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SUMMARY

The protein folding problem is examined. Specifically, the problem of predicting pro-

tein secondary structure from the amino acid sequence is investigated. A literature

study is presented into the protein folding process and the different techniques that

currently exist to predict protein secondary structures. These techniques include the

use of expert rules, statistics, information theory and various computational intelli-

gence techniques, such as neural networks, nearest neighbour methods, Hidden Markov

Models and Support Vector Machines.

A pattern recognition technique based on statistical analysis is developed to predict

protein secondary structure from the amino acid sequence. The technique can be

applied to any problem where an input pattern is associated with an output pattern

and each element in both the input and output patterns can take its value from a

set with finite cardinality. The technique is applied to discover the role that small

sequences of amino acids play in the formation of protein secondary structures.

By applying the technique, a performance score of Q8 = 59.2% is achieved, with a cor-

responding Q3 score of 69.7%. This compares well with state of the art techniques, such

as OSS-HMM and PSIPRED, which achieve Q3 scores of 67.9% and 66.8% respectively,

when predictions on single sequences are made.
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OPSOMMING

Die probleem van hoe protëıne vou word ondersoek. Daar word in besonder gekyk

na hoe om die sekondêre struktuur van ’n protëıen te voorspel, gegee die aminosuur

sekwensie van die protëıen. ’n Literatuurstudie word voorgelê oor die proses van

protëıenvouing en die tegnieke wat bestaan om protëıen sekondêre strukture mee te

voorspel. Tegnieke soos heuristieke, statistiek, inligtingsteorie en kunsmatige intelligen-

sie word gebruik. Die kunsmatige intelligensie tegnieke sluit in neurale netwerke, “near-

est neighbour” metodes, “Hidden Markov Models” en “Support Vector Machines.”

’n Patroonherkenningstegniek word onwikkel om protëıen sekondêre struktuur te voor-

spel, gegee die aminosuur sekwensie van die protëıen. Die tegniek is geskool op sta-

tistiese analise en is van toepassing op enige probleem waar ’n insetpatroon assosieer

word met ’n uitsetpatroon en elke element in beide die inset- en uitsetpatroon uit ’n

eindige versameling gekies word. Die tegniek word aangewend om die rol wat klein

aminosuur sekwensies speel in die formasie van protëıen sekondêre strukture te bepaal.

’n Doeltreffendheidsvlak van Q8 = 59.2% word behaal deur die tegniek uit te voer. Die

ooreenskomstige Q3 waarde is 69.7%. Dit vergelyk goed met van die beste bestaande

tegnieke, soos OSS-HMM en PSIPRED wat onderskeidelik Q3 waardes van 67.9% en

66.8% behaal op die voorspelling van enkel sekwensies.
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Chapter 1

INTRODUCTION

Life is one of the greatest mysteries in the universe. It seems to possess a beauty and

complexity that can only be appreciated by living things themselves.

Through the centuries, man has tried to understand this mystery, a mystery that

would explain his own origin. He has asked inquisitive questions, questions that life

itself has weaved into the very fabric of his existence. In his quest for understanding,

he has turned to religion, with the hope of understanding the greatness of life. He has

philosophized greatly about the meaning of life, trying to make sense of it all. And

now, through the scientific and engineering tools available to him, he has made great

discoveries about the intricate details of life, which fuels the hope that many more

discoveries will still be made.

With the recent completion of the human genome project, man is one step closer

in understanding his origin. For the first time in human history, the blueprint of the

human race is available - it is now up to scientists and engineers to analyse and interpret

its meaning.

As a consequence of the human genome project, we now know of the existence of a

large number of proteins as well as the sequence of amino acids from which they are

composed. What remains unknown is the function of the majority of these proteins.

The function of a protein is mostly determined by its three dimensional structure.

1



Chapter 1 Introduction

The amazing thing is that given a specific sequence of amino acids, there is a seemingly

infinite number of three dimensional structures that can be created; however, a protein

will almost always fold into the same three dimensional structure! Life on earth has

the ability to manufacture proteins that are always the same.

The central question addressed in this dissertation, is one that investigates the way

in which amino acids contribute to protein structure, which in turn determines the

function of a protein. By understanding these assembly units of life on earth, we will

gain insight into evolution, the functioning of the body and perhaps most importantly,

we will be in a better position to develop treatments and cures for certain diseases.

I invite you now on a scientific journey that aims to discover the exciting principles

that underlies the foundations of life. It is only once we understand how life functions,

that we will be in a position to touch on the greatest mystery of all - the reason there

is life...

1.1 BACKGROUND

Proteins are organic macromolecules that are essential for the structure, function and

regulation of the body’s cells, tissues and organs. They are composed of a linear se-

quence of amino acids linked together by peptide bonds to form a polypeptide. This

sequence of amino acids, without regard to spatial arrangement, is known as the pri-

mary structure of the protein.

There are 20 different types of commonly occurring amino acids in proteins. Each

amino acid is composed of a central carbon atom (known as the Cα atom), attached

to a hydrogen atom (H), an amino group (NH2), a carboxyl group (COOH) and a side

chain, also known as a residue (R). This residue can range from a single hydrogen atom

in the case of the amino acid glycine, to a compound of 19 atoms in the case of the

amino acid arginine. It is this residue that gives each amino acid its unique properties.

Two amino acids can link together via a peptide bond, a reaction in which the amino

group of one amino acid reacts with the carboxyl group of another amino acid. A

water molecule is released as a by-product of the reaction. Of course, multiple amino

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

acids can link together in the same way to form a polypeptide. This polypeptide has

a repeating backbone structure of N-Cα-C atoms (known as the main-chain atoms) all

linked together by covalent bonds.

The local spatial arrangement of the main-chain atoms of a segment of a polypeptide

chain is known as its secondary structure. This definition disregards the conformation

of side chains or the relationship with other segments. Regular patterns have been

observed in this spatial arrangement. For instance, alpha helices and beta sheets are

secondary structure patterns frequently observed in a polypeptide chain. Within these

structures, hydrogen bonds between the amino acids at regular intervals within the

chain add to the stability of the structure.

The tertiary (or three-dimensional) structure of a protein, is the arrangement of all

its atoms in space. The amazing thing about proteins is that for a specific primary

structure, there is almost always a single associated tertiary structure in its native state.

Research has shown that there is a strong correlation between the tertiary structure of

a protein and its function. For instance, hemoglobin, the protein that carries oxygen

in the body, has a specific globular shape that is able to trap oxygen. Another protein,

collagen, has a rod-like form and is commonly found in cells. This rod-like feature

gives form and stability to cells. It is reasonable to assume that proteins with similar

structures are likely to have similar functions.

With the completion of the human genome project, it is now known that there are

about 20000 to 25000 different human proteins (one study suggests that 19599 protein-

coding genes have been identified and another 2188 DNA segments are predicted to

be protein-coding genes [25]). For each of these proteins, the primary structure is

known. However, the tertiary structure and function of the majority of these proteins

are currently unknown.

Scientists are faced with the challenge to predict the tertiary structure of a protein in

its functional environment from its known primary structure in order to determine the

possible function of the protein. This is known as the “protein-folding problem” and

is an active research field.

Current research focuses on predicting the secondary structures that form from se-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 1 Introduction

quences of amino acids and how these secondary structures combine to form the ter-

tiary structure of a protein. Different approaches have been applied to the problem

of protein secondary structure prediction. These approaches include use of statistics

and expert rules, information theory and computational intelligence techniques. The

bulk of the methods are in the domain of computational intelligence. These tech-

niques include neural networks, nearest neighbour methods, Hidden Markov Models

and Support Vector Machines.

1.2 MOTIVATION

The protein folding problem is one of the central unanswered questions in biology. It

has been studied by many, yet the exact mechanisms involved remain elusive.

Apart from the intellectual quest, an understanding of the protein folding process is

of significant practical importance. Diseases such as cystic fibrosis, Bovine spongiform

encephalopathy (mad cow disease) and its human counterpart (Creutzfeldt-Jacob dis-

ease) and certain strains of Alzheimer’s disease are now known to be caused by proteins

that fold incorrectly. If the process is better understood, it may become possible to

manufacture drugs to treat these diseases. Insights into the process will also lead to

a valuable understanding of evolution. The folding process provides insight into the

way different proteins are related, making it possible to trace the evolutionary paths of

proteins and enabling a taxonomy of organisms to be created. Other areas, such as that

of food manufacturing and preservation will also benefit from a better understanding

of the protein folding process.

One of the key areas of research into protein folding is predicting protein secondary

structure from the amino acid sequence. Secondary structure prediction techniques

have improved considerably during the last 20 to 30 years. The reason for this im-

provement is twofold: the employment of advanced computational intelligence tech-

niques and the availability of larger databases of solved protein structures (that serve

as training examples to the computational intelligence techniques).

Depending on one’s viewpoint, it may be argued that the availability of advanced

techniques and a large amount of data does not contribute to the understanding of the

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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protein folding process per se. The better prediction accuracy is not an indication of

a better understanding of the protein folding process, but an indication of the ability

of computational intelligence techniques to capture the mapping between the primary

and secondary structure of a protein. What would contribute to the understanding of

the protein folding process, is if the fundamental rules or mapping could be extracted

from the computational intelligence techniques.

Others argue that the protein folding processes are well understood. Indeed, detailed

simulations of the underlying physics and chemistry exist (refer to Section 2.2.3 on

protein folding simulation). Although the simulations take an immense amount of

time, they very accurately simulate the actual folding process. However, these low-

level descriptions provide little by way of intuitive understanding, just as a quantum-

mechanical description of doped silicon is not suitable to give insight into the operation

of, for example, a microprocessor.

It is the author’s viewpoint that research and scientific discovery is after all a human

activity. It is not only the end destination that matters, but also the journey taken

to get there. Although the final (simulated) protein structure is important, it is in

human nature to want to understand the fundamental principles involved. Such an

understanding is crucial for both synthesis and high-level analysis.

A description of such understandable principles is to some extent lacking in the ad-

vanced computational intelligence techniques. The aim of the dissertation is to make

a contribution to this understanding.

1.3 OBJECTIVES

This dissertation aims to be a thorough investigation into the contributions of single

amino acids or small sequences of amino acids to protein secondary structure.

Specific research questions that will be addressed include:

- Do certain amino acid sequences have a preference to form specific secondary struc-

tures?

- Could certain amino acid sequences serve as substitutes for other amino acid se-

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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quences (i.e. could one sequence be substituted with another whilst maintaining the

same secondary structure)?

- What properties of amino acid sequences contribute to the formation of secondary

structures and how should these properties be used in developing a method for sec-

ondary structure prediction?

Methods will be developed to answer these questions and will be implemented as com-

puter programs capable of predicting protein secondary structure from their sequence.

1.4 CONTRIBUTION

The dissertation contributes through the development of a new protein secondary struc-

ture predication algorithm. The predication algorithm achieves a performance value

of Q8 = 59.2%, with corresponding Q3 value of 69.7% (these measures are defined in

Section 2.4.1). This is comparable to performance values achieved using current state

of the art techniques, such as OSS-HMM and PSIPRED which achieve Q3 scores of

67.9% and 66.8% respectively, when predictions on single sequences are made. Through

additional work, the algorithm can be further developed and it is believed that even

better performance can be achieved.

The algorithm in itself can also be applied to a broader range of applications. In

particular, pattern recognition problems where there exist a mapping between input

sequences and output sequences, where each element in the input and output sequences

are from a finite set, can benefit from this algorithm.

The algorithm is applied, together with other tests, to discover the role that small

sequences of amino acids play in the formation of protein secondary structures. A

number of key findings are made and are described in Section 6.1.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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1.5 OVERVIEW

Chapter 2 gives comprehensive background information on proteins, amino acids, pep-

tide bonds, etc. An understanding of the concepts and terminology introduced in this

section is fundamental in understanding the rest of the dissertation. Readers new to

the field of bioinformatics are encouraged to read through this chapter, whilst those

more familiar with the field may choose to browse through it.

Chapter 3 describes the pattern recognition algorithm that was developed to predict

protein secondary structure from protein primary structure. It should be noted that the

pattern recognition algorithm can be applied to a broader range of problems, namely

those problems which are structured in such a way that the input and output sequences

are defined over two possibly different alphabets. The chapter is supplemented with a

detailed example.

Chapter 4 describes the pattern recognition algorithm mathematically. It also for-

malises the way in which some of the other results were obtained.

The results achieved with the algorithm as well as the results of a number of other tests

are presented in chapter 5. The chapter is broken down into a number of experiments,

each of which describe the objective of the experiment, the setup and execution, the

results obtained and relevant conclusions reached.

The dissertation is concluded in chapter 6.

The proteins that the research is based on are listed in appendix A.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria
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Chapter 2

BACKGROUND

This chapter provides background information on proteins, their structure and the

protein folding process. It discusses ways of classifying protein secondary structure

and describes the methods that exist to predict secondary structure. Comprehension

of these concepts is necessary for understanding the rest of the dissertation.

Section 2.1 gives an overview of proteins and how they are constructed from amino

acids through peptide bonds. It also describes the genetic code and how proteins are

synthesized. In Section 2.2 the protein folding process is discussed. Of particular

interest are the regular local structures that are formed during the folding process,

called secondary structures. The section also discusses different theories that exist

to describe the protein folding process. Section 2.3 describes the formation of protein

secondary structure and introduces the DSSP code for classifying secondary structures.

The chapter is concluded in Section 2.4 which introduces the methods currently in use

to predict secondary structures as well as the measures of performance that are used

to quantify their success.
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2.1 PROTEINS

2.1.1 Brief Historical Overview

Proteins are organic macromolecules essential for the structure, function and regulation

of the body’s cells, tissues and organs. They are composed of a linear sequence of amino

acids linked together by peptide bonds to form a polypeptide. Although these facts are

now widely known, it is useful to understand how these concepts came into existence.

Up until the early nineteen hundreds, scientists described animal and vegetable ma-

terials in terms of the general properties they possessed. By 1815, it was known that

animal and plant materials are composed of the elements carbon (C), hydrogen (H),

oxygen (O) and nitrogen (N). Methods based on the oxidation of materials were devel-

oped by Jöns Jakob Berzelius in Stockholm and Joseph Louis Gay-Lussac in Paris to

determine the relative quantities of C, H, O and N in organic materials.

In 1820, Henri Braconnot was studying the effect of sulfuric acid on animal substances.

When applied to gelatin, it would yield what he called “gelatin sugar” which was later

renamed as glycine. When applied to muscle fibres and wool, it would yield a white

substance he named leucine. Glycine and leucine were the first two amino acids to be

discovered. At the time, it was not known that these were the essential building blocks

of proteins. The term “amino acid” was only proposed that same year by Berzelius

for nitrogen-containing organic acids. The discovery of the other amino acids which

naturally occur in proteins (proteinogenic amino acids) continued from 1849 when

tyrosine was discovered, to 1936 with the discovery of threonine.

In a paper [1] by Gerardus Johannes Mulder in 1839, he described the chemical compo-

sition of some substances, and was the first to use the term “protein” to describe these

substances. He states that this term was a suggestion by Berzelius from a letter dated

1838. In the period that followed, more amino acids were discovered and proteins were

characterized in terms of the amino acids they are composed of. As early as 1872, Karl

Ritthausen (who also discovered glutamic acid and aspartic acid), published a book

[2] which analyzed the three main types of protein contained in cereals, legumes and

oilseeds in terms of amino acid composition.
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The next great advance came on 22 September 1902, at the 74th Annual Meeting of the

Gesellschaft der Deutschen Naturforschen und Ärzte (Society of German Naturalists

and Physicians). At the meeting, Franz Hofmeister [3] and Hermann Emil Fischer [4]

independently suggested that amino acids link with each other via peptide bonds to

form a polypeptide. Fischer won the 1902 Nobel Prize in Chemistry for his work on

sugar and purine synthesis.

The polypeptide theory became widely accepted and the question now naturally arose

as to which amino acids existed and how a protein could be characterized in terms

of amino acids. In 1941, Hubert Bradford Vickery published a paper [5] in which he

grouped the amino acids into four groups. One of these groups contained 18 amino

acids, 17 of which were proteinogenic.

In 1942, Archer John Porter Martin and Richard Laurence Millington Synge invented

partition chromatography [6] (for which they received the Nobel Prize in Chemistry in

1952). This brought about a revolution in the task of decomposition of proteins into

amino acids. It enabled Synge to draw up a list of amino acids [7]. Later column-

chromatographic methods were invented by Moore and Stein (Nobel Prize for Chem-

istry, 1972), which made the complete automation of decomposition of proteins into

amino acids possible.

The challenge now turned to determining the amino acid sequence (not just compo-

sition) of a protein. Frederick Sanger managed to identify the N-terminal of proteins

by the formation of dinitrophenyl derivatives and succeeded to identify the sequence

of amino acids and disulfide bonds in insulin [8]. This breakthrough earned him the

1958 Nobel Prize for Chemistry and was significant in that it proved the polypeptide

theory of Hofmeister and Fischer.

The next big breakthrough came in the determination of the three dimensional struc-

ture of proteins through the X-ray study of protein crystals. In 1959 Max Ferdinand

Perutz managed to determine the molecular structure of hemoglobin [9] and John Cow-

dery Kendrew managed to determine the structure of myoglobin [10]. They received

the 1962 Nobel Prize for their work.

During the same decade, in the period from 1951 to 1953, James Dewey Watson and
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Francis Harry Compton Crick discovered the double-helical structure of DNA [11]

(which earned them the Nobel Prize for Physiology or Medicine in 1962, shared with

Maurice Wilkins). The publication of the discovery in Nature magazine in 1953, led

George Gamow to the idea that perhaps the nucleotides in the DNA structure could

serve as instructions on how to manufacture proteins [12].

Gamow’s theory turned out to be correct. It is now known that sections of the DNA

strand are transcribed to an RNA strand. Sections of the RNA sequence (known as

codons) are then translated to amino acids through what is known as the “genetic

code”. This process, whereby DNA is used as the blueprint to manufacture proteins,

is known as the “central dogma of molecular biology”.

In 1961, Marshall Warren Nirenberg and Heinrich J Matthaei performed the Nirenberg-

Matthaei experiment that would be the first step in the determination of the genetic

code [13], [14]. Their work was supplemented by the Nirenberg-Leder experiment and

later by work of Har Gobind Khorana [15]. Through their work, they determined

the correspondence between codons and the amino acids they code - the genetic code

was solved. Nirenberg and Khorana (together with Robert W Holley) received the

1968 Nobel Prize in Physiology or Medicine for their work. The establishment of the

genetic code also meant that it was now known that only 20 amino acids were naturally

manufactured through the process of translation.

