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SUMMARY

The protein folding problem is examined. Specifically, the problem of predicting pro-
tein secondary structure from the amino acid sequence is investigated. A literature
study is presented into the protein folding process and the different techniques that
currently exist to predict protein secondary structures. These techniques include the
use of expert rules, statistics, information theory and various computational intelli-
gence techniques, such as neural networks, nearest neighbour methods, Hidden Markov

Models and Support Vector Machines.

A pattern recognition technique based on statistical analysis is developed to predict
protein secondary structure from the amino acid sequence. The technique can be
applied to any problem where an input pattern is associated with an output pattern
and each element in both the input and output patterns can take its value from a
set with finite cardinality. The technique is applied to discover the role that small

sequences of amino acids play in the formation of protein secondary structures.

By applying the technique, a performance score of Qg = 59.2% is achieved, with a cor-
responding Q3 score of 69.7%. This compares well with state of the art techniques, such

as OSS-HMM and PSIPRED, which achieve Q3 scores of 67.9% and 66.8% respectively,

when predictions on single sequences are made.
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OPSOMMING

Die probleem van hoe proteine vou word ondersoek. Daar word in besonder gekyk
na hoe om die sekondére struktuur van 'n proteien te voorspel, gegee die aminosuur
sekwensie van die proteien. 'n Literatuurstudie word voorgelé oor die proses van
proteienvouing en die tegnieke wat bestaan om proteien sekondére strukture mee te
voorspel. Tegnieke soos heuristieke, statistiek, inligtingsteorie en kunsmatige intelligen-
sie word gebruik. Die kunsmatige intelligensie tegnieke sluit in neurale netwerke, “near-

est neighbour” metodes, “Hidden Markov Models” en “Support Vector Machines.”

'n Patroonherkenningstegniek word onwikkel om proteien sekondére struktuur te voor-
spel, gegee die aminosuur sekwensie van die proteien. Die tegniek is geskool op sta-
tistiese analise en is van toepassing op enige probleem waar 'n insetpatroon assosieer
word met 'n uitsetpatroon en elke element in beide die inset- en uitsetpatroon uit 'n
eindige versameling gekies word. Die tegniek word aangewend om die rol wat klein

aminosuur sekwensies speel in die formasie van proteien sekondére strukture te bepaal.

'n Doeltreffendheidsvlak van Qg = 59.2% word behaal deur die tegniek uit te voer. Die
ooreenskomstige Q3 waarde is 69.7%. Dit vergelyk goed met van die beste bestaande
tegnieke, soos OSS-HMM en PSIPRED wat onderskeidelik Q3 waardes van 67.9% en

66.8% behaal op die voorspelling van enkel sekwensies.
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Chapter 1

INTRODUCTION

Life is one of the greatest mysteries in the universe. It seems to possess a beauty and

complexity that can only be appreciated by living things themselves.

Through the centuries, man has tried to understand this mystery, a mystery that
would explain his own origin. He has asked inquisitive questions, questions that life
itself has weaved into the very fabric of his existence. In his quest for understanding,
he has turned to religion, with the hope of understanding the greatness of life. He has
philosophized greatly about the meaning of life, trying to make sense of it all. And
now, through the scientific and engineering tools available to him, he has made great
discoveries about the intricate details of life, which fuels the hope that many more

discoveries will still be made.

With the recent completion of the human genome project, man is one step closer
in understanding his origin. For the first time in human history, the blueprint of the
human race is available - it is now up to scientists and engineers to analyse and interpret

its meaning.

As a consequence of the human genome project, we now know of the existence of a
large number of proteins as well as the sequence of amino acids from which they are
composed. What remains unknown is the function of the majority of these proteins.

The function of a protein is mostly determined by its three dimensional structure.
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Chapter 1 Introduction

The amazing thing is that given a specific sequence of amino acids, there is a seemingly
infinite number of three dimensional structures that can be created; however, a protein
will almost always fold into the same three dimensional structure! Life on earth has

the ability to manufacture proteins that are always the same.

The central question addressed in this dissertation, is one that investigates the way
in which amino acids contribute to protein structure, which in turn determines the
function of a protein. By understanding these assembly units of life on earth, we will
gain insight into evolution, the functioning of the body and perhaps most importantly,

we will be in a better position to develop treatments and cures for certain diseases.

I invite you now on a scientific journey that aims to discover the exciting principles
that underlies the foundations of life. It is only once we understand how life functions,
that we will be in a position to touch on the greatest mystery of all - the reason there

is life...

1.1 BACKGROUND

Proteins are organic macromolecules that are essential for the structure, function and
regulation of the body’s cells, tissues and organs. They are composed of a linear se-
quence of amino acids linked together by peptide bonds to form a polypeptide. This
sequence of amino acids, without regard to spatial arrangement, is known as the pri-

mary structure of the protein.

There are 20 different types of commonly occurring amino acids in proteins. Each
amino acid is composed of a central carbon atom (known as the C, atom), attached
to a hydrogen atom (H), an amino group (NHs), a carboxyl group (COOH) and a side
chain, also known as a residue (R). This residue can range from a single hydrogen atom
in the case of the amino acid glycine, to a compound of 19 atoms in the case of the

amino acid arginine. It is this residue that gives each amino acid its unique properties.

Two amino acids can link together via a peptide bond, a reaction in which the amino
group of one amino acid reacts with the carboxyl group of another amino acid. A

water molecule is released as a by-product of the reaction. Of course, multiple amino

Department of Electrical, Electronic and Computer Engineering 2
University of Pretoria
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Chapter 1 Introduction

acids can link together in the same way to form a polypeptide. This polypeptide has
a repeating backbone structure of N-C,-C atoms (known as the main-chain atoms) all

linked together by covalent bonds.

The local spatial arrangement of the main-chain atoms of a segment of a polypeptide
chain is known as its secondary structure. This definition disregards the conformation
of side chains or the relationship with other segments. Regular patterns have been
observed in this spatial arrangement. For instance, alpha helices and beta sheets are
secondary structure patterns frequently observed in a polypeptide chain. Within these
structures, hydrogen bonds between the amino acids at regular intervals within the

chain add to the stability of the structure.

The tertiary (or three-dimensional) structure of a protein, is the arrangement of all
its atoms in space. The amazing thing about proteins is that for a specific primary
structure, there is almost always a single associated tertiary structure in its native state.
Research has shown that there is a strong correlation between the tertiary structure of
a protein and its function. For instance, hemoglobin, the protein that carries oxygen
in the body, has a specific globular shape that is able to trap oxygen. Another protein,
collagen, has a rod-like form and is commonly found in cells. This rod-like feature
gives form and stability to cells. It is reasonable to assume that proteins with similar

structures are likely to have similar functions.

With the completion of the human genome project, it is now known that there are
about 20000 to 25000 different human proteins (one study suggests that 19599 protein-
coding genes have been identified and another 2188 DNA segments are predicted to
be protein-coding genes [25]). For each of these proteins, the primary structure is
known. However, the tertiary structure and function of the majority of these proteins

are currently unknown.

Scientists are faced with the challenge to predict the tertiary structure of a protein in
its functional environment from its known primary structure in order to determine the
possible function of the protein. This is known as the “protein-folding problem” and

is an active research field.

Current research focuses on predicting the secondary structures that form from se-

Department of Electrical, Electronic and Computer Engineering 3
University of Pretoria
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Chapter 1 Introduction

quences of amino acids and how these secondary structures combine to form the ter-
tiary structure of a protein. Different approaches have been applied to the problem
of protein secondary structure prediction. These approaches include use of statistics
and expert rules, information theory and computational intelligence techniques. The
bulk of the methods are in the domain of computational intelligence. These tech-
niques include neural networks, nearest neighbour methods, Hidden Markov Models

and Support Vector Machines.

1.2 MOTIVATION

The protein folding problem is one of the central unanswered questions in biology. It

has been studied by many, yet the exact mechanisms involved remain elusive.

Apart from the intellectual quest, an understanding of the protein folding process is
of significant practical importance. Diseases such as cystic fibrosis, Bovine spongiform
encephalopathy (mad cow disease) and its human counterpart (Creutzfeldt-Jacob dis-
ease) and certain strains of Alzheimer’s disease are now known to be caused by proteins
that fold incorrectly. If the process is better understood, it may become possible to
manufacture drugs to treat these diseases. Insights into the process will also lead to
a valuable understanding of evolution. The folding process provides insight into the
way different proteins are related, making it possible to trace the evolutionary paths of
proteins and enabling a taxonomy of organisms to be created. Other areas, such as that
of food manufacturing and preservation will also benefit from a better understanding

of the protein folding process.

One of the key areas of research into protein folding is predicting protein secondary
structure from the amino acid sequence. Secondary structure prediction techniques
have improved considerably during the last 20 to 30 years. The reason for this im-
provement is twofold: the employment of advanced computational intelligence tech-
niques and the availability of larger databases of solved protein structures (that serve

as training examples to the computational intelligence techniques).

Depending on one’s viewpoint, it may be argued that the availability of advanced

techniques and a large amount of data does not contribute to the understanding of the

Department of Electrical, Electronic and Computer Engineering 4
University of Pretoria
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Chapter 1 Introduction

protein folding process per se. The better prediction accuracy is not an indication of
a better understanding of the protein folding process, but an indication of the ability
of computational intelligence techniques to capture the mapping between the primary
and secondary structure of a protein. What would contribute to the understanding of
the protein folding process, is if the fundamental rules or mapping could be extracted

from the computational intelligence techniques.

Others argue that the protein folding processes are well understood. Indeed, detailed
simulations of the underlying physics and chemistry exist (refer to Section 2.2.3/ on
protein folding simulation). Although the simulations take an immense amount of
time, they very accurately simulate the actual folding process. However, these low-
level descriptions provide little by way of intuitive understanding, just as a quantum-
mechanical description of doped silicon is not suitable to give insight into the operation

of, for example, a microprocessor.

It is the author’s viewpoint that research and scientific discovery is after all a human
activity. It is not only the end destination that matters, but also the journey taken
to get there. Although the final (simulated) protein structure is important, it is in
human nature to want to understand the fundamental principles involved. Such an

understanding is crucial for both synthesis and high-level analysis.

A description of such understandable principles is to some extent lacking in the ad-
vanced computational intelligence techniques. The aim of the dissertation is to make

a contribution to this understanding.

1.3 OBJECTIVES

This dissertation aims to be a thorough investigation into the contributions of single

amino acids or small sequences of amino acids to protein secondary structure.

Specific research questions that will be addressed include:
- Do certain amino acid sequences have a preference to form specific secondary struc-
tures?

- Could certain amino acid sequences serve as substitutes for other amino acid se-

Department of Electrical, Electronic and Computer Engineering 5
University of Pretoria
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Chapter 1 Introduction

quences (i.e. could one sequence be substituted with another whilst maintaining the
same secondary structure)?

- What properties of amino acid sequences contribute to the formation of secondary
structures and how should these properties be used in developing a method for sec-

ondary structure prediction?

Methods will be developed to answer these questions and will be implemented as com-

puter programs capable of predicting protein secondary structure from their sequence.

1.4 CONTRIBUTION

The dissertation contributes through the development of a new protein secondary struc-
ture predication algorithm. The predication algorithm achieves a performance value
of Qs = 59.2%, with corresponding @3 value of 69.7% (these measures are defined in
Section 2.4.1). This is comparable to performance values achieved using current state
of the art techniques, such as OSS-HMM and PSIPRED which achieve ()3 scores of
67.9% and 66.8% respectively, when predictions on single sequences are made. Through
additional work, the algorithm can be further developed and it is believed that even

better performance can be achieved.

The algorithm in itself can also be applied to a broader range of applications. In
particular, pattern recognition problems where there exist a mapping between input
sequences and output sequences, where each element in the input and output sequences

are from a finite set, can benefit from this algorithm.

The algorithm is applied, together with other tests, to discover the role that small
sequences of amino acids play in the formation of protein secondary structures. A

number of key findings are made and are described in Section 6.1.

Department of Electrical, Electronic and Computer Engineering 6
University of Pretoria
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Chapter 1 Introduction

1.5 OVERVIEW

Chapter 2 gives comprehensive background information on proteins, amino acids, pep-
tide bonds, etc. An understanding of the concepts and terminology introduced in this
section is fundamental in understanding the rest of the dissertation. Readers new to
the field of bioinformatics are encouraged to read through this chapter, whilst those

more familiar with the field may choose to browse through it.

Chapter 3 describes the pattern recognition algorithm that was developed to predict
protein secondary structure from protein primary structure. It should be noted that the
pattern recognition algorithm can be applied to a broader range of problems, namely
those problems which are structured in such a way that the input and output sequences
are defined over two possibly different alphabets. The chapter is supplemented with a

detailed example.

Chapter 4 describes the pattern recognition algorithm mathematically. It also for-

malises the way in which some of the other results were obtained.

The results achieved with the algorithm as well as the results of a number of other tests
are presented in chapter 5. The chapter is broken down into a number of experiments,
each of which describe the objective of the experiment, the setup and execution, the

results obtained and relevant conclusions reached.

The dissertation is concluded in chapter 6.

The proteins that the research is based on are listed in appendix A.

Department of Electrical, Electronic and Computer Engineering 7
University of Pretoria
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Chapter 2

BACKGROUND

This chapter provides background information on proteins, their structure and the
protein folding process. It discusses ways of classifying protein secondary structure
and describes the methods that exist to predict secondary structure. Comprehension

of these concepts is necessary for understanding the rest of the dissertation.

Section 2.1/ gives an overview of proteins and how they are constructed from amino
acids through peptide bonds. It also describes the genetic code and how proteins are
synthesized. In Section 2.2 the protein folding process is discussed. Of particular
interest are the regular local structures that are formed during the folding process,
called secondary structures. The section also discusses different theories that exist
to describe the protein folding process. Section 2.3 describes the formation of protein
secondary structure and introduces the DSSP code for classifying secondary structures.
The chapter is concluded in Section 2.4 which introduces the methods currently in use
to predict secondary structures as well as the measures of performance that are used

to quantify their success.
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Chapter 2 Background

2.1 PROTEINS

2.1.1 Brief Historical Overview

Proteins are organic macromolecules essential for the structure, function and regulation
of the body’s cells, tissues and organs. They are composed of a linear sequence of amino
acids linked together by peptide bonds to form a polypeptide. Although these facts are

now widely known, it is useful to understand how these concepts came into existence.

Up until the early nineteen hundreds, scientists described animal and vegetable ma-
terials in terms of the general properties they possessed. By 1815, it was known that
animal and plant materials are composed of the elements carbon (C), hydrogen (H),
oxygen (O) and nitrogen (N). Methods based on the oxidation of materials were devel-
oped by Jons Jakob Berzelius in Stockholm and Joseph Louis Gay-Lussac in Paris to

determine the relative quantities of C, H, O and N in organic materials.

In 1820, Henri Braconnot was studying the effect of sulfuric acid on animal substances.
When applied to gelatin, it would yield what he called “gelatin sugar” which was later
renamed as glycine. When applied to muscle fibres and wool, it would yield a white
substance he named leucine. Glycine and leucine were the first two amino acids to be
discovered. At the time, it was not known that these were the essential building blocks
of proteins. The term “amino acid” was only proposed that same year by Berzelius
for nitrogen-containing organic acids. The discovery of the other amino acids which
naturally occur in proteins (proteinogenic amino acids) continued from 1849 when

tyrosine was discovered, to 1936 with the discovery of threonine.

In a paper [1] by Gerardus Johannes Mulder in 1839, he described the chemical compo-
sition of some substances, and was the first to use the term “protein” to describe these
substances. He states that this term was a suggestion by Berzelius from a letter dated
1838. In the period that followed, more amino acids were discovered and proteins were
characterized in terms of the amino acids they are composed of. As early as 1872, Karl
Ritthausen (who also discovered glutamic acid and aspartic acid), published a book
[2] which analyzed the three main types of protein contained in cereals, legumes and

oilseeds in terms of amino acid composition.
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Chapter 2 Background

The next great advance came on 22 September 1902, at the 74" Annual Meeting of the
Cesellschaft der Deutschen Naturforschen und Arzte (Society of German Naturalists
and Physicians). At the meeting, Franz Hofmeister [3] and Hermann Emil Fischer [4]
independently suggested that amino acids link with each other via peptide bonds to
form a polypeptide. Fischer won the 1902 Nobel Prize in Chemistry for his work on

sugar and purine synthesis.

The polypeptide theory became widely accepted and the question now naturally arose
as to which amino acids existed and how a protein could be characterized in terms
of amino acids. In 1941, Hubert Bradford Vickery published a paper [5] in which he
grouped the amino acids into four groups. One of these groups contained 18 amino

acids, 17 of which were proteinogenic.

In 1942, Archer John Porter Martin and Richard Laurence Millington Synge invented
partition chromatography [6] (for which they received the Nobel Prize in Chemistry in
1952). This brought about a revolution in the task of decomposition of proteins into
amino acids. It enabled Synge to draw up a list of amino acids [7]. Later column-
chromatographic methods were invented by Moore and Stein (Nobel Prize for Chem-
istry, 1972), which made the complete automation of decomposition of proteins into

amino acids possible.

The challenge now turned to determining the amino acid sequence (not just compo-
sition) of a protein. Frederick Sanger managed to identify the N-terminal of proteins
by the formation of dinitrophenyl derivatives and succeeded to identify the sequence
of amino acids and disulfide bonds in insulin [8]. This breakthrough earned him the
1958 Nobel Prize for Chemistry and was significant in that it proved the polypeptide

theory of Hofmeister and Fischer.

The next big breakthrough came in the determination of the three dimensional struc-
ture of proteins through the X-ray study of protein crystals. In 1959 Max Ferdinand
Perutz managed to determine the molecular structure of hemoglobin [9] and John Cow-
dery Kendrew managed to determine the structure of myoglobin [10]. They received
the 1962 Nobel Prize for their work.

During the same decade, in the period from 1951 to 1953, James Dewey Watson and
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Francis Harry Compton Crick discovered the double-helical structure of DNA [11]
(which earned them the Nobel Prize for Physiology or Medicine in 1962, shared with
Maurice Wilkins). The publication of the discovery in Nature magazine in 1953, led
George Gamow to the idea that perhaps the nucleotides in the DNA structure could

serve as instructions on how to manufacture proteins [12].

Gamow’s theory turned out to be correct. It is now known that sections of the DNA
strand are transcribed to an RNA strand. Sections of the RNA sequence (known as
codons) are then translated to amino acids through what is known as the “genetic
code”. This process, whereby DNA is used as the blueprint to manufacture proteins,

is known as the “central dogma of molecular biology”.

In 1961, Marshall Warren Nirenberg and Heinrich J Matthaei performed the Nirenberg-
Matthaei experiment that would be the first step in the determination of the genetic
code [13], [14]. Their work was supplemented by the Nirenberg-Leder experiment and
later by work of Har Gobind Khorana [15]. Through their work, they determined
the correspondence between codons and the amino acids they code - the genetic code
was solved. Nirenberg and Khorana (together with Robert W Holley) received the
1968 Nobel Prize in Physiology or Medicine for their work. The establishment of the
genetic code also meant that it was now known that only 20 amino acids were naturally

manufactured through the process of translation.

In 1976 Frederick Sanger and Walter Gilbert independently developed methods for
determining nucleic acids base sequences in DNA. Sanger used his method, known as
the chain or dideoxy termination method [18], to sequence the genome of the Phage ®-
X174 in 1977 [19] [20], the first fully sequenced genome. Sanger and Gilbert (together
with Paul Berg) received the 1980 Nobel Prize for Chemistry for their efforts.

The methods developed by Sanger and Gilbert made it possible to automate the process
of determining base sequences in DNA. This led to the establishment of the Human
Genome Project in 1986 [21]. The objective of the project is to map and sequence the
estimated 2.85 billion (2851330913 according to [23]) nucleotides in the human genome
and to identify the genes present in it. It was headed by James Watson from 1988 and

initially 16 institutions from 5 countries participated.
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In 1995 the entire 1.8 million base pairs of the bacterium Haemophilus influenzae
was published [17]. On 26 June 2000, it was jointly announced by Bill Clinton and
Tony Blair that an initial working draft of the entire human genome was finished.
The working draft was published in 2001 and made freely available [22]. A major
milestone was reached in May 2006, when the sequence of the final chromosome of the
human genome was published in the journal Nature [24]. Tt is also of significance that
there are an estimated 20000 to 25000 protein-encoding genes in the human genome
[23]. Although the exact number is not known, 19599 protein-coding genes have been
identified and another 2188 DNA segments are predicted to be protein-coding genes
[25].

The human genome project has made major contributions to the understanding of the
biological principles that underpin life. Research is under way to identify genes and
the proteins they encode. However, a protein’s function is not directly determined
through its amino acid composition; its three dimensional structure is a more ap-
propriate framework for understanding functionality. The majority of proteins’ three
dimensional structure continue to be determined through X-ray crystallography. A
smaller percentage of structures are also determined through nuclear magnetic res-
onance (NMR) and mass spectrometry. These methods are however laborious and
expensive and new techniques are sought to determine or predict the 3D structure of
proteins. The structures are shared through internet resources such as the Protein
Data Bank (PDB) [114]. In July 2006, the PDB contained 34577 protein structures of

various organisms.

New discoveries continue to be made. In 1986 selenocysteine and in 2002 pyrrolysine
were discovered. These are coded from the stop codons UGA and UAG (refer to Section

2.1.4) respectively of some organisms.

2.1.2 Amino Acids

In chemistry, an amino acid is any molecule that contains both an amino and carboxyl
functional group. In biochemistry however, the term amino acid is often used to mean
alpha amino acid - a molecule where the amino and carboxyl functional groups are
attached to the same carbon atom. For the remainder of this dissertation, the term

amino acid will be used to refer to alpha amino acids.
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Chapter 2 Background

Figure 2.1 shows the structure of an alpha amino acid. Each amino acid is composed
of a central carbon atom (known as the C, atom), attached to a hydrogen atom (H),
an amino group (NHy), a carboxyl group (COOH) and a side chain, also known as a

residue (R). All the atoms in an amino acid are attached by covalent bonds.

(amino group) (carboxyl group)
H,N COOH
\ CalphaH /

R
(side chain)

Figure 2.1: Structure of a Single Amino Acid

The residue can vary from a single hydrogen atom (in the case of amino acid glycine),
to a large compound of different atoms (for instance arginine contains 19 atoms in its
residue). It is this residue that gives each amino acid its unique properties. In nature,
only 20 different amino acids (i.e. 20 different residues) are used to synthesize proteins.
These are known as the proteinogenic or standard amino acids, and are listed in Table
2.1. Each of the proteinogenic amino acids contain carbon (C), hydrogen (H), oxygen
(O) and nitrogen (N), whilst some (cysteine and methionine) also contain a sulphur

(S) atom in their residue chains.

A large number of other non-standard amino acids also exist in nature or can be syn-
thesized through artificial processes. Of note are selenocysteine and pyrrolysine, two
amino acids that are sometimes manufactured by some organisms. Other amino acids,
such as hydroxyproline, norvaline and hydroxylysine also sometimes occur. These are
manufactured though a process known as post-translational modification, i.e. modifi-

cation of the amino acid chain after translation (protein synthesis).

From a geometrical point of view, all amino acids have four different groups attached to
the C, atom. These groups can can be attached in two different configurations, known
as the levo (L) and dextro (D) configurations. These two configurations are optical
isomers of each other, meaning that they are non-superimposable mirror images of each

other. Figure 2.2 illustrates the two different isomers (imagine looking down onto the
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Chapter 2 Background
Table 2.1: The 20 Proteinogenic Amino Acids
Amino Acid | Abbreviation Linear Structure Formula
Alanine ala or a CH;3-CH(NH;)-COOH
Arginine arg or r HN=C(NH;)-NH-(CH,)3-CH(NH,)-COOH
Asparagine asn or n H,-CO-CH,-CH(NH,)-COOH
Aspartic Acid asp or d HOOC-CH,-CH(NH,)-COOH
Cysteine Cys or ¢ HS-CH,-CH(NH,)-COOH
Glutamine gln or ¢ HyN-CO-(CHy)o-CH(NH,)-COOH
Glutamic Acid gluor e HOOC-(CH;),-CH(NH,)-COOH
Glycine gly or g NH,-CH,-COOH
Histidine his or h NH-CH=N-CH=C-CH,-CH(NH,)-COOH
Isoleucine ile or i CH;3-CH,-CH(CH3)-CH(NH,)-COOH
Leucine leu or | (CHj;)2-CH-CH,-CH(NH,)-COOH
Lysine lys or k HyN-(CH,)4-CH(NH,)-COOH
Methionine met or m CHj3-S-(CHaz)2-CH(NH,)-COOH
Phenylalanine phe or f Ph- CH2 CH(NH,)-COOH
Proline pro or p H-(CH;)3-CH-COOH
Serine ser or s HO-CH,-CH(NH,)-COOH
Threonine thr or t CH;3-CH(OH)-CH(NH,)-COOH
Tryptophan trp or w Ph-NH-CH=C-CH,-CH(NH,)-COOH
Tyrosine tyr or y HO-p-Ph-CH,-CH,-CH(NH,)-COOH
Valine val or v (CH3)2-CH-CH(NH,)-COOH

C, atom with the H atom closest to you).

The standard amino acids are mostly found in the levo configuration. The dextro
configuration has been found in some sea-dwelling creatures and in the cell walls of
some bacteria. A useful way of remembering the levo configuration is by means of the
CORN rule (suggested by Richardson [51]). When looking at the C, atom with the
H atom closest to you, the other functional groups spell CORN (COOH - R - NHy)
when read clockwise. Note that in the case of glycine, where the residue is a single H
atom, two of the groups attached to the C, atom are identical and therefor the levo

and dextro configurations are the same.
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COOH COOH
Calpha C alpha
NH, R R NH,
Levo Dextro

Figure 2.2: Levo and Dextro Configurations

2.1.3 The Peptide Bond

Two amino acids can “link” together through the formation of a peptide bond. The
amino group of one amino acid reacts with the carboxyl group of the next amino acid as
illustrated in Figure 2.3. In the process, a water molecule is released (i.e. dehydration

synthesis). The resulting peptide bond is a strong covalent bond.

R! o R? o

aIphaH —  C

NS
/

NS
/

NH

- ———

R o) o)

c, . H

N N\
N

Figure 2.3: Formation of the Peptide Bond

NH OH

Multiple amino acids can link together in the same way to form a polypeptide. In
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this polypeptide, there is always an uncomplexed (“free”) amino group at the one end
(known as the N-terminus) and an uncomplexed carboxyl group at the other (known
as the C-terminus). By convention, the amino group indicates the start of the chain
and the carboxyl group the end. The acute reader will note that the “backbone” of the
polypeptide chain is formed by a repeating sequence of N-C,-C atoms. These atoms

are known as the main-chain atoms.

A dipeptide contains two amino acids and a tripeptide three. The terms peptide,
polypeptide and oligopeptide are roughly equivalent, although peptide and oligopeptide
are sometimes used in conjunction with “smaller” sequences and polypeptide with

“larger” sequences of amino acids.

During dehydration synthesis, a water molecule is released to form a peptide bond
between two amino acids. This process can be reversed through a process known as
hydrolysis. Through the addition of a water molecule, the peptide bond can be broken

and amino acids separated.

It is interesting to note that the six atoms from one C, atom to the next C, atom (C%,
CO’, NH""! and C%t1) all lie in a plane as illustrated in Figure 2.4. This is due to the
double bond character of the peptide bond. The backbone N-C,-C angle, 7, as well as
the dihedral angles, ¢ around the N-C, bond, ¢ around the C,-C bond and w around

the C-N bond are shown as well.

omega

alpha alpha

Figure 2.4: Bond Angles

Since the C, atom is tetrahedral, 7 is about 109.5°, although it has been noted that
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this angle can change to accommodate other strains in the structure. The peptide bond
is almost always found in the trans configuration, implying that w is 180°, although
it is sometimes found in proline with the cis configuration. Figure 2.5 illustrates the
difference between the trans and cis configurations. The source of essentially all the
interesting variability in protein conformation are the ¢ and 1 angles. Although there
is much freedom as to the values these angles can take, they are constrained geomet-
rically by the amino acid residues and other factors. The distribution of these two
angles for the amino acids in a particular protein is often plotted on a graph called a

Ramachandran plot [16].

H Calpha
Calpha \C/ N \ ] Calpha \C / N\ ]
alpha
trans o cis

Figure 2.5: Trans and Cis Configurations

2.1.4 Protein Synthesis

Proteins are manufactured in the ribosomes. The processes that play a role are tran-

scription and translation.

The instructions to manufacture proteins are contained in the deoxyribonucleic acid
(DNA) of an organism. A DNA strand is not a single molecule, but rather two molecule
strands which are linked together through hydrogen bonds. Each strand is made up of a
long sequence of nucleotides. There are four types of nucleotides or bases: adenine (A),
cytosine (C), guanine (G) and thymine (T). Between the two strands of DNA, different
bases pair up with each other: A with T and C with G. Note that the two strands
are aligned, i.e. consecutive bases pair up with one another. This implies that a single
strand contains all the information of the whole DNA molecule, or put differently, that
one of the strands could be manufactured from knowledge of the other. DNA strands

are tightly pack around proteins. This packaging is known as a chromosome. Human
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DNA is packed into 46 chromosomes - two sets of 23.

The term genome refers to all the hereditary information contained in the DNA (both
genes and non-coding regions). A gene is a section of a DNA strand that will code for a
specific protein. A messenger ribonucleic acid (mRNA) strand is constructed from the
part of the DNA strand where the gene is located. Adenine in DNA codes for uracil
(U) in RNA, cytosine for guanine, guanine for cytosine and thymine for adenine. The
constructed mRNA then travels from the nucleus where the DNA is contained to the
ribosomes in the cytoplasm. This process, whereby a mRNA molecule is created, is

known as transcription.

In the ribosome, each sequence of three nucleotides in the mRNA is interpreted as an
instruction (known as a codon) to manufacture a specific type of amino acid. The
process by which this takes place is known as translation. The pairing between codons
(of which there can be 4% = 64) and the 20 amino acids is known as the genetic code

and is illustrated in Figure 2.6.

Second Base
U C A G

uuu phe ucu ser UAU tyr uGu cys |U

uuc phe ucc ser UAC tyr UGC cys | C

v UUA leu UCA ser UAA stop UGA | stop | A

uuG leu UCG ser UAG stop | UGG tp | G

cuu leu CCU pro CAU his CGU arg U

G cuc leu CCC pro CAC his CGC arg C
9 CUA leu CCA pro CAA gln CGA arg | A 3
& CuUG leu CCG pro CAG gin CGG arg |G g
[ AUU | ile [ AcU | thr [AAU [ asn | AGU | ser [U[Z
- AUC | ile | AGC | thr [AAG | asn [ AGc | ser [C|F

A AUA ile ACA thr AAA lys AGA arg A

AUG met ACG thr AAG lys AGG arg |G

GUU val GCU ala GAU asp GGU aly U

GUC val GCC ala GAC asp GGC gly C

G GUA val GCA ala GAA glu GGA gy | A

GUG val GCG ala GAG glu GGG gy |G

Figure 2.6: The Genetic Code

The construction of a protein is started when the codon AUG appears in the mRNA
sequence. AUG codes for the amino acid methionine. Construction of a protein is
stopped when one of the codons, UAA, UAG or UGA is found in the mRNA sequence.
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2.2 PROTEIN FOLDING

2.2.1 Overview

After a protein is manufactured in the ribosomes, it spontaneously folds into a 3-
dimensional structure. It is this 3D structure of a protein that determines its function.
The seemingly amazing thing is that a specific protein will almost always fold in more

or less the same way and will end up with the same 3D structure called its native state.

