Urea-based moulding compounds for investment casting

By

H. K. RUTTO

A Thesis

submitted in partial fulfilment of the requirements

for the degree

Philosophiae Doctor in Chemical Engineering

UNIVERSITY OF PRETORIA

Supervisor:

Professor W. W. Focke

July 2006
ABSTRACT

Urea-based moulding compounds for investment casting

by

Hilary Kiplimo Rutto

Supervisor:

Prof. W. W. Focke

Department of Chemical Engineering

for the degree Philosophiae Doctor

Conventional urea-based moulding compounds for investment casting patterns are manufactured using a slow “cooking” process. Nowadays in industrial processes the use of a faster process is highly recommended to increase throughput levels. At the same time, for quality control purposes, the requirements of an investment caster must be met. This study is therefore focused on:

• Finding the appropriate conventional process and conditions to prepare urea-based investment casting moulding compounds.
• Optimising the composition variables to meet the mechanical, thermal, surface, flow and cost properties needed in investment casting.
• Characterising the moulding compounds to meet the requirements of an investment caster by comparing them with an industrial, “cooked” urea-based compound.

Polyvinyl alcohol (PVOH) and ethylene vinyl acetate (EVA) urea-based moulding compounds were prepared using a two-roll mill and a conventional extrusion processes respectively. It was possible to injection mould PVOH urea-based moulding compounds with a urea content of up to 90 wt % which had been compounded using a two-roll mill. Using the conventional extrusion
process, it was also possible to compound and injection mould EVA urea-based moulding compounds containing up to 70 wt % urea.

The effects on composition variables on the properties of the moulding compound were studied and compared to those of the existing “cooked” urea-based moulding compound (Benchmark). The mechanical properties were characterised using the three-point bending test and Charpy impact test. The thermal properties were determined using simultaneous differential thermal analysis and thermogravimetric analysis (SDTA/TGA) and differential scanning calorimeter (DSC). The thermo-mechanical and visco-elastic properties were determined using a dynamic mechanical analyser. A scanning electron microscope was used to study the surface texture of the mouldings.

The EVA urea-based moulding compounds showed two endothermic melting peaks and multiple exothermic crystallisation peaks in the DSC curves. The peak at ca. 55 - 66°C corresponds to the melting of the wax/EVA blend, while the large peak at 130 - 132°C corresponds to the melting of the urea. The DSC heating curve of the PVOH urea-based moulding compounds showed two endothermic peaks. The small peak corresponds to the melting of the wax, while the large peak corresponds to the melting of the urea/PVOH blend.

PVOH urea-based moulding compound had better mechanical properties than the industrial benchmark. The mechanical properties of the EVA urea-based compound were generally lower. The effect of the wax and polymer content on the mechanical properties was as follows:

- Increasing polymer content produced weaker but tougher moulding compounds.
- Increasing wax content improved the strength and stiffness but gave compounds that were less tough.
- Two-way Analysis of Variance (ANOVA) indicated significant polymer-wax interactions.

The urea content determined the stiffness (elastic modulus) of the compounds. PVOH mouldings had superior stiffness compared with the EVA and cooked urea-based mouldings. The Dynamic mechanical analysis (DMA) results confirmed the result obtained from the modulus of elasticity determination in the three-point bending test.
The impact strength increased with an increase in polymer content and reduced with an increase in wax content.

The linear thermal expansion coefficient decreased as the urea content was increased. Measured values (100 to 156x10^{-6} °C) were comparable to those of the benchmark.

The cooked urea-based moulding compound had the lowest melt viscosity at 110°C, as indicated by its melt flow index (MFI). Fluidity increased with the polymer content.

The thermo gravimetric analysis (TGA) results confirmed that both the PVOH and EVA urea-based moulding compounds decomposed readily and left less than 1 wt % ash after combustion.

From the SEM results apparent surface roughness appeared to increase with wax content. The EVA urea-based moulding compound had an irregular surface texture.