In 1976 Frederick Sanger and Walter Gilbert independently developed methods for

determining nucleic acids base sequences in DNA. Sanger used his method, known as

the chain or dideoxy termination method [18], to sequence the genome of the Phage Φ-

X174 in 1977 [19] [20], the first fully sequenced genome. Sanger and Gilbert (together

with Paul Berg) received the 1980 Nobel Prize for Chemistry for their efforts.

The methods developed by Sanger and Gilbert made it possible to automate the process

of determining base sequences in DNA. This led to the establishment of the Human

Genome Project in 1986 [21]. The objective of the project is to map and sequence the

estimated 2.85 billion (2851330913 according to [23]) nucleotides in the human genome

and to identify the genes present in it. It was headed by James Watson from 1988 and

initially 16 institutions from 5 countries participated.
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In 1995 the entire 1.8 million base pairs of the bacterium Haemophilus influenzae

was published [17]. On 26 June 2000, it was jointly announced by Bill Clinton and

Tony Blair that an initial working draft of the entire human genome was finished.

The working draft was published in 2001 and made freely available [22]. A major

milestone was reached in May 2006, when the sequence of the final chromosome of the

human genome was published in the journal Nature [24]. It is also of significance that

there are an estimated 20000 to 25000 protein-encoding genes in the human genome

[23]. Although the exact number is not known, 19599 protein-coding genes have been

identified and another 2188 DNA segments are predicted to be protein-coding genes

[25].

The human genome project has made major contributions to the understanding of the

biological principles that underpin life. Research is under way to identify genes and

the proteins they encode. However, a protein’s function is not directly determined

through its amino acid composition; its three dimensional structure is a more ap-

propriate framework for understanding functionality. The majority of proteins’ three

dimensional structure continue to be determined through X-ray crystallography. A

smaller percentage of structures are also determined through nuclear magnetic res-

onance (NMR) and mass spectrometry. These methods are however laborious and

expensive and new techniques are sought to determine or predict the 3D structure of

proteins. The structures are shared through internet resources such as the Protein

Data Bank (PDB) [114]. In July 2006, the PDB contained 34577 protein structures of

various organisms.

New discoveries continue to be made. In 1986 selenocysteine and in 2002 pyrrolysine

were discovered. These are coded from the stop codons UGA and UAG (refer to Section

2.1.4) respectively of some organisms.

2.1.2 Amino Acids

In chemistry, an amino acid is any molecule that contains both an amino and carboxyl

functional group. In biochemistry however, the term amino acid is often used to mean

alpha amino acid - a molecule where the amino and carboxyl functional groups are

attached to the same carbon atom. For the remainder of this dissertation, the term

amino acid will be used to refer to alpha amino acids.
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Figure 2.1 shows the structure of an alpha amino acid. Each amino acid is composed

of a central carbon atom (known as the Cα atom), attached to a hydrogen atom (H),

an amino group (NH2), a carboxyl group (COOH) and a side chain, also known as a

residue (R). All the atoms in an amino acid are attached by covalent bonds.

C
alpha

H

(amino group)
H

2
N

(carboxyl group)
COOH

R
(side chain)

Figure 2.1: Structure of a Single Amino Acid

The residue can vary from a single hydrogen atom (in the case of amino acid glycine),

to a large compound of different atoms (for instance arginine contains 19 atoms in its

residue). It is this residue that gives each amino acid its unique properties. In nature,

only 20 different amino acids (i.e. 20 different residues) are used to synthesize proteins.

These are known as the proteinogenic or standard amino acids, and are listed in Table

2.1. Each of the proteinogenic amino acids contain carbon (C), hydrogen (H), oxygen

(O) and nitrogen (N), whilst some (cysteine and methionine) also contain a sulphur

(S) atom in their residue chains.

A large number of other non-standard amino acids also exist in nature or can be syn-

thesized through artificial processes. Of note are selenocysteine and pyrrolysine, two

amino acids that are sometimes manufactured by some organisms. Other amino acids,

such as hydroxyproline, norvaline and hydroxylysine also sometimes occur. These are

manufactured though a process known as post-translational modification, i.e. modifi-

cation of the amino acid chain after translation (protein synthesis).

From a geometrical point of view, all amino acids have four different groups attached to

the Cα atom. These groups can can be attached in two different configurations, known

as the levo (L) and dextro (D) configurations. These two configurations are optical

isomers of each other, meaning that they are non-superimposable mirror images of each

other. Figure 2.2 illustrates the two different isomers (imagine looking down onto the
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Table 2.1: The 20 Proteinogenic Amino Acids

Amino Acid Abbreviation Linear Structure Formula

Alanine ala or a CH3-CH(NH2)-COOH

Arginine arg or r HN=C(NH2)-NH-(CH2)3-CH(NH2)-COOH

Asparagine asn or n H2-CO-CH2-CH(NH2)-COOH

Aspartic Acid asp or d HOOC-CH2-CH(NH2)-COOH

Cysteine cys or c HS-CH2-CH(NH2)-COOH

Glutamine gln or q H2N-CO-(CH2)2-CH(NH2)-COOH

Glutamic Acid glu or e HOOC-(CH2)2-CH(NH2)-COOH

Glycine gly or g NH2-CH2-COOH

Histidine his or h NH-CH=N-CH=C-CH2-CH(NH2)-COOH

Isoleucine ile or i CH3-CH2-CH(CH3)-CH(NH2)-COOH

Leucine leu or l (CH3)2-CH-CH2-CH(NH2)-COOH

Lysine lys or k H2N-(CH2)4-CH(NH2)-COOH

Methionine met or m CH3-S-(CH2)2-CH(NH2)-COOH

Phenylalanine phe or f Ph-CH2-CH(NH2)-COOH

Proline pro or p NH-(CH2)3-CH-COOH

Serine ser or s HO-CH2-CH(NH2)-COOH

Threonine thr or t CH3-CH(OH)-CH(NH2)-COOH

Tryptophan trp or w Ph-NH-CH=C-CH2-CH(NH2)-COOH

Tyrosine tyr or y HO-p-Ph-CH2-CH2-CH(NH2)-COOH

Valine val or v (CH3)2-CH-CH(NH2)-COOH

Cα atom with the H atom closest to you).

The standard amino acids are mostly found in the levo configuration. The dextro

configuration has been found in some sea-dwelling creatures and in the cell walls of

some bacteria. A useful way of remembering the levo configuration is by means of the

CORN rule (suggested by Richardson [51]). When looking at the Cα atom with the

H atom closest to you, the other functional groups spell CORN (COOH - R - NH2)

when read clockwise. Note that in the case of glycine, where the residue is a single H

atom, two of the groups attached to the Cα atom are identical and therefor the levo

and dextro configurations are the same.
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C
alpha

H

COOH

RNH2

C
alpha

H

COOH

R NH2

Levo Dextro

Figure 2.2: Levo and Dextro Configurations

2.1.3 The Peptide Bond

Two amino acids can “link” together through the formation of a peptide bond. The

amino group of one amino acid reacts with the carboxyl group of the next amino acid as

illustrated in Figure 2.3. In the process, a water molecule is released (i.e. dehydration

synthesis). The resulting peptide bond is a strong covalent bond.
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Figure 2.3: Formation of the Peptide Bond

Multiple amino acids can link together in the same way to form a polypeptide. In
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this polypeptide, there is always an uncomplexed (“free”) amino group at the one end

(known as the N-terminus) and an uncomplexed carboxyl group at the other (known

as the C-terminus). By convention, the amino group indicates the start of the chain

and the carboxyl group the end. The acute reader will note that the “backbone” of the

polypeptide chain is formed by a repeating sequence of N-Cα-C atoms. These atoms

are known as the main-chain atoms.

A dipeptide contains two amino acids and a tripeptide three. The terms peptide,

polypeptide and oligopeptide are roughly equivalent, although peptide and oligopeptide

are sometimes used in conjunction with “smaller” sequences and polypeptide with

“larger” sequences of amino acids.

During dehydration synthesis, a water molecule is released to form a peptide bond

between two amino acids. This process can be reversed through a process known as

hydrolysis. Through the addition of a water molecule, the peptide bond can be broken

and amino acids separated.

It is interesting to note that the six atoms from one Cα atom to the next Cα atom (Ci
α,

COi, NHi+1 and Ci+1
α ) all lie in a plane as illustrated in Figure 2.4. This is due to the

double bond character of the peptide bond. The backbone N-Cα-C angle, τ , as well as

the dihedral angles, φ around the N-Cα bond, ψ around the Cα-C bond and ω around

the C-N bond are shown as well.

C
alpha

H

R

C

O

N

H

C
alpha

H

R

C

N

C
alpha

H

O

H

phi psi omega

tau

Figure 2.4: Bond Angles

Since the Cα atom is tetrahedral, τ is about 109.5◦, although it has been noted that
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this angle can change to accommodate other strains in the structure. The peptide bond

is almost always found in the trans configuration, implying that ω is 180◦, although

it is sometimes found in proline with the cis configuration. Figure 2.5 illustrates the

difference between the trans and cis configurations. The source of essentially all the

interesting variability in protein conformation are the φ and ψ angles. Although there

is much freedom as to the values these angles can take, they are constrained geomet-

rically by the amino acid residues and other factors. The distribution of these two

angles for the amino acids in a particular protein is often plotted on a graph called a

Ramachandran plot [16].

C
alpha

C

N

C
alpha

O

H

C
alpha

C

N

C
alpha

O

H

trans cis

Figure 2.5: Trans and Cis Configurations

2.1.4 Protein Synthesis

Proteins are manufactured in the ribosomes. The processes that play a role are tran-

scription and translation.

The instructions to manufacture proteins are contained in the deoxyribonucleic acid

(DNA) of an organism. A DNA strand is not a single molecule, but rather two molecule

strands which are linked together through hydrogen bonds. Each strand is made up of a

long sequence of nucleotides. There are four types of nucleotides or bases: adenine (A),

cytosine (C), guanine (G) and thymine (T). Between the two strands of DNA, different

bases pair up with each other: A with T and C with G. Note that the two strands

are aligned, i.e. consecutive bases pair up with one another. This implies that a single

strand contains all the information of the whole DNA molecule, or put differently, that

one of the strands could be manufactured from knowledge of the other. DNA strands

are tightly pack around proteins. This packaging is known as a chromosome. Human
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DNA is packed into 46 chromosomes - two sets of 23.

The term genome refers to all the hereditary information contained in the DNA (both

genes and non-coding regions). A gene is a section of a DNA strand that will code for a

specific protein. A messenger ribonucleic acid (mRNA) strand is constructed from the

part of the DNA strand where the gene is located. Adenine in DNA codes for uracil

(U) in RNA, cytosine for guanine, guanine for cytosine and thymine for adenine. The

constructed mRNA then travels from the nucleus where the DNA is contained to the

ribosomes in the cytoplasm. This process, whereby a mRNA molecule is created, is

known as transcription.

In the ribosome, each sequence of three nucleotides in the mRNA is interpreted as an

instruction (known as a codon) to manufacture a specific type of amino acid. The

process by which this takes place is known as translation. The pairing between codons

(of which there can be 43 = 64) and the 20 amino acids is known as the genetic code

and is illustrated in Figure 2.6.
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Figure 2.6: The Genetic Code

The construction of a protein is started when the codon AUG appears in the mRNA

sequence. AUG codes for the amino acid methionine. Construction of a protein is

stopped when one of the codons, UAA, UAG or UGA is found in the mRNA sequence.
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2.2 PROTEIN FOLDING

2.2.1 Overview

After a protein is manufactured in the ribosomes, it spontaneously folds into a 3-

dimensional structure. It is this 3D structure of a protein that determines its function.

The seemingly amazing thing is that a specific protein will almost always fold in more

or less the same way and will end up with the same 3D structure called its native state.

A convincing argument is that this is due to evolution - if the same sequence of amino

acids would lead to different structures in proteins, their proper functioning could

not be guaranteed. It is thus conceivable that evolution has produced proteins where

multiple native states are unlikely.

Exactly how proteins fold from the sequence of amino acids (primary structure) re-

mains an open question and has been a topic of much research since the protein folding

problem was first posed. It is now accepted that proteins first form smaller local struc-

tures called secondary structures, before (or as some theories suggest, simultaneously)

folding into its 3D structure (tertiary structure).

In 1951, Linus Carl Pauling analyzed the geometry and dimensions of peptide bonds.

His research revealed the bond lengths and angles involved in the peptide bond mole-

cules. Together with Robert B Corey, he predicted the existence of two regular sec-

ondary structures that are formed in proteins, namely alpha helices [49] and beta sheets

[50] (and also falsely hypothesized other structures). Note that this work was done be-

fore protein structure has been experimentally determined. Their predictions turned

out to be correct and earned them the Nobel Prize for Chemistry in 1954. These were

the first secondary structures to be discovered.

Proteins can be unravelled or “denatured”. This can be achieved through the applica-

tion of heat and certain chemicals. Christian Boehmer Anfinsen denatured a protein

called ribonuclease and showed that it lost its shape and function (1961) [27]. By re-

moving the denaturing substance, ribonuclease regained its function. Through chemical

analysis and deductive reasoning, he was able to show that ribonuclease regained its
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original shape as well. This is a significant result, since it shows that all the “knowl-

edge” required for protein to fold into its native state is contained in its amino acid

sequence (and thus in the DNA sequence that codes for that protein), i.e. no folder

or shaper is needed. Anfinsen’s work led to him being awarded the Nobel Prize for

Chemistry in 1972.

It is now known that in certain cases proteins can indeed fold into a wrong shape.

Although the folding knowledge lies primarily in the amino acid sequence, proteins,

known as chaperones, are sometimes used to keep their target proteins from folding

incorrectly. Other factors, such as temperature, solvent viscosity and acidity, can also

influence the folding process.

As could be expected, proteins that misfold are the cause of certain diseases [28] [29].

Even a single amino acid that is missing or incorrect could cause such a misfold. Since

a protein’s function is largely determined by its structure, a misfold implies that a

protein does not function correctly or does not function at all. In the worst case,

the misfold could lead to a situation where the protein influences substances around

it in a detrimental way and as such “poisons” a cell. Diseases such as cystic fibro-

sis, Bovine spongiform encephalopathy (mad cow disease) and its human counterpart

(Creutzfeldt-Jacob disease) and certain strains of Alzheimer’s disease [30] are now all

attributed to protein misfolding. By understanding the folding process, and perhaps

more importantly the factors that cause misfolding, cures could be developed for these

diseases.

Another interesting aspect is the time it takes for a protein to fold into its native state.

It typically takes a anything from a number of milliseconds to a number of seconds

for a protein to assume its native state. The fastest folders complete this process in

a couple of microseconds whilst some proteins could take a number of minutes. In

1968, Cyrus Levinthal showed that the total number of conformations a protein could

take is astronomical [32]. Even if a protein could sample a conformation in a nano- or

picosecond, it would take more than the age of the universe to sample all configurations.

It can thus be concluded that a random conformational search does not occur in folding,

but rather that one or more mechanisms exist which allow a protein to fold via some

pre-determined path. Theories regarding the exact way in which this is accomplished

are discussed in Section 2.2.3.
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2.2.2 Levels of Protein Structure

This section defines a number of terms that are used to describe the level of protein

structure.

2.2.2.1 Primary Structure

The primary structure of a protein (or segment of polypeptide chain) is the sequence of

amino acid residues, without regard to spatial arrangement. Note that in the primary

structure of a protein, all the atoms are held together by covalent forces.

2.2.2.2 Secondary Structure

The secondary structure of a segment of polypeptide chain is the local spatial arrange-

ment of its main-chain atoms without regard to the conformation of its side chain or

to its relationship with other segments. Note that a secondary structure is locally

defined, i.e. there can be multiple secondary structures within a single protein. The

secondary structures form due to hydrogen bonds that form between amino acids at

regular intervals within the chain. The reader is referred to Section 2.3 for a detailed

discussion of secondary structures.

2.2.2.3 Supersecondary Structure

It is sometimes observed that certain structural components comprising a number of

secondary structures are frequently repeated within proteins, e.g. two alpha helices

joined by a loop region. These are termed supersecondary structures. Some of these

structures are associated with certain biological functions, whilst others are part of

larger structural or functional units.
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2.2.2.4 Tertiary Structure

The tertiary structure of a protein molecule, or of a subunit of a protein molecule, is the

arrangement of all its atoms in space, without regard to its relationship with neighbour-

ing molecules or subunits. The tertiary structure of a protein is kept in place through

hydrophobic interactions, hydrogen bonds, ionic interactions and disulfide bonds.

2.2.2.5 Quaternary Structure

Some proteins, termed multimeric proteins, consist of a number of subunit proteins or

polypeptide chains. The quaternary structure of a protein molecule is the arrangement

of its subunits in space and the ensemble of its intersubunit contacts and interactions,

without regard to the internal geometry of the subunits.

2.2.2.6 Protein Conformation

The process by which higher structures form from the primary structure is called

protein folding. A folded protein can have more than one stable folded state or con-

formation. Each conformation has its own biological activity. At any stage, only one

conformation is active. The most common state is called the native conformation. The

transitions between different conformations are called conformational changes.

2.2.3 Theories of Protein Folding

The resulting tertiary structure that forms when a protein folds is a stable conforma-

tion. It is generally accepted that proteins fold to reach a state of lower energy. The

open question is whether it reaches a global (stable) or local (meta-stable) minimum

in its native conformation.

The thermodynamic hypothesis of protein folding was proposed by Epstein in 1963

[33] after earlier work by Haber and Anfinsen [31]. According to the thermodynamic

hypothesis, the native state of a protein is reached when it is has reached a global
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minimum in its energy state. In opposition to the thermodynamic hypothesis is the

kinematic hypothesis of protein folding. As proposed by Wetlaufer in 1973 [34], [35], the

kinematic hypothesis states that a protein could become trapped with a local minimum

in its energy state, unable to overcome the energy barriers that will enable it to reach

a global minimum. The native state of a protein correspond to this local minimum.

It is conceivable that these meta-stable states could be vastly different from the true

stable (minimum energy) conformation.

Initially, the unfolded protein is in a random coil state. The changes that occur during

the initial phase of the folding process could thus appear to be somewhat random in

nature. Levinthal showed that if only random changes were made to the conformation

of a protein, with the expectation that a minimum energy state will be reached in

which the native state is always the same, it would take an astronomical amount of

time [32].