A convincing argument is that this is due to evolution - if the same sequence of amino
acids would lead to different structures in proteins, their proper functioning could
not be guaranteed. It is thus conceivable that evolution has produced proteins where

multiple native states are unlikely.

Exactly how proteins fold from the sequence of amino acids (primary structure) re-
mains an open question and has been a topic of much research since the protein folding
problem was first posed. It is now accepted that proteins first form smaller local struc-
tures called secondary structures, before (or as some theories suggest, simultaneously)

folding into its 3D structure (tertiary structure).

In 1951, Linus Carl Pauling analyzed the geometry and dimensions of peptide bonds.
His research revealed the bond lengths and angles involved in the peptide bond mole-
cules. Together with Robert B Corey, he predicted the existence of two regular sec-
ondary structures that are formed in proteins, namely alpha helices [49] and beta sheets
[50] (and also falsely hypothesized other structures). Note that this work was done be-
fore protein structure has been experimentally determined. Their predictions turned
out to be correct and earned them the Nobel Prize for Chemistry in 1954. These were

the first secondary structures to be discovered.

Proteins can be unravelled or “denatured”. This can be achieved through the applica-
tion of heat and certain chemicals. Christian Boehmer Anfinsen denatured a protein
called ribonuclease and showed that it lost its shape and function (1961) [27]. By re-
moving the denaturing substance, ribonuclease regained its function. Through chemical

analysis and deductive reasoning, he was able to show that ribonuclease regained its
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original shape as well. This is a significant result, since it shows that all the “knowl-
edge” required for protein to fold into its native state is contained in its amino acid
sequence (and thus in the DNA sequence that codes for that protein), i.e. no folder
or shaper is needed. Anfinsen’s work led to him being awarded the Nobel Prize for
Chemistry in 1972.

It is now known that in certain cases proteins can indeed fold into a wrong shape.
Although the folding knowledge lies primarily in the amino acid sequence, proteins,
known as chaperones, are sometimes used to keep their target proteins from folding
incorrectly. Other factors, such as temperature, solvent viscosity and acidity, can also

influence the folding process.

As could be expected, proteins that misfold are the cause of certain diseases [28] [29].
Even a single amino acid that is missing or incorrect could cause such a misfold. Since
a protein’s function is largely determined by its structure, a misfold implies that a
protein does not function correctly or does not function at all. In the worst case,
the misfold could lead to a situation where the protein influences substances around
it in a detrimental way and as such “poisons” a cell. Diseases such as cystic fibro-
sis, Bovine spongiform encephalopathy (mad cow disease) and its human counterpart
(Creutzfeldt-Jacob disease) and certain strains of Alzheimer’s disease [30] are now all
attributed to protein misfolding. By understanding the folding process, and perhaps
more importantly the factors that cause misfolding, cures could be developed for these

diseases.

Another interesting aspect is the time it takes for a protein to fold into its native state.
It typically takes a anything from a number of milliseconds to a number of seconds
for a protein to assume its native state. The fastest folders complete this process in
a couple of microseconds whilst some proteins could take a number of minutes. In
1968, Cyrus Levinthal showed that the total number of conformations a protein could
take is astronomical [32]. Even if a protein could sample a conformation in a nano- or
picosecond, it would take more than the age of the universe to sample all configurations.
It can thus be concluded that a random conformational search does not occur in folding,
but rather that one or more mechanisms exist which allow a protein to fold via some
pre-determined path. Theories regarding the exact way in which this is accomplished

are discussed in Section 2.2.3.
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2.2.2 Levels of Protein Structure

This section defines a number of terms that are used to describe the level of protein

structure.

2.2.2.1 Primary Structure

The primary structure of a protein (or segment of polypeptide chain) is the sequence of
amino acid residues, without regard to spatial arrangement. Note that in the primary

structure of a protein, all the atoms are held together by covalent forces.

2.2.2.2 Secondary Structure

The secondary structure of a segment of polypeptide chain is the local spatial arrange-
ment of its main-chain atoms without regard to the conformation of its side chain or
to its relationship with other segments. Note that a secondary structure is locally
defined, i.e. there can be multiple secondary structures within a single protein. The
secondary structures form due to hydrogen bonds that form between amino acids at
regular intervals within the chain. The reader is referred to Section 2.3 for a detailed

discussion of secondary structures.

2.2.2.3 Supersecondary Structure

It is sometimes observed that certain structural components comprising a number of
secondary structures are frequently repeated within proteins, e.g. two alpha helices
joined by a loop region. These are termed supersecondary structures. Some of these
structures are associated with certain biological functions, whilst others are part of

larger structural or functional units.
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2.2.2.4 Tertiary Structure

The tertiary structure of a protein molecule, or of a subunit of a protein molecule, is the
arrangement of all its atoms in space, without regard to its relationship with neighbour-
ing molecules or subunits. The tertiary structure of a protein is kept in place through

hydrophobic interactions, hydrogen bonds, ionic interactions and disulfide bonds.

2.2.2.5 Quaternary Structure

Some proteins, termed multimeric proteins, consist of a number of subunit proteins or
polypeptide chains. The quaternary structure of a protein molecule is the arrangement
of its subunits in space and the ensemble of its intersubunit contacts and interactions,

without regard to the internal geometry of the subunits.

2.2.2.6 Protein Conformation

The process by which higher structures form from the primary structure is called
protein folding. A folded protein can have more than one stable folded state or con-
formation. Each conformation has its own biological activity. At any stage, only one
conformation is active. The most common state is called the native conformation. The

transitions between different conformations are called conformational changes.

2.2.3 Theories of Protein Folding

The resulting tertiary structure that forms when a protein folds is a stable conforma-
tion. It is generally accepted that proteins fold to reach a state of lower energy. The
open question is whether it reaches a global (stable) or local (meta-stable) minimum

in its native conformation.

The thermodynamic hypothesis of protein folding was proposed by Epstein in 1963
[33] after earlier work by Haber and Anfinsen [31]. According to the thermodynamic

hypothesis, the native state of a protein is reached when it is has reached a global
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minimum in its energy state. In opposition to the thermodynamic hypothesis is the
kinematic hypothesis of protein folding. As proposed by Wetlaufer in 1973 [34], [35], the
kinematic hypothesis states that a protein could become trapped with a local minimum
in its energy state, unable to overcome the energy barriers that will enable it to reach
a global minimum. The native state of a protein correspond to this local minimum.
It is conceivable that these meta-stable states could be vastly different from the true

stable (minimum energy) conformation.

Initially, the unfolded protein is in a random coil state. The changes that occur during
the initial phase of the folding process could thus appear to be somewhat random in
nature. Levinthal showed that if only random changes were made to the conformation
of a protein, with the expectation that a minimum energy state will be reached in
which the native state is always the same, it would take an astronomical amount of
time [32].

Levinthal’s work led to the conclusion that there exist folding pathways and interme-
diates - states and partially folded chains that a protein necessarily undergo during the
folding process. Such intermediates were observed by Ikai and Tanford [36] and Tsong
and Baldwin [37] in 1971.

Different views persist as to how the folding process gets started. One view is that
folding is hierarchic - local backbone structures are formed and persist until the native
state emerges. The other view is that folding is started through a tertiary interaction

- distant clusters of side chains are then drawn together.

2.2.3.1 Framework Model

The framework model [38] [39] [40] suggests a hierarchical mechanism whereby local
secondary structures are formed based on primary sequences, but independent of ter-
tiary structure. Once these secondary structures collide, they coalesce to form tertiary
structure. One problem with the theory is that peptides do not generally form stable

secondary structures in solution.
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2.2.3.2 Hydrophobic Collapse Hypothesis / Molten Globule Hypothesis

Proteins are normally found in a configuration where the hydrophobic amino acids are
buried toward the inside of the folded protein, whilst hydrophilic amino acids are found
more towards the surface of the protein. The hydrophobic collapse hypothesis [41] [42]
[43] states that a protein assumes its native conformation through the formation and
rearrangement of a compact collapsed structure known as a molten globule. This step
constitutes an early step in the folding pathway. The framework and hydrophobic

collapse models suggest the formation of kinematic intermediates.

2.2.3.3 Nucleation model

The nucleation model [44] [34] states that tertiary structure forms as an immediate
consequence of the formation of secondary structure. A few amino acid residues form
secondary structures which serve as a nucleus. Further structure then propagates from
this nucleus. Note that the nucleation model does not necessarily lead to the formation

of kinematic intermediates.

2.2.3.4 Directed Folding Model

The directed folding model suggests that specific interactions could direct the folding
pathway by stabilizing folded conformations. For instance, in bovine pancreatic trypsin
inhibitor (BPTI) it has been shown that the formation of disulphide bonds stabilize

secondary structure and leads to specific pathways [45].

2.2.3.5 Folding Funnel Model

One of the more recent theories is that of the folding funnel model. The theory repre-
sents the energy surface of the protein folding pathway as a funnel. Different unfolded
conformations are at the rim of this funnel, with a single global minimum representing
the native conformation. Different folding paths exist from the unfolded states to the

native state. The protein could fold by means of steepest decent (fastest folding) or fol-
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low other paths through local minima (intermediates) and maxima (transition states)
[46] [47].

The principle of minimum frustration, hypothesized by Peter Wolynes, states that
through evolutionary processes, natural proteins are composed of amino acid sequences
that interact with one another in such a way as to be directed towards the native state,

i.e. the energy landscape is mostly smooth.

2.2.3.6 Simulations of Protein Folding

De novo or ab initio techniques for computational protein structure prediction employ

simulations of protein folding to determine the protein’s final folded shape.

An example of such a simulation is LINUS by Rose and Srinivasan [48]. LINUS im-
plements elements of the framework model, hydrophobic collapse and the nucleation
model and allows for the fact that the native state could be a local minimum (kinematic
hypothesis). LINUS was executed against 7 proteins. The authors claim that 99% of
the secondary structures were correctly predicted and 6 out of the 7 proteins had the

correct shape through visual inspection.

One problem with protein folding simulation is that it takes a tremendous amount of
computational power (and thus time) to simulate even a small amount of time during
the folding process. As such many distributed initiatives have seen the light since 2000.
These include Folding@home [119], Human Proteome Folding Project, Predictor@home
[120], Rosetta@home [121] and TANPAKU. Another approach is to use supercomputers
to perform the simulation. IBM’s BlueGene [122] is an attempt to construct a petaflop

supercomputer dedicated to protein folding.
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2.3 SECONDARY STRUCTURE

2.3.1 Secondary Structure Classification

2.3.1.1 The DSSP Code

Although different schemes exist or could be created to classify secondary structures,
one scheme is currently predominant - the “Dictionary of Protein Secondary Struc-
ture” commonly referred to as the DSSP code. This code was developed by Kabsch
and Sander in 1983 [52] and aims to unambiguously define secondary structures based
on their physical and geometrical features. It thus provides a method to define sec-
ondary structures objectively (previously subjective classifications had to be made by

crystallographers and structural biologists).

The code defines eight protein secondary structures. These are listed in Table 2.2l It
is customary to associate one of the eight secondary structures with each amino acid
in a protein. There is thus a one-to-one correspondence between each amino acid and
its associated secondary structure. If no such association can be made, the coil (C)

structure is assumed.

Table 2.2: The DSSP Code

Abbreviation | Secondary structure
3 turn helix (3;0-helix)

4 turn helix (a-helix)

5 turn helix (7-helix)
[-sheet (extended strand)
[-bridge

Hydrogen bonded turn
Bend

Coil (also known as loop - L)

Qg |@m|H 7D Qe

Note that other secondary structures such as sharp loops and omega turns have been

suggested. These structures have however not been used widely.
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Table 2.3: Reducing the 8 DSSP classes to 3 classes

DSSP (8-class) 3-class
a-helix (H), 30-helix (G) Helix (H)
B-sheet (E), §-bridge (B) Strand (E)
m-helix (I), Turn (T), Bend (S), Coil (C) | Coil (C)

2.3.1.2 3-Class Classification

In pattern recognition and statistical terminology, the word “class” is used to designate
a discrete set of values (or class labels) which a variable can be assigned. In the problem
of secondary structure classification, the word class is often used interchangeably with
the (secondary) structure that is being predicted. This convention is used throughout

the dissertation.

Apart from the DSSP code, secondary structures are often classified according to only
three classes: helices (H), sheets (E) and coils (C). This is probably due to the fact
that after Pauling discovered alpha helices and beta sheets, these were the only known
structures. If an amino acid did not form part of one of these two structures, it was
classified as a coil. This classification scheme persisted and is useful in that it provides a
common framework by which to compare the success of secondary structure prediction

techniques.

It should be immediately apparent that there exist different schemes by which the eight
classes in the DSSP code can be mapped to the three-class scheme. The scheme that
is now in widespread use, has been suggested by Rost and Sander [74]. This mapping
scheme, listed in Table 2.3, maps the H and G structures to helix (H), the E and B
structures to strand (E), and all the rest (I, T, S and C) to coil (C).

This standard mapping scheme has since been used by most authors [78], [105], [65],
although other mapping schemes have also been tried out [78], [110]. Rost, in a more
recent article [65], has however pointed out that that this standard mapping provides a
way to compare different secondary structure prediction methods. He also noted that

other mapping schemes may lead to overly optimistic classification results.
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2.3.2 Types of Secondary Structures

Secondary structures form due to hydrogen bonds that form between amino acids at
regular intervals within the chain. The only exception is the bend secondary structure
which does not form due to hydrogen bonds. The formation of secondary structures
leads to regular patterns in the ¢ and ¥ angles where these structures occur. A good

discussion of secondary structures can be found in the work of Richardson [51].

2.3.2.1 Alpha helices

The alpha helix (also known as 4-turn helix or 3.613-helix) is the most commonly
occurring type of secondary structure in proteins. Its existence was first predicted
by Pauling et al in 1951 [49]. The amino acids are arranged in a helical structure
about 5A wide. Each amino acid contributes a 100° turn in the helix, i.e. there are
3.6 amino acids per turn. The translation along the helical axis from one amino acid
to the next is about 1.5A. The average length of an alpha helix is about 10 amino
acids. At least 4 amino acids are required for a structure to be classified as an alpha
helix [52]. Alpha helices are usually found in a right-handed configuration, although
left-handed configurations sometimes occur. The backbone conformation angles in the
right-handed configuration are ¢ = —63° and ¢ = —43° [51].

In general, alpha helices are found at the surface of protein cores where they provide
an interface with the aqueous environment. The inner facing side of the helix tends to
have hydrophobic amino acids and the outer facing side hydrophilic amino acids. Every
third or fourth amino acid tends to be hydrophobic, a pattern that can be detected [55].
Alpha helices are sometimes found in protein cores in which case they have a higher
distribution of hydrophobic amino acids ([53], pp. 378-388). They also contribute the
most to the stability of a protein of all the secondary structure types [51].

Different amino acids have different preferences for forming alpha helices. Alanine,
glutamic acid, leucine and methionine are readily found in alpha helices while proline,

tyrosine, serine and glycine are rare in this structure [54].

The alpha helix arises because of hydrogen bonds forming between the C=0 group of
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the n'* amino acid and the NH group of the (n+4)" amino acid. The alpha helix and

the corresponding bonds that form are illustrated in Figure 2.7.

Figure 2.7: Hydrogen bonds in an alpha helix

2.3.2.2 Beta sheets

The beta sheet (also known as extended strand) is the second most commonly occurring
type of secondary structure. Its existence was predicted by Pauling and Corey in 1951

[50], shortly after the existence of alpha helices was predicted.

A beta sheet consists of two or more amino acid sequences (beta strands) in the same
protein that bond together through hydrogen bonds. These strands typically contain
5 to 10 consecutive amino acids and can bond with adjacent strands in a parallel or
antiparallel configuration (or a mixture of the two in the case of three or more stands)
as illustrated in Figure 2.8. The hydrogen bonding patterns are different in the parallel

and antiparallel configurations. Note that the strands could be near each other in the
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amino acid sequence (typically separated by a short loop region) or far apart.

Parallel sheets and the parallel parts of mixed sheets tend to be buried in proteins,
whilst antiparallel sheets tend to have one side exposed to solvents and the other buried

in the core of the protein [51].

An interesting feature of sheets are that they twist [56]. A single beta strand is rarely
perfectly extended, but rather exhibits a slight twist due to the chirality of the com-
ponent acids. This can be attributed to the fact that the energetically preferred dihe-
dral angles (¢ = —135° and ¢ = 135°) diverge from the fully extended conformation
(¢ = —180° and ¢ = 180°). There are oftentimes alternating fluctuations in the di-
hedral angles to prevent the individual strands in a sheet from spraying apart. Note
that if the twist of the hydrogen bonding direction or of the peptide planes is viewed
along a strand, it would appear right-handed in most cases. The dihedral angles are
about ¢ = —140° and ¢ = 135° in antiparallel sheets and ¢ = —120° and ¢ = 115° in

parallel sheets.

2.3.2.3 Turns

The third of the three classical secondary structures is the hydrogen bonded turn. Turns
serve the function of reversing the direction of the local segment of the polypeptide

chain.

Turns were first recognized by Venkatachalam [57] through theoretical conformational
analysis. Three types of turns were suggested by Venkatachalam and another five by
Lewis [58]. Turns are given structure through hydrogen bonds between the CO atoms

of amino acid ¢ and the NH atom of amino acid i + n, where n € 3,4, 5.

Turns tend to be hydrophilic, which could be a result of the fact that a typical turn
joins or interrupts secondary structures that are more internal [59] [60]. Turns are
commonly found joining beta-strands or at the end of alpha-helices. Glycine and

proline are common constituents of turns.
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Figure 2.8: Hydrogen bonds in beta sheets

2.3.2.4 Other secondary structures

The 3j0-helix (also known as 3-turn helix) is another helix type that is frequently
observed. Similarly to the alpha-helix, it forms due to hydrogen bonds, this time
between amino acids at residues ¢ and 7 + 3. A minimum of 3 consecutive amino acids
are required to define a structure as a 319-helix. The backbone conformation angles are
about ¢ = —70° and ¢ = —20° [51]. 3j9-helices are typically much shorter that alpha

helices.

The 7-helix (5-turn helix) forms due to hydrogen bonds between amino acids at residues
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¢ and 7 + 5 and five consecutive amino acids are required to define a structure as such.
The 7-helix is the least frequently occurring secondary structure - it requires that 7 =
114.9°, instead of the normal 7 = 109.5° and the conformation angles ¢ = —57.1° and
1 = —69.7° lie at the edge of the allowed minimum energy region on the Ramachandran
plot. Both the 3;yp and 7-helices are sometimes found at the edge of regular alpha

helices.

Note that in the case of all the helices («, 319 and 7) the requirement for a hydrogen
bond need not be mandatory. Rather, the conformation angles should be within the

acceptable range.

A (-bridge is a single pair (-sheet, i.e. a hydrogen bond forms between two distant

amino acids.

The bend is the only secondary structure that is not based on a hydrogen bond. A bend
is a region with high curvature. For a bend at position ¢, the angle formed between
Ci=2 C! and C'2 should be larger than 70°.

Coils (also known as loops) are used to describe two types of regions: those areas that
are well-organized but non-repetitive, as well as those areas that are truly disorganized.
Disorganized here means that the amino acids are not observed to be in any of the

other regular secondary structures.

2.4 PREDICTION OF SECONDARY STRUCTURE

The assumption on which secondary structure prediction methods are based is that
there is a correlation between amino acid sequence and secondary structure. This
assumption follows necessarily from Anfinsen’s work [27] that states that all knowledge
of the final structure (and hence secondary structure) is contained in the amino acid

sequence.

Secondary structure prediction was first attempted as early as 1957 [66]. Note that this
was before the claim of the existence of alpha-helices and beta-sheets was even verified

through X-ray structures. Since then, 3 generations of protein secondary structure
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prediction methods have seen the light [65] [64].

The first generation of methods were based on expert rules and statistics of the physico-
chemical properties of single amino acids. These methods took into account only
single amino acids at a time and achieved Q3 scores in the order of 50% (the Q3
score is the percentage of correctly predicted secondary structures and is explained in
Section 2.4.1.1). The next generation of methods improved on this by also taking into
account the window of amino acids adjacent to the central amino acid (the one for
which a secondary structure is being assigned). Since the local structure influences the
formation of the secondary structure at the central amino acid and these relationships

were being taken into account, these methods achieved Q3 scores in the order of 60%.

Since the conception of the second generation methods, the number of proteins for
which the structures have been solved has increased considerably. This made it pos-
sible to identify evolutionary information in these databases. The third generation of
methods is based on taking multiple sequence alignments as inputs instead of a single
amino acid sequence. As such, they are able to consistently achieve ()3 scores of about
70% (the best algorithms, such as PSIPRED, PROF and SSpro achieving an accuracy
of about 76% [65]).

Another useful way of classifying secondary structure prediction algorithms is in terms
of the method they employ. There are three main classes: Methods that use expert
rules and statistics, such as the Chou-Fasman method, methods based on informa-
tion theory, such as the Garnier-Osguthorpe-Robson method and methods based on
computational intelligence. Various computational intelligence methods such as neural
networks, recurrent neural networks, nearest neighbor methods, Hidden Markov Mod-

els and Support Vector Machines have been tried.

2.4.1 Methods to measure the accuracy of prediction

In order to compare the accuracy of different secondary structure prediction techniques
with one another, the same data sets as well as the same measure of performance should

be used in the comparison. This section discusses the different measures of performance.
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Apart from the measures of performance used, it should also be noted that certain
secondary structures (such as alpha helices) are more readily predicable than others. It
thus implies that the set of test proteins could strongly influence the observed accuracy.
In practise, standard data sets are often used and are selected so as to have a low

sequence similarity:.

2.4.1.1 (@-score

The @-score is probably the most widely used measure of performance [62].

A secondary structure is associated with each amino acid in the sequence. The Q-
score is simply the fraction of correctly identified secondary structures and is usually

expressed as a percentage. It is given by

number of correctly classified secondary structures

Q= x 100%. (2.1)

total number of amino acid residues

A subscript is usually used to indicate the number of classes a secondary structure can
be assigned to. Thus, if the DSSP code is used, the score is referred to as QJg. If the

3-class scheme is used, the score is referred to as Q3.

Note that the @) score tends to favour methods overpredicting the secondary structure
with the highest prior probability of occuring [65]. For instance, in the 3 class problem,
methods that overpredict the C structure (as opposed to the H and E structures) are
likely to have a higher ()3 score. Another objection is that even a random assignment

of secondary structures could have a relatively high ) score.

In cases where a secondary structure prediction is not made for every amino acid, it is
sometimes convenient to use an adapted version of the () score, namely the Q* score.
The score simply calculates the percentage of correctly classified secondary structures

as a percentage of those for which a prediction was attempted. It is given by
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number of correctly classified secondary structures
Q"= Yo ey « 100%.  (2.2)
total number of amino acid residues predicted

2.4.1.2 (-score for secondary structure types

The ()-score is sometimes adapted to serve as a per-residue accuracy measurement for

secondary structure types. The per-residue accuracy [104] is calculated as

number of residues correctly predicted in state x

Qs = x 100%, (2.3)

number of residues observed in state x

and the per-residue prediction accuracy as

number of residues correctly predicted in state x

QY = x 100%, (2.4)

number of residues predicted in state x

where x represent the type secondary structure.

2.4.1.3 Matthews correlation coefficient

The Matthews coefficient [61] is calculated for each type of secondary structure and is

given by

PzNg — UgOy

C, = ,
vV (ne + ug) (g + 02) (pe + us) (ps + 02)

(2.5)

where x represents the type of secondary structure, p, is the number of correct positive
predictions, n, is the number of correct negative predictions, o, is the number of over-
predicted positive predictions (false positives) and w, is the number of underpredicted
residues (false negatives). The closer the coefficient is to 1, the better the success of

the prediction algorithm in predicting the type of secondary structure.
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2.4.1.4 Segment Overlap Measure

The segment overlap (SOV) measure [62] [63] is based on secondary structure elements
and not on individual amino acid residues. It aims to quantify how well a prediction
method predicts each secondary structure element. It takes into account the starting

and ending residues of each secondary structure element and the length of each element.

Consider for example the case where two helices joined by a short turn are predicted
as a helix. The ()3 measure would penalize only on the short turn section. The SOV
measure penalizes for predicting only one structure instead of two as well as missing
the correct ending position of the first helix and the correct starting position of the

second.

The SOV measure for a single secondary structure type is defined as

1 minOV (S1,52) + 6(S1, 52)
SOV, = N, SZ maxOV (S1,52)

x

x len(S1) x 100%, (2.6)

where S1 and S2 are the observed and predicted secondary structure segments of type
x respectively, S, is the number of all segment pairs (51, .52) where S1 and S2 have at
least one residue of type  in common, len(S1) is the number of residues in segments
S1, minOV (S1,52) is the length of overlap of S1 and S2, i.e. the number of residues
where both S1 and S2 are in state z and mazOV (S1,52) is the length of the total
extent for which either of the segments S1 and S2 has a residue in state z and N, is

the total number of residues observed in state x. 0(S1,.52) is defined by

mazxOV (51, 52) — minOV(S1, S2)
mOV (51, 52
5(51,52) = min { ™OVISLSY) . (2.7)
int(3 x len(S1))
)

int(3 x len(52))

The segment overlap score for all the different types of secondary structure types is
defined as
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SOV = x len(S1) x 100%. (2.8)

ZmeOV (S1,52) 4+ 6(51,52)

N &~ e mazOV (S1,52)

Here N is the total length of the amino acid residues being observed and C' is the set

of secondary structure types.
2.4.2 Chou-Fasman Method

The Chou-Fasman method [67] is based on analysis of the frequency with which single
amino acids are found to create different secondary structures. For instance, alanine,
glutamic acid, leucine and methionine are strong predictors of alpha helices, whilst

proline and glycine are predictors of a break in a helix.

The method is based on heuristics. Helices and sheets are predicted if amino acids
that are indicative of that structure are found in sequence a number of times. Turns
are modelled as tetrapeptides and two probabilities are calculated. If more than one
secondary structure is predicted for a specific region, the structure with the highest
probability is assigned. In the end, regions for which no prediction is made are assigned

as coils.

The Chou-Fasman method achieved Q)3 scores in the region of 50-60% on standard test

databases.
2.4.3 Garnier-Osguthorpe-Robson Method (GOR)

The GOR-method [68] [69] [70] extends the Chou-Fasman method by incorporating
the idea that amino acids that flank the central amino acid influence the secondary
structure that the central amino acid is likely to adopt. The GOR-method also uses

principles from information theory to derive predictions.

The 8 amino acids prior and the 8 amino acids after the central amino acid are used to

create three scoring matrices. These scoring matrices correspond to the central amino
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acid being found in an alpha helix, beta sheet or coil configuration. The columns of
the scoring matrices indicate the probabilities of finding each of the amino acids in
one of the 17 positions. These probabilities are calculated based on information theory

concepts.

A prediction of a candidate sequence is made through a sliding window of 17 amino acid
residues. The sequence is then compared with the matrices, the one with the highest
score predicting the secondary structure associated with the central amino acid. Four
residues in a row have to be predicted as an alpha helix and two in a row as a beta

sheet for the prediction to be validated.

The GOR-method has been shown to achieve a Q3 score of 64%. It is also known that

the method underpredicts the number of residues with the sheet structure.

2.4.4 Neural Network Methods

Neural network methods have been used widely to predict protein secondary structure
[71] [72] [73] [74] [75] [76] [77] [78] [79] [81] [82] [83]. It has been shown that the neural
network models are theoretically able to extract more information from sequences than
methods based on information theory such as the GOR-method [71].

In the neural network approach, a training phase is used to set weight values in the
neural network. A sliding window of length n is moved along the amino acid sequence
and the associated secondary structure of the central amino acid noted. This input-
output mapping is then used to train the network using a method such as the back-

propagation algorithm.

Usually, the classical 3-layer neural network is used. Each of the n amino acid residues
is usually encoded using 21 input nodes (i.e. n x 21 input nodes in total) - one node for
each of the 20 different types of amino acid residues and an additional node to indicate
if the position in the window is an edge. In each set of 21 input nodes, only one input
node is thus triggered at a time. The output is usually encoded using m output nodes,
where m represents the number of secondary structure classes. A sufficient number of

hidden nodes is required to capture the input-output mapping. Various numbers of

Department of Electrical, Electronic and Computer Engineering 38
University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 2 Background

hidden nodes have been suggested, from 2-40 [76] to 60 [71]. The studies also suggest

that a window length (n) of 13-17 gives optimum performance.

Once a neural network has been suitably trained, it can be used to predict the sec-
ondary structures associated with a protein of unknown secondary structure. If the
neural network has been structured as explained above, it will present m outputs for
each input sequences. Each of these m outputs represent the probability that the
secondary structure to be associated with the central amino acid is of a specific type.
Based on these probabilities, criteria such as the maximum-likelihood function or other
smoothing rules can be applied to assign a secondary structure to each amino acid

residue.

The best known methods are PHD by Rost [74] and PSI-PRED by Jones [78] which
achieve an average prediction accuracy of 75-76 % (Q)3). These prediction methods do
not use amino acids sequences directly as input to a neural network but rather make
use of multiple sequence alignments and position specific scoring matrices (PSSM)
generated by algorithms such as Basic Local Alignment Search Tool (BLAST) [85] and
Position Specific Iterated (PSI) BLAST [86]. Without such multiple alignments, the
accuracy achieved is typically about 67% [96].

BLAST and PSI-BLAST are used to compare a query (target) sequence to all sequences
in a specified database (sequence database). The objective is to find subsequences in
the sequence database that are similar to the target sequence. The idea is that the
target sequence will exhibit similar structural attributes as those proteins with similar

sequence. This fact can be exploited in the design of the neural networks.

The Blocks Amino Acid Substitution Matrices (BLOSUM) [87] represent frequencies
of amino acid substitutions observed in a large number of related proteins. The BLO-
SUMG62 matrix is tabulated in Table 2.4. Each position in the matrix represents the

log odds score for the substitution of a particular amino acid with another amino acid.

The BLAST algorithm starts by creating a list of amino acid patterns (words) of length
(W) 3 in the target sequence. It starts at positions 1, 2 and 3, followed by 2, 3 and 4,
and so forth. The output of this stage is a list of unique patterns of length 3 in the

target sequence. The algorithm then determines which words are likely substitutions
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to the target words through evaluation using the BLOSUMG62 matrix. For instance,
consider the word PQG. The word PEG would score a value of 15 using the BLOSUMG62
matrix (summing the log odds values of 7 for a P-P match, 2 for a Q-E match and 6
for a G-G match). A score threshold 7" is used to limit the number of possible words
that can match to the target words. These words are organized into an efficient search

tree for comparing them rapidly to the database sequences.