Based on the criteria of cost-effectiveness and environmental friendliness, the synthesis of PVOH urea-based patterns is preferable. The use of a conventional extrusion process to prepare PVOH urea-based patterns is recommended.

Keywords:
Urea, wax, ethylene vinyl acetate, polyvinyl alcohol, non-biodegradable pattern, biodegradable pattern, investment casting
ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. W. W. Focke, for his support and guidance throughout this research at the Institute of Applied Materials, University of Pretoria. I would also like to thank the following companies for supporting this project: Thrip and Boart Longyear, Inc. for their funding and materials. I would also like to express my appreciation to Xyriss Technology, Inc. for their technical advice and assistance through Mr. Joseph Sebekedi (Production Manager).

I am very grateful to the CSIR (Polymers Section) for technical help and for allowing me to use their equipment. I am greatly indebted to Mr. Ollie De Fabro (Institute of Applied Materials) for his technical advice and assistance.

I would also like to thank my parents, Shadrach and Eunice Cherogony. They have always unselfishly shown their love and encouragement.

Lastly and mostly important, I would like to thank my fiancé, Jane Cherono, for putting up with me through the entire process even though we were 6 000 kilometres apart.
TABLE OF CONTENTS

ABSTRACT.. II
ACKNOWLEDGMENTS.. V
LIST OF FIGURES... X
LIST OF TABLES... XV
LIST OF ABBREVIATIONS... XVII
LIST OF SYMBOLS.. XVIII

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 INVESTMENT CASTING ...4
 2.1 HISTORY OF INVESTMENT CASTING ...4
 2.2 INVESTMENT CASTING PROCESS ..4

CHAPTER 3 MOULDING COMPOUNDS FOR INVESTMENT CASTING..6
 3.1 WAX BASED MOULDING COMPOUNDS FOR INVESTMENT CASTING ..6
 3.3 OTHER MOULDING COMPOUNDS FOR INVESTMENT CASTING ...7
 3.3 PRINCIPLES OF COMPOUND FORMULATION ...8
 3.4 FILLERS ..9
 3.4 UREA ..11
 3.4.1 Applications of urea ..11
 3.4.2 Physical and thermal properties of urea ...12
 3.5 POLYMERS ...15
 3.5.1 Ethylene vinyl acetate ..16
 3.5.2 Polyvinyl alcohol ..18
 3.6 PLASTICISERS ..19
 3.6.1 Glycerol ..19
 3.6.2 Mechanism of plasticisation ...20
 3.6.3 Factors influencing plasticisation ...23
 3.7 LUBRICANTS ..25
 3.8 FILLED POLYMERS ...27
3.8.1 Filler-polymer interaction ...27
3.8.2 Factors affecting polymer-filler interaction ..28

CHAPTER 4 COMPOUNDING TECHNIQUES ... 30

4.1 BATCH MIXERS ... 33
4.2 CONTINUOUS COMPOUNDERS ... 34

CHAPTER 5 CHARACTERISATION TECHNIQUES .. 38

5.1 MECHANICAL PROPERTIES .. 38
 5.1.1 Three-point bending test .. 38
 5.1.2 Impact testing ... 39
5.2 DYNAMIC MECHANICAL ANALYSIS PROPERTIES .. 41
5.3 THERMOMECHANICAL ANALYSIS PROPERTIES .. 45
 5.3.1 Thermodilatometry ... 45
 5.3.2 Volumetric expansion ... 45
5.4 PHYSICAL PROPERTIES OF WAXES .. 45
 5.4.1 Melting/softening point ... 45
 5.4.2 Dimensional analysis .. 46
 5.4.3 Density .. 46
5.5 THERMAL PROPERTIES ... 47
 5.5.1 Differential scanning calorimeter (DSC) ... 47
 5.5.2 Thermogravimetric analysis ... 50
5.6 RHEOMETRY AND MELT FLOW INDEX .. 50
5.7 IMPLICATIONS FOR THE DEVELOPMENT OF A UREA MOULDING COMPOUND 56