Levinthal’s work led to the conclusion that there exist folding pathways and interme-

diates - states and partially folded chains that a protein necessarily undergo during the

folding process. Such intermediates were observed by Ikai and Tanford [36] and Tsong

and Baldwin [37] in 1971.

Different views persist as to how the folding process gets started. One view is that

folding is hierarchic - local backbone structures are formed and persist until the native

state emerges. The other view is that folding is started through a tertiary interaction

- distant clusters of side chains are then drawn together.

2.2.3.1 Framework Model

The framework model [38] [39] [40] suggests a hierarchical mechanism whereby local

secondary structures are formed based on primary sequences, but independent of ter-

tiary structure. Once these secondary structures collide, they coalesce to form tertiary

structure. One problem with the theory is that peptides do not generally form stable

secondary structures in solution.
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2.2.3.2 Hydrophobic Collapse Hypothesis / Molten Globule Hypothesis

Proteins are normally found in a configuration where the hydrophobic amino acids are

buried toward the inside of the folded protein, whilst hydrophilic amino acids are found

more towards the surface of the protein. The hydrophobic collapse hypothesis [41] [42]

[43] states that a protein assumes its native conformation through the formation and

rearrangement of a compact collapsed structure known as a molten globule. This step

constitutes an early step in the folding pathway. The framework and hydrophobic

collapse models suggest the formation of kinematic intermediates.

2.2.3.3 Nucleation model

The nucleation model [44] [34] states that tertiary structure forms as an immediate

consequence of the formation of secondary structure. A few amino acid residues form

secondary structures which serve as a nucleus. Further structure then propagates from

this nucleus. Note that the nucleation model does not necessarily lead to the formation

of kinematic intermediates.

2.2.3.4 Directed Folding Model

The directed folding model suggests that specific interactions could direct the folding

pathway by stabilizing folded conformations. For instance, in bovine pancreatic trypsin

inhibitor (BPTI) it has been shown that the formation of disulphide bonds stabilize

secondary structure and leads to specific pathways [45].

2.2.3.5 Folding Funnel Model

One of the more recent theories is that of the folding funnel model. The theory repre-

sents the energy surface of the protein folding pathway as a funnel. Different unfolded

conformations are at the rim of this funnel, with a single global minimum representing

the native conformation. Different folding paths exist from the unfolded states to the

native state. The protein could fold by means of steepest decent (fastest folding) or fol-
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low other paths through local minima (intermediates) and maxima (transition states)

[46] [47].

The principle of minimum frustration, hypothesized by Peter Wolynes, states that

through evolutionary processes, natural proteins are composed of amino acid sequences

that interact with one another in such a way as to be directed towards the native state,

i.e. the energy landscape is mostly smooth.

2.2.3.6 Simulations of Protein Folding

De novo or ab initio techniques for computational protein structure prediction employ

simulations of protein folding to determine the protein’s final folded shape.

An example of such a simulation is LINUS by Rose and Srinivasan [48]. LINUS im-

plements elements of the framework model, hydrophobic collapse and the nucleation

model and allows for the fact that the native state could be a local minimum (kinematic

hypothesis). LINUS was executed against 7 proteins. The authors claim that 99% of

the secondary structures were correctly predicted and 6 out of the 7 proteins had the

correct shape through visual inspection.

One problem with protein folding simulation is that it takes a tremendous amount of

computational power (and thus time) to simulate even a small amount of time during

the folding process. As such many distributed initiatives have seen the light since 2000.

These include Folding@home [119], Human Proteome Folding Project, Predictor@home

[120], Rosetta@home [121] and TANPAKU. Another approach is to use supercomputers

to perform the simulation. IBM’s BlueGene [122] is an attempt to construct a petaflop

supercomputer dedicated to protein folding.
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2.3 SECONDARY STRUCTURE

2.3.1 Secondary Structure Classification

2.3.1.1 The DSSP Code

Although different schemes exist or could be created to classify secondary structures,

one scheme is currently predominant - the “Dictionary of Protein Secondary Struc-

ture” commonly referred to as the DSSP code. This code was developed by Kabsch

and Sander in 1983 [52] and aims to unambiguously define secondary structures based

on their physical and geometrical features. It thus provides a method to define sec-

ondary structures objectively (previously subjective classifications had to be made by

crystallographers and structural biologists).

The code defines eight protein secondary structures. These are listed in Table 2.2. It

is customary to associate one of the eight secondary structures with each amino acid

in a protein. There is thus a one-to-one correspondence between each amino acid and

its associated secondary structure. If no such association can be made, the coil (C)

structure is assumed.

Table 2.2: The DSSP Code

Abbreviation Secondary structure

G 3 turn helix (310-helix)

H 4 turn helix (α-helix)

I 5 turn helix (π-helix)

E β-sheet (extended strand)

B β-bridge

T Hydrogen bonded turn

S Bend

C Coil (also known as loop - L)

Note that other secondary structures such as sharp loops and omega turns have been

suggested. These structures have however not been used widely.
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Table 2.3: Reducing the 8 DSSP classes to 3 classes

DSSP (8-class) 3-class

α-helix (H), 310-helix (G) Helix (H)

β-sheet (E), β-bridge (B) Strand (E)

π-helix (I), Turn (T), Bend (S), Coil (C) Coil (C)

2.3.1.2 3-Class Classification

In pattern recognition and statistical terminology, the word “class” is used to designate

a discrete set of values (or class labels) which a variable can be assigned. In the problem

of secondary structure classification, the word class is often used interchangeably with

the (secondary) structure that is being predicted. This convention is used throughout

the dissertation.

Apart from the DSSP code, secondary structures are often classified according to only

three classes: helices (H), sheets (E) and coils (C). This is probably due to the fact

that after Pauling discovered alpha helices and beta sheets, these were the only known

structures. If an amino acid did not form part of one of these two structures, it was

classified as a coil. This classification scheme persisted and is useful in that it provides a

common framework by which to compare the success of secondary structure prediction

techniques.

It should be immediately apparent that there exist different schemes by which the eight

classes in the DSSP code can be mapped to the three-class scheme. The scheme that

is now in widespread use, has been suggested by Rost and Sander [74]. This mapping

scheme, listed in Table 2.3, maps the H and G structures to helix (H), the E and B

structures to strand (E), and all the rest (I, T, S and C) to coil (C).

This standard mapping scheme has since been used by most authors [78], [105], [65],

although other mapping schemes have also been tried out [78], [110]. Rost, in a more

recent article [65], has however pointed out that that this standard mapping provides a

way to compare different secondary structure prediction methods. He also noted that

other mapping schemes may lead to overly optimistic classification results.
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2.3.2 Types of Secondary Structures

Secondary structures form due to hydrogen bonds that form between amino acids at

regular intervals within the chain. The only exception is the bend secondary structure

which does not form due to hydrogen bonds. The formation of secondary structures

leads to regular patterns in the φ and ψ angles where these structures occur. A good

discussion of secondary structures can be found in the work of Richardson [51].

2.3.2.1 Alpha helices

The alpha helix (also known as 4-turn helix or 3.613-helix) is the most commonly

occurring type of secondary structure in proteins. Its existence was first predicted

by Pauling et al in 1951 [49]. The amino acids are arranged in a helical structure

about 5Å wide. Each amino acid contributes a 100◦ turn in the helix, i.e. there are

3.6 amino acids per turn. The translation along the helical axis from one amino acid

to the next is about 1.5Å. The average length of an alpha helix is about 10 amino

acids. At least 4 amino acids are required for a structure to be classified as an alpha

helix [52]. Alpha helices are usually found in a right-handed configuration, although

left-handed configurations sometimes occur. The backbone conformation angles in the

right-handed configuration are φ = −63◦ and ψ = −43◦ [51].

In general, alpha helices are found at the surface of protein cores where they provide

an interface with the aqueous environment. The inner facing side of the helix tends to

have hydrophobic amino acids and the outer facing side hydrophilic amino acids. Every

third or fourth amino acid tends to be hydrophobic, a pattern that can be detected [55].

Alpha helices are sometimes found in protein cores in which case they have a higher

distribution of hydrophobic amino acids ([53], pp. 378-388). They also contribute the

most to the stability of a protein of all the secondary structure types [51].

Different amino acids have different preferences for forming alpha helices. Alanine,

glutamic acid, leucine and methionine are readily found in alpha helices while proline,

tyrosine, serine and glycine are rare in this structure [54].

The alpha helix arises because of hydrogen bonds forming between the C=O group of
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the nth amino acid and the NH group of the (n+4)th amino acid. The alpha helix and

the corresponding bonds that form are illustrated in Figure 2.7.
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Figure 2.7: Hydrogen bonds in an alpha helix

2.3.2.2 Beta sheets

The beta sheet (also known as extended strand) is the second most commonly occurring

type of secondary structure. Its existence was predicted by Pauling and Corey in 1951

[50], shortly after the existence of alpha helices was predicted.

A beta sheet consists of two or more amino acid sequences (beta strands) in the same

protein that bond together through hydrogen bonds. These strands typically contain

5 to 10 consecutive amino acids and can bond with adjacent strands in a parallel or

antiparallel configuration (or a mixture of the two in the case of three or more stands)

as illustrated in Figure 2.8. The hydrogen bonding patterns are different in the parallel

and antiparallel configurations. Note that the strands could be near each other in the
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amino acid sequence (typically separated by a short loop region) or far apart.

Parallel sheets and the parallel parts of mixed sheets tend to be buried in proteins,

whilst antiparallel sheets tend to have one side exposed to solvents and the other buried

in the core of the protein [51].

An interesting feature of sheets are that they twist [56]. A single beta strand is rarely

perfectly extended, but rather exhibits a slight twist due to the chirality of the com-

ponent acids. This can be attributed to the fact that the energetically preferred dihe-

dral angles (φ = −135◦ and ψ = 135◦) diverge from the fully extended conformation

(φ = −180◦ and ψ = 180◦). There are oftentimes alternating fluctuations in the di-

hedral angles to prevent the individual strands in a sheet from spraying apart. Note

that if the twist of the hydrogen bonding direction or of the peptide planes is viewed

along a strand, it would appear right-handed in most cases. The dihedral angles are

about φ = −140◦ and ψ = 135◦ in antiparallel sheets and φ = −120◦ and ψ = 115◦ in

parallel sheets.

2.3.2.3 Turns

The third of the three classical secondary structures is the hydrogen bonded turn. Turns

serve the function of reversing the direction of the local segment of the polypeptide

chain.

Turns were first recognized by Venkatachalam [57] through theoretical conformational

analysis. Three types of turns were suggested by Venkatachalam and another five by

Lewis [58]. Turns are given structure through hydrogen bonds between the CO atoms

of amino acid i and the NH atom of amino acid i + n, where n ∈ 3, 4, 5.

Turns tend to be hydrophilic, which could be a result of the fact that a typical turn

joins or interrupts secondary structures that are more internal [59] [60]. Turns are

commonly found joining beta-strands or at the end of alpha-helices. Glycine and

proline are common constituents of turns.
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Figure 2.8: Hydrogen bonds in beta sheets

2.3.2.4 Other secondary structures

The 310-helix (also known as 3-turn helix) is another helix type that is frequently

observed. Similarly to the alpha-helix, it forms due to hydrogen bonds, this time

between amino acids at residues i and i + 3. A minimum of 3 consecutive amino acids

are required to define a structure as a 310-helix. The backbone conformation angles are

about φ = −70◦ and ψ = −20◦ [51]. 310-helices are typically much shorter that alpha

helices.

The π-helix (5-turn helix) forms due to hydrogen bonds between amino acids at residues
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i and i + 5 and five consecutive amino acids are required to define a structure as such.

The π-helix is the least frequently occurring secondary structure - it requires that τ =

114.9◦, instead of the normal τ = 109.5◦ and the conformation angles φ = −57.1◦ and

ψ = −69.7◦ lie at the edge of the allowed minimum energy region on the Ramachandran

plot. Both the 310 and π-helices are sometimes found at the edge of regular alpha

helices.

Note that in the case of all the helices (α, 310 and π) the requirement for a hydrogen

bond need not be mandatory. Rather, the conformation angles should be within the

acceptable range.

A β-bridge is a single pair β-sheet, i.e. a hydrogen bond forms between two distant

amino acids.

The bend is the only secondary structure that is not based on a hydrogen bond. A bend

is a region with high curvature. For a bend at position i, the angle formed between

Ci−2
α , Ci

α and Ci+2
α should be larger than 70◦.

Coils (also known as loops) are used to describe two types of regions: those areas that

are well-organized but non-repetitive, as well as those areas that are truly disorganized.

Disorganized here means that the amino acids are not observed to be in any of the

other regular secondary structures.

2.4 PREDICTION OF SECONDARY STRUCTURE

The assumption on which secondary structure prediction methods are based is that

there is a correlation between amino acid sequence and secondary structure. This

assumption follows necessarily from Anfinsen’s work [27] that states that all knowledge

of the final structure (and hence secondary structure) is contained in the amino acid

sequence.

Secondary structure prediction was first attempted as early as 1957 [66]. Note that this

was before the claim of the existence of alpha-helices and beta-sheets was even verified

through X-ray structures. Since then, 3 generations of protein secondary structure
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prediction methods have seen the light [65] [64].

The first generation of methods were based on expert rules and statistics of the physico-

chemical properties of single amino acids. These methods took into account only

single amino acids at a time and achieved Q3 scores in the order of 50% (the Q3

score is the percentage of correctly predicted secondary structures and is explained in

Section 2.4.1.1). The next generation of methods improved on this by also taking into

account the window of amino acids adjacent to the central amino acid (the one for

which a secondary structure is being assigned). Since the local structure influences the

formation of the secondary structure at the central amino acid and these relationships

were being taken into account, these methods achieved Q3 scores in the order of 60%.

Since the conception of the second generation methods, the number of proteins for

which the structures have been solved has increased considerably. This made it pos-

sible to identify evolutionary information in these databases. The third generation of

methods is based on taking multiple sequence alignments as inputs instead of a single

amino acid sequence. As such, they are able to consistently achieve Q3 scores of about

70% (the best algorithms, such as PSIPRED, PROF and SSpro achieving an accuracy

of about 76% [65]).

Another useful way of classifying secondary structure prediction algorithms is in terms

of the method they employ. There are three main classes: Methods that use expert

rules and statistics, such as the Chou-Fasman method, methods based on informa-

tion theory, such as the Garnier-Osguthorpe-Robson method and methods based on

computational intelligence. Various computational intelligence methods such as neural

networks, recurrent neural networks, nearest neighbor methods, Hidden Markov Mod-

els and Support Vector Machines have been tried.

2.4.1 Methods to measure the accuracy of prediction

In order to compare the accuracy of different secondary structure prediction techniques

with one another, the same data sets as well as the same measure of performance should

be used in the comparison. This section discusses the different measures of performance.
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Apart from the measures of performance used, it should also be noted that certain

secondary structures (such as alpha helices) are more readily predicable than others. It

thus implies that the set of test proteins could strongly influence the observed accuracy.

In practise, standard data sets are often used and are selected so as to have a low

sequence similarity.

2.4.1.1 Q-score

The Q-score is probably the most widely used measure of performance [62].

A secondary structure is associated with each amino acid in the sequence. The Q-

score is simply the fraction of correctly identified secondary structures and is usually

expressed as a percentage. It is given by

Q =
number of correctly classified secondary structures

total number of amino acid residues
× 100%. (2.1)

A subscript is usually used to indicate the number of classes a secondary structure can

be assigned to. Thus, if the DSSP code is used, the score is referred to as Q8. If the

3-class scheme is used, the score is referred to as Q3.

Note that the Q score tends to favour methods overpredicting the secondary structure

with the highest prior probability of occuring [65]. For instance, in the 3 class problem,

methods that overpredict the C structure (as opposed to the H and E structures) are

likely to have a higher Q3 score. Another objection is that even a random assignment

of secondary structures could have a relatively high Q score.

In cases where a secondary structure prediction is not made for every amino acid, it is

sometimes convenient to use an adapted version of the Q score, namely the Q∗ score.

The score simply calculates the percentage of correctly classified secondary structures

as a percentage of those for which a prediction was attempted. It is given by
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Q∗ =
number of correctly classified secondary structures

total number of amino acid residues predicted
× 100%. (2.2)

2.4.1.2 Q-score for secondary structure types

The Q-score is sometimes adapted to serve as a per-residue accuracy measurement for

secondary structure types. The per-residue accuracy [104] is calculated as

Qx =
number of residues correctly predicted in state x

number of residues observed in state x
× 100%, (2.3)

and the per-residue prediction accuracy as

Qpre
x =

number of residues correctly predicted in state x

number of residues predicted in state x
× 100%, (2.4)

where x represent the type secondary structure.

2.4.1.3 Matthews correlation coefficient

The Matthews coefficient [61] is calculated for each type of secondary structure and is

given by

Cx =
pxnx − uxox√

(nx + ux)(nx + ox)(px + ux)(px + ox)
, (2.5)

where x represents the type of secondary structure, px is the number of correct positive

predictions, nx is the number of correct negative predictions, ox is the number of over-

predicted positive predictions (false positives) and ux is the number of underpredicted

residues (false negatives). The closer the coefficient is to 1, the better the success of

the prediction algorithm in predicting the type of secondary structure.
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2.4.1.4 Segment Overlap Measure

The segment overlap (SOV) measure [62] [63] is based on secondary structure elements

and not on individual amino acid residues. It aims to quantify how well a prediction

method predicts each secondary structure element. It takes into account the starting

and ending residues of each secondary structure element and the length of each element.

Consider for example the case where two helices joined by a short turn are predicted

as a helix. The Q3 measure would penalize only on the short turn section. The SOV

measure penalizes for predicting only one structure instead of two as well as missing

the correct ending position of the first helix and the correct starting position of the

second.