The database is now scanned for these remaining words that are likely substitutions
for the target word. When such a word is found, the target sequence and the sequence
from the database are aligned through the matching substitution words. The alignment
is extended in both directions by evaluating the BLOSUMG62 values for substitutions
at corresponding locations in the sequences. The alignment is extended as long as the
accumulated score does not decrease. This portion of the alignment is known as the
high-scoring segment pair (HSP). All such HSP scores are calculated against the whole
sequence database and HSP’s with a score larger than a cutoff score S are noted. The
statistical significance of the HSP score is calculated as an E-value. If it is significant

the alignment is reported.

PSI-BLAST uses a series of iterated steps. This is done to identify a family of related
proteins for a given target sequence. Once an initial set of related proteins are found
for a given target sequence, these proteins are used to identify additional proteins that
are related to the target sequence. PSI-BLAST generates PSSMs (sequence profiles)
as part of the search process. In a PSSM, each row is associated with a specific amino
acid in the target sequence and each column with one of the amino acid types (thus
20 columns). Each element in the matrix indicates the log likelihood of a substitution
of the amino acid in the target sequence with the amino acid type specified by the

column.

In PHD (year 1993), BLAST (1990) was used to create multiple sequence alignments
and train the neural network. With the development of PSI-BLAST (1997) and the
ease with which scoring matrices could be extracted, PSI-PRED (1999) used these
intermediate profiles as input to the neural network. This eliminated the need for the

time consuming multiple sequence alignment stage in PHD.

In terms of neural network architecture, PSI-PRED uses a window length (n) of 15,
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Chapter 2 Background

with 21 inputs associated with each amino acid in the window, similar to the classical
neural network design for predicting secondary structures. The difference is that the
each of the 20 inputs associated with each amino acid is the log odds value for a residue

substitution as given by the PSSM (and filtered though the standard logistic function

1
1+e==

edge is present. The rest of the neural network structure is similar to the structure

to scale it to the range [0,1]). The additional input is used in the case where an

described earlier in this section, with 75 hidden units and 3 outputs (m). Each output
is the probability that the predicted secondary structure is either a helix, strand or

coil.

A second neural network is used to filter the results from the first network. This
network has 60 inputs (a window of 15 with 4 inputs each, indicating the probability
of helix, strand or coil as calculated by the first network, or the presence of an edge),

60 hidden units and 3 outputs. The outputs represent the final 3-state predication.

Web servers exist that allow online prediction of protein secondary structure using

PHD [115] and PSIPRED [116].

2.4.5 Nearest Neighbour Methods

Nearest neighbour methods [88] [89] [90] [91] [92] [93] [94] [95] predict the secondary
structure of an amino acid in a query sequence by identifying sequences of known

structures that are similar to the query sequence.

A database of training sequences is built in the same way as with neural network
techniques, i.e. a sliding window of size n is moved across the training set and the

secondary structure of the central amino acid observed.

For the query sequence, the best matching sequences in the training database are
identified. The frequencies of occurrence of the different secondary structures are then

used to predict the associated secondary structure for the query sequence.

The different algorithms in existence differ in the way sequences are compared. Amino

acid scoring matrices such as BLOSUM [90], distances between sequences based on
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Chapter 2 Background

statistical analysis of the training sequences [89] and scoring matrices based on the
categorization of amino acids into local structural environments [91] [92] have been

used.

Programs such as PREDATOR [95] and NNSSP [93] have achieved accuracies of 75 %
and 73.5 % (Q3) respectively. Web servers exist that allow online prediction of protein

secondary structure using these methods [117] [118].

2.4.6 Hidden Markov Models

Hidden Markov Models (also known as discrete space models) have been applied to the
problem of protein secondary structure prediction by a number of researchers [96] [97]
(98] [99] [100] [101] [102] [103].

A Hidden Markov Model (HMM) is a probabilistic finite state machine used to model
stochastic sequences. A HMM contains states and connections between states as well
as state transition probabilities. HMM'’s could be designed by hand, or designed algo-
rithmically. Once a suitable HMM has been designed, it is used to predict the most
likely output sequence (secondary structure) to be associated with the input sequence
(primary structure). The HMMSTR model [103] claims an accuracy of 74 % (Q3).
In a recent result, OSS-HMM (Optimal Secondary Structure Hidden Markov Model)
[96] achieved a Q)3 score of 68.8% when applied to single sequences, and 75.5% when

multiple sequence alignments are used.

2.4.7 Support Vector Machines

Support Vector Machines (SVM) are some of the latest computational intelligence tech-
niques that have been applied to the problem of protein secondary structure prediction
[104] [105] [106] [107] [108] [109].

In the SVM approach, the input space (primary sequence) is mapped to a higher-
dimensional feature space through the use of a kernel function. The idea is that the

kernel function is such that the features are linearly separable in the higher-dimensional
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space. As such, SVM’s are able to represent complex nonlinear functions. The other

Chapter 2 Background

advantage of SVM’s are that efficient training algorithms exist. Accuracies of up to
77 % (Q3) accuracy have been achieved [105] using SVM’s and multiple sequence

alignments.
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Chapter 3

PATTERN RECOGNITION
ALGORITHM

This chapter and the next describe the pattern recognition algorithm that was de-
veloped to solve the problem of predicting protein secondary structure from protein
primary structure. In this chapter, the method is outlined and discussed, whilst the

next chapter describes the method formally (mathematically).

A pattern recognition method was developed that associates an output string with an
input string, where the elements of the input and output strings are defined over two

(possibly different) alphabets.

In the rest of this document, the method that was developed is described based on
its applicability to protein secondary structure prediction. However, the method is
independent of this particular problem and can be applied to other problems with a

similar structure as well.
3.1 APPROACH

The aim of the pattern recognition algorithm (also referred to as the technique, method

or predictor) is to accurately predict the unknown secondary structure of a protein for
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Chapter 3 Pattern Recognition Algorithm

which only the primary structure is known. Although it is useful to have such a
algorithm, the end goal is to discover and gain insight into the role that single amino
acids or small sequences of amino acids play in the formation of protein secondary

structures. The algorithm is an enabler for this discovery process.

Before the algorithm can be used to make predictions, it is trained on a set of proteins
for which both the primary structure and secondary structure is known. This set of
proteins is known as the training set. The training phase occurs only once, before any

predictions are made.

Once the training phase is completed, the algorithm can be used to predict the sec-
ondary structures of proteins with known primary structure. This is known as the
prediction set. Since a prediction can be made for proteins with unknown secondary

structure, this application of the algorithm is of practical importance.

In order to establish the performance of the system, a prediction set is used as a training
set (both the primary and secondary structures for the proteins in the training set are
known). The secondary structures of the training set are compared to the predicted
secondary structures as given by the system. The percentage of correctly predicted
secondary structures is used as an indication of the performance of the predictor (as
defined in Section 2.4.1.1).

The pattern recognition algorithm is based on extracting statistical information re-
garding the protein input-output mapping (the primary structure serves as input and
the associated secondary structure as output). Clearly, it is possible for the same in-
put pattern to map to different output patterns. It is also possible for different input

patterns to map to the same output pattern.

For an input pattern of length N, 20V (217 if edges are included) different input
patterns exist. As N increases, a large amount of training data is required to cover the

complete input space (the “curse of dimensionality” [80]).

The algorithm tries to eliminate the need for such a large amount of data in two ways:
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e It groups together input patterns that behave similarly. If there are m such

groups, a total of m¥ different input patterns exist. In the case that m < 20,

less training data is required.

e If an output pattern should be predicted for an input pattern that does not exist

in the database, the algorithm tries to find input patterns in the database that

are somehow “similar” to the input pattern in question. To do this, a metric

needs to be defined that indicates the distance between patterns.

The different steps during training, prediction and evaluation are illustrated in Figure

3.1 and will be discussed in the sections that follow.

Training
Training Data Extract Windows Map to groups Create database
@6® (060 )
#|N|E #|u N
N|E|N ujlnN|u
Ll LUl HE Sk
OO0 N Sfels
E
N 'l"l"l' Hlo|o|o
€ I{foJo]o
ulnN]u E|l1]o]o
BloJo]o
clo]o]o
Extract Features TlOo|1]1
s|ojojo
000 b= o]l
Prediction
Prediction Data Extract Windows Map to groups Measure distances Epsilon Create score matrix Assign secondary
elimination structures
YV
S OCo o[l Ak 3alls S8
11l 10k A5\ Ak Al
#ALAl 2132 G|lo]Jo]o
fl[l!l ll’l' ALAIU 3|23 G|lo]o Hlo|o|oO
R T.T. woe |2]3 ]2 Hlofo i Jo]o]o
Ala|u Ifofo E|1]o|1
E|lo]|1 Blofofo
Blo]oO clojo]o
clo]o TI11]1
Tl1]0 s|ojo]o
S|o|o
b R
Evaluation
Evaluation Data Compare secondary
structures
600} Qascore
Figure 3.1: Steps in the pattern recognition algorithm
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Chapter 3 Pattern Recognition Algorithm

3.2 TRAINING

In the training phase, the objective is to build a database with relevant information

that can be used for prediction.

The method is perhaps best illustrated by means of an example. Figure 3.2 shows the
primary and associated secondary structure of the last 21 amino acids (number 381
to 401) in the molecule Creatine Amidinohydrolase. The primary structure of these
amino acids are NENGAENITKFPYGPEKNIIR (each letter indicates an amino acid
residue) with associated secondary structure ETTEEEECCCSCCSHHHHEEC (each
letter indicates a secondary structure type). This small set of data will be used to
construct the database. In practise, this process will be applied to all amino acids in

all the proteins in the training set.

A A A A R N R R

Figure 3.2: Primary and secondary structure of amino acids 381 to 401 in the molecule

Creatine Amidinohydrolase

3.2.1 Step 1: Extracting Windows

The first step is to extract “windows” of amino acid residue sequences. These windows
represent the input sequences that will be processed in order to create the patterns
in the database and which will subsequently be used in the prediction process. This

process of extracting windows is used by other prediction algorithms as well [74] [78].

The first decision is the size of the window (V). In the case of the method described
here, smaller window sizes are less computationally expensive than larger window sizes.
Although one would expect that larger window sizes would in general lead to better
prediction, the truth is that the prediction accuracy is not only influenced by the
window size, but also by a variety of other variables. One of the aims of this dissertation

is to study the interplay of these variables.
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Figure 3.3 illustrates how windows are extracted from the primary sequence. Note that

each window is still associated with one of the secondary structures.

Once a suitable selection of the window size has been made, the association between the
windows and secondary structures can be made in various ways (which window should
be assigned to which secondary structure? - the problem should become immediately
apparent when trying to imagine windows with even sizes). In the case of the example,
each window consists of three (N = 3) amino acids: the original amino acid that was
associated with the secondary structure (which for the purposes of discussion will be
called the central amino acid) and the amino acids directly to the left (I = 1) and to the
right (r = 1) of it. However, three different configurations are possible: (I = 2,r = 0),
(l=1,r=1)and (I=2,r=0).

| # LOCE XX XA XE XXCXXOXEXE XXX EX XX XE L

—\— e — M e e

A N R R R R A A A A A A AR A

Figure 3.3: Extracting windows of amino acids from the data. The example illustrates
a window with N =3 (I=1,r=1)

The question also arises how to treat windows on the “edges” of the residue sequence.
One solution is to replace all residues that are “missing” with a placeholder. For the
purpose of this discussion, the placeholder will be called an edge and will be denoted
by the # symbol. Conceptually, an edge behaves exactly like a 215 residue (with the
restriction that a sequence of consecutive edges will never be found in a configuration
where both the two residues to its sides are not edges). In the example, the first (#NE)
and last (IR#) windows are examples where edges occur. In general, all windows will
contain at least one non-edge (the central amino acid) and up to N —1 edges (although

this is rarely the case).
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3.2.2 Step 2: Assigning Groups to Windows

The second step is to decide on a relevant “grouping strategy”. Conceptually, the
grouping strategy represents a mapping from an “input space” (residue space) to an
“output space” (group space). The idea is that the problem is transformed to a space

where the complexity in solving the problem is reduced.

Each window is mapped to a group vector. Each group vector consists of a number
of group labels. The requirement is that there is at least one group label in a group
vector (it is imperative to understand the difference between a group vector and group
label). The mapping (L) can be as simple as an identity mapping (y = L(T) = T,
where T represents the input sequence and 7 represents the group vector), in which
case each amino acid residue type is mapped to a group label and the group vector is
exactly the window. This case may be useful when other parameters in the algorithm

are compared, in which case this step can be omitted.

Figure 3.4 shows an example mapping that will be used for discussion. In this example,
residues with similar characteristics are grouped together in six different groups. For
instance, the amino acid residues that are both polar and uncharged (N, C, Q, S an T)
are all assigned the same group label (U). Likewise the other group labels are assigned
to different amino acid types, namely positively charged (P), negatively charged (N),
aromatic (Ar) and aliphatic (Al). In this example, edges belong to their own group

(#).

Label Group Amino Acid
T Polar, Uncharged NCQST
? Polar, Positively Charged RHK

T Polar, Negatively Charged DE

T Non-Polar, Aromatic FWY

T Non-Polar, Aliphatic AGILMPV
T Edges #

Figure 3.4: A grouping strategy example

Figure 3.5 illustrates how the windows are mapped to group vectors. Each residue is

replaced by its corresponding group label. As an example, the window ENG is replaced
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Chapter 3 Pattern Recognition Algorithm

with the group vector NUAI. Note that each group vector is still associated with a

secondary structure.

Y VYV VY vV9YYYYVYVYVVYVYVYYYVYVY VYV
#|IN|E|IN|G|A|E|IN|I|T|K|F|IP|Y|G|P|E|K|N|I |1
N|E|IN|G|A|E|N]|I]|T|K|F|P]Y|G|P|E|IK|IN]I]I|R
EIN|G|A|E|N]I|T|K|F|P]Y|G|P|E|KIN|I|I]|R]|#
\NANNNANANANANANANAAAAANNANANANA
U A A A A A A A A A A A A A A A A A A 3

# u N uilaA |A N U Al | U P | Ar PlA | ALl P N P u | A |A
Al | Al N ujlA |uU PlAr] PlA|] AL} P N P UjJA |A | P
N uijaA |A N UuljA |uU P | Ar PlA | A| P N P UujlA |A | P #

A O A R A A A R R A AR R R AN A
EOOEEEECEOEEEEEEOOEEE

c
z
c

Figure 3.5: Assignment of group labels to windows

It is important to note that this is just one scheme whereby windows are mapped
onto group vectors. Similar grouping schemes could easily be defined (consider for
instance schemes where residues with similar molecular weights are grouped together).
In fact, much more complex grouping strategies could be created where the residues
in a window are not individually mapped to group labels but are used to create more
complex group vectors. This makes it possible to have more (or fewer) group labels
than original residue types. One objective of this dissertation is to find a mapping

function that optimizes performance of the prediction algorithm.

3.2.3 Step 3: Deciding on a Feature Variable

The next step is to decide on the feature variables that will be associated with each
group vector - secondary structure pairing. The feature variables represent those dis-
tinguishing features in the training set that the prediction of secondary structures in

the testing set will be based on.

Although any number of different types of feature variables can be used, it was decided
that the only feature variable that will be considered is the secondary structures that
occur in the training set (or more precisely, the number of times that a given secondary

structure occurs in association with a group vector).
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3.2.4 Step 4: Creating the Database

In this step, a database is created which associates each unique group vector with
the set of feature variables (in this case, the number of occurrences of each secondary
structure for the particular group vector). Figure 3.6 shows the corresponding database
that results for this example. Since there is only a small amount of training data,
most group vectors are associated with a single secondary structure. The exceptions
are NUAI, where both the secondary structures E and T are found once, and UAIAI,
where the secondary structure E occurs twice (and is thus considered “strong” evidence,
relative to the other data in the database). If more training data were available, it
should be obvious that the database matrix would be much less sparsely populated

(depending on the grouping strategy of course).

Ajafajafaafafa|N|IN|P]PfP]lPlUulUuju]|ul]®#
AjafN]|PlPlulaPlulP|Aa]AafN]JU|lAa|A|IN]|]P]|U
NfPlufN]#]P]P|AalAa|jula]lP|P|A]A]JU]|U]A|N

G|lo|jojojJojojojojojojo]jojojojojojJo]jojoO}]oO
Hljojojojt1jojojojofjojt1jojojtjt1jojojojojo

lfojojojojojojojojojojojojojojojojojojo
E|jt1t|]1]|]1]0|JOojOojojo}jtjojojojojoj2]ojojo]t1
B|oJjojJojojojojojojojojojojojojojojojojo
c|jojojojoftjt1jofjtjojojtjojojojojtjoyjt1j]o
Tlojo]JojojJoJojoJo]Jt]jojojJojOojoOjOjoOf1]|oO}o
s|jojojojojojojtjojojojojtjojojojojojofjo

NN A RN R RN R A RN RN R A

Figure 3.6: Database of scoring values

3.2.5 Decisions required in the training phase

This concludes the training phase. The decisions that need to be taken in the training
phase are:

- choice of window structure (N and corresponding [ and r),

- the grouping strategy and mapping scheme (L), and

- the choice of feature variables.
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3.3 PREDICTION

In the prediction phase, the database that was created in the training phase is used to
predict the secondary structures that should be associated with a sequence of amino

acid residues.

The example that was started in the previous section will be continued in this section.
A prediction will be made for the residue sequence LINHA. Note that amino acid
residues L. and H did not occur in the training data, yet a prediction will be made for

the sequence.

3.3.1 Steps 1 and 2: Extracting Windows and Assigning Groups to Win-

dows

As was the case with the training data, the first two steps are to extract windows and
assign group vectors to the windows. Figure 3.7 illustrates how this process would take

place for the residue sequence LINHA.

Figure 3.7: Extracting windows and assigning group vectors to an example input pat-

tern

Note that the same window structure (NN, [ and r), grouping strategy and mapping
function (L) is used in the training and prediction phases. Also note the insertion of

edges in the windows of the prediction data.
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3.3.2 Step 3: Distance Metric

In order to compare the group vectors in the database with the group vectors that are
assigned in the prediction phase, a distance metric (d) is required. The distance metric
gives an indication of how “near” or similar one group vector is to another group vector.
The idea is that group vectors that are near each other in the group space should prefer

to form the same secondary structures.

An example of an elementary distance metric is one that simply counts the number of
differences in corresponding group labels in the group vector. The minimum distance
between two group vectors is 0 (in the case that the two group vectors are exactly the
same) and the maximum distance is equal to the number of group labels in the group

vector (in the case that the two group vectors differ in every group label).

The distance between each group vector in the prediction data to every group vector in
the database is now calculated based on the metric. Figure 3.8 tabulates the distances
for the example data using the elementary distance metric defined in the previous

paragraph.

Z 7
c o
zZzC
o C
C #

N
Al | Al N P P u | A P U Ar | Ar Al | Al

#AIA 2123|333 |2]|3|2|3|2|3|3]2|1]2]|3|3]2
AIAIU 1111212223323 |3|3]3|2]1]2]3]3
AIUP 211]2|2]2]|0|2]3|2|3|3|2]2]2|3]|3]|3|3]2
UPAI 3133|2123 |3|]2)|2|2]|2|3]|3|2|1]2]2]1]83
P Al# 212]|3|3]2]|3|2]|3|3|3|2|2]2]|]2|2]2]|3|3]83

Figure 3.8: Distance table between the group vectors in the database and the group

vectors in the prediction set

There is potentially much to gain by using more complex distance metrics. Such dis-
tance metrics may for instance be based on a matrix that defines distances between
individual group labels and/or assigns weights to contributions of group labels at dif-
ferent positions within a group vector. One of the objectives of this dissertation is to

find a suitable distance metric.
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Chapter 3 Pattern Recognition Algorithm

For each group vector for which a prediction needs to be made, the group vectors in
the database that are near enough to it are retained. This is done by eliminating all
the group vectors in the database that have a distance greater than a certain value.
This value will be called epsilon (€). The features of the group vectors that survive the
elimination process will be used to classify the secondary structures of the prediction
group vectors. Figure 3.9 shows the group vectors that were retained for the exam-
ple case, with their associated feature variables (which the reader would recall is the

number of occurrences of each secondary structure). An epsilon value of 1 was used.

Of particular interest in the example is that there is no group vector in the database
that is within a distance 1 from the group vector PAl#. Also note from Figure 3.8

that the group vector AIUP for which a prediction needs to be made also occurs in the

database.

#Al Al AlAlU AlUP UPAI PAl#

U Al Al Al u Al Al u u

Al Al Al N Al Al U Al P

Al N P u U P P Al | Ar
Glo Gglofo]ofo Glo]o glofo G
H|o Hlofo]ofo Hlo|o H|lo|o H
I |o ifolofo]o 1{o]o 1 lofo |
E|2 E| 1 1 110 E|l1]0 E|l2]0 E
Blo Blofo]ofo Blofo Blo|o B
clo clofofof+ clof+ cloft c
T]o Tlolo]o]o Tlo]o Tlofo T
s|o slofo]ofo slofo s|ofo S
S |2 St 1]1]1 Y11 S 2|1 S|o

Figure 3.9: Feature variables in the database that contribute to the prediction

3.3.3 Step 4: Classification Function

From the set of retained group vectors in the database that are “near” enough to the
group vector for which a prediction needs to be made, a score matrix is created. The
scores in the matrix are an indication of the belief that a certain feature (in this case

secondary structure) is associated with the prediction group vector.

The function that assigns the scoring matrix is known as the classification function (¢).

The classification function can be based on a number of attributes of the retained group
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vectors: the number of times a particular group vector occurs, the number of times a
particular group vector has a certain feature variable and/or the distance of of these
group vectors to the prediction group vector. The rationale behind the classification
function is that it allows different aspects of the feature variable and group vectors to

be included in the creation of the score vector.

An example of a scoring matrix that results from an elementary classification function
is shown in Figure 3.10. The classification function in the example simply adds the
occurrences of all the secondary structures over all the group vectors that qualify. One
drawback of such a scheme is that it does not take into account the distances from the
retained group vectors to the prediction group vector. For instance, note in the scoring
matrix that the score for both E and C for the group vector AIUP is 1 (which could
mean that they are equally likely to occur). Analysis reveals that the “vote” for E
was contributed by the group vector AIAIP in the database which is a distance 1 away
from the AIUP while the “vote” for C was generated from the group vector AIUP in
the database is obviously a distance of 0 away. It could thus be argued that it would
be more probable for the secondary structure C to occur than the secondary structure
E.

*
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w|d|O|lw|m|—-—|T|D
o|lo|lo|lo|Ndv]lo|o]o
olo|=|o|lw]|o]|o]|o
olol=|o|=]|o]|o]|°
o|lo|=|o|dv]o)|o]o
o|lo|lo|o|lolo]|o]|e

LU

Figure 3.10: Assignment of secondary structures by means of a score matrix

A solution is to favour the contributions of group vectors which are nearer to the
prediction group vector, perhaps by means of some weighting system. In such a case,
the previous step of filtering out samples from the database above a certain € value may

become unnecessary, since it could be taken care of by the weighting system. Different
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Chapter 3 Pattern Recognition Algorithm

classification functions will be considered in the dissertation.

3.3.4 Step 5: Assignment Function

The final step is to assign secondary structures to each group vector based on the score

matrix. This is done by means of an assignment function (¢).

An elementary assignment function which simply assigns the secondary structure with
highest score to a group vector is illustrated in Figure 3.10. In the case where several
secondary structures have the same (non-zero) score, the one with the highest prior
probability of occurring is selected (as is the case where E is assigned to vector AIUP,
since it has a higher prior probability of occurring than C). In the case where all
secondary structures have a score of zero, the H structure is assigned, since it has
the largest prior probability of all secondary structures (as is the case for group vector

PAl#). An alternative to assigning H, is to flag the situation and to make no prediction.

Note that the assignment function could be made more complex. For instance, the
assignment of a secondary structure to a particular group vector could depend on the
scores for secondary structures next to it. For instance, the alpha helix secondary
structure requires four consecutive residues to form part of the helix. In the case where
a single helix secondary structure is predicted with non-helix neighbors, it may be
possible to “filter out” the helix structure and replace it with another structure. Such

techniques have been applied successfully in [111].

3.3.5 Decisions required in the prediction phase

The decisions that need to be taken in the prediction phase are:
- choice of distance metric (d),

- value of epsilon (e),

- classification function (¢), and

- assignment function (¢)
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Chapter 3 Pattern Recognition Algorithm

3.4 EVALUATION

In order to determine the performance of the algorithm, an evaluation phase is required.
A testing set of proteins, where both the primary and secondary structure are known,

is used for this purpose.

The secondary structures that are predicted in the prediction phase are compared to
the actual known secondary structures of the testing set. The percentage of correctly
predicted secondary structures is used as an indicator of the performance of the pre-

dictor.

3.4.1 Prediction Region

For the purposes of the dissertation, the concept of a “prediction region” will be defined.
The prediction region is the set of secondary structures that will be predicted by the
prediction algorithm and is determined by whether or not edges (see Section 3.2.1) are

used in the prediction process.

In the case that edges are used, a secondary structure prediction will be made for every

amino acid residue in the data set.

Note that the leftmost [ and rightmost r windows for every protein primary sequence
will contain edges. Thus, if edges are not used, those windows cannot be constructed
and no secondary structure prediction can be made for the corresponding residues.
If the length of the primary structure sequence is n, the prediction process for the
innermost n — [ — r residues will remain unaffected. In this case, the prediction region

is defined as this innermost n — [ — r secondary structures that will be predicted.

3.4.2 The ()-score

The @Q-score is defined as the percentage of correctly predicted secondary structures in

the prediction region (see Section 2.4.1.1).
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Chapter 3 Pattern Recognition Algorithm

Suppose that in the example, the real secondary structure sequence associated with
the sequence LINHA is TEEHH. The predicted secondary structure sequence in the
example is EEEEH. The algorithm correctly predicted secondary structure elements
in positions 2, 3 and 5 and incorrectly predicted the secondary structure elements
in positions 1 and 4. The algorithm thus correctly predicted 60% of the secondary

structures. Since this prediction was made over 8 classes, it follows that Qg = 60%.

3.5 PRACTICAL IMPLICATIONS

The algorithm presented in this chapter is conceptually easy to understand and should
be straightforward to implement. It should be pointed out that programmatically a

number of considerations should be taken into account.

For instance, the step described in Section 3.3.2 requires that every group vector pattern
in the database is compared to every group vector in the prediction set. This can be a
computationally expensive step, especially if there are thousands of patterns or if the

distance metric is complex.

Although it will not be discussed here, it should be noted that programmatic optimiza-
tions can be made to reduce the amount of computational power required to complete
certain steps in the algorithms. Certain steps can also be combined with the same

effect.
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Chapter 4

MATHEMATICAL
FORMALISATION

This chapter provides a mathematical formalisation of the concepts and algorithm

described in the previous chapter.
4.1 PROTEIN STRUCTURE

Let R represent the set or alphabet of residue labels, defined by

17 ) ) ) 717171’h‘7'1’1’
R:{aa arg, asn, asp, cys, gln, glu, gly, his, ile, leu } (4.1)

lys, met, phe, pro, ser, thr, trp, tyr, val, edge

For the purposes of the mathematical explanation, the three letter abbreviations for
the amino acid residues will be used in order to distinguish the residue class labels from
the variables defined. In the rest of the document, the single letter abbreviations may
be used as class labels, given that they are clearly distinguishable from other variables
when read in context. Note that the “edge” was also defined as one of the possible

residue class labels.
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Chapter 4 Mathematical Formalisation

Let P represent the primary structure of a protein. P is a vector or string over R
defined as

P=x= [I‘l,xg, xn],xl S R, (42)

where z; is the i amino acid residue in the protein and n is the number of amino acids

in the protein.

Let K represent the alphabet of secondary structure class labels. Two special instances
of K are defined as

K { 310-helix (G), a-helix (H), 7-helix (I), Sheet (E), } (43)
Bridge (B), Turn (T), Bend (S), Coil (C)
and
K?* = {Helix (H), Sheet (E), Coil (C)}. (4.4)

The analysis in the dissertation is mostly performed with K = K® Cases where
K = K3 is used will be highlighted and are used mostly to compare results with the
published literature.

Let S represent the secondary structure of a protein. S is a string over K defined as

S = g - [y17y27 yn]vyl € K7 (45)

where y; is the secondary structure associated with the i amino acid residue (z;) in

the protein.
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Chapter 4 Mathematical Formalisation

For the sake of the analysis, a protein is thus completely characterized by the variables
P and S. The notation P and S will be used to indicate the primary and secondary

structures for a set of proteins, where

F: [P17P27...Px], (46)

and

S =[S, Sy, ...5x], (4.7)

—train —=test —test

S, P and S

will be used to indicate the primary and secondary structures of a training and testing

and X is the number of proteins in the set. The notation Ptmm

set respectively.

Where necessary, a double subscript is used to indicate a construct associated with a
specific element in a specific protein. Thus z; ; is the j* amino acid residue of the "
protein in the set and y; ; the j” secondary structure of the i protein in the set. n;

denotes the length of the i** protein.
4.2 WINDOW

Define the window w; with leftward extension [ and rightward extension r around

amino acid residue x; in primary structure P as

@z('l’r) =w(Pi,lr) = [x;'—l’ - Z+T]7 l,r € No, (4.8)

where
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Chapter 4 Mathematical Formalisation

7 = { o Jelbn (4.9)

edge j<lorj>n

The length of the window, N, is defined by

N=I+r+1. (4.10)
4.3 GROUP ASSIGNMENT

Let G represent an alphabet of group labels, defined by

G ={Gy, G, .G} (4.11)

where m is the number of group labels. Let § denote a group vector, given by

g = [917927 gp]v.gz €G. (412)

p denotes the length of the group vector. Let L be an operator that maps a window

@El’r) to a group window g,

o) g (4.13)

The notation card() will be used to indicate the cardinality or number of items in a set.
There can be card(R)™ = 21% different window patterns of length N and m? different
types of group vectors of length p. It is believed that a good choice is to choose m and
p such that m? < card(R)" (see Section 3.1). In most cases, p will be chosen such that
p=1orp=N. With p = N it follows that m < card(R) represents a good choice.
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Chapter 4 Mathematical Formalisation

With p = 1 it follows that m < card(R)" is a good choice. In this case it also expected
that m > card(R), thus card(R) < m < card(R)" is a likely choice.

4.4 DATABASE

The output of the training phase is a “database” of group vectors that occur in the

tram

training set with an associated set of features. Windows w;"*" are extracted using the

tram

window extraction function w and mapped to group Vectors g;i"" using the mapping

trmn

779" is the secondary structure yi

operator L. The feature associated with each g;’;

Let am be a count vector with length equal to the cardinality of K

61']' = [0i1,0i 2, ..-0,

. z,j,CaI‘d(K)]’ (4.14)

where

X n,
Oi,j,k - Z Z Ur.s,k» (415)

r=1 s=1

and

(4.16)

1 ifgl'e™ = gire™ and indexg (yi'é™") = k
Urs,k =

0 otherwise

O, ; thus represents the number of times group vector g, ; is found in a configuration

where it is associated with the different types of secondary structures.