CHAPTER 6 MATERIALS AND SAMPLE PREPARATION .. 59

6.1 MATERIALS .. 59
6.2 PVOH UREA-BASED MOULDING COMPOUNDS .. 60
 6.2.1 Experimental design .. 60
 6.2.2 Sample preparation ... 62
6.3 EVA UREA-BASED MOULDING COMPOUNDS ... 63
 6.3.1 Experimental design .. 63
 6.3.2 Sample preparation ... 64
 6.3.3 Determination of the urea-acetamide phase diagram .. 65
CHAPTER 7 CHARACTERISATION OF THE COMPOUNDS ... 66

7.1 MECHANICAL PROPERTIES ... 66
 7.1.1 Three-point bending test ... 66
 7.1.2 Impact strength ... 66
7.2 DYNAMIC MECHANICAL ANALYSIS ... 67
7.3 THERMOMECHANICAL ANALYSIS .. 67
7.4 THERMAL PROPERTIES .. 67
 7.4.1 Differential thermal analysis and thermogravimetric analysis 67
 7.4.2 Differential scanning calorimetry .. 67
7.5 MELT FLOW INDEX .. 68
7.6 SCANNING ELECTRON MICROSCOPY ... 68
7.7 DENSITY .. 68

CHAPTER 8 RESULTS AND DISCUSSION.. 69

8.1 PROCESS RESULTS .. 69
 8.1.1 Oven ... 69
 8.1.2 Single-screw extruder ... 69
 8.1.3 Two-roll mill ... 70
 8.1.5 Injection-moulding ... 70
8.2 THERMAL PROPERTIES .. 70
 8.2.1 Differential scanning calorimetry .. 70
 8.2.2 Vicat softening temperature ... 82
8.3 MECHANICAL PROPERTIES ... 83
 8.3.1 Charpy impact test .. 83
 8.3.2 Three-point bending test .. 92
8.4 DYNAMIC MECHANICAL ANALYSIS ... 122
8.5 THERMAL EXPANSION PROPERTIES ... 128
8.6 MELT FLOW INDEX ... 130
8.7 SCANNING ELECTRON MICROSCOPY .. 133
8.8 DENSITY .. 135

CHAPTER 9 CONCLUSIONS AND RECOMMENDATIONS ... 137

REFERENCES .. 142
APPENDICES .. 149

APPENDIX A: PHYSICAL AND CHEMICAL PROPERTIES OF MATERIAL USED 149
APPENDIX B: SPECIFICATIONS OF PROCESSING AND CHARACTERISATION EQUIPMENT 152
APPENDIX C: PROCESSING CONDITIONS FOR COMPOUNDING AND INJECTION MOULDING 154
APPENDIX D: EXPERIMENTAL PROCEDURE FOR PRODUCING COOKED UREA-BASED MOULDING COMPOUNDS. ... 156
APPENDIX E: PROPERTY VALUES OF COOKED UREA MOULDING COMPOUND (BENCHMARK) 157
APPENDIX F: MECHANICAL PROPERTY DATA ON UREA MOULDING COMPOUNDS 159
APPENDIX G: MATLAB SCRIPT FOR PERFORMING TWO-WAY ANOVA .. 164
APPENDIX H: EXPERIMENTAL PROCEDURE FOR MEASURING DENSITY USING ARCHIMEDES' PRINCIPLE... 170
LIST OF FIGURES