The SOV measure for a single secondary structure type is defined as

SOVx =
1

Nx

∑
Sx

minOV (S1, S2) + δ(S1, S2)

maxOV (S1, S2)
× len(S1)× 100%, (2.6)

where S1 and S2 are the observed and predicted secondary structure segments of type

x respectively, Sx is the number of all segment pairs (S1, S2) where S1 and S2 have at

least one residue of type x in common, len(S1) is the number of residues in segments

S1, minOV (S1, S2) is the length of overlap of S1 and S2, i.e. the number of residues

where both S1 and S2 are in state x and maxOV (S1, S2) is the length of the total

extent for which either of the segments S1 and S2 has a residue in state x and Nx is

the total number of residues observed in state x. δ(S1, S2) is defined by

δ(S1, S2) = min





maxOV (S1, S2)−minOV (S1, S2)

minOV (S1, S2)

int(1
2
× len(S1))

int(1
2
× len(S2))





. (2.7)

The segment overlap score for all the different types of secondary structure types is

defined as
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SOV =
1

N

∑
x∈C

∑
Sx

minOV (S1, S2) + δ(S1, S2)

maxOV (S1, S2)
× len(S1)× 100%. (2.8)

Here N is the total length of the amino acid residues being observed and C is the set

of secondary structure types.

2.4.2 Chou-Fasman Method

The Chou-Fasman method [67] is based on analysis of the frequency with which single

amino acids are found to create different secondary structures. For instance, alanine,

glutamic acid, leucine and methionine are strong predictors of alpha helices, whilst

proline and glycine are predictors of a break in a helix.

The method is based on heuristics. Helices and sheets are predicted if amino acids

that are indicative of that structure are found in sequence a number of times. Turns

are modelled as tetrapeptides and two probabilities are calculated. If more than one

secondary structure is predicted for a specific region, the structure with the highest

probability is assigned. In the end, regions for which no prediction is made are assigned

as coils.

The Chou-Fasman method achieved Q3 scores in the region of 50-60% on standard test

databases.

2.4.3 Garnier-Osguthorpe-Robson Method (GOR)

The GOR-method [68] [69] [70] extends the Chou-Fasman method by incorporating

the idea that amino acids that flank the central amino acid influence the secondary

structure that the central amino acid is likely to adopt. The GOR-method also uses

principles from information theory to derive predictions.

The 8 amino acids prior and the 8 amino acids after the central amino acid are used to

create three scoring matrices. These scoring matrices correspond to the central amino
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acid being found in an alpha helix, beta sheet or coil configuration. The columns of

the scoring matrices indicate the probabilities of finding each of the amino acids in

one of the 17 positions. These probabilities are calculated based on information theory

concepts.

A prediction of a candidate sequence is made through a sliding window of 17 amino acid

residues. The sequence is then compared with the matrices, the one with the highest

score predicting the secondary structure associated with the central amino acid. Four

residues in a row have to be predicted as an alpha helix and two in a row as a beta

sheet for the prediction to be validated.

The GOR-method has been shown to achieve a Q3 score of 64%. It is also known that

the method underpredicts the number of residues with the sheet structure.

2.4.4 Neural Network Methods

Neural network methods have been used widely to predict protein secondary structure

[71] [72] [73] [74] [75] [76] [77] [78] [79] [81] [82] [83]. It has been shown that the neural

network models are theoretically able to extract more information from sequences than

methods based on information theory such as the GOR-method [71].

In the neural network approach, a training phase is used to set weight values in the

neural network. A sliding window of length n is moved along the amino acid sequence

and the associated secondary structure of the central amino acid noted. This input-

output mapping is then used to train the network using a method such as the back-

propagation algorithm.

Usually, the classical 3-layer neural network is used. Each of the n amino acid residues

is usually encoded using 21 input nodes (i.e. n×21 input nodes in total) - one node for

each of the 20 different types of amino acid residues and an additional node to indicate

if the position in the window is an edge. In each set of 21 input nodes, only one input

node is thus triggered at a time. The output is usually encoded using m output nodes,

where m represents the number of secondary structure classes. A sufficient number of

hidden nodes is required to capture the input-output mapping. Various numbers of
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hidden nodes have been suggested, from 2-40 [76] to 60 [71]. The studies also suggest

that a window length (n) of 13-17 gives optimum performance.

Once a neural network has been suitably trained, it can be used to predict the sec-

ondary structures associated with a protein of unknown secondary structure. If the

neural network has been structured as explained above, it will present m outputs for

each input sequences. Each of these m outputs represent the probability that the

secondary structure to be associated with the central amino acid is of a specific type.

Based on these probabilities, criteria such as the maximum-likelihood function or other

smoothing rules can be applied to assign a secondary structure to each amino acid

residue.

The best known methods are PHD by Rost [74] and PSI-PRED by Jones [78] which

achieve an average prediction accuracy of 75-76 % (Q3). These prediction methods do

not use amino acids sequences directly as input to a neural network but rather make

use of multiple sequence alignments and position specific scoring matrices (PSSM)

generated by algorithms such as Basic Local Alignment Search Tool (BLAST) [85] and

Position Specific Iterated (PSI) BLAST [86]. Without such multiple alignments, the

accuracy achieved is typically about 67% [96].

BLAST and PSI-BLAST are used to compare a query (target) sequence to all sequences

in a specified database (sequence database). The objective is to find subsequences in

the sequence database that are similar to the target sequence. The idea is that the

target sequence will exhibit similar structural attributes as those proteins with similar

sequence. This fact can be exploited in the design of the neural networks.

The Blocks Amino Acid Substitution Matrices (BLOSUM) [87] represent frequencies

of amino acid substitutions observed in a large number of related proteins. The BLO-

SUM62 matrix is tabulated in Table 2.4. Each position in the matrix represents the

log odds score for the substitution of a particular amino acid with another amino acid.

The BLAST algorithm starts by creating a list of amino acid patterns (words) of length

(W ) 3 in the target sequence. It starts at positions 1, 2 and 3, followed by 2, 3 and 4,

and so forth. The output of this stage is a list of unique patterns of length 3 in the

target sequence. The algorithm then determines which words are likely substitutions
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Table 2.4: BLOSUM62 Substitution Matrix

C S T P A G N D E Q H R K M I L V F Y W

C 12

S 0 2

T -2 1 3

P -3 1 0 6

A -2 1 1 1 2

G -3 1 0 -1 1 5

N -4 1 0 -1 0 0 2

D -5 0 0 -1 0 1 2 4

E -5 0 0 -1 0 0 1 3 4

Q -5 -1 -1 0 0 -1 1 2 2 4

H -3 -1 -1 0 -1 -2 2 1 1 3 6

R -4 0 -1 0 -2 -3 0 -1 -1 1 2 6

K -5 0 0 -1 -1 -2 1 0 0 1 0 3 5

M -5 -2 -1 -2 -1 -3 -2 -3 -2 -1 -2 0 0 6

I -2 -1 0 -2 -1 -3 -2 -2 -2 -2 -2 -2 -2 2 5

L -6 -3 -2 -3 -2 -4 -3 -4 -3 -2 -2 -3 -3 4 2 6

V -2 -1 0 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 2 4 2 4

F -4 -3 -3 -5 -4 -5 -4 -6 -5 -5 -2 -4 -5 0 1 2 -1 9

Y 0 -3 -3 -5 -3 -5 -2 -4 -4 -4 0 -4 -4 -2 -1 -1 -2 7 10

W -8 -2 -5 -6 -6 -7 -4 -7 -7 -5 -3 2 -3 -4 -5 -2 -6 0 0 17
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to the target words through evaluation using the BLOSUM62 matrix. For instance,

consider the word PQG. The word PEG would score a value of 15 using the BLOSUM62

matrix (summing the log odds values of 7 for a P-P match, 2 for a Q-E match and 6

for a G-G match). A score threshold T is used to limit the number of possible words

that can match to the target words. These words are organized into an efficient search

tree for comparing them rapidly to the database sequences.

The database is now scanned for these remaining words that are likely substitutions

for the target word. When such a word is found, the target sequence and the sequence

from the database are aligned through the matching substitution words. The alignment

is extended in both directions by evaluating the BLOSUM62 values for substitutions

at corresponding locations in the sequences. The alignment is extended as long as the

accumulated score does not decrease. This portion of the alignment is known as the

high-scoring segment pair (HSP). All such HSP scores are calculated against the whole

sequence database and HSP’s with a score larger than a cutoff score S are noted. The

statistical significance of the HSP score is calculated as an E-value. If it is significant

the alignment is reported.

PSI-BLAST uses a series of iterated steps. This is done to identify a family of related

proteins for a given target sequence. Once an initial set of related proteins are found

for a given target sequence, these proteins are used to identify additional proteins that

are related to the target sequence. PSI-BLAST generates PSSMs (sequence profiles)

as part of the search process. In a PSSM, each row is associated with a specific amino

acid in the target sequence and each column with one of the amino acid types (thus

20 columns). Each element in the matrix indicates the log likelihood of a substitution

of the amino acid in the target sequence with the amino acid type specified by the

column.

In PHD (year 1993), BLAST (1990) was used to create multiple sequence alignments

and train the neural network. With the development of PSI-BLAST (1997) and the

ease with which scoring matrices could be extracted, PSI-PRED (1999) used these

intermediate profiles as input to the neural network. This eliminated the need for the

time consuming multiple sequence alignment stage in PHD.

In terms of neural network architecture, PSI-PRED uses a window length (n) of 15,
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with 21 inputs associated with each amino acid in the window, similar to the classical

neural network design for predicting secondary structures. The difference is that the

each of the 20 inputs associated with each amino acid is the log odds value for a residue

substitution as given by the PSSM (and filtered though the standard logistic function
1

1+e−x to scale it to the range [0,1]). The additional input is used in the case where an

edge is present. The rest of the neural network structure is similar to the structure

described earlier in this section, with 75 hidden units and 3 outputs (m). Each output

is the probability that the predicted secondary structure is either a helix, strand or

coil.

A second neural network is used to filter the results from the first network. This

network has 60 inputs (a window of 15 with 4 inputs each, indicating the probability

of helix, strand or coil as calculated by the first network, or the presence of an edge),

60 hidden units and 3 outputs. The outputs represent the final 3-state predication.

Web servers exist that allow online prediction of protein secondary structure using

PHD [115] and PSIPRED [116].

2.4.5 Nearest Neighbour Methods

Nearest neighbour methods [88] [89] [90] [91] [92] [93] [94] [95] predict the secondary

structure of an amino acid in a query sequence by identifying sequences of known

structures that are similar to the query sequence.

A database of training sequences is built in the same way as with neural network

techniques, i.e. a sliding window of size n is moved across the training set and the

secondary structure of the central amino acid observed.

For the query sequence, the best matching sequences in the training database are

identified. The frequencies of occurrence of the different secondary structures are then

used to predict the associated secondary structure for the query sequence.

The different algorithms in existence differ in the way sequences are compared. Amino

acid scoring matrices such as BLOSUM [90], distances between sequences based on
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statistical analysis of the training sequences [89] and scoring matrices based on the

categorization of amino acids into local structural environments [91] [92] have been

used.

Programs such as PREDATOR [95] and NNSSP [93] have achieved accuracies of 75 %

and 73.5 % (Q3) respectively. Web servers exist that allow online prediction of protein

secondary structure using these methods [117] [118].

2.4.6 Hidden Markov Models

Hidden Markov Models (also known as discrete space models) have been applied to the

problem of protein secondary structure prediction by a number of researchers [96] [97]

[98] [99] [100] [101] [102] [103].

A Hidden Markov Model (HMM) is a probabilistic finite state machine used to model

stochastic sequences. A HMM contains states and connections between states as well

as state transition probabilities. HMM’s could be designed by hand, or designed algo-

rithmically. Once a suitable HMM has been designed, it is used to predict the most

likely output sequence (secondary structure) to be associated with the input sequence

(primary structure). The HMMSTR model [103] claims an accuracy of 74 % (Q3).

In a recent result, OSS-HMM (Optimal Secondary Structure Hidden Markov Model)

[96] achieved a Q3 score of 68.8% when applied to single sequences, and 75.5% when

multiple sequence alignments are used.

2.4.7 Support Vector Machines

Support Vector Machines (SVM) are some of the latest computational intelligence tech-

niques that have been applied to the problem of protein secondary structure prediction

[104] [105] [106] [107] [108] [109].

In the SVM approach, the input space (primary sequence) is mapped to a higher-

dimensional feature space through the use of a kernel function. The idea is that the

kernel function is such that the features are linearly separable in the higher-dimensional
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space. As such, SVM’s are able to represent complex nonlinear functions. The other

advantage of SVM’s are that efficient training algorithms exist. Accuracies of up to

77 % (Q3) accuracy have been achieved [105] using SVM’s and multiple sequence

alignments.
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Chapter 3

PATTERN RECOGNITION

ALGORITHM

This chapter and the next describe the pattern recognition algorithm that was de-

veloped to solve the problem of predicting protein secondary structure from protein

primary structure. In this chapter, the method is outlined and discussed, whilst the

next chapter describes the method formally (mathematically).

A pattern recognition method was developed that associates an output string with an

input string, where the elements of the input and output strings are defined over two

(possibly different) alphabets.

In the rest of this document, the method that was developed is described based on

its applicability to protein secondary structure prediction. However, the method is

independent of this particular problem and can be applied to other problems with a

similar structure as well.

3.1 APPROACH

The aim of the pattern recognition algorithm (also referred to as the technique, method

or predictor) is to accurately predict the unknown secondary structure of a protein for
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which only the primary structure is known. Although it is useful to have such a

algorithm, the end goal is to discover and gain insight into the role that single amino

acids or small sequences of amino acids play in the formation of protein secondary

structures. The algorithm is an enabler for this discovery process.

Before the algorithm can be used to make predictions, it is trained on a set of proteins

for which both the primary structure and secondary structure is known. This set of

proteins is known as the training set. The training phase occurs only once, before any

predictions are made.

Once the training phase is completed, the algorithm can be used to predict the sec-

ondary structures of proteins with known primary structure. This is known as the

prediction set. Since a prediction can be made for proteins with unknown secondary

structure, this application of the algorithm is of practical importance.

In order to establish the performance of the system, a prediction set is used as a training

set (both the primary and secondary structures for the proteins in the training set are

known). The secondary structures of the training set are compared to the predicted

secondary structures as given by the system. The percentage of correctly predicted

secondary structures is used as an indication of the performance of the predictor (as

defined in Section 2.4.1.1).

The pattern recognition algorithm is based on extracting statistical information re-

garding the protein input-output mapping (the primary structure serves as input and

the associated secondary structure as output). Clearly, it is possible for the same in-

put pattern to map to different output patterns. It is also possible for different input

patterns to map to the same output pattern.

For an input pattern of length N , 20N (21N if edges are included) different input

patterns exist. As N increases, a large amount of training data is required to cover the

complete input space (the “curse of dimensionality” [80]).

The algorithm tries to eliminate the need for such a large amount of data in two ways:
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• It groups together input patterns that behave similarly. If there are m such

groups, a total of mN different input patterns exist. In the case that m < 20,

less training data is required.

• If an output pattern should be predicted for an input pattern that does not exist

in the database, the algorithm tries to find input patterns in the database that

are somehow “similar” to the input pattern in question. To do this, a metric

needs to be defined that indicates the distance between patterns.

The different steps during training, prediction and evaluation are illustrated in Figure

3.1 and will be discussed in the sections that follow.
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Figure 3.1: Steps in the pattern recognition algorithm
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3.2 TRAINING

In the training phase, the objective is to build a database with relevant information

that can be used for prediction.

The method is perhaps best illustrated by means of an example. Figure 3.2 shows the

primary and associated secondary structure of the last 21 amino acids (number 381

to 401) in the molecule Creatine Amidinohydrolase. The primary structure of these

amino acids are NENGAENITKFPYGPEKNIIR (each letter indicates an amino acid

residue) with associated secondary structure ETTEEEECCCSCCSHHHHEEC (each

letter indicates a secondary structure type). This small set of data will be used to

construct the database. In practise, this process will be applied to all amino acids in

all the proteins in the training set.

N E N G A E N I T K F P Y G P E K N I I R

E T T E E E E C C C S C C S H H H H E E C

Figure 3.2: Primary and secondary structure of amino acids 381 to 401 in the molecule

Creatine Amidinohydrolase

3.2.1 Step 1: Extracting Windows

The first step is to extract “windows” of amino acid residue sequences. These windows

represent the input sequences that will be processed in order to create the patterns

in the database and which will subsequently be used in the prediction process. This

process of extracting windows is used by other prediction algorithms as well [74] [78].

The first decision is the size of the window (N). In the case of the method described

here, smaller window sizes are less computationally expensive than larger window sizes.

Although one would expect that larger window sizes would in general lead to better

prediction, the truth is that the prediction accuracy is not only influenced by the

window size, but also by a variety of other variables. One of the aims of this dissertation

is to study the interplay of these variables.
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Figure 3.3 illustrates how windows are extracted from the primary sequence. Note that

each window is still associated with one of the secondary structures.

Once a suitable selection of the window size has been made, the association between the

windows and secondary structures can be made in various ways (which window should

be assigned to which secondary structure? - the problem should become immediately

apparent when trying to imagine windows with even sizes). In the case of the example,

each window consists of three (N = 3) amino acids: the original amino acid that was

associated with the secondary structure (which for the purposes of discussion will be

called the central amino acid) and the amino acids directly to the left (l = 1) and to the

right (r = 1) of it. However, three different configurations are possible: (l = 2, r = 0),

(l = 1, r = 1) and (l = 2, r = 0).
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Figure 3.3: Extracting windows of amino acids from the data. The example illustrates

a window with N = 3 (l = 1, r = 1)

The question also arises how to treat windows on the “edges” of the residue sequence.

One solution is to replace all residues that are “missing” with a placeholder. For the

purpose of this discussion, the placeholder will be called an edge and will be denoted

by the # symbol. Conceptually, an edge behaves exactly like a 21st residue (with the

restriction that a sequence of consecutive edges will never be found in a configuration

where both the two residues to its sides are not edges). In the example, the first (#NE)

and last (IR#) windows are examples where edges occur. In general, all windows will

contain at least one non-edge (the central amino acid) and up to N−1 edges (although

this is rarely the case).
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3.2.2 Step 2: Assigning Groups to Windows

The second step is to decide on a relevant “grouping strategy”. Conceptually, the

grouping strategy represents a mapping from an “input space” (residue space) to an

“output space” (group space). The idea is that the problem is transformed to a space

where the complexity in solving the problem is reduced.

Each window is mapped to a group vector. Each group vector consists of a number

of group labels. The requirement is that there is at least one group label in a group

vector (it is imperative to understand the difference between a group vector and group

label). The mapping (L) can be as simple as an identity mapping (y = L(x) = x,

where x represents the input sequence and y represents the group vector), in which

case each amino acid residue type is mapped to a group label and the group vector is

exactly the window. This case may be useful when other parameters in the algorithm

are compared, in which case this step can be omitted.