Let A represent the database of unique group vectors in the training set with their

associated count vectors
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Chapter 4 Mathematical Formalisation

A= {<§i,j7 Oij)}- (4.17)

The construction of the database concludes the training portion of the algorithm.

4.5 DISTANCE METRIC

Let 0 be a distance metric that measures the distance between two group windows g,

and g, that is

day = 0a(Gs) = 0(Ga> Tp)- (4.18)

The distance metric should be such that d,, > 0, a = b — d,p = 0 and dgp = dp 4.
Distance metrics of interest that are considered in the dissertation are defined in the

sections that follow.

4.5.1 Distance Metric 1

The distance between two group vectors, g, and g, is defined by

1 _
d) = 0"(G,,9,) =Y _ hi, (4.19)
i=1
where
0 ai — i
=9 Je (4.20)
1 otherwise
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Chapter 4 Mathematical Formalisation

4.5.2 Distance Metric 2

The distance between two group vectors, g, and g, is defined by

da?lz gaagb sz X (421)

where h; is defined by Equation 4.20 and w; is a weight associated with h;. Without

loss of generality, w; can be restricted to

e [0,1]. (4.22)

It should also be clear that metric 1 is a special case of metric 2. By letting w; = 1 for

all 7, metric 1 is derived from metric 2.
4.5.3 Distance Metric 3

Let U be a matrix of dimensions card(R) by card(R) where element wu; ; indicates a
value associated with a substitution of residue type R; with residue type R;. This
distance metric is only used under the assumption that L is the identity operator (the
elements of g is thus taken from the set R). The distance between two group vectors

g, and g, is defined by

3
d) = 09(g,,7,) Z wihi, (4.23)
where
hi = uindeXR(ga,i)uindeXR(gb,i)’ (4'24)
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Chapter 4 Mathematical Formalisation

and w; is a weight as before. It should also be noted that metric 1 and metric 2 are

special cases of metric 3.

4.6 CLASSIFICATION

test

Prediction of the secondary structure associated with residue ;5" proceeds with ex-

tracting the elements in the database that are somehow “near” gt‘”t

AZ’J - {(gknak) S A|5(§k’g§6;t) < €€ Z O} (425)

Let o’ be the number of elements in A%/, that is

o = card(A"7). (4.26)

Let ¢ be a classification function that assigns a score vector 5; ; associated with amino

test

acid ;5. 5;; has a length equal to the cardinality of K, and

515 = O(A4). (4.27)

4.6.1 Classification Function 1

The classifier adds the counts for all qualifying group samples in the database, given
by

1 i _
s =00AY) = > O (4.28)
(?kvzjk)e‘AiJ
The score vector could be normalized by dividing by anrd Si k-
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4.6.2 Classification Function 2

The classifier assigns a score based on the the counts of all group samples in the

database with minimum distance to the group in question (even a distance of 0), given

by
51(,2]') = ¢@(A) = Z 2.0k, (4.29)
(Gk,Or)EA™
where
1 6(gs, 915" < 6(3,, 95"V (9,,0,) € AW
2 = (gk; g'L,] ) — (gac g'L,j ) (ga: ) (430)
0 otherwise
4.6.3 Classification Function 3
The classifier assigns a weight wy, to each Oy, in the database, given by
ggij) = ¢® (A7) = Z wi Oy (4.31)
(gk 7616 ) €ALI
The weight is a function of the distance between g, and ;%"
wy, = E(6(755",T1))- (4.32)
Without loss of generality, £ can be such that wy, is restricted to
wy, € [0, 1]. (4.33)
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It should be noted that classification functions 1 and 2 can be derived from classification

function 3 as special cases.

4.6.4 Classification Function 4

Let m be the distance of the nearest element in the database to g;

—test
i, that is

m= 5(§k7 gf,e;t)v (434)
for some k, where
(G Tis") < (G0 Gi7 )V (T2 Oa) € A™. (4.35)
The classification function is given by
s =0 = 3 20 (4.36)
(glwék)eAi’j
where
1 5 - , —test < m + d
0 otherw1se
for a chosen value d.
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4.6.5 Classification Function 5

—test

i, as given by

Let m be the distance of the nearest element in the database to g:
Equation 4.34.

The classification function is given by

O o0ty = S 50, (4.38)

(gkvzjk)€‘4iJ

where

(4.39)

{ 1 8(g,, 35" <mxc
2l =

0 otherwise

for a chosen value c.

4.7 ASSIGNMENT

Let y,’; oest ¢ K be the predicted class label associated with amino acid JzteSt Let 1 be

an assignment function that maps a vector of score vectors s; ; for protein with primary

structure P to a set of predicted labels y,’; test

gt = p({Sin, k € [1,n4]}). (4.40)

7]

! test

Assignment of y,”"" is thus dependent on the score vectors over the whole protein F;.

This makes it possible to apply “smoothing” techniques. For instance, if a single alpha

! test

helix secondary structure is initially predicated for y,;" using a maximum likelihood

predication based on 5; ;, but different adjacent secondary structures is predicted, the

adjacent score vectors can be analysed to change the predication of y;’; test
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A specific simplifying case is to let y;j-e‘gt be dependent on 5; ; only, that is

Uiy = Vsimp(Si)- (4.41)

In this case, a suitable choice is

@Dg%p(?i,j) = argg (argmax(3;;)). (4.42)
4.8 EVALUATION

The @-score defined in Section 2.4.1.1 will be used for evaluation. The @-score is

redefined in this section in terms of the variables defined in this chapter. Define

1 oy =y,
Zl.:{ Yi="Yi (4.43)

0 otherwise

Define the Q-score for a protein with secondary structure S and length n as

Q(S) = —Z?nl =3 (4.44)
Define Q* as
Q'(9) = 2= (4.45)

. . . .
where n is the number of secondary structures for which no prediction was made. In

the case of K = Ky we will refer to ()g and ()5 and in the case of K = K3 we will refer

to @3 and (5.
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For a set of proteins with secondary structures S, the Q-score is defined in terms of

the total number of correctly identified secondary structures over all the proteins

X .
B D i Do 2
T X

Q(5) S (4.46)
Similarly,
= Zfil D it %ij
Q*(S) = = 4.47
) > imr (ni —mny) ( )

4.9 VARIABLES DEFINED

The variables defined in this chapter are summarized in Table 4.1.

4.10 OBJECTIVE

The objective is to find [, r, G, L, 4, €, ¢ and 9 for that for a general P and associated

S maximizes the value of Qg(S).

Specifically, the three research questions addressed are:

e How to group amino acid residues? (I, r, G, L)
e How to measure the distance between group vectors? (4, €)

e How to classify and assign secondary structures based on distance metrics and

score vectors? (¢, 1)
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Table 4.1: Summary of Variables Defined

Variable

Description

R

Set of residue labels

K

Set of class labels

KS

Set of class labels (8 classes)

K3

Set of class labels (3 classes)

T

Single amino acid residue

Y

Single secondary structure

Porzx

Primary structure of a protein

n

o

=h
<

Secondary structure of a protein

Length of a protein

Set of primary structures

Set of secondary structures

Number of proteins in a set

|| Wl |3

Leftward extension of a window

<

Rightward extension of a window

o
=
=
2

Window

Length of a window

Window extraction function

Set of group labels

Number of group labels

Group label

Group vector

Length of a group vector

Mapping between window and group vector

Count vector

Database of group vectors with associated count vectors

S

Distance between two group vectors

Distance metric

Weight

Classification function

Score vector

Weight function

Assignment function

Qe |Mm|v|s g > & n|Qn|B (D= |3 |QlE|=

-score

<

(-star-score

3

Number of residues for which no prediction was made
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Chapter 5

RESULTS

5.1 INTRODUCTION

This chapter presents the results obtained by the algorithm described in chapters 3 and
4 as well as other experiments that were conducted. The results are not necessarily
described in the chronological order that they were executed, nor are all the experiments
that were conducted described in this chapter. Rather, the most prominent experiments

were selected and are described in such a way that it forms a “natural progression”.

Section 5.2 describes the data that was used in the experiments. The rest of the
sections in this chapter each describes a series of experiments that were conducted.

The experiments can be divided into three main sets:

1. The first category of experiments deals with the general properties of the data
that is being analysed. In the “prior probabilities” experiment (Section 5.3.1), the
prior probabilities for the different amino acid residues and secondary structures
as well as their joint probabilities are determined. It is shown that certain amino
acids have an affinity for certain secondary structures, although this affinity is
not strong. These results explain the limited success that was obtained using
first and second generation methods, as summarised in Chapter 2. The residue

prior probabilities are also compared to the probabilities as expected from the
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Chapter 5 Results

genetic code. It is noted that in some cases there may be influences of natural

selection acting on the probability with which certain amino acids form.

In the “structure lengths” experiment (Section 5.3.2), statistics about the lengths
of different secondary structure elements are gathered and discussed. Alpha
helices and beta sheets form the longest chains of consecutive sequences and
can be seen as the main structural components of proteins. The other types of

secondary structures are typically short in length.

In the “edge analysis” experiment (Section 5.3.3), an analysis is made of the
amino acid residues and secondary structures that occur most regularly at the
edges of a protein. The coil secondary structure is almost always found at the
edges of a protein. There is also evidence to suggest that methionine occurs more

regularly than expected at the start of protein sequences.

2. The second category of experiments deals more specifically with the properties
of the mapping from the sequence of amino acid residue types to the sequence of

secondary structures.

In the “window structure” experiment (Section 5.4.1) and the subsequent “vary-
ing window size” experiment (Section 5.4.2) it is shown that larger window sizes
should theoretically have more predictive power than smaller window sizes. This
is practically limited by the amount of training data available, since an enormous
amount of training data would be required to completely cover all the possible
amino acid combinations that could be observed for the larger window sizes. A
method thus needs to be devised by which to compare different amino acid se-
quences and to use “similar” sequences to make a prediction. All the subsequent
experiments deal with multiple facets of this problem. These two experiments
also show that the information about which secondary structure would form for
a particular sequence of amino acids is distributed across the whole window, al-
though there is a tendency for more central amino acids to contribute more to
the secondary structure. The so called “transfer phenomenon” is observed and

an attempt made at explaining it.

How to combine different predictions based on the non-similar target and train-
ing sequences is investigated in the “classification function” experiment (Section
5.4.3). It is shown that indeed a large performance benefit can be achieved by
using non-similar sequences and larger windows. However, it is uncertain how
many such sequences should be allowed to contribute to a single prediction. This

question is resumed in a later experiment after a refinement of the meaning of
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“similarity” between sequences has been made.

3. The third category of experiments aims to develop algorithms in which the map-
ping between a sequences of amino acids residues and the secondary structure

can be studied in detail.

Amino acid residue types that behave similarly are identified in the “grouping
strategies” experiment (Section 5.5.1). The findings are consistent with findings
that have been made in the literature, although the means by which the results
are achieved are unique. Although the experiment indicates that different amino

acids behave similarly, it does not show the degree to which they do so.

In the “substitution matrix” experiment (Section 5.5.2), the degree to which
different amino acids behave similarly is quantified. The experiment supports
the findings made in the previous experiment, but does show that substitution
between two amino acids is not totally commutative, i.e. if amino acid A can be
substituted with amino acid B in a particular sequence, it does not necessarily

imply that amino acid B can be substituted with amino acid A.

The substitution matrix is used to develop a distance metric in the “distance
metric - substitution” experiment (Section 5.5.3). The resulting performance is
comparable to the best performance achieved in previous experiments; however
much fewer similar sequences (under the new distance metric) are required to
achieve this performance. Another distance metric based on the BLOSUM sub-
stitution matrix is developed in the “distance metric - BLOSUM” experiment

(Section 5.5.4) and achieves similar performance.

Given the new distance metric developed in the “distance metric - substitution”
experiment, a new look is taken at the classification function in the “adaptive
classification function” experiment (Section 5.5.5). It is found that the number of
similar sequences that should contribute to the prediction of a particular target
sequence depends on the distances of those sequences to the target sequence.
A method that considers neighbours (a pattern recognition term that will be
used to describe similar sequences) in a band of similarity values (dependent on
the nearest neighbour to a particular target sequence) works well and achieves

performance comparable to other methods found in the recent literature.

An attempt is made at incorporating predicted secondary structure information
in the prediction process in the “use of secondary structure information” exper-

iment (Section 5.5.6). It is shown that the secondary structure information is
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predictive of other secondary structures, but that it is difficult to incorporate

this information to achieve significantly better performance scores.

5.2 EXPERIMENTAL ENVIRONMENT

5.2.1 Data Used for Analysis

The data set used in this chapter is based on the data set used in the ground-breaking
paper of Jones on position-specific scoring matrices [78]|. The original data set consists

of 2245 proteins, containing a total of 464122 amino acids.

Analysis of this data set revealed that some of these proteins contained regions with
unknown amino acids. Some amino acids also had associated secondary structures
which do not belong to one of the eight standard DSSP [52] classes. The proteins
where such anomalies occurred were filtered out of the data set. This reduced data set

contains 1873 proteins, with a total of 358307 amino acids.

This reduced data set was arbitrarily divided into a training set, containing 1494 pro-
teins and 285320 amino acids, and test set, containing 379 proteins and 72987 amino

acids.

5.2.2 Classification Scheme used for Analysis

The standard DSSP code was used as the classification scheme. The performance
scores are expressed as (Jg values unless otherwise noted. In some instances ()3 scores
are mentioned, typically for comparative purposes. These scores are computed by
making a prediction using the eight class scheme, mapping it to three classes using

Table 2.3 and calculating the score.

Some early experiments conducted (not described in this chapter) indicated that it is
possible to first map the eight classes to three classes using Table 2.3, then to make a
prediction and then calculate the ()3 score. These scores are typically slightly higher

than the ()3 scores achieved in the previous paragraph. However, no such scores are
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Chapter 5 Results

presented in this chapter, since the main aim is prediction in the eight class problem.

5.2.3 Computer Programs

Computer programs were written in the C# language to process the protein data and
to analyse the results. An object-oriented programming methodology was followed.
In particular, computer programs were developed to gather information and classify
secondary structures based on the algorithm explained in chapter 3 and mathematically

described in chapter 4. Additional tests were also performed on the data.

Some of the experiments, but in particular the “grouping strategies”, “classification
function” and “use of secondary structure information” experiments required consid-
erable computing power (many computer weeks), due to the iterative nature or large
number of tests that were conducted. The resulting information that was extracted
can however be used to create fast and efficient algorithms that predict secondary
structures relatively quickly. The actual computer programs and algorithms will not

be further mentioned in the remainder of this chapter.

5.3 GENERAL PROPERTIES OF PROTEINS

5.3.1 Experiment: Prior Probabilities

5.3.1.1 Objective

The objective of this experiment is to determine the prior probabilities of the different
amino acid residue types and secondary structures in order to gain some intuition about

the problem.

5.3.1.2 Protocol

Computer programs were written to determine:

- The prior probabilities of the different amino acid residue types.
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Chapter 5 Results

- The prior probabilities of the different secondary structures.

- The amino acid - secondary structure joint probabilities.

The computer programs were executed on the training set. The rationale behind this
decision (not to include the testing set as well) was that if the statistics were to be used
in classification algorithms, the classification algorithms would not be biased toward

the test data.

5.3.1.3 Results and Discussion

Table 5.1 shows the prior and joint probabilities for the different amino acid residue
types and secondary structures expressed as percentages. The most frequently occur-
ring amino acid is Alanine in 8.19% of the samples and the least frequently occurring

amino acid is Tryptophan in 1.53% of the samples.

The frequencies of occurrence of the amino acid residue types in the reduced Jones
data set were compared to those of a similar study by Doolittle [112] containing a set
of 1150 proteins. The correlation between the two data sets is 0.9786, indicating that

these frequencies are fairly stable across different data sets.

The probability of occurrence of the DNA bases in nature are: Uracil - 22.0%, Adenine
- 30.3%, Cytosine 21.7% and Guanine - 26.0% [123]. Based on these probabilities and
the genetic code (refer to Section 2.1.4), filtering out the 3 codons mapping for stop
sequences, the expected probabilities of occurrence of the different amino acids were
also calculated. These probabilities, together with the frequencies of occurrence of the
amino acid residue types in the Jones and Doolittle data sets are illustrated in Figure
5.1.

The correlation between the Jones data set and the probabilities of occurrence based on
the genetic code is 0.6977 and is illustrated by the scatter diagram in Figure 5.2 The
only real outlier is the amino acid Arginine, which occurs in only 4.50% of the amino
acids in the Jones data set, whilst it is expected to occur in 10.66% of the samples when
based on the genetic code. One explanation could be that the Arginine frequency is the

product of natural selection acting on one or more of the codons coding for it. When the
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Table 5.1: Prior and joint probabilities of amino acids and secondary structures in the reduced Jones data set

Structure — 310 helix | a helix | 7 helix | § sheet | § strand | Turn Bend | Coil Total
Amino Acid | G H I E B T S C

Alanine A | 0.3298 3.4740 | 0.0007 | 1.3830 0.0761 0.7998 | 0.6211 | 1.5074 | 8.1919
Arginine R | 0.1479 1.5972 | 0.0007 | 0.9000 0.0596 0.4760 | 0.4234 | 0.8909 | 4.4957
Asparagine N | 0.1945 0.9645 | 0.0011 | 0.6228 0.0662 0.9102 | 0.6119 | 1.2092 | 4.5805
Aspartic D | 0.3168 1.4254 | 0.0018 | 0.6855 0.0680 0.9095 | 0.7763 | 1.5880 || 5.7714
Cysteine C | 0.0690 0.4003 | 0.0014 | 0.6011 0.0473 0.1563 | 0.1661 | 0.5156 | 1.9571
Glutamine Q | 0.1360 1.3641 | 0.0000 | 0.7360 0.0382 0.4129 | 0.3582 | 0.7413 | 3.7866
Glutamic Acid | E | 0.3021 2.3675 | 0.0014 | 0.9729 0.0424 0.6957 | 0.5674 | 0.9305 || 5.8801
Glycine G | 0.2408 1.0318 | 0.0011 | 1.1180 0.0747 2.1769 | 1.5169 | 1.7531 | 7.9132
Histidine H | 0.0985 0.5779 ] 0.0007 | 0.4987 | 0.0365 0.2646 | 0.2366 | 0.4879 | 2.2014
Isoleucine I 0.1104 1.6736 | 0.0004 | 2.0314 | 0.0960 0.2187 1 0.2916 | 0.8198 | 5.2418
Leucine L | 0.2751 3.1515 | 0.0021 | 2.1944 | 0.1272 0.5562 | 0.4858 | 1.3599 | 8.1523
Lysine K | 0.2229 1.9515 | 0.0007 | 1.1436 0.0796 0.7728 | 0.6162 | 1.1731 | 5.9603
Methionine M || 0.0617 0.7700 | 0.0007 | 0.4823 0.0235 0.1332 | 0.1405 | 0.3796 | 1.9914
Phenylalanine | F | 0.1511 1.1156 | 0.0011 | 1.2628 0.0929 0.2979 | 0.2716 | 0.7167 | 3.9096
Proline P | 0.2450 0.5450 | 0.0011 | 0.4500 0.0470 0.9169 | 0.5422 | 2.0034 | 4.7505
Serine S | 0.3224 1.3346 | 0.0007 | 1.3781 0.0939 0.9547 | 0.8825 | 1.7352 | 6.7023
Threonine T | 0.1630 1.2298 | 0.0007 | 1.8232 0.1101 0.5811 | 0.6680 | 1.5775 | 6.1534
Tryptophan W || 0.0680 0.4409 | 0.0011 | 0.4966 0.0315 0.1241 | 0.1101 | 0.2583 | 1.5306
Tyrosine Y || 0.1465 0.9610 | 0.0007 | 1.2614 | 0.0841 0.3228 | 0.2888 | 0.6645 | 3.7298
Valine V | 0.1276 1.8782 | 0.0035 | 3.0089 0.1220 0.3277 | 0.4013 | 1.2309 | 7.1001
Total 3.7291 28.2546 | 0.0214 | 23.0510 | 1.4167 12.0079 | 9.9765 | 21.5428 || 100.0000
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Figure 5.1: Frequency of occurrence of the different amino acid residue types in the
Jones and Doolittle data sets and the probability as calculated based on the genetic

code
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Chapter 5 Results

Arginine frequency is excluded from the data set, the correlation coefficient is 0.8749.
A reasonable conclusion may thus be that (except in the case of Arginine) the prior
probabilities of amino acids are simply determined by the probability of occurrence of

the codons coding for it.

12 ! ! ! ! ! ! ! ! ! ! !
11 | | ‘ ‘ ‘ ‘ ‘ | | | ‘

=
o

Actual Occurence (Jones) (%)

S B N W b~ O O N 00 ©

0 1 2 3 4 5 6 7 8 9 10 11 12
Expected Occurence (Genetic Code) (%)

Figure 5.2: Scatter diagram of the expected and observed probability of occurrence of

the amino acids in the Jones data set

Figure 5.3 illustrates a similar scatter diagram for the Doolittle data set. The scat-
ter diagram takes a similar form to the one for the Jones data set. The correlation
coefficient between the Doolittle data set and the probabilities of occurrence based
on the genetic code is 0.7474. In the case that Arginine is left out of the correlation

calculation, the correlation coefficient is 0.8880.

The « helix, § sheet and coil secondary structures are the most abundant at 28.25%,
23.05% and 21.54% respectively whilst the 7 helix occurs in only 0.02% of the samples,

as is illustrated in Figure 5.4.

If the joint probabilities in Table 5.1 are carefully observed, it will be noticed that
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Figure 5.3: Scatter diagram of the expected and observed probability of occurrence of

the amino acids in the Doolittle data set
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Chapter 5 Results

certain amino acids are more likely to form certain secondary structures than others
(if only the joint probability is considered). This preference of amino acids to form

certain secondary structures is shown in Table 5.2.

Table 5.2: Preference of Amino Acid Residues to form Secondary Structures

« helix [ sheet Coil Turn
Alanine Cysteine Asparagine | Glycine
Arginine Isoleucine Aspartic

Glutamine Phenylalanine | Proline

Glutamic Acid | Threonine Serine

Histidine Tryptophan

Leucine Tyrosine

Lysine Valine

Methionine

If the decision of which secondary structure y; ; to assign to amino acid j in protein
i was based solely on the observation of z;;, the best possible classifier is the naive

Bayesian classifier

yi; = argmax i (P(Kg|x; ;)), (5.1)

where

P(ZL‘Z7J|K]€)P(K]€) o P(xi,j ﬂKk)

P(z; ) Pz (5:2)

P(Ky|i;) =

according to Bayes’ theorem. The expected number of correctly classified secondary

structures in this case is

maz i (P(Ky|z; ;) P(xi ;). (5.3)

i=1 j=1
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Chapter 5 Results

For the training data, the expected number of correctly classified secondary structures is
calculated as 34.45%. Applying the naive Bayesian classifier to the testing data, it was
found that 34.15% of the secondary structures were correctly assigned. This signifies
a limited improvement over assigning the secondary structure with the highest prior
probability of occurring (a-helix at 28.25%) (which in turn is significantly better than

randomly assigning a secondary structure (12.5%)).

The conclusion from this result is that some information as to which secondary struc-
ture will form for an amino acid is contained within the residue type. However, a large
portion of the information is not determined by the amino acid and is thus influenced
by other processes or structures. The experiments that follow will investigate the ex-
tent to which small sequences of amino acids contribute to the formation of certain

secondary structures.

5.3.1.4 Conclusion

The reduced Jones data set has similar attributes to other data used in the literature.

The probabilities of occurrence of the different amino acid residues (with the exception
of Arginine) seem to be based fairly closely on the probability of occurrence of the
different DNA bases and the codons coding for them. In the case of Arginine the
frequency of occurrence may be the product of natural selection acting on one or more

of the codons coding for it.

The frequencies with which different secondary structures occur vary considerably.
The data seems to suggest that some of the knowledge of which secondary structure is

associated with which amino acid is contained within the residue type.
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Chapter 5 Results

5.3.2 Experiment: Structure Lengths

5.3.2.1 Objective

The objective of this experiment is to gather statistics about the length of proteins and

the different secondary structures.

5.3.2.2 Protocol

Computer programs were written to determine:
- Statistics about the length of the different proteins in the training set.

- Statistics about the length of the different secondary structures in the training set.

5.3.2.3 Results and Discussion

Figure 5.5/ shows a histogram of the lengths of the proteins in the training data set.
The average length of the 1494 proteins in the set is 190.97 with a standard deviation
of 142.41. The shortest protein in the set has a length of 20 and the longest a length
of 907 amino acids. The median is at 150.5 with the 25% percentile mark at a length
of 85 and the 75% percentile mark at a length of 256.

From Figure 5.5 there seems to be a slight anomaly at proteins with a length of about
220. It seems that the number of proteins with these lengths are more frequent than

expected.

The 1494 proteins in the training set contain 285320 amino acid residues in which 92983
sequences of consecutive similar secondary structures occur. The average secondary
structure length thus spans just over 3 amino acids. Figure 5.6 shows the lengths of the
different secondary structures in the training set. Table 5.3 tabulates the corresponding

statistics for the secondary structures.
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Figure 5.5: Protein lengths, as measured by the number of amino acids per protein
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Chapter 5 Results

In the case of the 31y helix, one of the samples had a length of a single amino acid.
This is inconsistent with the definition of the 3¢ helix, which requires a length of at
least 3 amino acids. Similarly, there were two (§ sheets with length 1 (which should
probably be classified as § strands or coils). For the purposes of the dissertation, it
was decided not to filter the proteins containing these anomalies out of the training

set.

Another observation is that there are two outliers in the case of the « helix (which is
the secondary structure that forms the longest chains by far). These structures contain
109 and 107 amino acids respectively. For comparison, the third longest chain contains

67 amino acids.

Table 5.3: Structure lengths

310 helix | a helix | 7 helix | § sheet | 3 strand | Turn | Bend | Coil

Sequence | 3189 7359 12 12419 3958 16071 | 17635 | 32340
count

Minimum | 1 4 ) 1 1 1 1 1
length

Maximum | 10 109 6 25 2 11 9 25
length

Average 3.3365 10.9547 | 5.0833 | 5.2958 1.0212 2.1319 | 1.6141 | 1.9006

Standard | 0.8385 6.0511 0.2764 | 2.7028 0.1441 0.8811 | 0.8986 | 1.3513

deviation

5.3.2.4 Conclusion

Apart from being the most abundant secondary structures, alpha helices and beta
sheets also form the longest chains of consecutive sequences. These structures comprise

the main structural elements of most proteins.

The other secondary structures tend not to form long sequences on average, but are
instead rather compact. Most beta strands occur as a single secondary structure, turns
typically have a length of two, whilst bends and coils usually have a length of one and

sometimes two. 319 helices typically have length three and 7 helices length five.
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5.3.3 Experiment: Edge Analysis

5.3.3.1 Objective

The objective of this experiment is to determine whether certain secondary structures
are more likely to form near the edges of a protein and to determine which amino acid

residue types they are associated with.

5.3.3.2 Protocol

Computer programs were written to determine the probabilities with which different
residue types are found in the different secondary structure conformations at the start

and end of the proteins in the training set.

5.3.3.3 Results and Discussion

Tables 5.4 and 5.5 list the probabilities (expressed as a percentage) for each of the
different amino acid residue types to be found in the different secondary structure
conformations at the start and end of a protein sequence. The tables also show the
percentage of occurrences with which each amino acid type was found at the start and
end of the protein sequences (column ‘Actual’), the expected percentage if it occurred
randomly (as calculated in Table 5.1, shown in column ‘Exp.”) and the difference

between the two (column ‘A’).

From the discussion on protein synthesis and the genetic code in Section 2.1.4, the
expectation is that methionine would be the first amino acid in every protein sequence,
since the start codon, AUG, codes for it. This is clearly not the case, since methionine

appears at the start in only 13.65% of the protein sequences.

Meinnel [113] states that methionine is removed from most mature proteins after the
translation process. This is achieved through enzymes acting on the proteins. This

implies that the probabilities as given in 5.4 are the probabilities of finding the different
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Table 5.4: Probability of different residue types to form different secondary structures at the start of a protein sequence

310 helix | a helix | m helix | 7 sheet | 3 strand | Turn | Bend | Coil Actual | Exp. | A

Alanine 0.0000 0.4505 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 99.5495 14.8594 | 8.1919 | 6.6676

Arginine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 3.0790 | 4.4957 | -1.4167
Asparagine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 2.4390 | 0.0000 | 97.5610 || 2.7443 | 4.5805 | -1.8362
Aspartic 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 5.6225 | 5.7714 | -0.1489
Cysteine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 1.6734 | 1.9571 | -0.2837
Glutamine 0.0000 0.0000 | 0.0000 | 1.7857 0.0000 0.0000 | 0.0000 | 98.2143 | 3.7483 | 3.7866 | -0.0383
Glutamic Acid | 0.0000 0.9524 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 99.0476 | 7.0281 | 5.8801 | 1.1480

Glycine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.7042 | 99.2958 || 9.5047 | 7.9132 | 1.5915

Histidine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 0.6693 | 2.2014 | -1.5320
Isoleucine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 2.9451 | 5.2418 | -2.2967
Leucine 0.0000 0.0000 | 0.0000 | 1.6129 1.6129 0.0000 | 0.0000 | 96.7742 || 4.1499 | 8.1523 | -4.0023
Lysine 0.0000 1.6129 | 0.0000 | 1.6129 0.0000 0.0000 | 0.0000 | 96.7742 | 4.1499 | 5.9603 | -1.8104
Methionine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 13.6546 | 1.9914 | 11.6632
Phenylalanine | 0.0000 0.0000 | 0.0000 | 8.3333 0.0000 0.0000 | 0.0000 | 91.6667 | 0.8032 | 3.9096 | -3.1064
Proline 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 1.9231 | 98.0769 | 3.4806 | 4.7505 | -1.2699
Serine 0.0000 0.0000 | 0.0000 | 1.4493 0.0000 0.0000 | 0.0000 | 98.5507 || 9.2369 | 6.7023 | 2.5346

Threonine 0.0000 0.0000 | 0.0000 | 1.1494 1.1494 0.0000 | 0.0000 | 97.7011 5.8233 | 6.1534 | -0.3301
Tryptophan 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 { 0.5355 | 1.5306 | -0.9951
Tyrosine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 0.9371 | 3.7298 | -2.7928
Valine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 5.3548 | 7.1001 | -1.7453

92

Department of Electrical, Electronic and Computer Engineering

University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 5 Results

amino acid residue types at the start of a protein sequence due to the codons coding
for it being found at the second codon position (in the case of methionine, both the

first and second codon positions).

Another observation is that methionine constitutes 1.99% of the proteins in the train-
ing set (expected 1.83% as calculated by the genetic code). Even if methionine was
universally removed from the start of all protein sequences, it is still expected that
roughly a similar percentage of methionine amino acids would occur at the second po-
sition in a protein. However, the statistics indicate that it occurs in the first position
of 13.65% of the proteins.

This implies that methionine is not universally removed from all proteins or that there
is an above average expectation to find two codons coding for methionine at the start
positions of a protein coding gene. One of two possible conclusions can be drawn. The
first conclusion is that methionine has a special role to fulfill at the start position of
some proteins apart from normal protein function. The second possible conclusion is
that it may have no useful function at all and that it is simply not removed since it is

not efficient to do so (this implies that it does not hamper the functioning of a protein).