Figure 1: Investment casting process (Biam, 2004) 5
Figure 2: Molar volume of urea as a function of temperature (adapted from 13
Figure 3: Phase diagram for the urea (1) – acetamide (2) system 14
Figure 4: Polymer volume versus temperature (Sperling, 1992) 16
Figure 5: Cloud and freezing point for 10% EVA, with different VA 18
Figure 6: Effect of glycerol on the DSC melting peak temperature of partially hydrolysed PVOH (Jang et al., 2003) 24
Figure 7: Schematic illustration of the effect of plasticiser addition on the Young's modulus of a polymer 24
Figure 8: Contact angle when a liquid drops onto a solid surface (Zisman, 1963) 28
Figure 9: Two types of mixing mechanism: (a) distributive mixing, and 30
Figure 10: Mixing mechanism: molecular interdiffusion 31
Figure 11: Schematic representation of the phase dimension of an immiscible fluid 32
Figure 12: Typical types of twin-screw extruder (Shenoy, 1999) 35
Figure 13: Three-point bending test set-up (ASTM D790, 1983) 38
Figure 14: Charpy and impact test set up (Robert, 1985) 40
Figure 15: Perfectly elastic solid with no phase lag (Menard, 2003) 42
Figure 16: Purely viscous modulus at a phase angle of exactly 90° (Menard, 2003) 42
Figure 17: Viscoelastic materials (Menard, 2003) 43
Figure 18: Heat flow against temperature showing glass transition 48
Figure 19: Heat flow against temperature showing crystallisation temperature 48
Figure 20: Heat flow against temperature showing melting temperature 49
Figure 21: Shear stress vs. rate of shear strain of fluids 50
Figure 22: The three types of rheometer geometries: (a) concentric cylinder, 53
Figure 23: Cross-section of a cone-and-plate rheometer 53
Figure 24: Melt flow indexer 55
Figure 25: The ternary phase diagram showing compositions explored 61
Figure 26: Outline of the preparation procedure used to produce the PVOH 63
Figure 27: Outline of the preparation procedure used to produce the EVA urea 65
Figure 28: DSC heating curve of pure samples 71
Figure 29: DSC cooling curve of pure samples 72
Figure 30: Effect of increasing the polymer content on the DSC heating curves of the PVOH moulding compounds at plasticisation concentrations of (a) 80 phr and 40 phr

Figure 31: Effect of increasing the wax content on the DSC heating curves of the PVOH moulding compounds at plasticisation concentrations of (a) 80 phr and (b) 40 phr

Figure 32: Effect of increasing the polymer content on the DSC cooling curves of the PVOH moulding compounds at plasticisation concentrations of (a) 80 phr and (b) 40 phr

Figure 33: Effect of increasing the wax content on the DSC cooling curves of PVOH moulding compounds at plasticisation concentrations of (a) 80 phr and (b) 40 phr

Figure 34: Effect of increasing the polymer content on the DSC heating curves of the EVA moulding compounds

Figure 35: Effect of increasing the wax content on the DSC heating curves of the EVA moulding compounds

Figure 36: Effect of increasing the polymer content on the DSC cooling curves of the EVA moulding compounds

Figure 37: Effect of increasing the wax content on the DSC cooling curves of the EVA moulding compounds

Figure 38: Softening temperature of the PVOH (80 phr glycerol) moulding compounds

Figure 39: Comparison between predicted and experimental Charpy impact strength for quadratic model fit of the urea-wax-PVOH (80 phr glycerol) compounds

Figure 40: Comparison between predicted and experimental Charpy impact strength for quadratic model fit of the urea-wax-PVOH (40 phr glycerol) compounds

Figure 41: Comparison between predicted and experimental Charpy impact strength for linear model fit of the urea-EVA-wax compounds

Figure 42: Charpy impact strength of the urea-wax-PVOH (80 phr glycerol) compounds

Figure 43: Charpy impact strength of the urea-wax-PVOH (40 phr glycerol) compounds
Figure 44: Charpy impact strength of the urea-EVA-wax compounds

Figure 45: Load deflection curve showing the effect of increasing the PVOH content on the mechanical properties of the urea-PVOH-based compounds

Figure 46: Load deflection curve showing the effect of increasing the wax content on the mechanical properties of the urea-PVOH-based compounds

Figure 47: Effect of varying EVA content on the load deflection curve of the EVA moulding compounds

Figure 48: Effect of varying wax content on the load deflection curve of the EVA moulding compounds

Figure 49: Comparison between predicted and experimental flexural stress data for linear model fit of the urea-wax-PVOH (80 phr glycerol) compound

Figure 50: Comparison between predicted and experimental flexural stress for a linear model fit of UP4 data

Figure 51: Comparison between predicted and experimental flexural stress for linear model fit of urea EVA-wax data

