photo 5. 2: Floppy irrigation systems (semi-permanent systems) are often used in sugarcane fields within the Inkomati water management area 130

Photo 5. 3: A linear irrigation system in operation on the Riet River irrigation scheme (2003)................................. 130

Photo 5. 4: Lucerne production under a side roll irrigation system in the Sand/Vet irrigation scheme......................... 131

Photo 5. 5: Sprinkler, quick coupling irrigation system used for wheat production in the Riet River irrigation scheme ... 131

Photo 5. 6: Table grape production under drip irrigation in Mpumalanga... 132

Photo 6. 1: Main irrigation canal system used for water distribution at Riet River irrigation scheme 141

Photo 11. 1: Sprinkler lateral with different standpipe lengths in use at Zanyokwe.. 244

Photo 11. 2: Different sprinkler nozzles (a) CDS and (b) ordinary in use by a farmer in Zanyokwe (2004).............. 245

Photo 12. 1: Poor maintenance of irrigation canals and excessive vegetative growth on the canal banks at Tshiombro irrigation scheme (irrigation blocks 3 and 4) causing inefficient water distribution... 258

Photo 12. 2: Vandalism of irrigation delivery structures like a canal sluice gate at Tshiombro irrigation scheme prevent effective water distribution on the scheme (2003)... 259

XXX
Photo 14. 1: Apple orchards under drip irrigation in the AFGRI project for small-scale farmers outside Bethlehem (2003) .. 278