Another observation is that alanine occurs at the start of 14.86% (even more than me-
thionine) of protein sequences, 6.67% more than expected. Leucine occurs at the start
of 4.15% of protein sequences, 4.00% less than expected. These results are interesting,
since alanine and leucine are the most abundant amino acids in the training set. At the
end of the protein chain, lysine and cysteine occur more often than expected (4.01%

and 3.60% respectively).

The coil secondary structure is almost always found at the start and end of a protein
sequence, as is evident from Table 5.4 and Table 5.5. It occurs at the start of 1479
and end of 1486 of the 1494 protein sequences in the training set. (One apparent
exception: when Phenylalanine is the first amino acid in a protein sequence, the 3
sheet secondary structure appears at the start of 8.33% of such sequences. However,
Phenylalanine occurs at the start of only 12 of the 1494 protein sequences and in only 1

of those cases the [ sheet occurs. The apparent exception is therefore not significant.)

One explanation for finding the abundance of coils at the ends of a protein could
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Table 5.5: Probability of different residue types to form different secondary structures at the end of a protein sequence

310 helix | a helix | 7 helix | G sheet | § strand | Turn | Bend | Coil Actual | Exp. | A
Alanine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 8.2999 | 8.1919 | 0.1080
Arginine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 1.0101 | 0.0000 | 98.9899 || 6.6265 | 4.4957 | 2.1309
Asparagine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 1.1494 | 98.8506 || 5.8233 | 4.5805 | 1.2428
Aspartic 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 3.6145 | 5.7714 | -2.1570
Cysteine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 5.5556 | 1.9571 | 3.5985
Glutamine 0.0000 1.4286 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 98.5714 | 4.6854 | 3.7866 | 0.8988
Glutamic Acid | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 1.1765 | 98.8235 5.6894 | 5.8801 | -0.1906
Glycine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 1.1111 | 0.0000 | 98.8889 || 6.0241 | 7.9132 | -1.8891
Histidine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 2.4766 | 2.2014 | 0.2752
Isoleucine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 3.5475 | 5.2418 | -1.6943
Leucine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 || 8.3668 | 8.1523 | 0.2146
Lysine 0.6711 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 99.3289 || 9.9732 | 5.9603 | 4.0129
Methionine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 1.8072 | 1.9914 | -0.1842
Phenylalanine | 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 3.8153 | 3.9096 | -0.0944
Proline 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 4.3507 | 4.7505 | -0.3997
Serine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 6.6265 | 6.7023 | -0.0758
Threonine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 1.9231 | 98.0769 | 3.4806 | 6.1534 | -2.6729
Tryptophan 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 1.1379 | 1.5306 | -0.3927
Tyrosine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 0.0000 | 0.0000 | 100.0000 | 3.6145 | 3.7298 | -0.1154
Valine 0.0000 0.0000 | 0.0000 | 0.0000 0.0000 1.4925 | 0.0000 | 98.5075 || 4.4846 | 7.1001 | -2.6155
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be that the ends are exposed to the surrounding environment and not buried toward
the core of a protein like other structures, much like a tied shoelace, where the knot
and loops represent structural components and the ends dangle freely. The coils at
the ends thus have irregular structure because they do not form part of the main
functional or structural units of the protein. This claim is somewhat supported by the
second conjecture given above as to the high percentage of methionine found at the
start of protein sequences, namely that it is not removed since it does not hamper the
functioning of a protein but does not contribute to its functioning either. In fact, of
the 1494 protein sequences, all 204 that started with methionine were found with a coil

conformation.

5.3.3.4 Conclusion

The coil secondary structure is almost always found at the start and end of a protein.

Methionine is removed from the start of most proteins through post-translational
processes, but the data seems to suggest that it is not removed in all cases. This
can be attributed to the fact that it is either not necessary to do so, or that it serves
a very specific purpose in the proteins in which it is not removed. It is clear however

that there are very specific biological processes at work.

Alanine occurs more and leucine occurs less than expected at the start of proteins. At
the end of a protein, lysine and cysteine occur somewhat more often than expected.

Whether these observations are functionally significant remains to be determined.
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5.4 PRIMARY TO SECONDARY STRUCTURE MAPPING

5.4.1 Experiment: Window Structure

5.4.1.1 Objective

The objective of this experiment is to determine whether different structural compo-
sitions of a window of amino acids around a central amino acid have any influence
on the prediction accuracy of the algorithm explained in Chapters 3 and 4. In addi-
tion, the performance differences achieved between including and excluding the edges
in the algorithm will be studied. The effect of forcing a prediction versus not forcing a

prediction will be analysed.

5.4.1.2 Protocol

A series of experiments with window sizes ranging from 1 to 7 were executed (N €
[1,7]). For each window size, the central amino acid was varied from the leftmost
amino acid in the window (I = 0,7 = N — 1) to the rightmost amino acid in the
window (I = N — 1,7 = 0). The set of group labels were the same as the set of residue
labels, that is G = R, with L the identity function. § was used as distance metric.
The experiment was set up such that a prediction for a pattern in the test set will only
be made if it is in the database, i.e. € = 0. ¢!) was used as classification function and

M as assignment function.

The experiments were conducted for both the case where the edge effects are included
(predictions are attempted for the whole length of the protein) and the case where edge
effects are excluded (predictions are not attempted near the edges). For both these
cases, an experiment was conducted where a prediction was forced over the region of
interest (predict regardless of whether a similar pattern exists in the database) and
the case where a prediction was not forced (no prediction is made if a pattern does
not exist in the database). In the case where a prediction is forced when no patterns
exist in the database, the secondary structure with highest prior probability for the

observed amino acid is assigned. In the case where probabilities for multiple secondary
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Chapter 5 Results

structures are simultaneously higher than for other secondary structures, the decision

is based on the secondary structure in that group that has the highest prior probability.

5.4.1.3 Results and Discussion

The results of the experiment are listed in Table 5.6 (analysis conducted taking into
account edges) and Table 5.7 (edges not included). The tables present the results after
different combinations of window structures were used in the prediction algorithm and
applied to the test set. The tables list the percentage of correctly predicted secondary

structures.

The first observation is that the training data contains all possible strings of length 1
and 2 that can be made from the different residue types. This was confirmed through
independent testing, but can also be seen from the tables by observing that the re-
sults for the forced and unforced predictions are the same (which only implies that
all the input patterns in the testing data are present in the training data, and not
necessarily that all different types of input patterns are in the training data, which

thus necessitated independent testing for the entire input space).

For window lengths of 3 and more, it is immediately obvious that all the input patterns
in the testing data do not occur in the training data (due to the difference between
the forced and unforced results). In the case of a window length of 3, the differences
between the forced and unforced results are small, signifying that almost all the input
patterns in the testing data are found in the training data. For window sizes of length
4 and more, the effect is more severe (and thus the benefit of forcing a prediction

becomes more pronounced).

The reader may recall that there are 285320 different amino acid residues in the training
set and thus at most the same number of different input patterns. The complete input
space has 20V distinct input patterns (or more, if edges are considered as well). For
N = 3 this is 8000, for N = 4, 160000 and for N = 5, 3200000. Since many multiples
of the same input pattern occur in the 285320 patterns in the training set, this reduces
the number of distinct training samples to less than 20 for N = 3 and N = 4. For

N =5 and larger, covering the complete input space is simply not possible, even if all
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Table 5.6: Prediction Results for different Window Structures (with edges included)

Forced | Forced | Unforced | Unforced

Nl |r| Qs @3 (s @

1 0|0 | 34.1485 | 34.1485 || 34.1485 34.1485
2 |0 1] 38.0383 | 38.0383 | 38.0383 38.0383
2 | 1]0| 36.8422 | 36.8422 | 36.8422 36.8422
3 10| 2] 40.8648 | 40.8648 | 40.8593 40.8733
3 | 1]1] 41.8116 | 41.8116 | 41.8074 41.8355
3 1201 39.1056 | 39.1056 | 39.1001 39.1199
4 103 39.0001 | 39.0001 || 35.3912 41.0127
4 |12 39.9345 | 39.9345 || 36.3393 42.2792
4 121/ 39.5207 | 39.5207 || 35.8968 41.7723
4 1310 37.6999 | 37.6999 || 34.0650 39.4757
5 |0 4] 38.2150 | 38.2150 | 18.1594 61.6896
5 | 1|31 38.3137 | 38.3137 | 18.2882 63.0932
5 12|21 38.0369 | 38.0369 | 18.0416 62.9506
5 | 3| 1] 38.1808 | 38.1808 | 18.1416 62.5874
5 |40 38.0561 | 38.0561 | 17.9580 60.9940
6 | 05| 37.2231 | 37.2231 | 12.5625 83.6282
6 | 1|41 37.1217 | 37.1217 | 12.4324 85.4024
6 | 2|3 36.7449 | 36.7449 | 12.0830 85.5549
6 | 3|2 36.7641 | 36.7641 | 12.1282 85.7752
6 | 4| 1] 37.1025 | 37.1025 || 12.4748 85.6619
6 | 5|0 37.2436 | 37.2436 | 12.6543 84.1396
7 10|61 36.1585 | 36.1585 | 10.8649 86.7330
7 | 1|51 36.0516 | 36.0516 | 10.6937 88.7537
7 12|41 357173 | 35.7173 | 10.3525 89.2406
7 | 3|3 35.6228 | 35.6228 | 10.2772 89.2976
7T 14| 2]| 35.7242 | 35.7242 | 10.3909 89.4023
7 | 5| 1] 36.0544 | 36.0544 | 10.7457 89.0542
7 16|01 36.2585 | 36.2585 | 10.9869 87.5437
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Table 5.7: Prediction Results for different Window Structures (without edges included)

Forced | Forced | Unforced | Unforced

Nl |r| Qs @3 (s @

1 0|0 | 34.1485 | 34.1485 || 34.1485 34.1485
2 |0 1] 37.5245 | 37.7204 | 37.5245 37.7204
2 | 1101 36.3270 | 36.5166 | 36.3270 36.5166
3 10| 2] 40.0811 | 40.5017 | 40.0770 40.5049
3 | 1|11 40.8347 | 41.2632 | 40.8306 41.2665
3 12|01 38.2685 | 38.6701 | 38.2657 38.6743
4 10| 3| 38.0821 | 38.6848 || 34.5418 40.5844
4 |12 39.1453 | 39.7648 || 35.5803 41.8046
4 121 38.7398 | 39.3528 || 35.1391 41.2862
4 1310 36.7463 | 37.3278 || 33.1456 38.9440
5 |04 37.1162 | 37.9035 || 17.2661 61.2461
5 | 1|31 37.4957 | 38.2911 | 17.5935 62.4077
5 | 2|2 37.5245 | 38.3204 | 17.6031 62.4417
5 | 3|11 37.4026 | 38.1959 | 17.4278 61.8196
5 | 4101 36.9956 | 37.7804 | 16.9907 60.2692
6 | 0|5 359256 | 36.8832 | 11.6349 84.7167
6 | 1]4] 36.1434 | 37.1068 | 11.7213 85.3452
6 | 23] 36.2229 | 37.1884 | 11.7336 85.4350
6 | 3|2 36.2763 | 37.2433 | 11.7569 85.6045
6 | 4|1] 36.2393 | 37.2053 || 11.7377 85.4649
6 | 5|01 36.0557 | 37.0168 | 11.6391 84.7466
7 106 | 34.6527 | 35.7671 | 9.9072 88.4310
7 | 1|51 34.8939 | 36.0160 | 9.9689 88.9813
7 12|41 35.0542 | 36.1815 || 10.0059 89.3115
7 | 3|3 35.1405 | 36.2706 || 10.0114 89.3604
7 |42 351652 | 36.2960 | 10.0127 89.3726
7 |5 1] 35.0788 | 36.2069 | 9.9785 89.0669
7 160 34.9446 | 36.0683 | 9.9346 88.6756
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Chapter 5 Results

the different patterns in the training set were distinct.

The best forced result is obtained with a window length of N = 3, which achieves
Qs = 41.81% (forcing prediction and including edges). The fact that this is the best
result is not surprising, since no other mechanisms were put in place to match patterns
in the training and test sets (elementary choice of functions, G = R, ¢V, 1™ etc.).
It is suspected that as more training data becomes available, better results would
be achieved by larger window sizes (keeping the other variables the same), or more
specifically, a window size that covers, or almost covers, the complete set of input

patterns.

With a window size of N = 1 a performance of 34.15% was achieved. This is the same
result as achieved in Section 5.3.1.3, since the application of the algorithm in this case
assigns to each amino acid residue the secondary structure with highest probability of
occurring according to its residue type. It is interesting that by forcing a prediction,

even with a window length of N = 7 the performance is better than with N = 1.

The value €8 indicates the fraction of secondary structures for which a prediction was

Q*
made. For a window size of N = 7, a prediction attempt was made for only about

11-12% of the secondary structures when a prediction was not forced. It is surprising

to find that by forcing a predication, a Qg score of 35-36% is achieved.

It is also observed that there is a performance benefit from including edges in the
analysis. This may be attributed to the fact that patterns including edges are very

likely to be associated with the coil structure as was illustrated in Section 5.3.3.3.

An interesting observation is that better performance is consistently achieved if the
central amino acid is located toward the middle of the window in the case that edges
are not included and for small windows in the case that edges are included. For larger
windows where edges are included, better performance is achieved if the central amino
acid is located towards the sides of the window. This latter effect can yet again be
attributed to the fact that coil structures are almost certain to be found at the edges
of a protein. In general however, windows where the central amino acid is closer to the

middle of the window has a bigger performance benefit.
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5.4.1.4 Conclusion

There is a performance benefit associated with larger window sizes. However this is
practically limited by the amount of training data available. The indication is that
a window size that covers all or most of the input pattern space will have the best
performance (in this case N = 3 with a performance of 41.8%). Additional techniques
are thus required to map “unknown” input patterns in the testing data to the available

patterns in the training data, if larger window sizes are to be used.

The inclusion of edges and forcing a prediction does provide performance benefits and
subsequent experiments will be conducted as such. The performance benefit established
through the inclusion of edges is likely due to the fact that coil structures are almost

certain to be found at the edges of a protein.

A performance benefit is also achieved if the central amino acid is located towards the
middle of the window. This implies that the coupling between an amino acid and its
associated secondary structure is influenced more by the amino acid and its immediate
neighbors than by residues further removed from it. In the experiments that follow,
this fact will be reflected by choosing | = [§] —1 and r = || for a given window size
N.

5.4.2 Experiment: Varying Window Size

5.4.2.1 Objective

The previous experiment indicated that larger window sizes have more predictive power
than smaller window sizes. Due to the limited amount of training data available, only
window sizes of N € [1,7] were considered. In this experiment, the objective is to
quantify what is meant by “more predictive power”. A method is also devised by
which larger windows can contribute meaningfully to secondary structure predictions.
The performance of this experiment will form the “baseline” against which subsequent

experiments are compared.

Department of Electrical, Electronic and Computer Engineering 101
University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 5 Results

5.4.2.2 Protocol

In this experiment, the set of group labels were the same as the set of residue labels,
that is G = R, with L the identity function. () was used as distance metric. ¢(® was
used as assignment function, with e set to 0, such that only exact matches contribute

toward classification. ¢! was used as assignment function.

An iterative approach is followed in predicting secondary structures, starting with
a window size s. During each iteration, the sequences associated with unpredicted
secondary structures in the test set are extracted. Using ¢® with € = 0, a check is
made against the sequences in the training set for exact matches. If such sequence(s)
are found, they are used to predict the secondary structure of the target sequence. If
no such sequences are found, the next smaller window size is used. N thus ranges from
s to 1. For odd values of N, [ = % and r = % are used. For even values of N,
I =[4]—1and r = [§] are considered before = [§] — 1 and | = | |. s ranges
from 1 to 15.

Using this method, the predictive power of larger sequences can be used, given that a

match can be found between the target sequence and sequences in the training set.

In an adaption of the above method, if there is a split vote between two or more
secondary structures for a given size of N, rather than forcing a prediction, the split
vote is handled by a postponing prediction until a smaller value of N is reached where

the original split vote can be settled uniquely.
5.4.2.3 Results and Discussion

The number of predicted secondary structures is shown in Table 5.8 and the percentage
of correctly predicted secondary structures in Table 5.9. Each row in these tables
indicates a complete experiment for a certain starting value of s. The cells in each
row indicate the number of times a prediction for a certain window structure has been
attempted (Table 5.8) and the percentage of times those predictions were correct (Table
5.9).
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The first observation is that a prediction accuracy of 43.4% is achieved for s values of
6 and more. This is a 1.6% improvement over the best result achieved in the “window
structure” experiment and forms the baseline accuracy against which subsequent ex-
periments will be compared. More importantly, it can be seen that for window sizes
of 6 and larger, 70% of the attempted predictions are correct. In fact, for a window
size of 7, roughly 80% is achieved, whilst for window sizes of 8 and larger, roughly 90%
is achieved. This clearly illustrates the benefit associated with larger window sizes.
However, only 10308 (14%) of the 72987 secondary structures in the test set can be

predicted using window sizes of 6 and larger.

An interesting observation is what can be described as the “transfer phenomenon”,
namely that secondary structures that can be predicted using sequences of length N and
N + 1 are considerably more accurate than secondary structures that can be predicted
using sequences of length N but not length N + 1, even when only sequences of length
N are considered. This is very apparent when looking at the top entries in the columns
marked “2 2”7 to “3 3”7 in Table 5.9. What is interesting is that the apparent benefit
of being able to predict a secondary structure using a larger window size is somehow
embedded in sequences of smaller size. This is reinforced by the observation that from
s = b onwards, no significant performance benefit is achieved using larger window
sizes. One possible explanation for this phenomenon is that where larger window sizes
are matched, these are likely to have some biological function which is preserved over
multiple sequences. The associated secondary structures, even for a smaller segment of
these larger structures, are thus unlikely to change and are hinted at by these smaller

segments.

As was explained in the protocol section, the method was adapted to handle split votes.

This resulted in an improved accuracy of 44.05%.

5.4.2.4 Conclusion

It is clearly illustrated that larger window sizes have more predictive power than smaller
window sizes. However as was also found in the previous experiment, this is practically
limited by the amount of training data available, since an enormous amount of training
data would be required to completely cover all the possible amino acid combinations

that could be observed for larger window sizes.
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Table 5.8: Number of secondary structures predicated per category
I lr]s |00 01 10 11 12 21 22 23 32 33 |34
oo 1 | 72087
ol1]2 |o 72987
1lof2 [o 0 72987
EERERE 0 49 72938
1204 [o 0 49 10205 | 62733
214 |o 0 49 3309 | 6908 | 62721
21205 |0 0 49 3309 | 6908 | 41803 | 20918
21306 |0 0 49 3309 | 6908 | 41803 | 10610 | 10308
31206 |0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 10320
31317 [o 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 8400
31408 |0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 923 | 7477
4138 |o 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
4lafo |o 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
4l5]10]0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
5/4(10]0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
505110 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
506120 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
65120 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
6|6[13]0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
67140 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
716140 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
77115 ]0 0 49 3309 | 6908 | 41803 | 8784 | 1814 | 1920 | 237 | 682
I |r|s |43 |44 |45 |54 |55 |56 |65 |66 |67 |76 |77
0oflo]1
ol1]2
1]o]2
113
124
2114
20215
2316
31216
3137
30418
43 ]8 | 7481
4149 |705 | 6776
45|10 705 |579 | 6197
504 (10|75 |73 |497 | 6206
5511|705 |73 |497 | 520 | 5686
50612705 [ 73 |[497 | 520 [ 441 | 5245
6512|705 |73 |497 |520 |68 | 369 | 5249
6613|705 |73 |497 |520 |68 |369 |375 | 4874
6 |7]14|705 |73 |497 [520 |68 |369 | 375 | 320 | 4554
716 14|705 |73 |497 | 520 |68 |369 |375 |45 | 274 | 4555
7 715|705 [ 73 |497 | 520 |68 |369 |375 |45 | 274 | 281 | 4274
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Table 5.9: Percentage of correctly predicated secondary structures per category

L lr]s |00 01 10 11 12 21 22 23 32 33 34 43

001 | 34149

of1]2 |- 38.038

1|02 |- - 36.842

113 |- - 61.224 | 41.922

124 |- - 61.224 | 36.404 | 43.089

20114 |- - 61.224 | 32.638 | 35.741 | 42.675

20215 |- - 61.224 | 32.638 | 35.741 | 35.198 | 63.233

213]6 |- - 61.224 | 32.638 | 35.741 | 35.198 | 43.205 | 85.574

3121]6 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 85.853

337 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 89.250

3148 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 87.649 | 89.341

4(3]8 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.413

414l9 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

41510 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

50410 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

50511 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

50612 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

65|12 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

66| 13]- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

67|14 | - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

71614 |- - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

77|15 - - 61.224 | 32.638 | 35.741 | 35.198 | 37.864 | 69.184 | 70.052 | 81.857 | 89.883 | 89.929

Llr]|s |44 45 54 55 56 65 66 67 76 77 Qs

0olo0]1 34.149

0112 38.038

102 36.842

113 41.935

124 42.166

214 41.576

225 43.186

2 (3|6 43.430

3126 43.479

3137 43.454

31418 43.443

413|8 43.453

4149 | 89300 43.447

45|10 | 91.019 | 89.011 43.437

54|10 | 94.521 | 88.934 | 89.188 43.441

5|5 | 11 | 94.521 | 88.934 | 90.385 | 89.026 43.437

516 | 12 | 94.521 | 88.934 | 90.385 | 90.703 | 88.866 43.435

6 | 5| 12 | 94.521 | 88.934 | 90.385 | 89.706 | 88.889 | 88.912 43.428

6 | 6| 13 | 94.521 | 88.934 | 90.385 | 89.706 | 88.889 | 90.667 | 88.818 43.431

6 | 7| 14 | 94.521 | 88.934 | 90.385 | 89.706 | 88.889 | 90.667 | 86.563 | 88.977 43.431

76| 14 | 94.521 | 88.934 | 90.385 | 89.706 | 88.889 | 90.667 | 91.111 | 87.591 | 88.825 43.428

7| 7| 15| 94.521 | 88.934 | 90.385 | 89.706 | 88.889 | 90.667 | 91.111 | 87.591 | 85.765 | 88.980 | 43.426
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Chapter 5 Results

A method thus needs to be devised for comparing different amino acid sequences and
to use “similar” sequences to make a prediction. The subsequent experiments deal with

multiple facets of this problem.

5.4.3 Experiment: Classification Function

5.4.3.1 Objective

The previous two experiments indicated that better performance could be achieved if
larger window sizes are used. This was practically limited by the amount of training
data available, since the exact input patterns in the test data had to be present in the
training data as well. The objective of this experiment is to determine how the perfor-
mance of the algorithm for larger window sizes will be influenced if small differences
between the patterns in the test and training data are allowed. These are controlled
through the € parameter in the algorithm. The effect of different classification functions
(as defined in Section 4.6) will be studied.

5.4.3.2 Protocol

A series of experiments with window sizes ranging from 1 to 15 were executed (N €
[1,15]) with { = [§] — 1 and r = |§]. For each window size, epsilon values of 0 to
N were tested (e € [0, N]). Distance metric ) was used. The set of group labels
were the same as the set of residue labels, that is G = R, with L the identity function.
The set of experiments were executed for classification functions ¢ and ¢®. ™) was

used as the assignment function.

5.4.3.3 Results and Discussion

The results obtained with ¢() is shown in Table 5.10 and Figure 5.7 and with ¢
in Table 5.11 and Figure 5.8. In general, ¢® performs better than ¢(!). There are
however specific “regions” (combinations of N and e values) in which ¢(!) performs

better.
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The performance values for both ¢ and ¢® are the same for ¢ = 0, since both
classification functions use the same patterns in the training data for prediction. For a
fixed value of N, the performance of the two classification functions differ significantly
for different values of e. The values for both ¢ and ¢ are nearly the same and
increasing up to a certain value of e. This point is usually where the performance of
»M) reaches a maximum. For larger values of € the performance of ¢! start to decrease
again, up to the value of 27.38% for e = N. This is to be expected, since more patterns
that are further removed from the test pattern contribute to the prediction and as
such “pollute” the result. At e = N, all the samples in the training data contribute
to the prediction and thus the class with the highest prior probability of occurring is
predicted (in this case the a-helix structure, which occurs in 27.38% of the test data).
For ¢, increasing the value of € further leads to a small increase in performance after
which it saturates and stays constant. The saturation takes place at the e value at
which all the patterns in the test data are at most a distance € from at least one of the
patterns in the training data. When € is increased further, the additional patterns in

the training data are filtered out by ¢® with no additional performance benefit.

60 L.

55
50

I 11
W N

45

2222222
I

|
co~NOYO1 A
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40 +
35 -
30
25
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Figure 5.7: Classification Function 1

The performance increases with larger window sizes. In the case of ¢, the best
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Table 5.10: Classification Function 1

N | e — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Max.

1 34.1485 27.3788 34.1485
2 38.0383 36.2626 27.3788 38.0383
3 41.8116 40.4031 35.8050 27.3788 41.8116
4 39.9345 44.7134 40.7127 35.1446 27.3788 44.7134
5 38.0369 46.9426 44.2627 40.6579 34.1020 27.3788 46.9426
6 36.7449 43.8544 46.7097 44.3969 40.2469 32.9785 27.3788 46.7097
7 35.6228 41.7307 45.7150 47.2235 43.9558 39.5495 31.7070 27.3788 47.2235
8 34.8021 40.2113 45.0957 47.5002 46.9166 43.2392 38.8508 30.7438 27.3788 47.5002
9 34.1403 38.8275 43.9434 47.0947 48.2154 46.3822 42.5473 38.1260 29.7560 27.3788 48.2154
10 33.5758 37.7725 42.3500 46.6234 48.1305 48.5086 45.6342 41.9266 37.4176 29.1175 27.3788 48.5086
11 33.0840 36.9175 40.8840 45.2930 48.5991 48.4648 48.0688 44.9025 41.1155 36.6079 28.5092 27.3788 48.5991
12 32.6647 36.2188 39.7591 43.8160 47.5961 49.7404 48.9430 47.5455 44.1709 40.5346 35.8297 28.1119 27.3788 49.7404
13 32.3236 35.6036 38.7809 42.4870 46.1753 49.4855 50.2089 48.8745 46.8810 43.3598 39.8208 34.9583 27.8365 27.3788 50.2089
14 32.0331 35.0734 37.9876 41.3923 44.7765 48.1538 50.7542 50.3309 48.7607 46.3041 42.7145 39.2563 34.2006 27.6679 27.3788 50.7542
15 31.7673 34.6103 37.2834 40.3565 43.5927 46.9659 49.7280 51.5777 50.1596 48.3182 45.4697 41.8951 38.5507 33.3744 27.5227 27.3788 51.5777
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Figure 5.8: Classification Function 2
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performance is 51.58% with N = 15 and € = 7. For ¢?, the best performance is 55.19%
with N = 15 and ¢ > 9. This represents a significant performance increase over the
performance of 41.81% (N = 3,¢ = 0) achieved in the “window structure” experiment

or even the 44.05% achieved in the adapted “varying window size” experiment.

The question naturally arises whether larger window sizes will continue to add a per-
formance benefit. Figure 5.9 plots the best performance (considered over the different
e values) of classification functions 1 and 2 for each window size. As can be seen in
the figure, the performance increase from a window size of 1 to a window size of 8
are respectively 13% (for ¢) and 17% (for ¢®). Comparatively, the performance
increase from a window size of 8 to 15 is about 4% (for both ¢(*) and ¢(®). The rate

of increase is declining as larger window sizes are considered.

60
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55
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Figure 5.9: Performance of Classification Function 1 vs Classification Function 2

5.4.3.4 Conclusion

A performance benefit is achieved by increasing the window size and allowing patterns

in the training and testing data that are not exactly the same but still similar to be
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matched. A performance of Qg = 55.19% is achieved for a window size of N = 15,
with € > 9 for ¢)®. The performance increases as larger windows are considered, but

the rate of increase declines.

The elementary distance metric 5" was used in this experiment. Under this distance
metric, the € value indicates the number of positions at which secondary structures are
different between two patterns. It assigns the same contribution to each position in the
window and does not take into account which specific residue types are different. It is
however quite possible that clusters of sequence patterns exist that are “close” to one
another under the 5 distance metric but which form different secondary structures.
If this is indeed the case, this fact was not exploited in this experiment. Through
proper design of the ¢ function and using larger window sizes, it may thus be possible

to achieve even better results than achieved in this experiment.

5.5 DETAILED ANALYSIS

5.5.1 Experiment: Grouping Strategies

5.5.1.1 Objective

The objective of this experiment is to determine whether amino acid residues can be
grouped together in a meaningful way. The procedure for mapping amino acid patterns
to group vectors and its use in the construction of a database were explained in Section
4.3.

5.5.1.2 Protocol

A series of experiments with window sizes ranging from 1 to 15 were executed (N €
[1,15]) with { = [§] — 1 and r = [ ]. Distance metric 6V was used with e = 0. ¢

was used as classification function and (! as assignment function.

The procedure to set up G starts by assigning G = R. Thus, initially there are 21
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groups (one for each amino acid residue type and one for an edge). Unique pairs are
selected from the different groups and combined (there are % (m — 1) such pairings,
thus initially 210 tests need to be conducted using 20 groups each). The Qg score
achieved by each of the pairings is noted. Once all the tests are completed, the pairing
with the highest Q)g score is retained and G adjusted accordingly. The process is then
repeated, this time with the new G containing 20 groups. With 20 groups in G, 190
tests are conducted and G is reduced to 19 groups by the same process. The process

is repeated until G consists of just 1 group (the trivial case) or until no performance

gain is achieved.

It should be noted that 1540 tests need to be conducted to reduce G from 21 groups
to 1 (these tests need to be conducted for each combination of other parameters,
i.e. window size, classification and assignment functions etc.). There are nevertheless
many more ways in which 21 groups can be segmented into fewer than 21 groups. The
procedure described above is thus not guaranteed to find a configuration with optimum
performance. Rather, the procedure is based on what is known as a “greedy” algorithm

and it is hoped that the performance is near optimum.

In the discussion that follows, each group G; will be designated by a group label using
curly brackets {}. The amino acid residue types that belong to the group are listed
between the brackets. The function L maps each amino acid in a window to a group

label G; based on the group to which it belongs.

5.5.1.3 Results and Discussion

The results achieved by the procedure described above are listed in Table 5.12. The
table shows the performance without any groupings, the performance achieved by the
optimum grouping (optimum in the sense of the algorithm previously discussed), the
gain achieved by using the grouping scheme, the grouping that resulted in optimum
performance and the number of different groups (m) that achieve optimum perfor-

mance.

As can be seen from the results, a performance gain can be achieved irrespective of

the window size. The best performance is 44.09% for a window size of N = 5. This
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represents an increase of 6.05% over the case where no grouping is used.