Figure 52: Flexural stress of the urea-wax-PVOH (80 phr glycerol) compound

Figure 53: Flexural stress of the urea-wax-PVOH (40 phr glycerol) compound

Figure 54: Flexural stress of the urea-EVA-wax compound

Figure 55: Comparison between predicted and experimental flexural strain for linear model fit of the urea-wax-PVOH (80 phr glycerol) compound data

Figure 56: Comparison between predicted and experimental flexural strain for linear model fit of the urea-wax-PVOH (40 phr glycerol) compound data

Figure 57: Comparison between predicted and experimental flexural strain for linear model fit of the urea-EVA-wax compound data

Figure 58: Flexural strain of the urea-wax-PVOH (80 phr glycerol) compound

Figure 59: Flexural strain of the urea-wax-PVOH (40 phr glycerol) compound

Figure 60: Flexural strain of the urea-EVA-wax compound

Figure 61: Comparison between predicted and experimental fracture energy for quadratic model fit of the urea-wax-PVOH (80 phr glycerol) compound data

Figure 62: Comparison between predicted and experimental fracture energy for quadratic model fit of UP4 data
Figure 63: Comparison between predicted and experimental fracture energy for linear model fit of urea-EVA-wax compound data 113

Figure 64: Fracture energy of the urea-wax-PVOH (80 phr glycerol) compounds 114

Figure 65: Fracture energy of the urea-wax-PVOH (40 phr glycerol) compounds 114

Figure 66: Fracture energy of the urea-EVA-wax compounds 115

Figure 67: Comparison between the predicted and experimental modulus of elasticity for quadratic model fit of urea-wax-PVOH (80 phr glycerol) compounds 118

Figure 68: Comparison between predicted and experimental modulus of elasticity for quadratic model fit of urea-wax-PVOH (40 phr glycerol) compounds 118

Figure 69: Comparison between predicted and experimental modulus of elasticity for quadratic model fit of urea EVA-wax compounds 119

Figure 70: Modulus of elasticity of the urea-wax-PVOH (80 phr glycerol) compounds 120

Figure 71: Modulus of elasticity of the urea-wax-PVOH (40 phr glycerol) compounds 121

Figure 72: Modulus of elasticity of the urea-EVA-wax compounds 121

Figure 73: Effect of increasing the polymer content on the storage modulus versus the temperature of the urea-PVOH moulding compounds 123

Figure 74: Effect of increasing the wax content on the storage modulus versus the temperature of the urea-PVOH moulding compounds 123

Figure 75: Effect of increasing the polymer content on the damping factor versus the temperature of the urea-PVOH moulding compounds 124

Figure 76: Effect of increasing the wax content on the damping factor versus the temperature of the urea-PVOH moulding compounds 124

Figure 77: Effect of increasing the polymer content on the storage modulus versus the temperature of the urea-EVA moulding compounds 125

Figure 78: Effect of increasing the wax content on the storage modulus versus the temperature of the urea-EVA moulding compounds 125

Figure 79: Effect of increasing the polymer content on the damping factor versus the temperature of the urea-EVA moulding compounds 126

Figure 80: Effect of increasing the wax content on the damping factor versus the temperature of the urea-EVA moulding compounds 126

Figure 81: Thermal expansion coefficients measured at various temperatures for the PVOH (80 phr glycerol) compounds 128
Figure 82: Thermal expansion coefficients measured in the temperature range 30 - 40 °C for the PVOH (40 phr glycerol) compounds 129

Figure 83: Thermal expansion coefficients measured in the temperature range 30 - 40 °C for the EVA moulding compounds 129

Figure 84: MFI of the urea-wax-PVOH (80 phr glycerol) compounds 131

Figure 85: MFI of the urea-wax-PVOH (40 phr glycerol) compounds 131

Figure 86: MFI of the urea-EVA-wax moulding compounds 132

Figure 87: SEM photographs of the surfaces of specimens of the PVOH urea-based moulding compounds: (a) UP8 90:5:5, (b) UP8 85:5:10, (c) UP8 80:5:15 and (d) cooked urea (benchmark) 133