Figure 3.4 shows an example mapping that will be used for discussion. In this example,

residues with similar characteristics are grouped together in six different groups. For

instance, the amino acid residues that are both polar and uncharged (N, C, Q, S an T)

are all assigned the same group label (U). Likewise the other group labels are assigned

to different amino acid types, namely positively charged (P), negatively charged (N),

aromatic (Ar) and aliphatic (Al). In this example, edges belong to their own group

(#).

U Polar, Uncharged

Polar, Positively Charged

Polar, Negatively Charged

Non-Polar, Aromatic

Non-Polar, Aliphatic

P

N

Ar

Al

#

Label

NCQST

RHK

DE

FWY

AGILMPV

Edges #

Group Amino Acid

Figure 3.4: A grouping strategy example

Figure 3.5 illustrates how the windows are mapped to group vectors. Each residue is

replaced by its corresponding group label. As an example, the window ENG is replaced
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with the group vector NUAl. Note that each group vector is still associated with a

secondary structure.
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Figure 3.5: Assignment of group labels to windows

It is important to note that this is just one scheme whereby windows are mapped

onto group vectors. Similar grouping schemes could easily be defined (consider for

instance schemes where residues with similar molecular weights are grouped together).

In fact, much more complex grouping strategies could be created where the residues

in a window are not individually mapped to group labels but are used to create more

complex group vectors. This makes it possible to have more (or fewer) group labels

than original residue types. One objective of this dissertation is to find a mapping

function that optimizes performance of the prediction algorithm.

3.2.3 Step 3: Deciding on a Feature Variable

The next step is to decide on the feature variables that will be associated with each

group vector - secondary structure pairing. The feature variables represent those dis-

tinguishing features in the training set that the prediction of secondary structures in

the testing set will be based on.

Although any number of different types of feature variables can be used, it was decided

that the only feature variable that will be considered is the secondary structures that

occur in the training set (or more precisely, the number of times that a given secondary

structure occurs in association with a group vector).
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3.2.4 Step 4: Creating the Database

In this step, a database is created which associates each unique group vector with

the set of feature variables (in this case, the number of occurrences of each secondary

structure for the particular group vector). Figure 3.6 shows the corresponding database

that results for this example. Since there is only a small amount of training data,

most group vectors are associated with a single secondary structure. The exceptions

are NUAl, where both the secondary structures E and T are found once, and UAlAl,

where the secondary structure E occurs twice (and is thus considered “strong” evidence,

relative to the other data in the database). If more training data were available, it

should be obvious that the database matrix would be much less sparsely populated

(depending on the grouping strategy of course).
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Figure 3.6: Database of scoring values

3.2.5 Decisions required in the training phase

This concludes the training phase. The decisions that need to be taken in the training

phase are:

- choice of window structure (N and corresponding l and r),

- the grouping strategy and mapping scheme (L), and

- the choice of feature variables.
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3.3 PREDICTION

In the prediction phase, the database that was created in the training phase is used to

predict the secondary structures that should be associated with a sequence of amino

acid residues.

The example that was started in the previous section will be continued in this section.

A prediction will be made for the residue sequence LINHA. Note that amino acid

residues L and H did not occur in the training data, yet a prediction will be made for

the sequence.

3.3.1 Steps 1 and 2: Extracting Windows and Assigning Groups to Win-

dows

As was the case with the training data, the first two steps are to extract windows and

assign group vectors to the windows. Figure 3.7 illustrates how this process would take

place for the residue sequence LINHA.
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Figure 3.7: Extracting windows and assigning group vectors to an example input pat-

tern

Note that the same window structure (N , l and r), grouping strategy and mapping

function (L) is used in the training and prediction phases. Also note the insertion of

edges in the windows of the prediction data.
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3.3.2 Step 3: Distance Metric

In order to compare the group vectors in the database with the group vectors that are

assigned in the prediction phase, a distance metric (d) is required. The distance metric

gives an indication of how “near” or similar one group vector is to another group vector.

The idea is that group vectors that are near each other in the group space should prefer

to form the same secondary structures.

An example of an elementary distance metric is one that simply counts the number of

differences in corresponding group labels in the group vector. The minimum distance

between two group vectors is 0 (in the case that the two group vectors are exactly the

same) and the maximum distance is equal to the number of group labels in the group

vector (in the case that the two group vectors differ in every group label).

The distance between each group vector in the prediction data to every group vector in

the database is now calculated based on the metric. Figure 3.8 tabulates the distances

for the example data using the elementary distance metric defined in the previous

paragraph.
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Figure 3.8: Distance table between the group vectors in the database and the group

vectors in the prediction set

There is potentially much to gain by using more complex distance metrics. Such dis-

tance metrics may for instance be based on a matrix that defines distances between

individual group labels and/or assigns weights to contributions of group labels at dif-

ferent positions within a group vector. One of the objectives of this dissertation is to

find a suitable distance metric.
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For each group vector for which a prediction needs to be made, the group vectors in

the database that are near enough to it are retained. This is done by eliminating all

the group vectors in the database that have a distance greater than a certain value.

This value will be called epsilon (ε). The features of the group vectors that survive the

elimination process will be used to classify the secondary structures of the prediction

group vectors. Figure 3.9 shows the group vectors that were retained for the exam-

ple case, with their associated feature variables (which the reader would recall is the

number of occurrences of each secondary structure). An epsilon value of 1 was used.

Of particular interest in the example is that there is no group vector in the database

that is within a distance 1 from the group vector PAl#. Also note from Figure 3.8

that the group vector AlUP for which a prediction needs to be made also occurs in the

database.
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Figure 3.9: Feature variables in the database that contribute to the prediction

3.3.3 Step 4: Classification Function

From the set of retained group vectors in the database that are “near” enough to the

group vector for which a prediction needs to be made, a score matrix is created. The

scores in the matrix are an indication of the belief that a certain feature (in this case

secondary structure) is associated with the prediction group vector.

The function that assigns the scoring matrix is known as the classification function (φ).

The classification function can be based on a number of attributes of the retained group
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vectors: the number of times a particular group vector occurs, the number of times a

particular group vector has a certain feature variable and/or the distance of of these

group vectors to the prediction group vector. The rationale behind the classification

function is that it allows different aspects of the feature variable and group vectors to

be included in the creation of the score vector.

An example of a scoring matrix that results from an elementary classification function

is shown in Figure 3.10. The classification function in the example simply adds the

occurrences of all the secondary structures over all the group vectors that qualify. One

drawback of such a scheme is that it does not take into account the distances from the

retained group vectors to the prediction group vector. For instance, note in the scoring

matrix that the score for both E and C for the group vector AlUP is 1 (which could

mean that they are equally likely to occur). Analysis reveals that the “vote” for E

was contributed by the group vector AlAlP in the database which is a distance 1 away

from the AlUP while the “vote” for C was generated from the group vector AlUP in

the database is obviously a distance of 0 away. It could thus be argued that it would

be more probable for the secondary structure C to occur than the secondary structure

E.
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Figure 3.10: Assignment of secondary structures by means of a score matrix

A solution is to favour the contributions of group vectors which are nearer to the

prediction group vector, perhaps by means of some weighting system. In such a case,

the previous step of filtering out samples from the database above a certain ε value may

become unnecessary, since it could be taken care of by the weighting system. Different
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classification functions will be considered in the dissertation.

3.3.4 Step 5: Assignment Function

The final step is to assign secondary structures to each group vector based on the score

matrix. This is done by means of an assignment function (ψ).

An elementary assignment function which simply assigns the secondary structure with

highest score to a group vector is illustrated in Figure 3.10. In the case where several

secondary structures have the same (non-zero) score, the one with the highest prior

probability of occurring is selected (as is the case where E is assigned to vector AlUP,

since it has a higher prior probability of occurring than C). In the case where all

secondary structures have a score of zero, the H structure is assigned, since it has

the largest prior probability of all secondary structures (as is the case for group vector

PAl#). An alternative to assigning H, is to flag the situation and to make no prediction.

Note that the assignment function could be made more complex. For instance, the

assignment of a secondary structure to a particular group vector could depend on the

scores for secondary structures next to it. For instance, the alpha helix secondary

structure requires four consecutive residues to form part of the helix. In the case where

a single helix secondary structure is predicted with non-helix neighbors, it may be

possible to “filter out” the helix structure and replace it with another structure. Such

techniques have been applied successfully in [111].

3.3.5 Decisions required in the prediction phase

The decisions that need to be taken in the prediction phase are:

- choice of distance metric (d),

- value of epsilon (ε),

- classification function (φ), and

- assignment function (ψ)
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3.4 EVALUATION

In order to determine the performance of the algorithm, an evaluation phase is required.

A testing set of proteins, where both the primary and secondary structure are known,

is used for this purpose.

The secondary structures that are predicted in the prediction phase are compared to

the actual known secondary structures of the testing set. The percentage of correctly

predicted secondary structures is used as an indicator of the performance of the pre-

dictor.

3.4.1 Prediction Region

For the purposes of the dissertation, the concept of a “prediction region” will be defined.

The prediction region is the set of secondary structures that will be predicted by the

prediction algorithm and is determined by whether or not edges (see Section 3.2.1) are

used in the prediction process.

In the case that edges are used, a secondary structure prediction will be made for every

amino acid residue in the data set.

Note that the leftmost l and rightmost r windows for every protein primary sequence

will contain edges. Thus, if edges are not used, those windows cannot be constructed

and no secondary structure prediction can be made for the corresponding residues.

If the length of the primary structure sequence is n, the prediction process for the

innermost n− l− r residues will remain unaffected. In this case, the prediction region

is defined as this innermost n− l − r secondary structures that will be predicted.

3.4.2 The Q-score

The Q-score is defined as the percentage of correctly predicted secondary structures in

the prediction region (see Section 2.4.1.1).
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Suppose that in the example, the real secondary structure sequence associated with

the sequence LINHA is TEEHH. The predicted secondary structure sequence in the

example is EEEEH. The algorithm correctly predicted secondary structure elements

in positions 2, 3 and 5 and incorrectly predicted the secondary structure elements

in positions 1 and 4. The algorithm thus correctly predicted 60% of the secondary

structures. Since this prediction was made over 8 classes, it follows that Q8 = 60%.

3.5 PRACTICAL IMPLICATIONS

The algorithm presented in this chapter is conceptually easy to understand and should

be straightforward to implement. It should be pointed out that programmatically a

number of considerations should be taken into account.

For instance, the step described in Section 3.3.2 requires that every group vector pattern

in the database is compared to every group vector in the prediction set. This can be a

computationally expensive step, especially if there are thousands of patterns or if the

distance metric is complex.

Although it will not be discussed here, it should be noted that programmatic optimiza-

tions can be made to reduce the amount of computational power required to complete

certain steps in the algorithms. Certain steps can also be combined with the same

effect.
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MATHEMATICAL

FORMALISATION

This chapter provides a mathematical formalisation of the concepts and algorithm

described in the previous chapter.

4.1 PROTEIN STRUCTURE

Let R represent the set or alphabet of residue labels, defined by

R =

{
ala, arg, asn, asp, cys, gln, glu, gly, his, ile, leu,

lys, met, phe, pro, ser, thr, trp, tyr, val, edge

}
. (4.1)

For the purposes of the mathematical explanation, the three letter abbreviations for

the amino acid residues will be used in order to distinguish the residue class labels from

the variables defined. In the rest of the document, the single letter abbreviations may

be used as class labels, given that they are clearly distinguishable from other variables

when read in context. Note that the “edge” was also defined as one of the possible

residue class labels.
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Let P represent the primary structure of a protein. P is a vector or string over R

defined as

P = x = [x1, x2, ...xn], xi ∈ R, (4.2)

where xi is the ith amino acid residue in the protein and n is the number of amino acids

in the protein.

Let K represent the alphabet of secondary structure class labels. Two special instances

of K are defined as

K8 =

{
310-helix (G), α-helix (H), π-helix (I), Sheet (E),

Bridge (B), Turn (T), Bend (S), Coil (C)

}
, (4.3)

and

K3 = {Helix (H), Sheet (E), Coil (C)}. (4.4)

The analysis in the dissertation is mostly performed with K = K8. Cases where

K = K3 is used will be highlighted and are used mostly to compare results with the

published literature.

Let S represent the secondary structure of a protein. S is a string over K defined as

S = y = [y1, y2, ...yn], yi ∈ K, (4.5)

where yi is the secondary structure associated with the ith amino acid residue (xi) in

the protein.
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For the sake of the analysis, a protein is thus completely characterized by the variables

P and S. The notation P and S will be used to indicate the primary and secondary

structures for a set of proteins, where

P = [P1, P2, ...PX ], (4.6)

and

S = [S1, S2, ...SX ], (4.7)

and X is the number of proteins in the set. The notation P
train

, S
train

, P
test

and S
test

will be used to indicate the primary and secondary structures of a training and testing

set respectively.

Where necessary, a double subscript is used to indicate a construct associated with a

specific element in a specific protein. Thus xi,j is the jth amino acid residue of the ith

protein in the set and yi,j the jth secondary structure of the ith protein in the set. ni

denotes the length of the ith protein.

4.2 WINDOW

Define the window wi with leftward extension l and rightward extension r around

amino acid residue xi in primary structure P as

w
(l,r)
i = ω(P, i, l, r) = [x

′
i−l, ...x

′
i+r]; l, r ∈ N0, (4.8)

where
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x
′
j =

{
xj j ∈ [1, n]

edge j < 1 or j > n
(4.9)

The length of the window, N , is defined by

N = l + r + 1. (4.10)

4.3 GROUP ASSIGNMENT

Let G represent an alphabet of group labels, defined by

G = {G1, G2, ...Gm}. (4.11)

where m is the number of group labels. Let g denote a group vector, given by

g = [g1, g2, ...gp], gi ∈ G. (4.12)

p denotes the length of the group vector. Let L be an operator that maps a window

w
(l,r)
i to a group window gi

w
(l,r)
i →L gi. (4.13)

The notation card() will be used to indicate the cardinality or number of items in a set.

There can be card(R)N = 21N different window patterns of length N and mp different

types of group vectors of length p. It is believed that a good choice is to choose m and

p such that mp < card(R)N (see Section 3.1). In most cases, p will be chosen such that

p = 1 or p = N . With p = N it follows that m < card(R) represents a good choice.
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With p = 1 it follows that m < card(R)N is a good choice. In this case it also expected

that m > card(R), thus card(R) < m < card(R)N is a likely choice.

4.4 DATABASE

The output of the training phase is a “database” of group vectors that occur in the

training set with an associated set of features. Windows wtrain
i,j are extracted using the

window extraction function ω and mapped to group vectors gtrain
i,j using the mapping

operator L. The feature associated with each gtrain
i,j is the secondary structure ytrain

i,j .

Let Oi,j be a count vector with length equal to the cardinality of K

Oi,j = [Oi,j,1, Oi,j,2, ...Oi,j,card(K)
], (4.14)

where

Oi,j,k =
X∑

r=1

nr∑
s=1

vr,s,k, (4.15)

and

vr,s,k =

{
1 ifgtrain

r,s = gtrain
i,j and indexK(ytrain

r,s ) = k

0 otherwise
(4.16)

Oi,j thus represents the number of times group vector gi,j is found in a configuration

where it is associated with the different types of secondary structures.

Let A represent the database of unique group vectors in the training set with their

associated count vectors
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A = {(gi,j, Oi,j)}. (4.17)

The construction of the database concludes the training portion of the algorithm.

4.5 DISTANCE METRIC

Let δ be a distance metric that measures the distance between two group windows ga

and gb, that is

da,b = δa(gb) = δ(ga, gb). (4.18)

The distance metric should be such that da,b ≥ 0, a = b → da,b = 0 and da,b = db,a.

Distance metrics of interest that are considered in the dissertation are defined in the

sections that follow.

4.5.1 Distance Metric 1

The distance between two group vectors, ga and gb is defined by

d
(1)
a,b = δ(1)(ga, gb) =

p∑
i=1

hi, (4.19)

where

hi =

{
0 ga,i = gb,i

1 otherwise
(4.20)
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4.5.2 Distance Metric 2

The distance between two group vectors, ga and gb is defined by

d
(2)
a,b = δ(2)(ga, gb) =

p∑
i=1

wihi, (4.21)

where hi is defined by Equation 4.20 and wi is a weight associated with hi. Without

loss of generality, wi can be restricted to

wi ∈ [0, 1]. (4.22)

It should also be clear that metric 1 is a special case of metric 2. By letting wi = 1 for

all i, metric 1 is derived from metric 2.

4.5.3 Distance Metric 3

Let U be a matrix of dimensions card(R) by card(R) where element ui,j indicates a

value associated with a substitution of residue type Rj with residue type Ri. This

distance metric is only used under the assumption that L is the identity operator (the

elements of g is thus taken from the set R). The distance between two group vectors

ga and gb is defined by

d
(3)
a,b = δ(3)(ga, gb) =

p∑
i=1

wihi, (4.23)

where

hi = uindexR(ga,i),indexR(gb,i)
, (4.24)
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and wi is a weight as before. It should also be noted that metric 1 and metric 2 are

special cases of metric 3.

4.6 CLASSIFICATION

Prediction of the secondary structure associated with residue xtest
i,j proceeds with ex-

tracting the elements in the database that are somehow “near” gtest
i,j

Ai,j = {(gk, Ok) ∈ A|δ(gk, g
test
i,j ) ≤ ε, ε ≥ 0}. (4.25)

Let αi,j be the number of elements in Ai,j, that is

αi,j = card(Ai,j). (4.26)

Let φ be a classification function that assigns a score vector si,j associated with amino

acid xtest
i,j . si,j has a length equal to the cardinality of K, and

si,j = φ(Ai,j). (4.27)

4.6.1 Classification Function 1

The classifier adds the counts for all qualifying group samples in the database, given

by

s
(1)
i,j = φ(1)(Ai,j) =

∑

(gk,Ok)∈Ai,j

Ok. (4.28)

The score vector could be normalized by dividing by
∑card(K)

i=1 si,j,k.
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4.6.2 Classification Function 2

The classifier assigns a score based on the the counts of all group samples in the

database with minimum distance to the group in question (even a distance of 0), given

by

s
(2)
i,j = φ(2)(Ai,j) =

∑

(gk,Ok)∈Ai,j

zkOk, (4.29)

where

zk =

{
1 δ(gk, g

test
i,j ) ≤ δ(gx, g

test
i,j )∀ (gx, Ox) ∈ Ai,j

0 otherwise
(4.30)

4.6.3 Classification Function 3

The classifier assigns a weight wk to each Ok in the database, given by

s
(3)
i,j = φ(3)(Ai,j) =

∑

(gk,Ok)∈Ai,j

wkOk. (4.31)

The weight is a function of the distance between gk and gtest
i,j

wk = ξ(δ(gtest
i,j , gk)). (4.32)

Without loss of generality, ξ can be such that wk is restricted to

wk ∈ [0, 1]. (4.33)
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It should be noted that classification functions 1 and 2 can be derived from classification

function 3 as special cases.