Table 5.12: Application of Grouping Strategy (Forcing Prediction, € = 0)

N No Grouping Grouping Gain Optimum Grouping m
1 34.1485 34.1828 | 0.0343 | {ARQELKM#}{NHDPS}{CIFTWYV}{G} 4
2 38.0383 38.1493 | 0.1110 | {AE}{RK}HNSHDMHCHQHGHH}{IWHLHMMHFHP#H{THYHV?} 16
3 41.8116 41.9623 0.1507 {AHRMHNHDIHCIWHQHEMGHHKIHLI{MFHPHSHTHYMHVIH{#} 17
4 39.9345 43.6626 | 3.7281 | {A}{REKQ}{NSD}{CWYIVF}{G}{HT}HLM}P}{#} 9
5 38.0369 44.0928 | 6.0559 | {ARKQE}{NSTHD}{CW}{G}{IVLFYM}{P}{#} 7
6 36.7449 43.6735 6.9286 | {A}{RNSTDKQEH}{CIVLFYMW}{G}{P}{#} 6
7 35.6228 41.7102 | 6.0874 | {ARKEQH}{NGD}{CIVLSTFYMW }{P#} 4
8 34.8021 40.3072 5.5051 {ARKQHE}{NDGP#}{CIVLSTFYWM} 3
9 34.1403 39.0165 | 4.8762 | {AIVLSTNFYCHMW }{RKQED}{G#}{P} 4
10 33.5758 37.5766 4.0008 {ASTIVLNGFYHMWC}{RKQE}{D#}{P} 4
11 33.0840 37.0765 | 3.9925 | {ASTIVLNGFYCH}{RK}{D#}{QE}{M}{P}{W} 7
12 32.6647 36.9230 | 4.2583 | {ASTIVLNGPC}HRK}{DE}HQH{HH{MMH{FY#}{W} 8
13 32.3236 36.5997 | 4.2761 | {ASTIVLNGPD}{RKH#}{C}H{QEHM}{FY}{W} 7
14 32.0331 36.3544 | 4.3213 | {ASTIVLRKNPQ}{DE}{C}HGHHH{M#H{FY}{W} 8
15 31.7673 36.0503 | 4.2830 | {ASTIVLRKNGP}{DE}{CHQH{H}{M#}H{FY}{W} 8

In Table 5.13 the experiments were repeated, but this time the predictions were not
forced as in Table [5.12. Interestingly, the performance values are about the same (but
on average slightly worse). Large performance gains are achieved for larger window
sizes (relative to the unforced case with G = R). This effect can be explained by
the fact that the number of patterns that need to be stored in the database to be
representative of the entire input space is reduced from 21V to m®. Although m" is
still large for larger window sizes, it is probably the case that only a fraction of those
patterns are required to be representative of the actual proteins in the data sets. In
fact, the objective of the grouping function is to reduce the complexity in that way. It
is also observed that different groups form for window sizes of N > 4 in the case of

unforced prediction. The group size (m) is also smaller for larger window sizes.

Table 5.13: Application of Grouping Strategy (Not Forcing Prediction, € = 0)

N No Grouping Grouping Gain Optimum Grouping 3
1 34.1485 34.1828 0.0343 {ARQELKM# }{NHDPS}{CIFTWYV}{G} 4
2 38.0383 38.1493 0.1110 | {AE}RK}{NSHDIHCHQIHGHHHIWHLHMMHFHP#HTHYIH{V} 16
3 41.8074 41.9623 0.1549 | {AMRIHNHDI{CIWHQHEMHGHHKI{L}I{MFHPHSHTHYIH{VI{#} | 17
4 36.3393 43.8955 7.5562 {A}{REKQ}{ND}CIVFYWHGHHTHLM}HP}IHSH#} 10
5 18.0416 41.6417 23.6001 | {ALVIFYRMCW }{ND}{QEKH}{G}{P}{ST}{#} 7
6 12.0830 39.9331 27.8501 | {AIVLEKRTQFYMHW }{NDS}{C}{G}{P}{#} 6
7 10.2772 39.0494 28.7722 | {AIVLEKTSRQNDHM}{CFYW}{G}{P}{#} 5
8 9.1619 38.9960 29.8341 | {AIVLKETSRQNDYMH}{C}{G}HFW}{P}{#} 6
9 8.2960 38.9974 30.7014 | {ASTIVLEKRDNQYFHMW }{C#}{G}{P} 4
10 7.5630 36.2900 28.7270 | {ASTIVLGKERDNQYMH}{C}{FW}{P#} 4
11 6.9314 36.2832 29.3518 | {ASTIVLGKEDNRQYMHFW}{C}{P}{#} 4
12 6.3820 36.4202 30.0382 | {ASTIVLGKEDNRQYMHFW}{C}{P}{#} 4
13 5.9312 36.2804 30.3492 | {ASTIVLGNKEDRQYFHMW}{C}{P}{#} 4
14 5.5489 36.2708 30.7219 | {ASTIVLRKEGDNQYFMHW}{C}{P}{#} 4
15 5.2009 36.2434 31.0425 | {ASTIVLRKEGDNQYFMHW }{C#}{P} 3

There thus seems to be merit in grouping different amino acids together. The question
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is whether there is a gain to be achieved by combining a grouping strategy with other

parameters in the algorithm.

The best performance achieved was 44.09% for a window size of N = 5. In the
experiment where the different classification functions were considered, a performance
score of 46.94% was achieved using ¢! (e = 1) and 46.71% using ¢ (e = 1) with
N = 5. To make a fair comparison, the experiments were repeated using ¢ = 1 for
window sizes N € [3,7] (the large amount of computational power required to execute
the experiments limited the range of cases that could be tested). The results of these
experiments are shown in Table 5.14 for the forced case and Table 5.15 for the unforced

case.

The best performance achieved was Qs = 46.88% ()3 = 61.05%). This is hardly an
improvement over the case where no groupings are used. If the actual groupings that
are formed are observed, it will be noted that the only groupings were M with W and
F with Y. The tendency for the other window sizes is to form more groups as well

(preserving the unique attributes of the different amino acid residue types).

It is the opinion of the author that no significant performance gain (relative to other
parameters in the algorithm) will be achieved using larger window sizes and e values
using the current grouping strategy. It is suspected that the current grouping strategy
will eventually (with larger N and e values) reach a state where G = R is the optimum
grouping, and the performance will thus be the same as that achieved in the experiment

on classification functions (Section 5.4.3).

It is extremely important to note that the current grouping strategy could have been
implemented as a more advanced distance metric. Such a distance metric would assign
a score of 0 to amino acids that are in the same group and a score of 1 to amino
acids that are not in the same group. This would have the same effect as applying
the grouping strategy initially and then applying 6! on the resulting patterns. From
this it can be concluded that work should rather be conducted in developing a better

distance metric, as was the conclusion in Section 5.4.3.4.

Figureau et al [110] found that the grouping
{CFWY H{IVH{LMMHHQRHEK}{DN}HSP}HAHG}HT} led to good results in the clas-
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sification of pentapeptides. They achieved ()3 scores in the order of 65% using this
grouping, although the technique and application they use are different. To compare
results, their grouping was used in the algorithm designed in this dissertation (adding
an edge as an additional grouping). A Qg score of 41.57% is achieved (with ¢® and
€ > 1). The corresponding Q3 score is 56.97%. This is about 4-5% lower than the best

results achieved using the current grouping strategy.

An interesting aspect to consider is the actual amino acid residue types that were
grouped together using the grouping strategy developed in this experiment. Tables
5.12/ and 5.13 list only the optimal groupings. From this it is difficult to find specific
prominent groupings. A better approach is to study how different groups are combined
during the optimization process. This is conveniently illustrated in the dendograms in
Figures 5.10 to 5.22. The dendograms in the figures are associated with window sizes
3 to 15 in Table 5.12.

There are many diverse patterns that form, depending on the window size; however
some are more readily identifiable than others. The most distinct grouping is I with V.
IV is also often associated with L. S and T are found together, often combined with A
and/or with IVL. R and K are found together, as are Q and E. R, K, Q and E are also
found together in various combinations. H and A is sometimes found in combination

with R, K, Q and E. F, Y, C and W are sometimes found in combination. The other

Table 5.14: Application of Grouping Strategy (Forcing Prediction, € = 1)

N No Grouping Grouping Performance Gain Optimum Grouping m
3 41.8499 41.9732 0.1233 {AHRIHNIHDIHCIWHQHEMHGHHKHL}I{MFHPHSHTHYHVI{#} 17
4 41.9897 43.9832 1.9935 {A}REQK}{ND}{CIVFYW}{G}{HT}{LM}{P}{S}{#} 10
5 46.7193 46.8837 0.1644 {AHRIHNHDMHCHQHEHGHHMHIMHLHKIH{MWHFYHPHSHTHVIH{#} 19
6 43.8147 46.6809 2.8662 {AMHRIMNHDMIHCWIH{QEMHGHHM}MHIVLHKIHFYIH{P}H{STH{#} 14
7 41.7198 46.6453 4.9255 {A}{RK}{NST}{D}{CIVLFM}{QE}{G}{H}{P#}{WY} 10
Table 5.15: Application of Grouping Strategy (Not Forcing Prediction, € = 1)
N No Grouping Grouping Performance Gain Optimum Grouping m
3 41.8499 41.9732 0.1233 {AHRHNHDHCIWHQHEMGHHKIHLH{MFHPHSHTHYHVIH{#} 17
4 41.9897 43.9832 1.9935 {A}REQK}{ND}{CIVFYW}{G}{HT}{LM}{P}{S}{#} 10
5 46.6179 46.8577 0.2398 {AHRIM{NHDMHCHQHEHGHHHIMHLHKIH{MWHFYHPHSHTHVIH{#} 19
6 34.8857 46.2562 11.3705 {AMHRK}IND}IHCWHQEMG}HH}IIVLFM}MHP}HSHTHY}H#} 13
7 20.4927 44.6134 24.1207 {ALVIFYM}{RQEK}{ND}{C}{G}{H}{P}{STHW}{#} 10
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types (N, D, M, G, P and #) do not seem to form regular combinations.

It is interesting to compare the above findings with the grouping used by Figureau.
Both seem to suggest that  and V as well as C, F, W and Y could be clustered together.
Figureau clusters H, Q and R as well as E and K, which can be supported with the
findings above. The clustering of D and N is also somewhat suggested by the findings

above.

It is also interesting to consider the chemical properties of the residue: sulthydryl (C),
small hydrophilic (S, T, P, A, G), acid amide and hydrophilic (N, D, E, Q), basic
(H, R, K), small hydrophobic (M, I, L, V), and aromatic (F, Y, W) ([53], p. 82).
The clustering results found above seem to be somewhat correlated by the chemical
properties of the side chain: ILV, ST, ND, EQ, HRK and FYW share similar chemical
characteristics. The implication of this is important: substitution of amino acids with

similar chemical properties may preserve the formation of secondary structures.

N=3 (I=1 r=1)

A QERHIKNDSTT CI WMF VY L G P #

Figure 5.10: Dendrogram indicating clusterings for N = 3

N=4 (=1 r=2)

gl

A REK QNS SUDHTGP # CWY I VF LM

Figure 5.11: Dendrogram indicating clusterings for N = 4
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N=5 (I=2 r=2)

L1

A RKQENSTHUDGP# CW I VL FY M

Figure 5.12: Dendrogram indicating clusterings for N =5

N=6 (I=2 r=3)

A RNSTDI K QEHGP# C I VL FY MW

Figure 5.13: Dendrogram indicating clusterings for N = 6

N=7 (I=3 r=3)

ARKEQHT CI VLSTFYMWNGTDP #

Figure 5.14: Dendrogram indicating clusterings for N =7
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N=8 (I=3 r=4)

A RKAQHETGCI VL STFYWMNUDG P #

Figure 5.15: Dendrogram indicating clusterings for N =8

N=9 (I=4 r=4)

Al VvV L TN FYCHMWRIKAOQETDTG # P

Figure 5.16: Dendrogram indicating clusterings for N =9

N=10 (I=4 r=5)

AS T I VLNGTFYHMMWCZPRIKAQE D #

Figure 5.17: Dendrogram indicating clusterings for N = 10
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N=11 (1=5 r=5)

=

AS T I VLNGTFYCHMWRIKAQETD# P

Figure 5.18: Dendrogram indicating clusterings for N = 11

]

A S T I VLNGPU CHWFY # MRIKQDE

N=12 (1=5 r=6)

Figure 5.19: Dendrogram indicating clusterings for N = 12

I

AS T I VLN GPUDU CWFYRIKWHH#QEM

N=13 (1=6 r=6)

Figure 5.20: Dendrogram indicating clusterings for N = 13
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N=14 (=6 r=7)

A S T I VL RKNPQDETFY HCM# WG

Figure 5.21: Dendrogram indicating clusterings for N = 14

N=15 (=7 r=7)

AS T I VLRKNGPCWHTFY DEOQM#

Figure 5.22: Dendrogram indicating clusterings for N = 15
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5.5.1.4 Conclusion

A small but consistent gain can be achieved by grouping different amino acids together.
It was found that (IV)(L), ST, (RK)(QE), FYCW and DN are good groupings. H and
A are sometimes found in combination with R, K, Q and E. The data seems to suggest
that in some cases, substitution of amino acids with similar chemical properties may

preserve the formation of secondary structures.

If more leniency (larger € values) is allowed in the similarity of patterns, the tendency
is for the optimum grouping to consist of more groups, i.e. the unique attributes of the
amino acids are preserved. This seems to suggest that although a gain can be achieved
by grouping amino acids together, it is not effective when used in conjunction with

other parameters that can be controlled in the algorithm.

The grouping strategy could be implemented as a more advanced distance metric.
Together with the conclusion reached in the previous experiment, this seems to sug-
gest that the distance metric is a large contributing factor to the performance of the

algorithm.

5.5.2 Experiment: Substitution Matrix

5.5.2.1 Objective

Previous experiments indicated the need to be able to determine the similarity between
two different group vectors. From this experiment onwards it is assumed that the
mapping function L is the identity mapping. The aim now is to measure the similarity

between two different sequences of amino acids in more sophisticated ways.

The “grouping strategies” experiment (see Section 5.5.1) illustrated that there are
certain amino acids that behave similarly in general. However, it did not quantify
the similarity between the different amino acids. The objective of this experiment is
to create a substitution matrix - a matrix quantifying the similarity between different

amino acids. This quantification can then be used to create a better distance metric
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(as is done in a the subsequent “distance metric - substitution matrix” experiment (see
Section 5.5.3)).

5.5.2.2 Protocol

For this experiment, the training data was divided into a new training and validation
data set, in order not to bias subsequent experiments that are reliant on the substi-
tution matrix. The division was roughly 80%/20%, with the new training data set
containing 1174 proteins (225019 amino acid residues) and the validation set contain-
ing 320 proteins (60301 amino acid residues). The algorithm used the new training set
for training purposes, and used the validation set to extract values for the substitution

matrix.

A window size of 15 (I = 7,7 = 7) was used, with distance metric §'). The set of
group labels were the same as the set of residue labels, that is G = R, with L the
identity function. ¢® was used as assignment function, with a large € value such that

all sequences in the training data are considered. (! was used as assignment function.

Under this experimental setup, the “nearest neighbour(s)” to each target sequence in
the validation data set were determined under the distance metric 6. For the 60301

target sequences, 247949 such neighbours were found.

Consider now making a prediction for a single target sequence using a single neighbour.
The target sequence and neighbour will have similar amino acid residue types in some
positions and different residue types in others. Given a residue type A in position k of
the target sequence and a residue type B in position k of the neighbour, it is said that

a substitution of A with B has been made (even where A and B are equal).

Let C* and I* be matrices of dimension 21 x 21, where k € [1,15] is an index asso-
ciated with the k™ position in the window. Let C},  indicate the number of times
that a residue type n has been substituted with residue type m in position k£ over all
target sequences and their neighbours, such that the neighbour correctly predicted the
secondary structure associated with the target sequence. Similarly, let I,’fm indicate

the number of times that a residue type n has been substituted with residue type m
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in position k over all target sequences and their neighbours, such that the neighbour

incorrectly predicted the secondary structure associated with the target sequence.

Let

15
C=> C* (5.4)
k=1

and

15
=) 1" (5.5)
k=1

The matrices C' and I thus indicate the total number of times that different substi-
tutions were made in all positions of a window for correctly and incorrectly predicted

secondary structures respectively.
Let P be a matrix where element p,,, of P is defined according to elements c,,, and

imn of C and I by

Cm.n

Element p,, ,, thus indicates the fraction of times that a substitution of residue type n

with residue type m was observed in a correctly predicted secondary structure.

Let S be a substitution matrix where element s, ,, is defined by

Pmn
15 :
max;>; Pin

(5.7)

Smn =
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The elements of S are thus normalised similarity values between different residue types.

5.5.2.3 Results and Discussion

Table 5.16/ shows the calculated substitution matrix. With the exception of R, D, E,
I and L, all diagonal entries have values equal to 1, as should be expected. It is also
evident that the matrix is not symmetrical, implying that substitution between two

amino acids is not commutative.

Substitutions with a similarity value between 0.8 and 1 are shown in Table 5.17. The
table illustrates that I and V are similar as was found in the previous experiment. It
also suggests that L. and M are similar (and that I, V, L and M are alike in general),
a result which was indicated by Figureau et al [110], but was not duplicated in the

previous experiment. I, V, L and M are all small hydrophobic amino acids.

The results also show that R and K are similar, as are E and Q, and these four residues
are in general very alike, a result that was also found in the previous experiment. It
also indicates that A is somewhat alike to elements in this group. Although not shown

in the table, there is some evidence that H shares some similarity with these residue

types.

F and Y are similar. However, no evidence was found to show that C and W are similar
as was found in the previous experiment. In fact, C, W and P are the only residue
types that seem not to have any good substitutions. Interestingly, C, W and P seem
to be most alike to the edge type.

S and T are alike, as are D and N, both results having been suggested by the previous

experiment. There is also some new evidence that N and K are alike, as are E and D.

There are a surprising number of residue types that can be exchanged with an edge
type. This may be due to the regularity with which edge types in a window are
predictive of the coil secondary structure. No readily discernable patterns could be

detected from the other high scoring substitutions.
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Table 5.16: Substitution Matrix

A R N D C Q E G H I L K M F P S T \W% Y \% #
A 1.000 | 0.839 | 0.744 | 0.836 | 0.557 | 0.780 | 0.811 | 0.783 | 0.666 | 0.760 | 0.766 | 0.839 | 0.723 | 0.694 | 0.631 | 0.741 | 0.764 | 0.561 | 0.660 | 0.784 | 0.623
R | 0.814 | 0.991 | 0.770 | 0.799 | 0.510 | 0.827 | 0.782 | 0.703 | 0.717 | 0.697 | 0.779 | 0.955 | 0.690 | 0.647 | 0.559 | 0.670 | 0.690 | 0.471 | 0.637 | 0.691 | 0.569
N 0.738 | 0.795 | 1.000 | 0.957 | 0.514 | 0.748 | 0.741 | 0.775 | 0.701 | 0.652 | 0.672 | 0.829 | 0.644 | 0.545 | 0.582 | 0.749 | 0.769 | 0.456 | 0.647 | 0.609 | 0.591
D | 0.775 | 0.793 | 0.822 | 0.995 | 0.463 | 0.725 | 0.839 | 0.715 | 0.597 | 0.641 | 0.621 | 0.701 | 0.641 | 0.589 | 0.560 | 0.697 | 0.681 | 0.496 | 0.565 | 0.615 | 0.610
C 0.722 | 0.647 | 0.576 | 0.664 | 1.000 | 0.626 | 0.633 | 0.677 | 0.641 | 0.690 | 0.658 | 0.602 | 0.665 | 0.643 | 0.494 | 0.646 | 0.587 | 0.437 | 0.572 | 0.734 | 0.919
Q | 0.780 | 0.938 | 0.767 | 0.894 | 0.527 | 1.000 | 1.000 | 0.673 | 0.743 | 0.758 | 0.798 | 0.935 | 0.690 | 0.650 | 0.556 | 0.707 | 0.655 | 0.503 | 0.571 | 0.649 | 0.807
B 0.864 | 0.848 | 0.806 | 1.000 | 0.524 | 0.861 | 0.952 | 0.735 | 0.703 | 0.712 | 0.715 | 0.849 | 0.730 | 0.684 | 0.581 | 0.683 | 0.690 | 0.470 | 0.607 | 0.659 | 0.790
G | 0.746 | 0.687 | 0.765 | 0.783 | 0.479 | 0.619 | 0.701 | 1.000 | 0.597 | 0.575 | 0.605 | 0.677 | 0.596 | 0.598 | 0.563 | 0.669 | 0.601 | 0.480 | 0.543 | 0.619 | 0.568
H | 0.696 | 0.814 | 0.884 | 0.700 | 0.544 | 0.785 | 0.656 | 0.607 | 1.000 | 0.705 | 0.660 | 0.726 | 0.624 | 0.670 | 0.537 | 0.682 | 0.621 | 0.468 | 0.661 | 0.601 | 0.727
I 0.753 | 0.718 | 0.659 | 0.689 | 0.527 | 0.657 | 0.651 | 0.615 | 0.609 | 0.885 | 0.913 | 0.689 | 0.769 | 0.770 | 0.526 | 0.603 | 0.727 | 0.522 | 0.600 | 0.945 | 0.519
L 0.783 | 0.746 | 0.677 | 0.704 | 0.499 | 0.707 | 0.744 | 0.640 | 0.608 | 0.897 | 0.985 | 0.717 | 0.865 | 0.786 | 0.517 | 0.578 | 0.627 | 0.568 | 0.644 | 0.823 | 0.524
K | 0.850 | 1.000 | 0.842 | 0.787 | 0.504 | 0.859 | 0.832 | 0.709 | 0.695 | 0.721 | 0.718 | 1.000 | 0.683 | 0.651 | 0.593 | 0.699 | 0.764 | 0.525 | 0.607 | 0.667 | 0.635
M | 0.871 | 0.797 | 0.695 | 0.727 | 0.642 | 0.751 | 0.687 | 0.707 | 0.608 | 0.959 | 1.000 | 0.832 | 1.000 | 0.903 | 0.568 | 0.614 | 0.744 | 0.569 | 0.687 | 0.757 | 0.687
F 0.700 | 0.718 | 0.685 | 0.635 | 0.484 | 0.632 | 0.665 | 0.618 | 0.621 | 0.763 | 0.789 | 0.653 | 0.689 | 1.000 | 0.522 | 0.586 | 0.641 | 0.603 | 0.845 | 0.717 | 0.617
P 0.728 | 0.697 | 0.687 | 0.734 | 0.432 | 0.637 | 0.632 | 0.649 | 0.548 | 0.543 | 0.554 | 0.668 | 0.527 | 0.563 | 1.000 | 0.687 | 0.642 | 0.463 | 0.499 | 0.581 | 0.714
S 0.841 | 0.759 | 0.799 | 0.901 | 0.497 | 0.697 | 0.730 | 0.771 | 0.577 | 0.634 | 0.631 | 0.746 | 0.577 | 0.657 | 0.634 | 1.000 | 0.873 | 0.471 | 0.580 | 0.628 | 0.759
T 0.778 | 0.748 | 0.774 | 0.770 | 0.476 | 0.645 | 0.721 | 0.662 | 0.641 | 0.755 | 0.633 | 0.763 | 0.590 | 0.611 | 0.561 | 0.860 | 1.000 | 0.469 | 0.623 | 0.735 | 0.531
W | 0.726 | 0.783 | 0.650 | 0.633 | 0.402 | 0.614 | 0.624 | 0.600 | 0.613 | 0.642 | 0.793 | 0.628 | 0.610 | 0.744 | 0.500 | 0.514 | 0.569 | 1.000 | 0.779 | 0.605 | 0.475
Y | 0.737 | 0.753 | 0.714 | 0.709 | 0.497 | 0.621 | 0.681 | 0.649 | 0.727 | 0.670 | 0.689 | 0.614 | 0.637 | 0.916 | 0.548 | 0.647 | 0.615 | 0.575 | 1.000 | 0.708 | 0.334
V | 0.807 | 0.746 | 0.630 | 0.638 | 0.464 | 0.628 | 0.693 | 0.654 | 0.589 | 1.000 | 0.837 | 0.713 | 0.691 | 0.697 | 0.513 | 0.582 | 0.679 | 0.493 | 0.619 | 1.000 | 0.708
# | 0.857 | 0.945 | 0.869 | 0.881 | 0.615 | 0.792 | 0.852 | 0.936 | 0.703 | 0.749 | 0.651 | 0.900 | 0.718 | 0.718 | 0.902 | 0.794 | 0.843 | 0.655 | 0.525 | 0.660 | 1.000
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5.5.2.4 Conclusion

The experiment reinforces the findings of the “grouping strategies” experiment, namely
that (IV)(LM), (RK)(QE), ST, DN and FY are similarity groups, but shows no evidence
that C and W are similar to one another or to the FY group.

More importantly, the experiment quantifies the similarity between different residue
types, which makes it possible to develop a better distance metric. It is also noted that

substitution between two residue types is not commutative.

5.5.3 Experiment: Distance Metric - Substitution Matrix

5.5.3.1 Objective

The objective of this experiment is to determine whether the substitution matrix de-
veloped in the previous experiment can be used to develop a distance metric that has

better success than the 60" distance metric that was used in previous experiments.

Table 5.17: Substitutions with similarity values between 0.8 and 1

I vV 1000 R K 1000|A E 084|R # 0945 |D S 0.901
L M 1000 |E Q 1.000]|A K 080G # 0936 |D Q 0.894
I M 099 |K R 095 |R A 0839 |# C 0919 | N H 0.884
V. I 0945 | R Q 0938 | K A 0839 | P # 0902|A M 0.871
L I 0913|K Q 093 |A R 0814 | K # 0900|A S 0.841
I L 087]Q E 081 E A 0811 |D # 081 |D A 0.836
M L 0865|Q K 0.859 N # 0869 | K M 0.832
L V 087K E 0849 A # 087|R H 03814
V L 0823|R E 0848 E # 082]|A V 0.807
E K 0.832 T # 0843 | N E 0.806
Q R 0.827 # Q 0.807
F 0916 | T S 0873 | D N 097 N K 0842 | D E 1.000
Y F 0845|S T 080|N D 0822 K N 0829 | E 0.839
Department of Electrical, Electronic and Computer Engineering 127
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5.5.3.2 Protocol

A window size of 15 (I = 7,7 = 7) was used. The set of group labels were the same as
the set of residue labels, that is G = R, with L the identity function. ¢() was used as

assignment function.

The distance metric 6©) (see Section 4.5.3) is designed with elements wu; ; of matrix U
defined by

ui,j =1- 5i,j; (58)

where the s;; (defined by Equation 5.7) are elements of the substitution matrix S
created in the “substitution matrix” experiment, and the weights w; associated with

positions in the window are all set to 1.

The performance of this distance metric is compared to the performance of distance
metric 61 used in previous experiments. To make the comparison fair, classification
function ¢® was used but adapted in such a way that exactly the k closest neighbours
in the training set contribute to the prediction. For each target sequence the number
of contributing neighbours is thus equal under both §® and 6! (more precisely, equal
to k), where there would otherwise be different numbers contributing. k& was tested in
the range [1, 10].

5.5.3.3 Results and Discussion

Table 5.18 shows the performance of §) and 6 under the experimental setup using

exactly £ contributing neighbours.

For both 6® and 6V, best performance is achieved using k& = 1, with performance
values of 55.37% and 52.42% respectively. 63 thus performs roughly 3% better than
oW indicating that there is a significant benefit in the new way in which sequences are

compared.

Department of Electrical, Electronic and Computer Engineering 128
University of Pretoria



&£
&
-
m!r‘“’

v ERSI EIT VAN PRETORIA
ERSITY OF PRETORIA
BESITHI YA PRETORIA

Chapter 5 Results

An interesting observation is that for the ()3 performance, there is a local maximum
for both 63 and §() at k = 5. For §®, the Qg values are already in a declining phase,
but still a maximum is achieved for )5. This might be indicative that certain amino
acid sequences form “similar” secondary structures in the eight class problem, in the
sense that secondary structures are similar if they are mapped to the same class in the

three class problem.

Table 5.18: Comparison between the performance of §® and 6" using exactly k

neighbours
53 53) 53) 53) s s s s
k|| #Qs | Qs () | #Qs | Qs (%) | #Qs | Qs(%) | #Qs | Q3 (%)
1 || 40411 | 55.367 | 48876 | 66.965 | 38260 | 52.420 | 46544 | 63.770
2 | 39061 | 53.518 | 46203 | 63.303 | 36801 | 50.421 | 43147 | 59.116
3 | 38673 | 52.986 | 46001 | 63.026 | 36637 | 50.197 | 42737 | 58.554
4 || 38754 | 53.097 | 46706 | 63.992 || 36563 | 50.095 | 43320 | 59.353
D || 38545 | 52.811 | 46834 | 64.168 | 36594 | 50.138 | 43492 | 59.589
6 | 38302 | 52.478 | 46599 | 63.846 | 36585 | 50.125 | 43341 | 59.382
7 | 38044 | 52.124 | 46387 | 63.555 | 36340 | 49.790 | 43001 | 58.916
8 || 37952 | 51.998 | 46507 | 63.720 | 36271 | 49.695 | 42950 | 58.846
9 || 37781 | 51.764 | 46443 | 63.632 | 36292 | 49.724 | 43058 | 58.994
10 || 37545 | 51.441 | 46251 | 63.369 | 36223 | 49.629 | 42986 | 58.895

It is also useful to understand what happens if ¢ is not limited to exactly k neigh-
bours, but is used as originally defined, i.e. that all nearest neighbours to a particular

target sequence contribute to classification.

Under this condition, 6®) correctly predicts 55.59% of the secondary structures, a
marginal improvement over the 55.37% achieved using & = 1. In doing so, 94588

neighbours were used, an average of 1.29 neighbours per sequence.

§W correctly predicts 55.82% of the secondary structures, but uses 294076 neighbours
in doing so (an average of 4.02 per sequence). At first glance it may appear that this
result should be more or less equal to the one obtained using k = 4. It should however
be kept in mind that with £ = 4, every sequence has exactly 4 neighbours whilst here

the average is roughly 4 (thus some sequences have fewer and some more neighbours

Department of Electrical, Electronic and Computer Engineering 129
University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 5 Results

of equal minimum distance).

5@ and 8 thus have similar performance under ¢, however §® requires much fewer
neighbours to achieve this performance than 6. This should be expected, since the
similarity values between different amino acid residue types are now much more diverse
than under the hard 1/0 function, resulting in a more measurable difference between
different sequences. In terms of a pattern recognition problem, this means that the

decision boundary used under the §® metric is “less fuzzy” than under the () metric.

Another interesting observation is that of the 294076 neighbours found under 6%,
only 117270 (39.88%) correctly predict secondary structures when viewed in isolation,
yet when neighbours of equal minimum distance are combined per target sequence, it
manages to correctly predict 55.82% of the structures. An investigation into the nature
of these neighbours (results not listed here) showed that there are more neighbours
for sequences that are further from the target sequences. This implies a relationship
between the number of qualifying neighbours and the distance of these neighbours from
the target sequence. This relationship is further analysed in the “adaptive classification

function” experiment (Section 5.5.5).

5.5.3.4 Conclusion

The distance metric based on the substitution matrix created in the previous exper-
iment is an improvement on the distance metric used up to now, in the sense that
fewer training samples are required to achieve similar performance. This reinforces
the findings about specific amino acids that were found to be similar in the previous

experiment.