Figure 88: SEM photographs of the surfaces of specimens of the EVA-urea-based moulding compounds: (a) UE 70:20:10 and (b) UE 80:10:10 134
LIST OF TABLES

Table 1: Formulation of an investment casting compounding containing polyethylene terephthalate (PET) as filler (Guinn, 2002) 8
Table 2: Useful properties of fillers in polymers (Gächter & Müller, 1984) 10
Table 3: Crucial properties of urea (Anon, 1993) 11
Table 4: Physical properties of polyvinyl alcohol (Finch, 1992) 19
Table 5: Industrial beneficial properties of glycerol (George, 2004) 20
Table 6: Chemical, economic and physical properties of hydrocarbon wax 26
Table 7: Applications and functions of waxes (Horton, 1988) 27
Table 8: Calculation of material properties by DMA (Menard, 2003) 44
Table 9: Virgin polymers and their suppliers 59
Table 10: The compositions explored to make the PVOH urea-based compounds 61
Table 11: Compositions explored for the synthesis of EVA urea-based compounds 64
Table 12: Parameters obtained from DSC measurements for investment casting patterns on the large-peak and pure samples 78
Table 13: Properties obtained from differential thermal analysis of urea peak and EVA/wax blends 81
Table 14: Two-way ANOVA for Charpy impact strength for the urea-PVOH-wax compound containing 80 phr glycerol 86
Table 15: Two-way ANOVA for Charpy impact strength for the urea-PVOH-wax compound containing 40 phr glycerol 86
Table 16: Two-way ANOVA for Charpy impact strength for the urea-EVA-wax compounds 87
Table 17: Maximum Load and deflection point of PVOH moulding compounds 96
Table 18: Maximum Load and deflection point of EVA moulding compounds 96
Table 19: Two-way ANOVA for flexural stress data for the urea-wax-PVOH compound containing 80 phr glycerol 98
Table 20: Two-way ANOVA for flexural stress data for the urea-wax-PVOH compound containing 40 phr glycerol 98
Table 21: Two-way ANOVA for flexural strain of the urea-PVOH-wax compound containing 80 phr glycerol 104
Table 23: Two-way ANOVA for flexural strain of the urea-PVOH-wax compound containing 40 phr glycerol 104
Table 24: Two-way ANOVA for flexural strain of the urea-EVA-wax compounds 104
Table 25: Two-way ANOVA for fracture energy of the urea-PVOH-wax compounds containing 80 phr glycerol 110
Table 26: Two-way ANOVA for fracture energy of the urea-PVOH-wax compounds containing 40 phr glycerol 110
Table 27: Two-way ANOVA for fracture energy urea-EVA-wax compounds 111
Table 28: Two-way ANOVA for the modulus of elasticity of the urea-PVOH-wax compounds containing 80 phr glycerol 117
Table 29: Two-way ANOVA for the modulus of elasticity of the urea-PVOH-wax compounds containing 40 phr glycerol 117
Table 30: Two-way ANOVA for the modulus of elasticity of the urea-EVA-wax compounds 117
Table 31: Theoretical and measured densities of the EVA-urea-based compounds 135
Table 32: Theoretical and measured densities of the PVOH urea-based compounds 135
Table 33: Density of the raw materials 135
Table 34: Properties of the cooked urea moulding compound (benchmark) compared with those of the best PVOH and EVA moulding compounds 140
LIST OF ABBREVIATIONS