4.6.4 Classification Function 4

Let m be the distance of the nearest element in the database to gtest
i,j , that is

m = δ(gk, g
test
i,j ), (4.34)

for some k, where

δ(gk, g
test
i,j ) ≤ δ(gx, g

test
i,j )∀ (gx, Ox) ∈ Ai,j. (4.35)

The classification function is given by

s
(4)
i,j = φ(4)(Ai,j) =

∑

(gk,Ok)∈Ai,j

zkOk, (4.36)

where

zk =

{
1 δ(gk, g

test
i,j ) ≤ m + d

0 otherwise
(4.37)

for a chosen value d.
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4.6.5 Classification Function 5

Let m be the distance of the nearest element in the database to gtest
i,j , as given by

Equation 4.34.

The classification function is given by

s
(5)
i,j = φ(5)(Ai,j) =

∑

(gk,Ok)∈Ai,j

zkOk, (4.38)

where

zk =

{
1 δ(gk, g

test
i,j ) ≤ m× c

0 otherwise
(4.39)

for a chosen value c.

4.7 ASSIGNMENT

Let y
′,test
i,j ∈ K be the predicted class label associated with amino acid xtest

i,j . Let ψ be

an assignment function that maps a vector of score vectors si,j for protein with primary

structure Pi to a set of predicted labels y
′,test
i,j

y
′,test
i,j = ψ({si,k, k ∈ [1, ni]}). (4.40)

Assignment of y
′,test
i,j is thus dependent on the score vectors over the whole protein Pi.

This makes it possible to apply “smoothing” techniques. For instance, if a single alpha

helix secondary structure is initially predicated for y
′,test
i,j using a maximum likelihood

predication based on si,j, but different adjacent secondary structures is predicted, the

adjacent score vectors can be analysed to change the predication of y
′,test
i,j .
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A specific simplifying case is to let y
′,test
i,j be dependent on si,j only, that is

y
′,test
i,j = ψsimp(si,j). (4.41)

In this case, a suitable choice is

ψ
(1)
simp(si,j) = argK(argmax(si,j)). (4.42)

4.8 EVALUATION

The Q-score defined in Section 2.4.1.1 will be used for evaluation. The Q-score is

redefined in this section in terms of the variables defined in this chapter. Define

zi =

{
1 yi = y

′
i

0 otherwise
(4.43)

Define the Q-score for a protein with secondary structure S and length n as

Q(S) =

∑n
i=1 zi

n
. (4.44)

Define Q∗ as

Q∗(S) =

∑n
i=1 zi

n− n′
, (4.45)

where n
′
is the number of secondary structures for which no prediction was made. In

the case of K = K8 we will refer to Q8 and Q∗
8 and in the case of K = K3 we will refer

to Q3 and Q∗
3.
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For a set of proteins with secondary structures S, the Q-score is defined in terms of

the total number of correctly identified secondary structures over all the proteins

Q(S) =

∑X
i=1

∑ni

j=1 zij∑X
i=1 ni

. (4.46)

Similarly,

Q∗(S) =

∑X
i=1

∑ni

j=1 zij∑X
i=1(ni − n

′
i)

. (4.47)

4.9 VARIABLES DEFINED

The variables defined in this chapter are summarized in Table 4.1.

4.10 OBJECTIVE

The objective is to find l, r, G, L, δ, ε, φ and ψ for that for a general P and associated

S maximizes the value of Q8(S).

Specifically, the three research questions addressed are:

• How to group amino acid residues? (l, r, G, L)

• How to measure the distance between group vectors? (δ, ε)

• How to classify and assign secondary structures based on distance metrics and

score vectors? (φ, ψ)
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Table 4.1: Summary of Variables Defined

Variable Description

R Set of residue labels

K Set of class labels

K8 Set of class labels (8 classes)

K3 Set of class labels (3 classes)

x Single amino acid residue

y Single secondary structure

P or x Primary structure of a protein

S of y Secondary structure of a protein

n Length of a protein

P Set of primary structures

S Set of secondary structures

X Number of proteins in a set

l Leftward extension of a window

r Rightward extension of a window

w(l,r) Window

N Length of a window

ω Window extraction function

G Set of group labels

m Number of group labels

g Group label

g Group vector

p Length of a group vector

L Mapping between window and group vector

O Count vector

A Database of group vectors with associated count vectors

da,b Distance between two group vectors

δ Distance metric

w Weight

φ Classification function

s Score vector

ξ Weight function

ψ Assignment function

Q Q-score

Q∗ Q-star-score

n
′

Number of residues for which no prediction was made
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RESULTS

5.1 INTRODUCTION

This chapter presents the results obtained by the algorithm described in chapters 3 and

4 as well as other experiments that were conducted. The results are not necessarily

described in the chronological order that they were executed, nor are all the experiments

that were conducted described in this chapter. Rather, the most prominent experiments

were selected and are described in such a way that it forms a “natural progression”.

Section 5.2 describes the data that was used in the experiments. The rest of the

sections in this chapter each describes a series of experiments that were conducted.

The experiments can be divided into three main sets:

1. The first category of experiments deals with the general properties of the data

that is being analysed. In the “prior probabilities” experiment (Section 5.3.1), the

prior probabilities for the different amino acid residues and secondary structures

as well as their joint probabilities are determined. It is shown that certain amino

acids have an affinity for certain secondary structures, although this affinity is

not strong. These results explain the limited success that was obtained using

first and second generation methods, as summarised in Chapter 2. The residue

prior probabilities are also compared to the probabilities as expected from the
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genetic code. It is noted that in some cases there may be influences of natural

selection acting on the probability with which certain amino acids form.

In the “structure lengths” experiment (Section 5.3.2), statistics about the lengths

of different secondary structure elements are gathered and discussed. Alpha

helices and beta sheets form the longest chains of consecutive sequences and

can be seen as the main structural components of proteins. The other types of

secondary structures are typically short in length.

In the “edge analysis” experiment (Section 5.3.3), an analysis is made of the

amino acid residues and secondary structures that occur most regularly at the

edges of a protein. The coil secondary structure is almost always found at the

edges of a protein. There is also evidence to suggest that methionine occurs more

regularly than expected at the start of protein sequences.

2. The second category of experiments deals more specifically with the properties

of the mapping from the sequence of amino acid residue types to the sequence of

secondary structures.

In the “window structure” experiment (Section 5.4.1) and the subsequent “vary-

ing window size” experiment (Section 5.4.2) it is shown that larger window sizes

should theoretically have more predictive power than smaller window sizes. This

is practically limited by the amount of training data available, since an enormous

amount of training data would be required to completely cover all the possible

amino acid combinations that could be observed for the larger window sizes. A

method thus needs to be devised by which to compare different amino acid se-

quences and to use “similar” sequences to make a prediction. All the subsequent

experiments deal with multiple facets of this problem. These two experiments

also show that the information about which secondary structure would form for

a particular sequence of amino acids is distributed across the whole window, al-

though there is a tendency for more central amino acids to contribute more to

the secondary structure. The so called “transfer phenomenon” is observed and

an attempt made at explaining it.

How to combine different predictions based on the non-similar target and train-

ing sequences is investigated in the “classification function” experiment (Section

5.4.3). It is shown that indeed a large performance benefit can be achieved by

using non-similar sequences and larger windows. However, it is uncertain how

many such sequences should be allowed to contribute to a single prediction. This

question is resumed in a later experiment after a refinement of the meaning of
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“similarity” between sequences has been made.

3. The third category of experiments aims to develop algorithms in which the map-

ping between a sequences of amino acids residues and the secondary structure

can be studied in detail.

Amino acid residue types that behave similarly are identified in the “grouping

strategies” experiment (Section 5.5.1). The findings are consistent with findings

that have been made in the literature, although the means by which the results

are achieved are unique. Although the experiment indicates that different amino

acids behave similarly, it does not show the degree to which they do so.

In the “substitution matrix” experiment (Section 5.5.2), the degree to which

different amino acids behave similarly is quantified. The experiment supports

the findings made in the previous experiment, but does show that substitution

between two amino acids is not totally commutative, i.e. if amino acid A can be

substituted with amino acid B in a particular sequence, it does not necessarily

imply that amino acid B can be substituted with amino acid A.

The substitution matrix is used to develop a distance metric in the “distance

metric - substitution” experiment (Section 5.5.3). The resulting performance is

comparable to the best performance achieved in previous experiments; however

much fewer similar sequences (under the new distance metric) are required to

achieve this performance. Another distance metric based on the BLOSUM sub-

stitution matrix is developed in the “distance metric - BLOSUM” experiment

(Section 5.5.4) and achieves similar performance.

Given the new distance metric developed in the “distance metric - substitution”

experiment, a new look is taken at the classification function in the “adaptive

classification function” experiment (Section 5.5.5). It is found that the number of

similar sequences that should contribute to the prediction of a particular target

sequence depends on the distances of those sequences to the target sequence.

A method that considers neighbours (a pattern recognition term that will be

used to describe similar sequences) in a band of similarity values (dependent on

the nearest neighbour to a particular target sequence) works well and achieves

performance comparable to other methods found in the recent literature.

An attempt is made at incorporating predicted secondary structure information

in the prediction process in the “use of secondary structure information” exper-

iment (Section 5.5.6). It is shown that the secondary structure information is

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

76



Chapter 5 Results

predictive of other secondary structures, but that it is difficult to incorporate

this information to achieve significantly better performance scores.

5.2 EXPERIMENTAL ENVIRONMENT

5.2.1 Data Used for Analysis

The data set used in this chapter is based on the data set used in the ground-breaking

paper of Jones on position-specific scoring matrices [78]. The original data set consists

of 2245 proteins, containing a total of 464122 amino acids.

Analysis of this data set revealed that some of these proteins contained regions with

unknown amino acids. Some amino acids also had associated secondary structures

which do not belong to one of the eight standard DSSP [52] classes. The proteins

where such anomalies occurred were filtered out of the data set. This reduced data set

contains 1873 proteins, with a total of 358307 amino acids.

This reduced data set was arbitrarily divided into a training set, containing 1494 pro-

teins and 285320 amino acids, and test set, containing 379 proteins and 72987 amino

acids.

5.2.2 Classification Scheme used for Analysis

The standard DSSP code was used as the classification scheme. The performance

scores are expressed as Q8 values unless otherwise noted. In some instances Q3 scores

are mentioned, typically for comparative purposes. These scores are computed by

making a prediction using the eight class scheme, mapping it to three classes using

Table 2.3 and calculating the score.

Some early experiments conducted (not described in this chapter) indicated that it is

possible to first map the eight classes to three classes using Table 2.3, then to make a

prediction and then calculate the Q3 score. These scores are typically slightly higher

than the Q3 scores achieved in the previous paragraph. However, no such scores are
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presented in this chapter, since the main aim is prediction in the eight class problem.

5.2.3 Computer Programs

Computer programs were written in the C# language to process the protein data and

to analyse the results. An object-oriented programming methodology was followed.

In particular, computer programs were developed to gather information and classify

secondary structures based on the algorithm explained in chapter 3 and mathematically

described in chapter 4. Additional tests were also performed on the data.

Some of the experiments, but in particular the “grouping strategies”, “classification

function” and “use of secondary structure information” experiments required consid-

erable computing power (many computer weeks), due to the iterative nature or large

number of tests that were conducted. The resulting information that was extracted

can however be used to create fast and efficient algorithms that predict secondary

structures relatively quickly. The actual computer programs and algorithms will not

be further mentioned in the remainder of this chapter.

5.3 GENERAL PROPERTIES OF PROTEINS

5.3.1 Experiment: Prior Probabilities

5.3.1.1 Objective

The objective of this experiment is to determine the prior probabilities of the different

amino acid residue types and secondary structures in order to gain some intuition about

the problem.

5.3.1.2 Protocol

Computer programs were written to determine:

- The prior probabilities of the different amino acid residue types.
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- The prior probabilities of the different secondary structures.

- The amino acid - secondary structure joint probabilities.

The computer programs were executed on the training set. The rationale behind this

decision (not to include the testing set as well) was that if the statistics were to be used

in classification algorithms, the classification algorithms would not be biased toward

the test data.

5.3.1.3 Results and Discussion

Table 5.1 shows the prior and joint probabilities for the different amino acid residue

types and secondary structures expressed as percentages. The most frequently occur-

ring amino acid is Alanine in 8.19% of the samples and the least frequently occurring

amino acid is Tryptophan in 1.53% of the samples.

The frequencies of occurrence of the amino acid residue types in the reduced Jones

data set were compared to those of a similar study by Doolittle [112] containing a set

of 1150 proteins. The correlation between the two data sets is 0.9786, indicating that

these frequencies are fairly stable across different data sets.

The probability of occurrence of the DNA bases in nature are: Uracil - 22.0%, Adenine

- 30.3%, Cytosine 21.7% and Guanine - 26.0% [123]. Based on these probabilities and

the genetic code (refer to Section 2.1.4), filtering out the 3 codons mapping for stop

sequences, the expected probabilities of occurrence of the different amino acids were

also calculated. These probabilities, together with the frequencies of occurrence of the

amino acid residue types in the Jones and Doolittle data sets are illustrated in Figure

5.1.

The correlation between the Jones data set and the probabilities of occurrence based on

the genetic code is 0.6977 and is illustrated by the scatter diagram in Figure 5.2. The

only real outlier is the amino acid Arginine, which occurs in only 4.50% of the amino

acids in the Jones data set, whilst it is expected to occur in 10.66% of the samples when

based on the genetic code. One explanation could be that the Arginine frequency is the

product of natural selection acting on one or more of the codons coding for it. When the
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Figure 5.1: Frequency of occurrence of the different amino acid residue types in the

Jones and Doolittle data sets and the probability as calculated based on the genetic

code
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Arginine frequency is excluded from the data set, the correlation coefficient is 0.8749.

A reasonable conclusion may thus be that (except in the case of Arginine) the prior

probabilities of amino acids are simply determined by the probability of occurrence of

the codons coding for it.
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Figure 5.2: Scatter diagram of the expected and observed probability of occurrence of

the amino acids in the Jones data set

Figure 5.3 illustrates a similar scatter diagram for the Doolittle data set. The scat-

ter diagram takes a similar form to the one for the Jones data set. The correlation

coefficient between the Doolittle data set and the probabilities of occurrence based

on the genetic code is 0.7474. In the case that Arginine is left out of the correlation

calculation, the correlation coefficient is 0.8880.

The α helix, β sheet and coil secondary structures are the most abundant at 28.25%,

23.05% and 21.54% respectively whilst the π helix occurs in only 0.02% of the samples,

as is illustrated in Figure 5.4.

If the joint probabilities in Table 5.1 are carefully observed, it will be noticed that
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certain amino acids are more likely to form certain secondary structures than others

(if only the joint probability is considered). This preference of amino acids to form

certain secondary structures is shown in Table 5.2.

Table 5.2: Preference of Amino Acid Residues to form Secondary Structures

α helix β sheet Coil Turn

Alanine Cysteine Asparagine Glycine

Arginine Isoleucine Aspartic

Glutamine Phenylalanine Proline

Glutamic Acid Threonine Serine

Histidine Tryptophan

Leucine Tyrosine

Lysine Valine

Methionine

If the decision of which secondary structure yi,j to assign to amino acid j in protein

i was based solely on the observation of xi,j, the best possible classifier is the naive

Bayesian classifier

yi,j = argmaxK(P (Kk|xi,j)), (5.1)

where

P (Kk|xi,j) =
P (xi,j|Kk)P (Kk)

P (xi,j)
=

P (xi,j ∩Kk)

P (xi,j)
, (5.2)

according to Bayes’ theorem. The expected number of correctly classified secondary

structures in this case is

X∑
i=1

ni∑
j=1

maxK(P (Kk|xi,j))P (xi,j). (5.3)
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For the training data, the expected number of correctly classified secondary structures is

calculated as 34.45%. Applying the naive Bayesian classifier to the testing data, it was

found that 34.15% of the secondary structures were correctly assigned. This signifies

a limited improvement over assigning the secondary structure with the highest prior

probability of occurring (α-helix at 28.25%) (which in turn is significantly better than

randomly assigning a secondary structure (12.5%)).

The conclusion from this result is that some information as to which secondary struc-

ture will form for an amino acid is contained within the residue type. However, a large

portion of the information is not determined by the amino acid and is thus influenced

by other processes or structures. The experiments that follow will investigate the ex-

tent to which small sequences of amino acids contribute to the formation of certain

secondary structures.

5.3.1.4 Conclusion

The reduced Jones data set has similar attributes to other data used in the literature.

The probabilities of occurrence of the different amino acid residues (with the exception

of Arginine) seem to be based fairly closely on the probability of occurrence of the

different DNA bases and the codons coding for them. In the case of Arginine the

frequency of occurrence may be the product of natural selection acting on one or more

of the codons coding for it.

The frequencies with which different secondary structures occur vary considerably.

The data seems to suggest that some of the knowledge of which secondary structure is

associated with which amino acid is contained within the residue type.
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5.3.2 Experiment: Structure Lengths

5.3.2.1 Objective

The objective of this experiment is to gather statistics about the length of proteins and

the different secondary structures.

5.3.2.2 Protocol

Computer programs were written to determine:

- Statistics about the length of the different proteins in the training set.

- Statistics about the length of the different secondary structures in the training set.

5.3.2.3 Results and Discussion

Figure 5.5 shows a histogram of the lengths of the proteins in the training data set.

The average length of the 1494 proteins in the set is 190.97 with a standard deviation

of 142.41. The shortest protein in the set has a length of 20 and the longest a length

of 907 amino acids. The median is at 150.5 with the 25% percentile mark at a length

of 85 and the 75% percentile mark at a length of 256.

From Figure 5.5 there seems to be a slight anomaly at proteins with a length of about

220. It seems that the number of proteins with these lengths are more frequent than

expected.