There is also evidence to suggest that there is a relationship between the number of

qualifying neighbours and the distance of those neighbours to the target sequence.
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5.5.4 Experiment: Distance Metric - BLOSUM
5.5.4.1 Objective

As was the case in the previous experiment, the objective of this experiment is to design
a distance metric based on a substitution matrix. This time, an existing substitution
matrix, namely the BLOSUM matrix (refer to Table 2.4) is used. If the algorithm
performs well using this metric, it implies that the matrix is indicative of good amino

acid substitutions.
5.5.4.2 Protocol

A metric was designed based on the BLOSUM matrix (refer to Table 2.4). The notation
§B) will be used to indicate this metric. The metric is defined by

4% = 5P (g,,3,) Zs“ (5.9)

where s; is the entry in the BLOSUM matrix for substituting g,, with g,,. Note that
G = R is used, with L the identity mapping. This ensures that the group labels are
simply the residue types, which makes it possible to use the matrix. The matrix does
not define substitution values for edges. A value of s = 12 was used for substitution of
an edge with another edge and a value of s = —3 for substitution of an edge with an

amino acid or vice versa.

Note the minus sign in the distance metric. Positive values in the BLOSUM matrix
indicate likely substitutions and negative values unlikely substitutions. The minus
sign is used to ensure smaller distance values for patterns that are more alike to one
another. Note that under this metric, distances of less than 0 are possible. The
restriction that d,;, > 0 is relaxed in this case, since it does not influence the execution
of the algorithm and the results achieved with it. By adding a constant value of 17N
(17 being the largest value for any substitution) to the distance calculation, the metric

can easily be guaranteed to evaluate to a value greater or equal to zero.
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Experiments were executed for N = 15 (I = 7,7 = 7). Different € values in the range
[-45,10] were examined. ¢(!) and ¢® were tested as classification functions and 1))

assignment function.

5.5.4.3 Results and Discussion

The results obtained are shown in Table 5.19 and are illustrated in Figure 5.23. An
increase from 51.57% to 53.75% for ¢") and from 55.19% to 56.18% for ¢® is achieved

using 6B instead of §(

Table 5.19: Performance achieved by using BLOSUM distance metric

€ Q8(¢(1)) Q8(¢(2)) € Q8(¢(1)) Q8(¢(2)) € Q8(¢(1)) Q8(¢(2))
-45 1 50.2350 | 50.2377 | -25 | 51.6133 | 56.1799 | -5 | 43.4735 | 56.1744
-44 1 50.6487 | 50.6556 | -24 | 51.6284 | 56.1730 | -4 | 42.7473 | 56.1744
-43 | 51.0461 | 51.0666 | -23 | 51.3941 | 56.1744 | -3 | 42.0253 | 56.1744
-42 | 51.3982 | 51.4366 | -22 | 51.3023 | 56.1744 | -2 | 41.1936 | 56.1744
-41 | 51.7339 | 51.8106 | -21 | 51.0420 | 56.1744 | -1 | 40.4387 | 56.1744

-40 | 52.0641 | 52.1942 | -20 | 50.8090 | 56.1744 | 0 | 39.6947 | 56.1744
-39 | 52.3710 | 52.5696 |-19 | 50.6433 | 56.1744 |1 | 38.8110 | 56.1744
-38 | 52.7053 | 52.9642 | -18 | 50.2692 | 56.1744 | 2 | 38.1232 | 56.1744
-37 | 53.0642 | 53.4218 | -17 | 49.9034 | 56.1744 | 3 | 37.2998 | 56.1744
-36 | 53.3848 | 53.8863 | -16 | 49.5842 | 56.1744 | 4 | 36.4983 | 56.1744
-35 | 53.5863 | 54.3206 |-15 | 49.2197 | 56.1744 |5 | 35.7173 | 56.1744
-34 | 53.7575 | 54.8002 | -14 | 48.5826 | 56.1744 | 6 | 34.8843 | 56.1744
-33 | 53.6657 | 55.1701 | -13 | 48.1360 | 56.1744 | 7 | 34.0280 | 56.1744
-32 | 53.4876 | 55.5784 | -12 | 47.5852 | 56.1744 | 8 | 33.2730 | 56.1744
-31 | 53.1574 | 55.7866 |-11 | 47.0440 | 56.1744 |9 | 32.4948 | 56.1744
-30 | 52.7080 | 55.9579 |-10 | 46.5069 | 56.1744 | 10 | 31.8783 | 56.1744

-29 | 52.2723 | 56.0305 | -9 | 45.9767 | 56.1744
-28 | 52.0449 | 56.1470 | -8 | 45.3807 | 56.1744
-27 1 51.9312 | 56.1785 | -7 | 44.7847 | 56.1744
-26 | 51.8476 | 56.1867 | -6 | 44.1969 | 56.1744

The good performance under this metric indicates that the substitution values in the
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matrix are good indicators of the similarity between different amino acid residue types.

It is thus a good idea to further investigate the values in the matrix.

The first observation is that the matrix is symmetrical, i.e. substitutions between
different residue types are commutative. Both C and W, and to a lesser extent P, are
not well substituted with any other other residue type, as was found in the previous
experiment. G now joins the ranks of amino acids that are not well substituted by
other amino acids. F and Y are a good substitution, as are I and V, M and L and all
four these with each other as was found in the previous experiment. R and K are good
substitutes as are E and Q. However, unlike in the previous experiment, there is no
strong correspondences between R and K with E and Q. H and A can be substituted
with elements from the R, K, E, Q group but there is no strong correspondence. The
similarity between N and D and between D and E is confirmed using this matrix, and

to a lesser extent the similarities between S and T and between N and K.

60 T T T T T T T T T T T T T T
: Functionl —+—
‘Function 2

Performance (%)

45 -40 -35 -30 -25 -20 -15 -0 -5 O 5 10 15 20 25 30
Epsilon Vaue

Figure 5.23: Performance achieved by using BLOSUM distance metric
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5.5.4.4 Conclusion

The experiment confirmed that there are similarities between certain types of amino
acid residues. Although there are exceptions, most of these similarities are the same

as those found in the “grouping strategies” and “substitution matrix” experiments.

5.5.5 Experiment: Adaptive Classification Function

5.5.5.1 Objective

In the “distance metric - substitution matrix” experiment (Section 5.5.3), it was shown
that better performance is achieved if the number of similar sequences that are used in
the prediction of the secondary structure associated with a particular target sequence
is not fixed, but rather depends on the target sequence itself. The objective of this
experiment is to see whether a more intelligent choice can be made in the classification
function, and in doing so, how the dependency between the number of similar sequences

and their distance from the target sequence is quantified.

5.5.5.2 Protocol

A window size of 15 (I = 7,7 = 7) was used. The set of group labels were the same as
the set of residue labels, that is G = R, with L the identity function. (") was used as

assignment function.

The distance metric 63 was used, with the matrix U as defined by Equation 5.8.
Classification functions ¢ and ¢® were tested (refer to Sections 4.6.4 and 4.6.5
respectively). For ¢ d values in the range [0, 1.5] were tested and for ¢(®, ¢ values
in the range [1, 1.5]. Given that the distance from the target sequence to its nearest
neighbour in the training set is given by m, ¢* simply states that all sequences in the
training set that are as close as m + d should take part in the classification process.
Likewise, ¢® simply states that all sequences in the training set that are as close as

mc should take part in the classification process.
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5.5.5.3 Results and Discussion

The resulting performance using ¢* is shown in Table 5.20 and Figure 5.24. The

resulting performance using ¢ is shown in Table 5.21 and Figure 5.25.

Both classification functions achieve a best performance of about 59.2%, a substantial
improvement on the 55.59% achieved using ¢ under similar test conditions (which
is by design the value achieved using d = 0 and ¢ = 1). This performance is achieved
using d = 0.35 and ¢ = 1.18. The average number of qualifying neighbours used to

achieve this performance are 14.06 and 15.52 respectively.

70
65
60
55 ]
50
45
40
35
30
25
20
15
10

Performance (%)

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15
d

Figure 5.24: Performance using ¢

5.5.5.4 Conclusion

The number of contributing neighbours used for classification of a particular sequence
should not be a fixed number but should be dependent on properties of the sequence

itself. In this experiment, it was found that better prediction results are achieved if all
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Table 5.20: Performance using ¢
d #Qs | Qs (%) | #Qs | Qs (%) | total neighbours
neighbours | per sequence
0.00 | 40578 | 55.596 | 48986 | 67.116 | 94588 1.296
0.05 | 41444 | 56.783 | 49233 | 67.454 | 125384 1.718
0.10 | 41942 | 57.465 | 49440 | 67.738 | 170793 2.340
0.15 | 42446 | 58.156 | 49856 | 68.308 | 241928 3.315
0.20 | 42687 | 58.486 | 50019 | 68.531 | 343268 4.703
0.25 | 42893 | 58.768 | 50311 | 68.931 | 493645 6.763
0.30 | 43123 | 59.083 | 50596 | 69.322 | 711592 9.750
0.35 | 43215 | 59.209 | 50789 | 69.586 | 1026242 14.061
0.40 | 43083 | 59.028 | 50759 | 69.545 | 1480537 20.285
0.45 | 42971 | 58.875 | 50710 | 69.478 | 2128628 29.164
0.50 | 42768 | 58.597 | 50624 | 69.360 | 3059005 41.912
0.55 | 42578 | 58.336 | 50509 | 69.203 | 4349743 59.596
0.60 | 42250 | 57.887 | 50256 | 68.856 | 6145464 84.199
0.65 | 41914 | 57.427 | 50009 | 68.518 | 8625779 118.182
0.70 | 41581 | 56.970 | 49685 | 68.074 | 12008961 164.536
0.75 | 41242 | 56.506 | 49397 | 67.679 | 16659348 228.251
0.80 | 40849 | 55.968 | 49016 | 67.157 | 22827053 312.755
0.85 | 40420 | 55.380 | 48592 | 66.576 | 31034220 425.202
0.90 | 40034 | 54.851 | 48177 | 66.008 | 41871486 573.684
0.95 | 39607 | 54.266 | 47771 | 65.451 | 55999729 767.256
1.00 | 39152 | 53.642 | 47348 | 64.872 | 74555133 1021.485
1.05 | 38767 | 53.115 | 46937 | 64.309 | 98074815 1343.730
1.10 | 38342 | 52.533 | 46484 | 63.688 | 127959621 | 1753.184
1.15 | 37941 | 51.983 | 46034 | 63.072 | 165675807 | 2269.936
1.20 | 37521 | 51.408 | 45551 | 62.410 | 212712873 | 2914.394
1.25 | 37115 | 50.852 | 45083 | 61.769 | 271778896 | 3723.662
1.30 | 36709 | 50.295 | 44531 | 61.012 | 343354249 | 4704.321
1.35 | 36330 | 49.776 | 44014 | 60.304 | 430388303 | 5896.780
1.40 | 35913 | 49.205 | 43466 | 59.553 | 535486618 | 7336.740
1.45 | 35445 | 48.563 | 42828 | 58.679 | 660840087 | 9054.216
1.50 | 34962 | 47.902 | 42202 | 57.821 | 811391789 | 11116.936
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Table 5.21: Performance using ¢®
c #Qs Qs (%) #Q3 Qs (%) total neighbours
neighbours per sequence
1.00 40578 55.596 48986 67.116 94588 1.296
1.01 40953 56.110 49058 67.215 104470 1.431
1.02 | 41236 | 56.498 | 49107 | 67.282 | 116502 1.596
1.03 41500 56.859 49237 67.460 130900 1.793
1.04 41702 57.136 49316 67.568 147892 2.026
1.05 41822 57.301 49371 67.644 168131 2.304
1.06 42065 57.634 49567 67.912 191613 2.625
1.07 42196 57.813 49645 68.019 219636 3.009
1.08 42400 58.093 49839 68.285 252742 3.463
1.09 | 42554 | 58.304 | 49975 | 68.471 | 201863 3.999
1.10 42639 58.420 50017 68.529 337654 4.626
1.11 42743 58.562 50164 68.730 391414 5.363
1.12 42851 58.710 50323 68.948 454026 6.221
1.13 42834 58.687 50355 68.992 528269 7.238
1.14 42991 58.902 50478 69.160 614324 8.417
1.15 43088 59.035 50584 69.305 715767 9.807
1.16 | 43110 | 59.065 | 50617 | 69.351 | 834108 11.428
1.17 43174 59.153 50728 69.503 972358 13.322
118 | 43230 | 59.230 | 50800 | 69.601 | 1133385 15.529
1.19 43172 59.150 50819 69.627 1319442 18.078
1.20 43123 59.083 50798 69.599 1535899 21.043
1.21 43203 59.193 50917 69.762 1787768 24.494
1.22 43171 59.149 50917 69.762 2079701 28.494
1.23 43105 59.058 50864 69.689 2417576 33.123
1.24 43009 58.927 50799 69.600 2806913 38.458
1.25 | 43027 | 58.052 | 50834 | 69.648 | 3256182 14613
1.26 42915 58.798 50721 69.493 3774825 51.719
1.27 42857 58.719 50736 69.514 4368207 59.849
1.28 42823 58.672 50689 69.449 5049444 69.183
1.29 42771 58.601 50654 69.401 5830512 79.884
1.30 42735 58.552 50656 69.404 6723672 92.122
1.31 42677 58.472 50630 69.369 7744682 106.110
132 | 42577 | 58.335 | 50505 | 69.197 | 8910715 122.086
1.33 42474 58.194 50390 69.040 10237340 140.263
1.34 42343 58.014 50313 68.934 11742912 160.890
1.35 42220 57.846 50192 68.768 13452230 184.310
1.36 42156 57.758 50155 68.718 15390154 210.862
1.37 42052 57.616 50087 68.625 17584299 240.924
1.38 41932 57.451 49967 68.460 20061561 274.865
1.39 41821 57.299 49828 68.270 22857820 313.177
1.40 41674 57.098 49674 68.059 25998688 356.210
1.41 41613 57.014 49614 67.976 29534671 404.657
1.42 41502 56.862 49498 67.818 33495635 458.926
1.43 41395 56.716 49412 67.700 37934486 519.743
1.44 41290 56.572 49299 67.545 42897131 587.737
1.45 41222 56.479 49216 67.431 48437402 663.644
1.46 41149 56.379 49158 67.352 54609948 748.215
1.47 41029 56.214 49023 67.167 61475988 842.287
1.48 | 40902 | 56.040 | 48850 | 66.930 | 69094126 946.663
1.49 40790 55.887 48707 66.734 77547428 1062.483
1.50 40719 55.789 48604 66.593 86852705 1189.975
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Figure 5.25: Performance using ¢
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Chapter 5 Results

neighbours within a band of the nearest neighbour to the target sequence contribute to
the classification. This size of this band can either be a small fixed value (0.35 under
§® with N = 15) or can depend on the distance of the nearest neighbour (in this case
a width of 0.18 times the distance of the nearest neighbour was found to be effective
under §®). The latter method seems slightly more preferable, since it is invariant with

respect to the size of the window.

A Qg score of 59.2% was achieved and a ()3 score of 69.76%. It should be noted that
in recent results published by Martin et al [96], Q3 scores of 67.9% and 66.8% for the
OSS-HMM and PSIPRED predictions on single sequences were achieved. The current

method thus compares well with some of the best existing methods.

5.5.6 Experiment: Use of Secondary Structure Information

5.5.6.1 Objective

In all previous experiments, a secondary structure is predicted by comparing the se-
quence of amino acids associated with that secondary structure to other sequences in
the training set. The prediction of the secondary structure is based solely on the sec-
ondary structures associated with similar sequences. It is however known that there is
a strong correspondence between neighbouring secondary structures [96]. For instance,
given that a number of consecutive alpha helix structures have been observed, there is
a strong preference for the next secondary structure to be a helix as well. The objective
of this experiment is investigate whether predicted secondary structure information can

be fruitfully incorporated in the prediction process.

5.5.6.2 Protocol

A window size of 15 (I = 7,7 = 7) was used. The set of group labels were the same as
the set of residue labels, that is G = R, with L the identity function. ¢ was used as

classification function and (") was used as assignment function.

The idea in this experiment is that already predicted secondary structures should be

Department of Electrical, Electronic and Computer Engineering 139
University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 5 Results

incorporated in the prediction process to predict neighbouring secondary structures.
Initially however, there will be no such predicted secondary structures to begin with. It
should also be noted that there is an uncertainty in any predicted secondary structure:

thus, good predictions are required to start the sequence off.

Target proteins are considered one at a time. The process followed is an iterative one.
In each iteration, one or more secondary structures are predicted at different positions
in the protein. In following iterations, it is assumed that already predicted secondary
structures were correctly predicted, and subsequent predictions are based on this as-
sumption. It is thus entirely possible that an incorrectly predicted secondary structure
could steer the whole process in a wrong direction. For this reason, at each iteration,
the only secondary structures predicted are the ones with the highest confidence of

being correct.

To illustrate the idea further, Figure 5.26 shows an example of a prediction that was
done for a protein in the test set. The line marked “-P” is the primary structure
of the protein and the line marked “-S” the secondary structure of the protein. The
lines from “01” to “27” indicate that 27 iterations were necessary to predict all 55
secondary structures in the protein and each corresponding line shows the secondary
structures that was predicted up to that iteration. In the final line, a star (*) indicates
which secondary structures were correctly assigned. The four columns to the side
of each iteration indicate respectively the cumulative number of predicted secondary
structures at that iteration, the cumulative number of correctly predicted secondary
structures at that iteration, the Jg value at that iteration and a similarity value used

in that iteration; a concept that will be explained below.

In the first iteration, 11 secondary structures were predicted. These predictions were
based solely on the primary structure. Furthermore, the algorithm determined that
these 11 predictions are the most likely (and equally likely) candidates in all the posi-
tions of the protein. In the second iteration, 4 additional predictions were made. This
time however, the primary structure information was used and it was assumed that the
11 predicted secondary structures in the previous iteration were correctly predicted.
Of course, of the 11 predicted structures only 6 were correctly predicted. The impact it
had can be observed by considering the sequence of six secondary structures CCCCST

in the first iteration. Of these CCCC were correctly predicted but ST were incorrectly
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Figure 5.26: Example of iteratively incorporating secondary structure information in

the prediction process

-P AYVINEACISCGACEPECPVDAISQGGSRYVIDADTCIDCGACAGVCPVDAPVQA
-S CEEECTTCCCCCTTGGGCTTCCEECCSSSCEECTTTCCCCCHHHHTCTTCCEEEC

01 CC--—---—--- CCCCST---——————- CCC 11 6 54.54 39

02 CC-———=-—————————— TTCCCCSTTT--—————- CCC 15 8 53.33 42

03 CC————————————————— - TTTCCCCSTTTTTC——--- CCC 19 11 57.89 43
04 CC——————-———————————— - TTTCCCCSTTTTTC--C--CCC 20 12 60.00 44
05 CC-——-------——— - TTTCCCCSTTTTTCT-CC-CCC 22 14 63.63 44
06 CC——————————————————— - TTTCCCCSTTTTTCTTCCBCCC 24 15 62.50 45
07 CC————————————————— - CTTTCCCCSTTTTTCTTCCBCCC 25 16 64.00 43
08 CC————---—————————— ECTTTCCCCSTTTTTCTTCCBCCC 26 17 65.38 43
09 CC-——---—--——— - EECTTTCCCCSTTTTTCTTCCBCCC 27 18 66.66 43
10 CC-----———— - EEECTTTCCCCSTTTTTCTTCCBCCC 28 18 64.28 43
11 CC—————-————— SEEECTTTCCCCSTTTTTCTTCCBCCC 29 19 65.51 43
12 CC---------————————— SSEEECTTTCCCCSTTTTTCTTCCBCCC 30 20 66.66 40
13 - SSSEEECTTTCCCCSTTTTTCTTCCBCCC 31 21 67.74 40
14 CC-—----———————— - CSSSEEECTTTCCCCSTTTTTCTTCCBCCC 32 22 68.75 40
15 CcC-—---——————- ECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 33 22 66.66 40
16 CC-----——------———————- EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 34 23 67.64 40
17 CC-----——————————- T----EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 35 24 68.57 39
18 CC-—----——————- ST-C--EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 37 25 67.56 39
19 CC——--—---—-————- TSTTC-EEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 40 27 67.50 40
20 CC-—————————————- TSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 41 28 68.29 42
21 CC-——-—-———————- TTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 42 28 66.66 40
22 CC————=——————- TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 43 28 65.11 40
23 CCEECTT------- TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 48 33 68.75 38
24 CCEECTTC------ TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 49 34 69.38 40
25 CCEECTTCC----- TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 50 35 70.00 40

26 CCEECTTCCC--TTTTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 53 38 71.69 40

27 CCEECTTCCCCCTTTTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 55 40 72.72 42

—— ok oksoksoksoksokskok | L L skokskokskok | kokokok | skokokokokokok ok ok sokdokkk L ok
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predicted. In the second iteration, this had a likely influence on predicting the two T'T
structures to the left and right of CCCCST, of which TT structure to the left of the
correctly CCCC structure is correctly predicted but the T'T structure to the right of

the incorrectly predicted ST is also incorrect.

The question now becomes how the algorithm decides which secondary structure to
predict next and how already predicted secondary structures are incorporated in the
prediction. The solution presented in the algorithm is to adapt the distance metric.
During each iteration, all unpredicted secondary structures are considered for predic-
tion. For each of these, a window of length 15 is created in the target protein and both
the primary structure and partially predicted secondary structure is noted. Thus, for
every such window, there are exactly 15 amino acid residues and between 0 and 14
partially predicted secondary structures. This sequence of amino acids and secondary

structures is then compared to similarly construed structures in the training set.

Comparison of amino acids is straightforward, and can be done using any of the already
created distance metrics. The algorithm was however slightly adapted such that a
score of w is assigned to two matching residue types, and a score of 0 is assigned to
two non-matching residue types. A similarity value is then calculated as the sum of
all these values over 15 residues. Comparison of secondary structures is slightly more
complicated. If a partially predicted secondary structure matches a secondary structure
in the training set in the same position, a value of 1 is assigned. If a partially predicted
secondary structure does not match the secondary structure in the training set in the
same position, or if no prediction has been made, a value of 0 is assigned. A value is
then calculated as the sum of all these values over the 14 secondary structures. The
combined residue and secondary structure score is then used as a similarity value. The

algorithm was tested for w € [1,4].

During each iteration, all the similarity values are calculated for all unpredicted sec-
ondary structures. All structures with the highest similarity values are retained and a

prediction of secondary structure is then made using a process akin to that used with

»2).
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5.5.6.3 Results and Discussion

The results of the experiment are shown in Table 5.22. The best result is obtained using
w = 3, with a Qg score of 56.87% (a comparative Q3 score of 67.09% was achieved).
w = 2 and w = 4 perform similarly, but w = 1 performs significantly worse. This is
to be expected, since with w = 1 each predicted secondary structure contributes as
much to the similarity value as each amino acid in the primary structure. A number
of consecutive incorrect predictions can thus more easily lead the process astray. With

a larger value of w, it is easier for the algorithm to “resynchronise”.

Table 5.22: Performance achieved using different methods incorporating predicted sec-

ondary structure information

Method #Qs | Qs (%)
w=1 39351 | 53.915
w=2 41195 | 56.442
w=3 41513 | 56.877
w=4 41431 | 56.765
w = 3 (no edges) | 40862 | 55.985
w = 3 (no coils) | 41301 | 56.587

A test was conducted to see the effect that edges have on a prediction. In the “edge
analysis” experiment (Section 5.3.3), it was demonstrated that coils are very likely to
form near the edge of the protein. This behaviour was readily observed in analysis
of the order in which secondary structures are predicted. Consider Figure 5.26 as
an example, where the coil structures towards the edges of a protein are predicted
first, and other structures are then predicted working inwards. This behaviour could
possibly bias structures toward the center of the protein, which are more likely to
contain biological function. To counter this effect, the function calculating similarity
was changed in such a way that edge types in the primary structure do not contribute to
the calculated similarity values. The forming behaviour changed such that structures
toward the center of the protein are predicted first. However, the achieved performance
dropped to 55.985%. Since no improvement was made in the performance (and actually
an inferior result was achieved), it might be concluded that it is useful to include edge

information in the prediction process.
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A test was also conducted where predicted coil secondary structures do not contribute
to the similarity score. The idea was that since coils do not form regular structures,
their predictive power may be limited. In this scenario, the performance achieved
reduced slightly to 56.59%. Since no improvement was made in the performance, it is

not harmful to include coils as predicted secondary structures.

5.5.6.4 Conclusion

The performance of 56.87% achieved by including predicted secondary structures in
the prediction process is better than the 55.82% achieved in a prior experiment under
similar circumstances. It can thus be concluded that secondary structures are predictive
of other secondary structures, but that it is difficult to incorporate this information to

achieve significantly better performance scores.

This is made especially difficult in some cases where there is difficulty in making good
predictions initially. For such cases, inclusion of predicted secondary structures in the

prediction process may lead it astray rather than improving it.

A good feature about this method is that it can be descriptive of some theories regarding
the actual forming process. In the nucleation and directed folding models (Section
2.2.3) local stable folded conformations form, from which the eventual structure of the
protein is determined. Similar behaviour is observed using this iterative method. First,
local structures that are the most likely to form at certain positions in a sequence are
predicted. The process continues by filling in “gaps” and/or predicting other local

structures, propagating from the already formed structures.
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CONCLUSION

6.1 KEY FINDINGS

The best performance achieved using the method developed in this dissertation for
secondary structure prediction is Qg = 59.2%. The comparative Q3 score is 69.76%.
In a recent study (2006), Martin et al [96] reported Q3 scores of 67.9% and 66.8% for
OSS-HMM and PSIPRED, two of the leading techniques for prediction of secondary
structure. These results are achieved when predictions are made on single sequences, as
is done in this dissertation. It is difficult to compare the results directly, since different
datasets are used. It is safe to say that the new method compares well with the leading
existing methods. It should be noted however that OSS-HMM achieves a score of 75.5%
[96] and PSIPRED a score of 76% [65] when multiple sequence alignments are used.

Multiple sequences alignments have not been considered in this dissertation.

A number of key findings have been made. Of these, the main ones are discussed below.

e Good predictions can be made when sections of the primary sequence in a target
protein can be mapped to similar sequences in a training set, especially for larger
stretches of matching sequences, i.e. longer sequences have more predictive power
then smaller sequences. This is however practically limited for larger sequences

by the amount of training data available, since not all possible target sequences
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would be covered in the training data. It is thus necessary to have some method

by which the similarity of different sequences can be compared.

e Information about which secondary structure would form for a particular se-
quence of amino acids is distributed across the whole window. However, there is
a tendency for more central amino acids to contribute more to secondary struc-

ture.

e The similarity of sequences can be expressed as a measure of the similarity of
amino acids in matching positions. This similarity can be quantified through the
creation of a similarity matrix. One observation from the similarity matrix is
that substitution between two residue types is not totally commutative. Specific
groups of similar amino acids residues that have been found through different
experiments are: (IV)(LM), (RK)(EQ)(H)(A), ST, FY, DN, NK and ED. C, W
and P are not well substituted by any other residue type.

e An interesting effect, named the “transfer phenomenon” is observed, namely
that secondary structures that can be predicted using sequences of both lengths
N and N + 1, are considerably more accurate than secondary structures that can
be predicted using sequences of length N but not N + 1, even when sequences of
only length N are considered. This occurs for N from about 3 to 7 and where an

exact match is required to make a prediction.

e [t is advantageous to use a number of sequences similar to a target sequence
when a secondary structure is predicted. The number of such similar sequences
that should be used is not fixed but rather is dependent on the distance of those
sequences to the target sequence. Good performance is achieved when all neigh-
bours that contribute to the prediction lie within a certain band of the distance
of the nearest neighbour. The size of the band can either be a small fixed value

or a small multiple of the distance of the nearest neighbour.

e Secondary structures are predictive of other secondary structures. In order to
incorporate this fact into a prediction scheme requires use of the already predicted
secondary structures. This implies making good predictions initially. Due to the
inherent uncertainty in the predictions, it is difficult to incorporate relationships
between secondary structures in the prediction process in order to achieve better

results.
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6.2 FUTURE WORK

A number of suggestions for future work are discussed below. Each of these is believed
to add valuable insight in understanding the formation of secondary structures and can

be used to further enhance the method developed in this dissertation.

6.2.1 Iterative Adaptation of Substitution Matrix

The substitution matrix developed in Section [5.5.2 was created using the hard 5™ dis-
tance metric. Using this substitution matrix, a new distance metric 6(3) was developed

in the “distance metric - substitution matrix” experiment (Section 5.5.3).

One idea is that this process can be iteratively repeated, i.e. the new distance metric
can be used instead of the old distance metric, to create a new substitution matrix.
The new substitution matrix is then used to create a new distance metric, and this

process is then repeated until values in the substitution matrix settle.

Although it is suspected that the values in the final substitution matrix will not differ
much from the ones in the current matrix, it will be a more truthful expression of
the similarity between different residue types. It may also lead to better classification

performance.

6.2.2 Position Specific Substitution Matrices

The matrices C* and I* (defined by Equations 5.4 and 5.5 respectively), can be used
to define position specific substitution matrices. These matrices indicate the similarity

of amino acids in specific positions in a window.

By studying these matrices, it may be possible to determine whether there are position
specific substitutions that influence the formation of secondary structures at the central

amino acid.
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These matrices can also be iteratively adapted. By incorporating these matrices into

a new distance metric, it may be possible to increase the performance score.

6.2.3 Weight Assignment

Experiments such as “window structure” (Section 5.4.1) and “varying window size”
(Section 5.4.2) indicated that central amino acids influence the formation of local sec-

ondary structure more than amino acids toward the edges of a window.

This influence has not been quantified and could perhaps be used with success in
distance metrics such as 6 and 6, where equal weight assignments have been made
in current experiments. The influence could perhaps be quantified by studying the C*

and I* matrices or using a brute force search for appropriate values.

6.2.4 Secondary Structure Similarity

It has been suggested in the experiments that some secondary structures may be more
alike than others. This is an assumption that is often implicit in secondary structure
research, where the eight classes in the DSSP code are mapped to three, implying

similarity between classes that map to the same structure.

This similarity has not been quantified in the experiments conducted, and it may be
interesting to determine how alike different secondary structures are. It may be possible
to use an approach similar to that used in the creating of the substitution matrix to

create a secondary structure similarity matrix.

6.2.5 Use of Predicted Secondary Structure in Other Predictions

The “Use of Secondary Structure Information” experiment (Section 5.5.6) indicated
that secondary structures are predictive of other secondary structures, but that it is
difficult to incorporate this information to achieve significantly better results using the

suggested algorithm.

Department of Electrical, Electronic and Computer Engineering 148
University of Pretoria



IVE
NIBESITHI YA PRETORIA

&
Aot
" UNIVERSITEIT VAN PRETORIA
. UN RS5ITY OF PRETORIA
YU ES
Q¥

Chapter 6 Conclusion

Perhaps other methods which incorporate predicted secondary structures in the pre-
diction process could be created, or the current method extended. One way to extend
the current method is to determine whether there are small sequences (window size
of seven and smaller) that are reliably indicative of secondary structures. These good
predictions can then be used (together with larger matching sequences) to start off the

prediction process.