ANOVA = Analysis of variance
DMA = dynamic mechanical analysis
DMF = dimethyl formamide
DSC = differential scanning calorimeter
EVA = ethylene vinyl acetate
MFI = melt flow index
PEG = polyethylene glycol
PET = polyethylene terephthalate
PVC = polyvinyl chloride
PVOH = polyvinyl alcohol
phr = parts per hundred of resin
SEM = scanning electron microscope
SDTA = Scanning differential thermal analysis
TGA = thermogravimetric analysis
TMA = thermomechanical analysis
UE = EVA urea-based moulding compound
UF = resin
UP8 = PVOH urea-based moulding compound of plasticisation degree 80
UP4 = PVOH urea-based moulding compound of plasticisation degree 40
VA = vinyl acetate
X: Y: Z = proportion of urea: polymer: wax
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>weight of the sample in air (g)</td>
</tr>
<tr>
<td>B</td>
<td>weight of the sample immersed in water (g)</td>
</tr>
<tr>
<td>B</td>
<td>width of beam tested (mm)</td>
</tr>
<tr>
<td>c</td>
<td>volumetric fraction of polymer</td>
</tr>
<tr>
<td>D</td>
<td>maximum deflection of the centre of the beam</td>
</tr>
<tr>
<td>D</td>
<td>depth of beam tested (mm)</td>
</tr>
<tr>
<td>E</td>
<td>modulus</td>
</tr>
<tr>
<td>E_B</td>
<td>Young’s modulus of bending</td>
</tr>
<tr>
<td>ε</td>
<td>strain at time t</td>
</tr>
<tr>
<td>ε_0</td>
<td>strain at a maximum strain</td>
</tr>
<tr>
<td>F_Z</td>
<td>force in the Z direction</td>
</tr>
<tr>
<td>H</td>
<td>height</td>
</tr>
<tr>
<td>L</td>
<td>liquid phase</td>
</tr>
<tr>
<td>L_S</td>
<td>support span</td>
</tr>
<tr>
<td>L_1</td>
<td>length at T_1</td>
</tr>
<tr>
<td>L_2</td>
<td>length at T_2</td>
</tr>
<tr>
<td>M</td>
<td>measured torque</td>
</tr>
<tr>
<td>M_D</td>
<td>maximum deflection</td>
</tr>
<tr>
<td>M_L</td>
<td>maximum load</td>
</tr>
<tr>
<td>n</td>
<td>number of components in the blend</td>
</tr>
<tr>
<td>ρ_s</td>
<td>density of the sample (g/cm3)</td>
</tr>
<tr>
<td>ρ_L</td>
<td>density of liquid (g/cm3)</td>
</tr>
<tr>
<td>ρ_C</td>
<td>density of the moulding compound</td>
</tr>
<tr>
<td>ρ_i</td>
<td>density of the component</td>
</tr>
<tr>
<td>w_i</td>
<td>weight fraction of component</td>
</tr>
<tr>
<td>r</td>
<td>radii of the particles</td>
</tr>
<tr>
<td>R</td>
<td>cone radius</td>
</tr>
<tr>
<td>S</td>
<td>solid phase</td>
</tr>
<tr>
<td>T</td>
<td>time</td>
</tr>
<tr>
<td>ΔT</td>
<td>change in temperature</td>
</tr>
</tbody>
</table>
\(m \) = steepest load deflection curve slope
\(T_{om} \) = onset melting temperature
\(T_c \) = crystallisation temperature
\(T_{oc} \) = onset crystallisation temperature
\(T_g \) = glass transition temperature
\(T_{g1} \) = glass transition temperature of the polymer
\(T_{g2} \) = glass transition temperature of the plasticizer
\(U \) = velocity
\(V \) = vapour phase
\(V_1 \) = free volume
\(V_o \) = occupied volume
\(W_D \) = work done
\(w_1 \) = weight fraction of the polymer
\(w_2 \) = weight fraction of the plasticizer
\(\omega \) = frequency of oscillation
\(w_i \) = weight fraction of component
\(\gamma \) = surface tension
\(\alpha \) = coefficient of linear thermal expansion
\(\Omega \) = rotational velocity
\(\Phi \) = angular displacement; \(\beta = \theta - \frac{x}{2} \) (typically 2°-8°)
\(\theta \) = cone angle
\(\sigma \) = stress at time t
\(\sigma_0 \) = maximum stress
\(\eta \) = viscosity
\(\eta_e \) = elongation flow
\(\eta_s \) = shear flow
\(\dot{\gamma} \) = shear rate