The 1494 proteins in the training set contain 285320 amino acid residues in which 92983

sequences of consecutive similar secondary structures occur. The average secondary

structure length thus spans just over 3 amino acids. Figure 5.6 shows the lengths of the

different secondary structures in the training set. Table 5.3 tabulates the corresponding

statistics for the secondary structures.
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In the case of the 310 helix, one of the samples had a length of a single amino acid.

This is inconsistent with the definition of the 310 helix, which requires a length of at

least 3 amino acids. Similarly, there were two β sheets with length 1 (which should

probably be classified as β strands or coils). For the purposes of the dissertation, it

was decided not to filter the proteins containing these anomalies out of the training

set.

Another observation is that there are two outliers in the case of the α helix (which is

the secondary structure that forms the longest chains by far). These structures contain

109 and 107 amino acids respectively. For comparison, the third longest chain contains

67 amino acids.

Table 5.3: Structure lengths

310 helix α helix π helix β sheet β strand Turn Bend Coil

Sequence 3189 7359 12 12419 3958 16071 17635 32340

count

Minimum 1 4 5 1 1 1 1 1

length

Maximum 10 109 6 25 2 11 9 25

length

Average 3.3365 10.9547 5.0833 5.2958 1.0212 2.1319 1.6141 1.9006

Standard 0.8385 6.0511 0.2764 2.7028 0.1441 0.8811 0.8986 1.3513

deviation

5.3.2.4 Conclusion

Apart from being the most abundant secondary structures, alpha helices and beta

sheets also form the longest chains of consecutive sequences. These structures comprise

the main structural elements of most proteins.

The other secondary structures tend not to form long sequences on average, but are

instead rather compact. Most beta strands occur as a single secondary structure, turns

typically have a length of two, whilst bends and coils usually have a length of one and

sometimes two. 310 helices typically have length three and π helices length five.
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Figure 5.6: Secondary Structure Lengths
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5.3.3 Experiment: Edge Analysis

5.3.3.1 Objective

The objective of this experiment is to determine whether certain secondary structures

are more likely to form near the edges of a protein and to determine which amino acid

residue types they are associated with.

5.3.3.2 Protocol

Computer programs were written to determine the probabilities with which different

residue types are found in the different secondary structure conformations at the start

and end of the proteins in the training set.

5.3.3.3 Results and Discussion

Tables 5.4 and 5.5 list the probabilities (expressed as a percentage) for each of the

different amino acid residue types to be found in the different secondary structure

conformations at the start and end of a protein sequence. The tables also show the

percentage of occurrences with which each amino acid type was found at the start and

end of the protein sequences (column ‘Actual’), the expected percentage if it occurred

randomly (as calculated in Table 5.1, shown in column ‘Exp.’) and the difference

between the two (column ‘∆’).

From the discussion on protein synthesis and the genetic code in Section 2.1.4, the

expectation is that methionine would be the first amino acid in every protein sequence,

since the start codon, AUG, codes for it. This is clearly not the case, since methionine

appears at the start in only 13.65% of the protein sequences.

Meinnel [113] states that methionine is removed from most mature proteins after the

translation process. This is achieved through enzymes acting on the proteins. This

implies that the probabilities as given in 5.4 are the probabilities of finding the different
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amino acid residue types at the start of a protein sequence due to the codons coding

for it being found at the second codon position (in the case of methionine, both the

first and second codon positions).

Another observation is that methionine constitutes 1.99% of the proteins in the train-

ing set (expected 1.83% as calculated by the genetic code). Even if methionine was

universally removed from the start of all protein sequences, it is still expected that

roughly a similar percentage of methionine amino acids would occur at the second po-

sition in a protein. However, the statistics indicate that it occurs in the first position

of 13.65% of the proteins.

This implies that methionine is not universally removed from all proteins or that there

is an above average expectation to find two codons coding for methionine at the start

positions of a protein coding gene. One of two possible conclusions can be drawn. The

first conclusion is that methionine has a special role to fulfill at the start position of

some proteins apart from normal protein function. The second possible conclusion is

that it may have no useful function at all and that it is simply not removed since it is

not efficient to do so (this implies that it does not hamper the functioning of a protein).

Another observation is that alanine occurs at the start of 14.86% (even more than me-

thionine) of protein sequences, 6.67% more than expected. Leucine occurs at the start

of 4.15% of protein sequences, 4.00% less than expected. These results are interesting,

since alanine and leucine are the most abundant amino acids in the training set. At the

end of the protein chain, lysine and cysteine occur more often than expected (4.01%

and 3.60% respectively).

The coil secondary structure is almost always found at the start and end of a protein

sequence, as is evident from Table 5.4 and Table 5.5. It occurs at the start of 1479

and end of 1486 of the 1494 protein sequences in the training set. (One apparent

exception: when Phenylalanine is the first amino acid in a protein sequence, the β

sheet secondary structure appears at the start of 8.33% of such sequences. However,

Phenylalanine occurs at the start of only 12 of the 1494 protein sequences and in only 1

of those cases the β sheet occurs. The apparent exception is therefore not significant.)

One explanation for finding the abundance of coils at the ends of a protein could
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be that the ends are exposed to the surrounding environment and not buried toward

the core of a protein like other structures, much like a tied shoelace, where the knot

and loops represent structural components and the ends dangle freely. The coils at

the ends thus have irregular structure because they do not form part of the main

functional or structural units of the protein. This claim is somewhat supported by the

second conjecture given above as to the high percentage of methionine found at the

start of protein sequences, namely that it is not removed since it does not hamper the

functioning of a protein but does not contribute to its functioning either. In fact, of

the 1494 protein sequences, all 204 that started with methionine were found with a coil

conformation.

5.3.3.4 Conclusion

The coil secondary structure is almost always found at the start and end of a protein.

Methionine is removed from the start of most proteins through post-translational

processes, but the data seems to suggest that it is not removed in all cases. This

can be attributed to the fact that it is either not necessary to do so, or that it serves

a very specific purpose in the proteins in which it is not removed. It is clear however

that there are very specific biological processes at work.

Alanine occurs more and leucine occurs less than expected at the start of proteins. At

the end of a protein, lysine and cysteine occur somewhat more often than expected.

Whether these observations are functionally significant remains to be determined.
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5.4 PRIMARY TO SECONDARY STRUCTURE MAPPING

5.4.1 Experiment: Window Structure

5.4.1.1 Objective

The objective of this experiment is to determine whether different structural compo-

sitions of a window of amino acids around a central amino acid have any influence

on the prediction accuracy of the algorithm explained in Chapters 3 and 4. In addi-

tion, the performance differences achieved between including and excluding the edges

in the algorithm will be studied. The effect of forcing a prediction versus not forcing a

prediction will be analysed.

5.4.1.2 Protocol

A series of experiments with window sizes ranging from 1 to 7 were executed (N ∈
[1, 7]). For each window size, the central amino acid was varied from the leftmost

amino acid in the window (l = 0, r = N − 1) to the rightmost amino acid in the

window (l = N − 1, r = 0). The set of group labels were the same as the set of residue

labels, that is G = R, with L the identity function. δ(1) was used as distance metric.

The experiment was set up such that a prediction for a pattern in the test set will only

be made if it is in the database, i.e. ε = 0. φ(1) was used as classification function and

ψ(1) as assignment function.

The experiments were conducted for both the case where the edge effects are included

(predictions are attempted for the whole length of the protein) and the case where edge

effects are excluded (predictions are not attempted near the edges). For both these

cases, an experiment was conducted where a prediction was forced over the region of

interest (predict regardless of whether a similar pattern exists in the database) and

the case where a prediction was not forced (no prediction is made if a pattern does

not exist in the database). In the case where a prediction is forced when no patterns

exist in the database, the secondary structure with highest prior probability for the

observed amino acid is assigned. In the case where probabilities for multiple secondary
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structures are simultaneously higher than for other secondary structures, the decision

is based on the secondary structure in that group that has the highest prior probability.

5.4.1.3 Results and Discussion

The results of the experiment are listed in Table 5.6 (analysis conducted taking into

account edges) and Table 5.7 (edges not included). The tables present the results after

different combinations of window structures were used in the prediction algorithm and

applied to the test set. The tables list the percentage of correctly predicted secondary

structures.

The first observation is that the training data contains all possible strings of length 1

and 2 that can be made from the different residue types. This was confirmed through

independent testing, but can also be seen from the tables by observing that the re-

sults for the forced and unforced predictions are the same (which only implies that

all the input patterns in the testing data are present in the training data, and not

necessarily that all different types of input patterns are in the training data, which

thus necessitated independent testing for the entire input space).

For window lengths of 3 and more, it is immediately obvious that all the input patterns

in the testing data do not occur in the training data (due to the difference between

the forced and unforced results). In the case of a window length of 3, the differences

between the forced and unforced results are small, signifying that almost all the input

patterns in the testing data are found in the training data. For window sizes of length

4 and more, the effect is more severe (and thus the benefit of forcing a prediction

becomes more pronounced).

The reader may recall that there are 285320 different amino acid residues in the training

set and thus at most the same number of different input patterns. The complete input

space has 20N distinct input patterns (or more, if edges are considered as well). For

N = 3 this is 8000, for N = 4, 160000 and for N = 5, 3200000. Since many multiples

of the same input pattern occur in the 285320 patterns in the training set, this reduces

the number of distinct training samples to less than 20N for N = 3 and N = 4. For

N = 5 and larger, covering the complete input space is simply not possible, even if all
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Table 5.6: Prediction Results for different Window Structures (with edges included)

Forced Forced Unforced Unforced

N l r Q8 Q∗
8 Q8 Q∗

8

1 0 0 34.1485 34.1485 34.1485 34.1485

2 0 1 38.0383 38.0383 38.0383 38.0383

2 1 0 36.8422 36.8422 36.8422 36.8422

3 0 2 40.8648 40.8648 40.8593 40.8733

3 1 1 41.8116 41.8116 41.8074 41.8355

3 2 0 39.1056 39.1056 39.1001 39.1199

4 0 3 39.0001 39.0001 35.3912 41.0127

4 1 2 39.9345 39.9345 36.3393 42.2792

4 2 1 39.5207 39.5207 35.8968 41.7723

4 3 0 37.6999 37.6999 34.0650 39.4757

5 0 4 38.2150 38.2150 18.1594 61.6896

5 1 3 38.3137 38.3137 18.2882 63.0932

5 2 2 38.0369 38.0369 18.0416 62.9506

5 3 1 38.1808 38.1808 18.1416 62.5874

5 4 0 38.0561 38.0561 17.9580 60.9940

6 0 5 37.2231 37.2231 12.5625 83.6282

6 1 4 37.1217 37.1217 12.4324 85.4024

6 2 3 36.7449 36.7449 12.0830 85.5549

6 3 2 36.7641 36.7641 12.1282 85.7752

6 4 1 37.1025 37.1025 12.4748 85.6619

6 5 0 37.2436 37.2436 12.6543 84.1396

7 0 6 36.1585 36.1585 10.8649 86.7330

7 1 5 36.0516 36.0516 10.6937 88.7537

7 2 4 35.7173 35.7173 10.3525 89.2406

7 3 3 35.6228 35.6228 10.2772 89.2976

7 4 2 35.7242 35.7242 10.3909 89.4023

7 5 1 36.0544 36.0544 10.7457 89.0542

7 6 0 36.2585 36.2585 10.9869 87.5437
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Table 5.7: Prediction Results for different Window Structures (without edges included)

Forced Forced Unforced Unforced

N l r Q8 Q∗
8 Q8 Q∗

8

1 0 0 34.1485 34.1485 34.1485 34.1485

2 0 1 37.5245 37.7204 37.5245 37.7204

2 1 0 36.3270 36.5166 36.3270 36.5166

3 0 2 40.0811 40.5017 40.0770 40.5049

3 1 1 40.8347 41.2632 40.8306 41.2665

3 2 0 38.2685 38.6701 38.2657 38.6743

4 0 3 38.0821 38.6848 34.5418 40.5844

4 1 2 39.1453 39.7648 35.5803 41.8046

4 2 1 38.7398 39.3528 35.1391 41.2862

4 3 0 36.7463 37.3278 33.1456 38.9440

5 0 4 37.1162 37.9035 17.2661 61.2461

5 1 3 37.4957 38.2911 17.5935 62.4077

5 2 2 37.5245 38.3204 17.6031 62.4417

5 3 1 37.4026 38.1959 17.4278 61.8196

5 4 0 36.9956 37.7804 16.9907 60.2692

6 0 5 35.9256 36.8832 11.6349 84.7167

6 1 4 36.1434 37.1068 11.7213 85.3452

6 2 3 36.2229 37.1884 11.7336 85.4350

6 3 2 36.2763 37.2433 11.7569 85.6045

6 4 1 36.2393 37.2053 11.7377 85.4649

6 5 0 36.0557 37.0168 11.6391 84.7466

7 0 6 34.6527 35.7671 9.9072 88.4310

7 1 5 34.8939 36.0160 9.9689 88.9813

7 2 4 35.0542 36.1815 10.0059 89.3115

7 3 3 35.1405 36.2706 10.0114 89.3604

7 4 2 35.1652 36.2960 10.0127 89.3726

7 5 1 35.0788 36.2069 9.9785 89.0669

7 6 0 34.9446 36.0683 9.9346 88.6756
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the different patterns in the training set were distinct.

The best forced result is obtained with a window length of N = 3, which achieves

Q8 = 41.81% (forcing prediction and including edges). The fact that this is the best

result is not surprising, since no other mechanisms were put in place to match patterns

in the training and test sets (elementary choice of functions, G = R, φ(1), ψ(1), etc.).

It is suspected that as more training data becomes available, better results would

be achieved by larger window sizes (keeping the other variables the same), or more

specifically, a window size that covers, or almost covers, the complete set of input

patterns.

With a window size of N = 1 a performance of 34.15% was achieved. This is the same

result as achieved in Section 5.3.1.3, since the application of the algorithm in this case

assigns to each amino acid residue the secondary structure with highest probability of

occurring according to its residue type. It is interesting that by forcing a prediction,

even with a window length of N = 7 the performance is better than with N = 1.

The value Q8

Q∗8
indicates the fraction of secondary structures for which a prediction was

made. For a window size of N = 7, a prediction attempt was made for only about

11-12% of the secondary structures when a prediction was not forced. It is surprising

to find that by forcing a predication, a Q8 score of 35-36% is achieved.

It is also observed that there is a performance benefit from including edges in the

analysis. This may be attributed to the fact that patterns including edges are very

likely to be associated with the coil structure as was illustrated in Section 5.3.3.3.

An interesting observation is that better performance is consistently achieved if the

central amino acid is located toward the middle of the window in the case that edges

are not included and for small windows in the case that edges are included. For larger

windows where edges are included, better performance is achieved if the central amino

acid is located towards the sides of the window. This latter effect can yet again be

attributed to the fact that coil structures are almost certain to be found at the edges

of a protein. In general however, windows where the central amino acid is closer to the

middle of the window has a bigger performance benefit.

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

100



Chapter 5 Results

5.4.1.4 Conclusion

There is a performance benefit associated with larger window sizes. However this is

practically limited by the amount of training data available. The indication is that

a window size that covers all or most of the input pattern space will have the best

performance (in this case N = 3 with a performance of 41.8%). Additional techniques

are thus required to map “unknown” input patterns in the testing data to the available

patterns in the training data, if larger window sizes are to be used.

The inclusion of edges and forcing a prediction does provide performance benefits and

subsequent experiments will be conducted as such. The performance benefit established

through the inclusion of edges is likely due to the fact that coil structures are almost

certain to be found at the edges of a protein.

A performance benefit is also achieved if the central amino acid is located towards the

middle of the window. This implies that the coupling between an amino acid and its

associated secondary structure is influenced more by the amino acid and its immediate

neighbors than by residues further removed from it. In the experiments that follow,

this fact will be reflected by choosing l = dN
2
e− 1 and r = bN

2
c for a given window size

N .

5.4.2 Experiment: Varying Window Size

5.4.2.1 Objective

The previous experiment indicated that larger window sizes have more predictive power

than smaller window sizes. Due to the limited amount of training data available, only

window sizes of N ∈ [1, 7] were considered. In this experiment, the objective is to

quantify what is meant by “more predictive power”. A method is also devised by

which larger windows can contribute meaningfully to secondary structure predictions.

The performance of this experiment will form the “baseline” against which subsequent

experiments are compared.
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5.4.2.2 Protocol

In this experiment, the set of group labels were the same as the set of residue labels,

that is G = R, with L the identity function. δ(1) was used as distance metric. φ(2) was

used as assignment function, with ε set to 0, such that only exact matches contribute

toward classification. ψ(1) was used as assignment function.

An iterative approach is followed in predicting secondary structures, starting with

a window size s. During each iteration, the sequences associated with unpredicted

secondary structures in the test set are extracted. Using φ(2) with ε = 0, a check is

made against the sequences in the training set for exact matches. If such sequence(s)

are found, they are used to predict the secondary structure of the target sequence. If

no such sequences are found, the next smaller window size is used. N thus ranges from

s to 1. For odd values of N , l = N−1
2

and r = N−1
2

are used. For even values of N ,

l = dN
2
e − 1 and r = bN

2
c are considered before r = dN

2
e − 1 and l = bN

2
c. s ranges

from 1 to 15.

Using this method, the predictive power of larger sequences can be used, given that a

match can be found between the target sequence and sequences in the training set.

In an adaption of the above method, if there is a split vote between two or more

secondary structures for a given size of N , rather than forcing a prediction, the split

vote is handled by a postponing prediction until a smaller value of N is reached where

the original split vote can be settled uniquely.

5.4.2.3 Results and Discussion

The number of predicted secondary structures is shown in Table 5.8 and the percentage

of correctly predicted secondary structures in Table 5.9. Each row in these tables

indicates a complete experiment for a certain starting value of s. The cells in each

row indicate the number of times a prediction for a certain window structure has been

attempted (Table 5.8) and the percentage of times those predictions were correct (Table

5.9).
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The first observation is that a prediction accuracy of 43.4% is achieved for s values of

6 and more. This is a 1.6% improvement over the best result achieved in the “window

structure” experiment and forms the baseline accuracy against which subsequent ex-

periments will be compared. More importantly, it can be seen that for window sizes

of 6 and larger, 70% of the attempted predictions are correct. In fact, for a window

size of 7, roughly 80% is achieved, whilst for window sizes of 8 and larger, roughly 90%

is achieved. This clearly illustrates the benefit associated with larger window sizes.