Another way could be to incorporate a secondary structure similarity matrix as dis-
cussed in Section 6.2.4] as well as the substitution matrix to create a better distance

metric for matching structures.

It may also be possible to use a probabilistic approach when assigning secondary struc-
tures. Thus, instead of assigning a specific secondary structure to a specific position
(and thereafter assuming that it was correctly predicted), it may be possible to as-
sign probabilities of observing the different secondary structures to each such position.
These probabilities are then used in subsequent iterations. It may even be possible to

adapt the method such that the probabilities can change in subsequent iterations.

The findings of the “adaptive classification function” experiment (Section [5.5.5) also
need to be included, which will further improve performance results. Finally, there
is good reason to suspect that the substitution matrices should themselves actually

depend on the surrounding secondary structure.

6.2.6 Multiple sequence alignment

The current method is applicable to the prediction of single sequences. This method

may be extended such that multiple sequence information is taken into account.

It is suspected that this will further increase performance of the algorithm, and will

make it possible to compare this method more reliably with others found in literature.
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Appendix A

LIST OF PROTEINS

Table A.1 lists the proteins that were used in the training set for the results obtained

in chapter 5.

Table A.1: Proteins in the Training Set

No. No. No. No. No. No. No. No.
119100 la0aA0 | 1a0b00 | 1a34A0 laab00 | laaf00 1ab300 | laboA0
labrAO 1abv00 1abz00 1ac000 1ac500 laca00 lacf00 lacp00
1ladOAO | 1adOBO | 1ad200 | 1ad3A0 | 1ad9HO | 1ad9L0 | ladeAO | ladjA0
1adn00 ladoAO | 1adr00 1ads00 ladwAO | 1ladx00 | lae6HO | 1ae700
1laeiAO 1aep00 laew00 | 1af700 1af800 1afi00 lafoAO | 1afp00
lafvHO 1ag200 1ag8AO | 1ag9A0 lagdAO | 1lagg00 1agi00 lagjAO
lagnAO lagrEQ lagt00 lagx00 1ah600 1ah700 1ah900 1lahdPO
1ahl00 1aho00 1lahpAO | 1ahq00 1lahsAO | 1lahtLO 1ailHO 1aie00
laihAQ 1aijL0 laijM0 | 1aikCO0 1laikNO | 1aim00 | 1aipCO | 1air00
1aisBO 1ajj00 lajsAO0 | lajyAO 1ak000 | 1ak200 | 1ak4CO | 1ak600
1akz00 1al010 1al0BO0 1al300 1ala00 1alo00 lalvAO 1aly00
1am300 1lamb00 | lamfO0 | lamk00 lammO00 | lamp00 | lamw00 | 1lamy00
lan2A0 | 1lan4A0 | 1an9A0 | 1lang00 lann00 | 1lans00 lanu00 | lanwAO
1ao7D0 laocAO | laoeAO | laogAO laohBO | 1laokB0 | 1a0o00 laorAO
laotF0 1laoy00 laozAQ | lap6A0 1ap800 lapa00 1apf00 1lapq00
1aps00 lapxAOQ | lapyB0 | 1aq0AO lagbA0 | 1laq6A0 | 1lagb00 | laqdAO

Continued on next page. ..
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Appendix A List of Proteins
Table A.1 — Continued

No. No. No. No. No. No. No. No.
laqdBO lagkHO | 1aqt00 lar1AO lar1BO | 1lar1CO | lar1DO | 1larb00
lard00 lark00 larn00 lars00 laru00 las4A0 | 1as8A0 | 1ash00
1ass00 latiAQ latlAQ latu00 laty00 lau7A0 | lauiAO0 | lauiBO
1aun00 lautCO | lauuAO | lauwAO | lauyAO | lavk00 lavmAO | lavoAO
lavoB0 lavpAQ | lavqAQ | lavsAO lavyAO | 1law2A0 | lawcAO | lawcBO
lawd00 lawe00 | lawj00 1laxh00 1axj00 laxsHO | laxsLO layaAQ
1ayjo0 laym10 | laym20 | lazcAO lazsAO | 1azsCO lazvAO | lazzAO
1b5m00 | 1babA0O | 1babB0 | 1bafHO 1bak00 | 1bal00 1bba00 | 1bbjL0O
1bbpAO | 1bbt10 | 1bbt20 | 1bbt30 1bbt40 | 1bcpCO | 1bepDO | 1bepFO
1bdo00 1bds00 | 1bec00 | 1beo00 1bet00 1bfd00 1bfg00 1bfi00
1bfmAO0 | 1bfs00 1bftAO | 1bgf00 1bgk00 | 1bgp00 | 1bhgAO | 1bhp00
1bi6HO 1bif00 1binAO | 1ble00 1blf00 1blj00 1blu00 1bme00
1bmfGO | 1bmg00 | 1bmtAO | 1bmv10 | 1bmv20 | 1bnb00 | 1bndBO | —
1bomAO | 1bor00 1bovAO | 1bp100 1bpyAO | 1bquB0 | 1breAO | 1brnL0
1bryYO 1bsrAO | 1btl00 1btmAO | 1btn00 | 1btq00 1bts00 1bucA0
1bunAO | 1burSO | 1bv100 | 1bvd00 1bvpl0 | 1bw300 | 1c2rA0 | lcauA0
lcauB0 1cb100 1cb2A0 | 1cbg00 1cbh00 1cbn00 1cbs00 1ce500
1ced00 1cdg00 lcdkIO 1cdlGO 1ledq00 | 1cdtAO | 1edy00 lceaAO
1cei00 lcem00 | lcewlO 1cex00 lcfaAQ 1¢fb00 1cfe00 1cth00
1cfr00 1cfvHO lefvLO lcfyAO lcghAO | 1lcgmEO | 1cgt00 1chc00
1chkAO 1chl00 1¢id00 1¢ii00 1ciu00 1ciy00 1ckaAO | 1cksAO
1clc00 1cleAO 1clf00 1clh00 1cl100 1cloL0 1clpA0 1clxAO
1clzHO lemr00 | 1cod00 1c0i00 1colAO 1coo00 lcosA0 | 1cov20
1lcov30 lcpcAO | 1cpo00 1cpq00 1epy00 1lcrb00 lcre00 lerkAO
lery00 1cselO 1esh00 1esn00 1esp00 lesyAO | 1ctaAO | 1ctf00
1ctn00 1cto00 1ctt00 lewpAO | 1exc00 lcydAO | 1cynAO | 1lcyo00
leyx00 1d66A0 | 1daaAO | 1dad00 1danHO | 1dapAO | 1dbbHO | 1dcoAO
1dctAO 1ddf00 1deaAO | 1-Dec-00 | 1def00 1dehAO | 1dem00 | 1dfbHO
1dfnA0 1dhmAO | 1dhpAO | 1difAO 1dipA0 1div00 1djxA0 1dkzAO
1dl1c00 1dmb00 | 1dmc00 | 1dme00 1dmr00 | 1dnpAO | 1dokAO | 1dorAO
1dpe00 1dpgAO | 1dpo00 | 1dro00 1drs00 1drw00 | 1dtc00 1dubA0
1dupAO | 1dutAO0 | 1dvfCO | 1dxgAO | 1dxy00 | 1dynAO | 1dyr00 leaf00
1leal00 leapB0 | 1lebdAO | leca00 lecfAQ leciAO leciBO lecmAO
lecrAO lede00 1ledg00 ledhAO 1edi00 ledmBO | 1edn00 | 1edt00
lefnBO 1eft00 lefuB0O lefvAO lefvB0O leglAO | 1lego00 1ehs00
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Appendix A List of Proteins
Table A.1 — Continued

No. No. No. No. No. No. No. No.
1eit00 lelg00 lelpAO 1elt00 lemn00 | 1lemy00 | 1lenh(00 lenp00
leny00 lepmEO | 1leps00 lerd00 leriAO lerk00 lerp00 lerv00
lesc00 1esl0O0 1letfBO letpAO leur00 lexg00 lexp00 | lextAO
1lezm00 1£3z00 1faiHO 1fas00 1fbaA0 | 1fbiHO 1fbr00 1fcdA0
1fdh GO 1£fdx00 1fgjA0 1fgjA2 1fgnHO | 1fgp00 1fgvL0 1figHO
1fipA0 1fj1A0 1fijmAO0 | 1fkf00 1fleI0 1liA0 1lp00 1fmb00
1fmcA0 1fmd10 | 1fmd30 | — 1fna00 1fonA0 1fosF0 1fptHO
1frd00 1fre00 1froA0 1frrAO 1frsA0 1frvA0 1frvB0 1£sd00
1ft1A0 1ft1B0O 1ftn00 1ftpAO 1£tt00 1fua00 1fujAo 1furA0
1fvcB0O 1fvkA0 | 1fvI00 1fwcB0 1fwp00 | 1fxd00 1fxiA0 1fxrA0
1fyc00 1fzbA0 1gadO0 | 1gafHO 1gafl.0 1gai00 1gal00 1lganAQ
1gbqA0 | 1gcb00 1gemAO | 1gen00 1gd100 | 1gdhAO0 | 1gecEO | 1gen00
1gesA0 1gfc00 1ggaO0 | 1ggiHO 1ggil.0 1ghc00 1ghfHO | 1ghj00
1gia00 1gifA0 1gigHO | 1gks00 1gky00 | 1gIn00 1glqgAO0 | 1gnd00
1gnhAO | 1gnwAO | 1gof00 1gotB0O 1gotGO | 1gp2G0 | 1gpb00 | 1gpc00
1gpl00 1gpmAO | 1gpoHO | 1gps00 1gpt00 1gsa00 1gseAO | 1gsuAO0
1gta00 1gtqAO0 | 1guaAO | 1guaBO0 1gur00 1gvp00 | 1gypAO | 1hae00
lhavAO | 1hbgO0 | 1hbhAO | 1hcc00 1hed00 | 1ThcgBO | 1ThenAO | 1herAO
1hev00 1hcz00 1hdaAO | 1hdaBO0 1hdcAO | 1hdgOO0 | 1hdp00 1hdsB0
1hev00 1hfc00 1hfi00 1hfs00 1hfyAO 1hial0 1hilAO 1hip00
1hiwAO | 1hjrAO 1hks00 1hleAO 1hlm00 | 1hloAO0 | 1Thme0OO0 | 1hml00
1hmpAO | 1hmt00 | 1hnf00 1hnr00 1hocAO | 1hoe00 1hp800 | 1hpgAO
1hplAQ 1hpm00 | 1hpt00 1hqi00 1hrc00 1hrdAO | 1hrjAO 1hrm00
1hroA0 1hrtI0 lhryAO | 1hsbAO 1hsbB0 | 1hslAO 1hsq00 1htiAQ
1htn00 1htrBO 1lhucAO | 1hueAO 1huiB0 1hulA0 1humAO | 1hup00
1hurA0 1Thuw00 | 1hxn00 1lhymAO | ThymBO0 | 1hyxHO | 1iab00 liag00
liail0 1iaiMO 1iba00 1libeAO 1ibeB0 1libgHO 1libgL.0 lica00
liceAO liceBO 1lidaAO | 1idk0O 1idsA0 | 1idy00 lieaAO lieaB0O
1if1A0 1ifc00 1ife00 1ifi00 1ift00 ligcLO 1igd00 1ligfHO
1igl00 ligmHO | ligmL0 | 1igtBO 1ihfAQ 1ihfBO 1ihvA0 | 1iibAO
1i1600 1iml00 1lindHO | 1inp00 lioaAO | 1iob00 1liow00 1liph AO
1lipsA0 1irsA0 liscAO 1iskAO lisuA0 | 1itf00 1ithAO 1iuz00
1iva00 1ivd00 livyAO | 1ixh00 ljacAO | 1jafAO 1jbc00 1jev00
1jdc00 1jdw00 | 1jer00 1jetAO 1jhgA0 | 1jhILO 151100 1jly A0
1j0i00 1jrhI0 1jsg00 1jsuCo 1jswAO | 1jtb00 1jug00 1-Jul-00
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Appendix A List of Proteins
Table A.1 — Continued

No. No. No. No. No. No. No. No.
1junA0 1kal00 1kao00 1kapP0 1kaz00 1kbaAO | 1kbcAO | 1kdu00
1kevAO 1kit00 1klo00 1kmmAO | 1knb00 | 1koa0O 1kptAO | 1krn00
1krs00 1ksr00 1kst00 1ktx00 1kuh00 | 1kvdAO | 1kveAO | 1kvoAO
1kxu00 1kzuAO | 1kzuB0O | 11lam00 1latA0Q 11ba00 11bd00 11beAO
11bu00 11c100 11ct00 11dg00 11d100 11dnA0 | 11dr00 11ea00
11efA0 1leh A0 1lenBO 11faA0 11ghA0 | 11ghB0O 11ht00 1liaA0
1liaB0 11id00 11i1A0 11is00 11kkAO 11IdAO 111p00 1lmb30
1lmkAO | 1lmqg00 | 1llmwBO | 1loeB0 110i00 1lopA0 11pbB0 | 11pfAO
11pp00 11pt00 11gh00 11re00 11rv00 11si00 11t5D0 11te00
11tsA0 11tsCO 1lucA0 | 1lve00 11v100 11xa00 11xdA0 | 1lybBO
1lyp00 11zr00 1majo0 | 1lmamHO | 1mat00 | 1maz00 | 1mba00 | 1mbe00
1mbs00 1mcpHO | ImctAO | 1mctI0 1lmdaHO | 1mdl00 | 1mdyAO | 1mea00
1meeAO | 1mek00 | 1melAO | 1memAO | ImeyCO | 1mgsAO | 1mh100 | 1mhcAO
1mhlAO | 1mhyBO | 1mhyDO | ImimHO | ImimL0 | ImioAO | 1mioBO | 1mjc00
1mkaAO | 1mla00 | 1mlbBO | 1mldAO | Immc00 | Imml00 | 1mnl100 | ImnmAO
1mnmCO | ITmntAO | 1mof00 | 1molAO0 | 1mpp00 | 1mrg00 | 1mrj00 1mrk00
1msc00 1msi00 1msk00 | 1mspAO | Imtx00 | ImtyBO | 1mtyGO | 1mugAO
1mup00 | 1mviO0 | 1mvj00 | lmwe0O0 | 1mzmO0O | 1nahO0 | 1nall0 1nar(00
InawAO | InbaAO | InbvHO | IncbHO IncbLL0 | 1nciAO 1nes00 1nct00
1ncvAO 1nea00 1nfa00 1nfdAO InfdEO | 1nfdFO0 1nfp00 1ngr00
1nhkLO 1nhp00 | 1nif00 1nin00 InipAO | 1nirA0O 1nkl00 1nloCO
1nmbHO | 1nnc00 1nnt00 1noa00 1nor00 1novAO | InovDO | 1nox00
1noyAO | 1np400 | 1npcO0 | 1npk00 1InpoAO | IngbAO | 1nra00 1nscA0Q
1nsgBO0 1nsj00 InsyAO | Intn00 1ntr00 1ntx00 1nueAO | 1nxb00
1InzyAO 1lobpAO | 1obr00 lobwAO | lobwB0O | 1oef00 loeg00 lofgAO
1ofv00 10jt00 lomn00 | lonrAO lopbAO | lopc00 lopgHO | 1opr00
1osa00 lospHO | lospLO | 1ospO0 1otfAOQ lotgAO | lounAQ | loutAO
lovwAO | 1loxa00 loyc00 1p3800 1pamAO | 1pax00 | 1paz00 1pbk00
1pbn00 1pbwAO | 1pce00 1pcfAO 1pch00 1pces00 1pdc00 | 1pdo00
1pdr00 1pdz00 1peal0 1peh00 1pei00 1pex00 1pfc00 1pfiA0
1pfkAO 1pft00 1pfxCO0 | 1pgb00 1pgs00 1pgtAO | 1phb00 | 1phk00
1phnAO | 1pho00 | 1php00 | 1phr00 1pht00 1pidAO | 1pidBO | 1pk400
1pkmO0 | 1pkp00 1pla00 1plc00 1plfAO 1plgHO 1plp00 1plq00
1pls00 1pmaAQ | 1pmaB0 | 1pmc00 | 1pmlAO | 1pmpAO | 1pmy00 | 1pnbBO
1pnh00 1pnkAO | 1pnkBO | 1poa00 1poc00 | 1poiA0 | 1poiBO | 1ponB0O
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Appendix A List of Proteins

Table A.1 — Continued

No. No. No. No. No. No. No. No.
1pot00 1poxAO | 1pp2R0O | 1ppa00 1ppel0 1ppfE0 1ppo00 | 1pprMO
1ppt00 1prn00 1pru00 1ps200 1psdA0 | 1pse00 1pskLO | 1psm00
1psoE0 1ptf00 1pth00 1ptq00 1pty00 1puc00 1pud00 | 1pueE0
1put00 1pvec20 1pve30 1pyaAQ 1pyc00 1pyiAO | 1pysAO | 1pysBO
1pytA0 1pytD0O | 1qapAO | 1gba00 1qdp00 | 1qli00 1gnf00 1qoaA0
1qorA0 1que00 1qyp00 | 1r0910 1r0920 1rlal0 1r1a20 1r1a30
1r6900 1ra900 1raiA0Q 1raiB0 1rblAO 1rbIMO | 1rcb00 1rcf00
1rcy00 1rdg00 1rdo10 1rds00 1lreqAO | 1reqB0O | 1res00 1rfs00
1rhi20 1rhi30 1rhpAO | 1rie00 1ril00 1ris00 1rlw00 1rmd00
1rmfHO 1rmvAO | 1IrodAO | 1roe00 1rom00 | 1roo00 1rot00 1rpa00
1rpb00 1rpmAOQ | 1rpo00 1rro00 1rsy00 1rvaAQ | 1sacAO | 1sap00
1sat00 1sba00 1sbp00 1schA0Q 1scmAO | 1sco00 1sctAO 1sctBO
1scuB0 1scy00 1se400 1semAQ | 1sesAO 1sfe00 1sgpEO | 1sgpl0
1sh100 1shaAO | 1shfAO 1sis00 1sju00 1sltAO 1sly00 1smd00
1smeAO | 1smpl0 | 1smrAO0 | 1smtAO 1snb00 1s0100 1sp100 1sp200
1spf00 1spgAO | 1sphAO0 | 1spiA0 1sqc00 1srdAO | 1sro00 1srrA0
1srsAO 1stfI0 1stmAQO | 1stu00 1sup00 1svalO 1svb00 1svn00
1svpAO 1svq00 1sxm00 | 1tafA0Q 1tap00 1tbd00 1tbrRO 1tc3C0
1tca00 1tdtAO 1teh A0 1ten00 1ter00 1t£3A0 1tf4A0 1tfe00
1tf100 1tfpA0Q 1tfs00 1tfxCO 1tgsI0 1tgxAO 1theAO0 1thmO00
1thv00 1thx00 1tib00 1tih00 1t11CO 1tiiD0 1tis00 1tiv00
1tIfAO 1tmel0 | 1tme20 | 1tmy00 1tnrAO | 1tns00 1tocRO | 1tof00
1tph10 1trkAO 1trlA0 1trnA0Q 1try00 1tsg00 1tsk00 1tsy00
1ttbAO 1tuc00 1tud00 1tul00 1tupAO | 1tvdAO | 1tvs00 1tvxAO
1txa00 1txm00 | 1tys00 1tzeEO0 1uae00 1ubdCO | 1ubi00 1ubsB0
1uby00 lucbHO | 1ucbLO | 1uch00 lucyHO | lucyJO 1udc00 1udg00
1udh00 1udil0 lukrAO | 1ukz00 1ula00 lunkAQ | lurnAO | lutg00
Tuxc00 luxy00 | lvapAO | lvcaAO 1vdcO0 | 1vdfAO | 1vdrAO | 1vfaAO
1vfaBO 1vgeHO | 1vgeLO | 1vhhOO 1vhiAO | 1vhp0O | 1vhrAO | 1vid0O
1vii00 1vin00 1vip00 1vktAO 1v1s00 1vIxAO 1vnc00 1vnd00
1vokAO 1volAOQ 1vpi00 1vpsA0 1vpu00 | 1vsd0O0 1vsgAO | 1vtmPO
1vtx00 1vve00 1wab00 | 1wad00 1wajo0 | 1wapAO | 1wba00 | 1wdcAO
1wdeBO | 1wdcCO | 1wer00 | 1wfbAO | 1wgjAO | 1whi00 | 1whoOO | 1whtAO
1wtuAO | 1xaa00 1xbl00 1xbrA0 1xdtRO | 1xgsA0 | 1xib00 1xikAO
1ximAO | 1xlaA0 1xnb00 | 1xsmO0 1xtcAO | 1xtcCO 1xxbAO | 1xyn00
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Appendix A List of Proteins
Table A.1 — Continued

No. No. No. No. No. No. No. No.
1xyzAO0 1yaiAO lyasAO | 1yat00 lycqAO | 1lycrAO | 1ycsBO | 1ydvAO
lyecL.O lyedHO | 1ygeO0 1ykfAO 1lyna00 | 1lypclO lyprAO | 1yrnAO
1yrnB0O 1ytbAO | 1ytfBO 1ytfCO 1ytiAOQ 1ytw00 | 1yua0O | 1yub0O
1yuf00 1lyuhHO | 1yuiAO | lyvelO 1zaq00 1zda00 1zec00 1z£fd00
1zfo00 1zia00 1zin00 1ztn00 1zxq00 256bA0 | 2aaa00 2aaiB0
2aak00 2abk00 | 2abxA0 | 2acg00 2act00 2afgA0 | 2ak3A0 | 2-Apr-00
2asr00 2atcB0 2baa00 | 2bbkHO | 2bbkL0 | 2bbmB0 | 2bltA0 2bnh00
2bopA0 | 2bpal0 | 2bpa20 | 2bpad0 2btfA0 | 2cba00 2ccyA0 | 2c¢dx00
2cgpCO | 2cgrHO | 2chbDO0 | 2chr00 2c¢hsA0 | 2¢nd00 | 2cro00 2cstA0
2¢tx00 2¢y300 2cyp00 | 2dgcA0 2d1dAO | 2drpAO0 | 2dtr00 2ech00
2eql00 2eti00 2ezdA0 | 2ezh00 2fb4L0 | 2fbjHO | 2fx200 2fxb00
2gdm00 | 2gf100 2gliA0 2gmfAO0 | 2gsq00 2gsrAO0 | 2h1pHO | 2hipA0
2hmqAO0 | 2hpdAO | 2hppP0 | 2hpqP0 | 2hrpHO | 2hrpL0O | 2hvm00 | 2ifo00
2ilk00 2imn00 | 2jxrA0 | 21dx00 2leu00 21hb00 2liv00 2l1tnA0
2masAQ0 | 2mcecm00 | 2mev10 | 2mev20 2mev30 | 2mhr00 | 2mhu00 | 2mrb00
2mtaC0O | 2nacA0 | 2nllA0Q 20hxAQ0 | 20mf00 | 2pelA0 | 2pgd00 | 2pghA0
2pghB0 | 2phy00 | 2pia00 2pii00 2pkaA0 | 2pkaB0 | 2plc00 2pldA0
2plt00 2polA0 | 2por00 | 2prd00 2pspA0 | 2ptd00 2pt100 2rbiA0
2rhe00 2rmcA0 | 2rn200 2sas00 2scpA0 | 2sfa00 2sga00 2sicl0
2sil00 2sn300 2sns00 2spcA0 2stt A0 2stv00 2tbs00 2tbvA0
2tgi00 2tmdA0 | 2tmvP0 | 2trxA0 2tysBO | 2ula00 | 2ucz00 2vaaA0
2vik00 2vpfB0O | 2wbc00 | 351c00 3adk00 | 3btoAO | 3c2c00 3chy00
3cla00 3cyr00 3dfr00 3gar00 3gpdRO | 3grs00 3il800 3ladA0
31dh00 3lip00 31zt00 3mddAO0 | 3ovo00 3p2pA0 | 3pchA0 | 3pfk00
3pmgA0 | 3pte00 3rnt00 3rp2A0 3rubS0 | 3sdhA0 | 3sdpAO0 | 3sicl0
3tgl00 3tss00 4aahAQ | 4cpv00 4fxc00 4gatAQ | 4gpd10 | 4kbpAO
4mdhAQ | 4pgaAl0 | 4pgmAO0 | 4rhn00 4sbvAQ | 4sgbl0 5¢cytRO | BhpgA0
5icb00 51dh00 5nul00 5p2100 5pal00 5pti00 5znf00 6cel00
6fabHO 6£d100 6gsvA0 | 6rlxB0 6rxn00 | 6taa00 TaatAO | 7ahlAO
Tpcy00 7rsa00 8abp00 | 8acn00 8dfr00 8fabA0 | 8i1b00 8rucl0
8rucKO0 8rxnAQ | 8tInEO0 91dtA0 9pcy00 | 9rnt00
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Appendix A List of Proteins

Table A.2 lists the proteins that were used in the testing set for the results obtained
in chapter 5.

Table A.2: Proteins in the Testing Set

No. No. No. No. No. No. No. No.
1aa200 | laa7A0 labrBO | lac6A0 | laci00 lacw00 | lae6L0O | 1af6A0
lafrAO | lafsA0O latwB0 | 1aijHO 1ail00 laisA0 1aj300 1aj8A0
1aje00 1ajz00 1ak100 | lakeAO | 1lako00 | lakp00 | 1laky00 | lalkAO
1lallAO 1allBO 1laonO0 | laogAO | 1ap2B0 | 1lapjo0 lapo00 | lapyAO
lagkLO | 1as4B0 laszA0Q | lata00 1latx00 latzAO | laua00 | lauoAO
lavdAO | 1aw000 laxn00 | laym30 | 1bbhAO | 1bbi00 1bbrL0 | 1bcpB0O
1bebAO | 1bed00 1bkf00 1bmfAO0 | 1bmfD0O | 1bmp00 | 1bndAO | 1bno00
1broAO | 1bunB0 | 1caa00 1cbiA0 1cby00 1cch00 lcer00 1cd1AO
1cd800 | 1lcdcBO 1lcdkAO | 1cdoAO | ledwAO | 1cerOO0 | 1cfg00 1cfpAO
1cg2A0 | 1chd00 1chmAO | 1cis00 1ckmAO | 1cld00 1lecmbAO | 1enpAO
lenv00 | 1cot00 lcov10 lcpeBO | 1cpn00 lcseEO 1ctj00 1cx2A0
leyg00 | 1cyj00 leyu00 | 1dhkAO | 1dhr00 | 1dhx00 | 1dja00 1dktAO
1doi00 1dot00 1dox00 | 1drf00 1dsuA0 | 1dtk00 | 1dvh00 | leapAO
1lebdCO | 1ebpAO | leceAO | lecpAO | legdAO | legf00 lethAO | 1fca00
1fcdCO | 1fct00 1fecAO0 | 1fgnLO 1fmd20 | 1fnc00 1forHO | 1fosEO
1£sb00 1ftz00 1fvcAO | 1fvpAO | 1fwcAO | 1fzbB0 1gab00 | 1gatA0
1gbg00 | 1gcal0 1gclAO | 1gdoAO | 1gff10 1gff20 1gggAO | 1ghsA0
1gluA0 | 1gowAO | 1gpoLO | 1gpr00 1lgtmAO | 1guqA0 | 1gzi00 1hbhB0
1heb00 | ThenBO | 1TheqAO | 1hdjoo 1hdsAO | 1hfx00 1hgeAO | 1hlb0O
1hlcAO | 1hleBO 1hlpAO | 1Thma0OO0 | 1Thmy00 | 1hnaOO0 | 1hph00 | 1hpi00
1hra00 1hstAO 1htmBO0 | 1htp00 1htrP0 lhucB0 | 1hyp0O | lhyxLO
1iaiHO 1ido00 1igjB0 ligtAO 1ikfHO 1ilr10 1imp00 | 1irf00
1iro00 1itbBO 1iyu00 1jf000 1jh1HO 1jmcAO | 1jpc00 1judo0
1jvr00 1jxpA0 1kelHO | 1kid0O 1knyAO | 1kpf00 1ksaAO | 1kte0O
1kveB0O | 1kxiAO 11ab00 1lccAO 1lgyAO 11it00 11ki00 11kt A0
11pbAO | 1lucB0O 1lybAO | 1mai00 | 1mbg00 | ImblAO | 1mdal.0 | 1mhcBO
1mhlCO | 1mhyGO | 1mil00 1mmqO00 | ImpaHO | 1mpgAO | 1mrp00 | 1mtyDO
1mut00 | IlmvmAO | 1myjAO0 | 1mylAO | 1lmyn00 | InbcAO | 1ndh00 | 1neq00
1nfdBO | 1nldHO 1nls00 1nsa00 1nsqAO0 | InwpAO | loatAO | locp00
loctCO | loneAO lorc00 lordAO0 | loutBO | lovaAO | 1paa0O0 | 1pafA0
1pal00 1pbe00 1pca00 | 1pdnCO | 1pfsAO | 1pi200 1pii00 1pmi00
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Table A.2 — Continued

No. No. No. No. No. No. No. No.
1pnbAO | 1pne00 1povl0 | 1pov30 | 1ppn00 | 1prr00 1pscAO | 1psj00
1psv00 | 1pvaAQ 1pvcl0 | 1pyaBO | 1qpg00 | 1qrdAO | 1r0930 1r0940
1red00 1regX0 1reiAQ 1rfbA0O 1rgeAO | 1rgs00 1rhil0 1rip00
1rkd00 1rlaA0 1rmg00 | 1ron00 1rtp10 1ryt00 1scuA0 | 1sdf00
1seiA0 1sftAO 1sgt00 1shcAO | 1shg00 1shp00 | 1skyEO | 1skz00
1smnAQ | IsmvAO | 1spbP0 | 1sra00 1srb00 1ss000 1std00 1sxcA0Q
1sx100 1tabl0 1tadAO | 1tcrAO 1tgj00 1thjAO | 1tif00 1tig00
1tit00 1t1k00 1tmed4(0 | 1tml00 1tnfAO 1tpfAO 1tpg00 1tx4A0
1ulo00 1vec00 1vepAO | 1vie00 1vig00 1vmoAO | 1vtp00 | 1vwlBO
1whtBO | 1wit00 1wjdBO | 1wtlAO0 | 1xsoAO | IxvaAO | 1lybvAO | lycc00
lyecHO | 1ytcO0 1zer00 1zncAO | 1znf00 1zt000 1zymAOQ | 2acy00
2arcA0 | 2atjA0 2ayh00 | 2bb200 | 2bbvAO | 2cmd00 | 2ctc00 2dkb00
2dri00 2ebn00 2end00 | 2erl00 2ezk00 | 2fb4HO | 2fbjLO | 2fcr00
2tha00 | 2gsaA0 2hlcAO | 2knt00 21bp00 2mltAO0 | 2msbA0 | 2myr00
2ncm00 | 2nllBO 2pkc00 | 2plh00 2pna00 | 2pta00 2pth00 | 2ran00
2sak00 | 2uce00 3minB0O | 3mra00 | 4aahBO | 4hb100 | 4mt200 | 6fabL0
61dh00 | TcatAO TtimAQ
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