Photo 15. 1: Relative old and often under-designed centre pivot irrigation systems used for crop production at Taung Irrigation Scheme (2004) ... 285
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>AE</td>
<td>Application Efficiency</td>
</tr>
<tr>
<td>AED</td>
<td>Atmospheric Evaporative Demand</td>
</tr>
<tr>
<td>Agri SA</td>
<td>Agriculture South Africa</td>
</tr>
<tr>
<td>ARC</td>
<td>Agricultural Research Council</td>
</tr>
<tr>
<td>ARC-ILI</td>
<td>Agricultural Research Council - Instituut vir Landbou Ingenieurswese</td>
</tr>
<tr>
<td>ARDRI</td>
<td>Agricultural and Rural Development Research Institute of the University of Fort Hare</td>
</tr>
<tr>
<td>BBP 3</td>
<td>Beste Besproeiings Praktyke No 3</td>
</tr>
<tr>
<td>BBP 17</td>
<td>Beste Besproeiings Praktyke No 17</td>
</tr>
<tr>
<td>BEWAB</td>
<td>Besproeiingswater Bestuursprogram</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>CANEGRO</td>
<td>Cane growth model</td>
</tr>
<tr>
<td>CANESIM</td>
<td>Cane simulation model</td>
</tr>
<tr>
<td>CASP</td>
<td>Comprehensive Agricultural Support Programme</td>
</tr>
<tr>
<td>CMA</td>
<td>Catchment Management Agency</td>
</tr>
<tr>
<td>CROPWAT</td>
<td>Crop Water Requirements Program</td>
</tr>
<tr>
<td>CU</td>
<td>Christiansen uniformity coefficient</td>
</tr>
<tr>
<td>DBSA</td>
<td>Development Bank of South Africa</td>
</tr>
<tr>
<td>DoA</td>
<td>Department of Agriculture</td>
</tr>
<tr>
<td>DOA Northwest</td>
<td>Northwest Provincial Department of Agriculture</td>
</tr>
<tr>
<td>DSSA</td>
<td>Decision Support System for Agro Technology Transfer</td>
</tr>
<tr>
<td>DuIg</td>
<td>Distribution uniformity</td>
</tr>
<tr>
<td>DWAF</td>
<td>Department of Water Affairs and Forestry</td>
</tr>
<tr>
<td>E</td>
<td>Soil water evaporation</td>
</tr>
<tr>
<td>Em</td>
<td>Maximum total evaporation from specific crop surface in given growth stage</td>
</tr>
<tr>
<td>Eo</td>
<td>Pan Evaporation</td>
</tr>
<tr>
<td>ECDA</td>
<td>Eastern Cape Department of Agriculture</td>
</tr>
<tr>
<td>ECATU</td>
<td>Eastern Cape Appropriate Technology Unit</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ETref</td>
<td>Reference evaporation (Penman-Monteith Method)</td>
</tr>
<tr>
<td>ET0</td>
<td>Evapotranspiration as calculated from evaporation pan</td>
</tr>
<tr>
<td>FAM</td>
<td>Freely available moisture</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation of the United Nations</td>
</tr>
<tr>
<td>FDR</td>
<td>Frequency Domain Reflectometry</td>
</tr>
<tr>
<td>FSDA</td>
<td>Free State Provincial Department of Agriculture</td>
</tr>
<tr>
<td>FFS</td>
<td>Farmer Field School</td>
</tr>
<tr>
<td>FSU</td>
<td>Farmer Support Unit</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GWK</td>
<td>Griekwalandwes Cooperative</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>KDA</td>
<td>KwaZulu Provincial Department of Agriculture</td>
</tr>
<tr>
<td>KSA</td>
<td>Key Strategic Areas</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LANOK</td>
<td>Landbou Ontwikkelings Korporasie</td>
</tr>
<tr>
<td>LL</td>
<td>Lower limit of water storage</td>
</tr>
<tr>
<td>LPDA</td>
<td>Limpopo Provincial Department of Agriculture</td>
</tr>
<tr>
<td>LWP</td>
<td>Leaf Water Potential</td>
</tr>
<tr>
<td>ML</td>
<td>Mega Litre</td>
</tr>
<tr>
<td>MPDA</td>
<td>Mpumalanga Provincial Department of Agriculture</td>
</tr>
<tr>
<td>MSSA</td>
<td>Marketing Surveys and Statistical Analysis</td>
</tr>
<tr>
<td>NAFU</td>
<td>National African Farmers Union</td>
</tr>
<tr>
<td>NCDA</td>
<td>Northern Cape Provincial Department of Agriculture</td>
</tr>
<tr>
<td>NDA</td>
<td>National Department of Agriculture</td>
</tr>
<tr>
<td>NEPAD</td>
<td>New Partnership for Africa’s Development</td>
</tr>
<tr>
<td>NEWSB</td>
<td>New Soil Water Balance</td>
</tr>
<tr>
<td>NIEP</td>
<td>Nkomazi Irrigation Expansion Programme</td>
</tr>
<tr>
<td>NWA</td>
<td>National Water Act (Act No. 36 of 1998)</td>
</tr>
<tr>
<td>NWRS</td>
<td>National Water Resource Strategy</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and maintenance</td>
</tr>
<tr>
<td>OHS</td>
<td>Open Hydroponics System</td>
</tr>
<tr>
<td>ORWUA</td>
<td>Orange Riet Water User Association</td>
</tr>
<tr>
<td>PCA</td>
<td>Plant Canopy Analyser</td>
</tr>
<tr>
<td>PAWC</td>
<td>Plant Availability Water Capacity</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PRWIN</td>
<td>Probe for Windows</td>
</tr>
<tr>
<td>PUTU</td>
<td>PUTU crop growth model</td>
</tr>
<tr>
<td>RAW</td>
<td>Readily Available Water</td>
</tr>
<tr>
<td>RDP</td>
<td>Rural Development Program</td>
</tr>
<tr>
<td>RESIS</td>
<td>Revitalising Program of Small-scale Irrigation Schemes</td>
</tr>
<tr>
<td>RF</td>
<td>Refill point</td>
</tr>
<tr>
<td>SAM</td>
<td>South African Malsters</td>
</tr>
<tr>
<td>SAPWAT</td>
<td>South African Procedure for estimating Irrigation Water Requirements</td>
</tr>
<tr>
<td>SASA</td>
<td>South African Sugar Association</td>
</tr>
<tr>
<td>SASRI</td>
<td>South African Sugar Research Institute</td>
</tr>
<tr>
<td>SIS</td>
<td>Scientific Irrigation Systems</td>
</tr>
<tr>
<td>SMS</td>
<td>Short Message Service</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>SSI</td>
<td>Small-scale Irrigation</td>
</tr>
<tr>
<td>SST</td>
<td>Small-scale Irrigation Technology</td>
</tr>
<tr>
<td>SWB</td>
<td>Soil Water Balance</td>
</tr>
<tr>
<td>T</td>
<td>Transpiration</td>
</tr>
<tr>
<td>TAM</td>
<td>Total Available Moisture</td>
</tr>
<tr>
<td>TDR</td>
<td>Time Domain Reflectometry</td>
</tr>
<tr>
<td>TRA</td>
<td>Theory of Reasoned Action</td>
</tr>
<tr>
<td>TOT</td>
<td>Transfer of Technology</td>
</tr>
<tr>
<td>TSB</td>
<td>Transvaal Suiker Beperk</td>
</tr>
<tr>
<td>UDL</td>
<td>Upper Drained Limit</td>
</tr>
<tr>
<td>USAID</td>
<td>United States of America Department of International Aid</td>
</tr>
<tr>
<td>VINET</td>
<td>Vineyard Evaporation for Irrigation System Design and Scheduling</td>
</tr>
<tr>
<td>WC/DM</td>
<td>Water conservation/Demand Management</td>
</tr>
<tr>
<td>WFD</td>
<td>Wetting Front Detector</td>
</tr>
<tr>
<td>WMP</td>
<td>Water Management Plan</td>
</tr>
<tr>
<td>WRC</td>
<td>Water Research Commission</td>
</tr>
<tr>
<td>WUA</td>
<td>Water User Association</td>
</tr>
<tr>
<td>WUE</td>
<td>Water Use Efficiency</td>
</tr>
<tr>
<td>WUI</td>
<td>Water Use Index</td>
</tr>
</tbody>
</table>