However, only 10308 (14%) of the 72987 secondary structures in the test set can be

predicted using window sizes of 6 and larger.

An interesting observation is what can be described as the “transfer phenomenon”,

namely that secondary structures that can be predicted using sequences of length N and

N + 1 are considerably more accurate than secondary structures that can be predicted

using sequences of length N but not length N + 1, even when only sequences of length

N are considered. This is very apparent when looking at the top entries in the columns

marked “2 2” to “3 3” in Table 5.9. What is interesting is that the apparent benefit

of being able to predict a secondary structure using a larger window size is somehow

embedded in sequences of smaller size. This is reinforced by the observation that from

s = 5 onwards, no significant performance benefit is achieved using larger window

sizes. One possible explanation for this phenomenon is that where larger window sizes

are matched, these are likely to have some biological function which is preserved over

multiple sequences. The associated secondary structures, even for a smaller segment of

these larger structures, are thus unlikely to change and are hinted at by these smaller

segments.

As was explained in the protocol section, the method was adapted to handle split votes.

This resulted in an improved accuracy of 44.05%.

5.4.2.4 Conclusion

It is clearly illustrated that larger window sizes have more predictive power than smaller

window sizes. However as was also found in the previous experiment, this is practically

limited by the amount of training data available, since an enormous amount of training

data would be required to completely cover all the possible amino acid combinations

that could be observed for larger window sizes.
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Table 5.8: Number of secondary structures predicated per category

l r s 0 0 0 1 1 0 1 1 1 2 2 1 2 2 2 3 3 2 3 3 3 4

0 0 1 72987

0 1 2 0 72987

1 0 2 0 0 72987

1 1 3 0 0 49 72938

1 2 4 0 0 49 10205 62733

2 1 4 0 0 49 3309 6908 62721

2 2 5 0 0 49 3309 6908 41803 20918

2 3 6 0 0 49 3309 6908 41803 10610 10308

3 2 6 0 0 49 3309 6908 41803 8784 1814 10320

3 3 7 0 0 49 3309 6908 41803 8784 1814 1920 8400

3 4 8 0 0 49 3309 6908 41803 8784 1814 1920 923 7477

4 3 8 0 0 49 3309 6908 41803 8784 1814 1920 237 682

4 4 9 0 0 49 3309 6908 41803 8784 1814 1920 237 682

4 5 10 0 0 49 3309 6908 41803 8784 1814 1920 237 682

5 4 10 0 0 49 3309 6908 41803 8784 1814 1920 237 682

5 5 11 0 0 49 3309 6908 41803 8784 1814 1920 237 682

5 6 12 0 0 49 3309 6908 41803 8784 1814 1920 237 682

6 5 12 0 0 49 3309 6908 41803 8784 1814 1920 237 682

6 6 13 0 0 49 3309 6908 41803 8784 1814 1920 237 682

6 7 14 0 0 49 3309 6908 41803 8784 1814 1920 237 682

7 6 14 0 0 49 3309 6908 41803 8784 1814 1920 237 682

7 7 15 0 0 49 3309 6908 41803 8784 1814 1920 237 682

l r s 4 3 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6 7 7 6 7 7

0 0 1

0 1 2

1 0 2

1 1 3

1 2 4

2 1 4

2 2 5

2 3 6

3 2 6

3 3 7

3 4 8

4 3 8 7481

4 4 9 705 6776

4 5 10 705 579 6197

5 4 10 705 73 497 6206

5 5 11 705 73 497 520 5686

5 6 12 705 73 497 520 441 5245

6 5 12 705 73 497 520 68 369 5249

6 6 13 705 73 497 520 68 369 375 4874

6 7 14 705 73 497 520 68 369 375 320 4554

7 6 14 705 73 497 520 68 369 375 45 274 4555

7 7 15 705 73 497 520 68 369 375 45 274 281 4274
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Table 5.9: Percentage of correctly predicated secondary structures per category

l r s 0 0 0 1 1 0 1 1 1 2 2 1 2 2 2 3 3 2 3 3 3 4 4 3

0 0 1 34.149

0 1 2 - 38.038

1 0 2 - - 36.842

1 1 3 - - 61.224 41.922

1 2 4 - - 61.224 36.404 43.089

2 1 4 - - 61.224 32.638 35.741 42.675

2 2 5 - - 61.224 32.638 35.741 35.198 63.233

2 3 6 - - 61.224 32.638 35.741 35.198 43.205 85.574

3 2 6 - - 61.224 32.638 35.741 35.198 37.864 69.184 85.853

3 3 7 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 89.250

3 4 8 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 87.649 89.341

4 3 8 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.413

4 4 9 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

4 5 10 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

5 4 10 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

5 5 11 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

5 6 12 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

6 5 12 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

6 6 13 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

6 7 14 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

7 6 14 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

7 7 15 - - 61.224 32.638 35.741 35.198 37.864 69.184 70.052 81.857 89.883 89.929

l r s 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6 7 7 6 7 7 Q8

0 0 1 34.149

0 1 2 38.038

1 0 2 36.842

1 1 3 41.935

1 2 4 42.166

2 1 4 41.576

2 2 5 43.186

2 3 6 43.430

3 2 6 43.479

3 3 7 43.454

3 4 8 43.443

4 3 8 43.453

4 4 9 89.300 43.447

4 5 10 91.019 89.011 43.437

5 4 10 94.521 88.934 89.188 43.441

5 5 11 94.521 88.934 90.385 89.026 43.437

5 6 12 94.521 88.934 90.385 90.703 88.866 43.435

6 5 12 94.521 88.934 90.385 89.706 88.889 88.912 43.428

6 6 13 94.521 88.934 90.385 89.706 88.889 90.667 88.818 43.431

6 7 14 94.521 88.934 90.385 89.706 88.889 90.667 86.563 88.977 43.431

7 6 14 94.521 88.934 90.385 89.706 88.889 90.667 91.111 87.591 88.825 43.428

7 7 15 94.521 88.934 90.385 89.706 88.889 90.667 91.111 87.591 85.765 88.980 43.426
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A method thus needs to be devised for comparing different amino acid sequences and

to use “similar” sequences to make a prediction. The subsequent experiments deal with

multiple facets of this problem.

5.4.3 Experiment: Classification Function

5.4.3.1 Objective

The previous two experiments indicated that better performance could be achieved if

larger window sizes are used. This was practically limited by the amount of training

data available, since the exact input patterns in the test data had to be present in the

training data as well. The objective of this experiment is to determine how the perfor-

mance of the algorithm for larger window sizes will be influenced if small differences

between the patterns in the test and training data are allowed. These are controlled

through the ε parameter in the algorithm. The effect of different classification functions

(as defined in Section 4.6) will be studied.

5.4.3.2 Protocol

A series of experiments with window sizes ranging from 1 to 15 were executed (N ∈
[1, 15]) with l = dN

2
e − 1 and r = bN

2
c. For each window size, epsilon values of 0 to

N were tested (ε ∈ [0, N ]). Distance metric δ(1) was used. The set of group labels

were the same as the set of residue labels, that is G = R, with L the identity function.

The set of experiments were executed for classification functions φ(1) and φ(2). ψ(1) was

used as the assignment function.

5.4.3.3 Results and Discussion

The results obtained with φ(1) is shown in Table 5.10 and Figure 5.7 and with φ(2)

in Table 5.11 and Figure 5.8. In general, φ(2) performs better than φ(1). There are

however specific “regions” (combinations of N and ε values) in which φ(1) performs

better.
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The performance values for both φ(1) and φ(2) are the same for ε = 0, since both

classification functions use the same patterns in the training data for prediction. For a

fixed value of N , the performance of the two classification functions differ significantly

for different values of ε. The values for both φ(1) and φ(2) are nearly the same and

increasing up to a certain value of ε. This point is usually where the performance of

φ(1) reaches a maximum. For larger values of ε the performance of φ(1) start to decrease

again, up to the value of 27.38% for ε = N . This is to be expected, since more patterns

that are further removed from the test pattern contribute to the prediction and as

such “pollute” the result. At ε = N , all the samples in the training data contribute

to the prediction and thus the class with the highest prior probability of occurring is

predicted (in this case the α-helix structure, which occurs in 27.38% of the test data).

For φ(2), increasing the value of ε further leads to a small increase in performance after

which it saturates and stays constant. The saturation takes place at the ε value at

which all the patterns in the test data are at most a distance ε from at least one of the

patterns in the training data. When ε is increased further, the additional patterns in

the training data are filtered out by φ(2) with no additional performance benefit.
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Figure 5.7: Classification Function 1

The performance increases with larger window sizes. In the case of φ(1), the best
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Figure 5.8: Classification Function 2
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performance is 51.58% with N = 15 and ε = 7. For φ(2), the best performance is 55.19%

with N = 15 and ε ≥ 9. This represents a significant performance increase over the

performance of 41.81% (N = 3, ε = 0) achieved in the “window structure” experiment

or even the 44.05% achieved in the adapted “varying window size” experiment.

The question naturally arises whether larger window sizes will continue to add a per-

formance benefit. Figure 5.9 plots the best performance (considered over the different

ε values) of classification functions 1 and 2 for each window size. As can be seen in

the figure, the performance increase from a window size of 1 to a window size of 8

are respectively 13% (for φ(1)) and 17% (for φ(2)). Comparatively, the performance

increase from a window size of 8 to 15 is about 4% (for both φ(1) and φ(2)). The rate

of increase is declining as larger window sizes are considered.
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Figure 5.9: Performance of Classification Function 1 vs Classification Function 2

5.4.3.4 Conclusion

A performance benefit is achieved by increasing the window size and allowing patterns

in the training and testing data that are not exactly the same but still similar to be

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

111



Chapter 5 Results

matched. A performance of Q8 = 55.19% is achieved for a window size of N = 15,

with ε ≥ 9 for ψ(2). The performance increases as larger windows are considered, but

the rate of increase declines.

The elementary distance metric δ(1) was used in this experiment. Under this distance

metric, the ε value indicates the number of positions at which secondary structures are

different between two patterns. It assigns the same contribution to each position in the

window and does not take into account which specific residue types are different. It is

however quite possible that clusters of sequence patterns exist that are “close” to one

another under the δ(1) distance metric but which form different secondary structures.

If this is indeed the case, this fact was not exploited in this experiment. Through

proper design of the δ function and using larger window sizes, it may thus be possible

to achieve even better results than achieved in this experiment.

5.5 DETAILED ANALYSIS

5.5.1 Experiment: Grouping Strategies

5.5.1.1 Objective

The objective of this experiment is to determine whether amino acid residues can be

grouped together in a meaningful way. The procedure for mapping amino acid patterns

to group vectors and its use in the construction of a database were explained in Section

4.3.

5.5.1.2 Protocol

A series of experiments with window sizes ranging from 1 to 15 were executed (N ∈
[1, 15]) with l = dN

2
e − 1 and r = bN

2
c. Distance metric δ(1) was used with ε = 0. φ(2)

was used as classification function and ψ(1) as assignment function.

The procedure to set up G starts by assigning G = R. Thus, initially there are 21
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groups (one for each amino acid residue type and one for an edge). Unique pairs are

selected from the different groups and combined (there are m
2
(m − 1) such pairings,

thus initially 210 tests need to be conducted using 20 groups each). The Q8 score

achieved by each of the pairings is noted. Once all the tests are completed, the pairing

with the highest Q8 score is retained and G adjusted accordingly. The process is then

repeated, this time with the new G containing 20 groups. With 20 groups in G, 190

tests are conducted and G is reduced to 19 groups by the same process. The process

is repeated until G consists of just 1 group (the trivial case) or until no performance

gain is achieved.

It should be noted that 1540 tests need to be conducted to reduce G from 21 groups

to 1 (these tests need to be conducted for each combination of other parameters,

i.e. window size, classification and assignment functions etc.). There are nevertheless

many more ways in which 21 groups can be segmented into fewer than 21 groups. The

procedure described above is thus not guaranteed to find a configuration with optimum

performance. Rather, the procedure is based on what is known as a “greedy” algorithm

and it is hoped that the performance is near optimum.

In the discussion that follows, each group Gi will be designated by a group label using

curly brackets {}. The amino acid residue types that belong to the group are listed

between the brackets. The function L maps each amino acid in a window to a group

label Gi based on the group to which it belongs.

5.5.1.3 Results and Discussion

The results achieved by the procedure described above are listed in Table 5.12. The

table shows the performance without any groupings, the performance achieved by the

optimum grouping (optimum in the sense of the algorithm previously discussed), the

gain achieved by using the grouping scheme, the grouping that resulted in optimum

performance and the number of different groups (m) that achieve optimum perfor-

mance.

As can be seen from the results, a performance gain can be achieved irrespective of

the window size. The best performance is 44.09% for a window size of N = 5. This
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represents an increase of 6.05% over the case where no grouping is used.

Table 5.12: Application of Grouping Strategy (Forcing Prediction, ε = 0)

N No Grouping Grouping Gain Optimum Grouping m

1 34.1485 34.1828 0.0343 {ARQELKM#}{NHDPS}{CIFTWYV}{G} 4

2 38.0383 38.1493 0.1110 {AE}{RK}{NS}{D}{C}{Q}{G}{H}{IW}{L}{M}{F}{P#}{T}{Y}{V} 16

3 41.8116 41.9623 0.1507 {A}{R}{N}{D}{CIW}{Q}{E}{G}{HK}{L}{MF}{P}{S}{T}{Y}{V}{#} 17

4 39.9345 43.6626 3.7281 {A}{REKQ}{NSD}{CWYIVF}{G}{HT}{LM}{P}{#} 9

5 38.0369 44.0928 6.0559 {ARKQE}{NSTHD}{CW}{G}{IVLFYM}{P}{#} 7

6 36.7449 43.6735 6.9286 {A}{RNSTDKQEH}{CIVLFYMW}{G}{P}{#} 6

7 35.6228 41.7102 6.0874 {ARKEQH}{NGD}{CIVLSTFYMW}{P#} 4

8 34.8021 40.3072 5.5051 {ARKQHE}{NDGP#}{CIVLSTFYWM} 3

9 34.1403 39.0165 4.8762 {AIVLSTNFYCHMW}{RKQED}{G#}{P} 4

10 33.5758 37.5766 4.0008 {ASTIVLNGFYHMWC}{RKQE}{D#}{P} 4

11 33.0840 37.0765 3.9925 {ASTIVLNGFYCH}{RK}{D#}{QE}{M}{P}{W} 7

12 32.6647 36.9230 4.2583 {ASTIVLNGPC}{RK}{DE}{Q}{H}{M}{FY#}{W} 8

13 32.3236 36.5997 4.2761 {ASTIVLNGPD}{RKH#}{C}{QE}{M}{FY}{W} 7

14 32.0331 36.3544 4.3213 {ASTIVLRKNPQ}{DE}{C}{G}{H}{M#}{FY}{W} 8

15 31.7673 36.0503 4.2830 {ASTIVLRKNGP}{DE}{C}{Q}{H}{M#}{FY}{W} 8

In Table 5.13 the experiments were repeated, but this time the predictions were not

forced as in Table 5.12. Interestingly, the performance values are about the same (but

on average slightly worse). Large performance gains are achieved for larger window

sizes (relative to the unforced case with G = R). This effect can be explained by

the fact that the number of patterns that need to be stored in the database to be

representative of the entire input space is reduced from 21N to mN . Although mN is

still large for larger window sizes, it is probably the case that only a fraction of those

patterns are required to be representative of the actual proteins in the data sets. In

fact, the objective of the grouping function is to reduce the complexity in that way. It

is also observed that different groups form for window sizes of N ≥ 4 in the case of

unforced prediction. The group size (m) is also smaller for larger window sizes.

Table 5.13: Application of Grouping Strategy (Not Forcing Prediction, ε = 0)

N No Grouping Grouping Gain Optimum Grouping m

1 34.1485 34.1828 0.0343 {ARQELKM#}{NHDPS}{CIFTWYV}{G} 4

2 38.0383 38.1493 0.1110 {AE}{RK}{NS}{D}{C}{Q}{G}{H}{IW}{L}{M}{F}{P#}{T}{Y}{V} 16

3 41.8074 41.9623 0.1549 {A}{R}{N}{D}{CIW}{Q}{E}{G}{HK}{L}{MF}{P}{S}{T}{Y}{V}{#} 17

4 36.3393 43.8955 7.5562 {A}{REKQ}{ND}{CIVFYW}{G}{HT}{LM}{P}{S}{#} 10

5 18.0416 41.6417 23.6001 {ALVIFYRMCW}{ND}{QEKH}{G}{P}{ST}{#} 7

6 12.0830 39.9331 27.8501 {AIVLEKRTQFYMHW}{NDS}{C}{G}{P}{#} 6

7 10.2772 39.0494 28.7722 {AIVLEKTSRQNDHM}{CFYW}{G}{P}{#} 5

8 9.1619 38.9960 29.8341 {AIVLKETSRQNDYMH}{C}{G}{FW}{P}{#} 6

9 8.2960 38.9974 30.7014 {ASTIVLEKRDNQYFHMW}{C#}{G}{P} 4

10 7.5630 36.2900 28.7270 {ASTIVLGKERDNQYMH}{C}{FW}{P#} 4

11 6.9314 36.2832 29.3518 {ASTIVLGKEDNRQYMHFW}{C}{P}{#} 4

12 6.3820 36.4202 30.0382 {ASTIVLGKEDNRQYMHFW}{C}{P}{#} 4

13 5.9312 36.2804 30.3492 {ASTIVLGNKEDRQYFHMW}{C}{P}{#} 4

14 5.5489 36.2708 30.7219 {ASTIVLRKEGDNQYFMHW}{C}{P}{#} 4

15 5.2009 36.2434 31.0425 {ASTIVLRKEGDNQYFMHW}{C#}{P} 3

There thus seems to be merit in grouping different amino acids together. The question
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is whether there is a gain to be achieved by combining a grouping strategy with other

parameters in the algorithm.

The best performance achieved was 44.09% for a window size of N = 5. In the

experiment where the different classification functions were considered, a performance

score of 46.94% was achieved using φ(1) (ε = 1) and 46.71% using φ(2) (ε = 1) with

N = 5. To make a fair comparison, the experiments were repeated using ε = 1 for

window sizes N ∈ [3, 7] (the large amount of computational power required to execute

the experiments limited the range of cases that could be tested). The results of these

experiments are shown in Table 5.14 for the forced case and Table 5.15 for the unforced

case.

The best performance achieved was Q8 = 46.88% (Q3 = 61.05%). This is hardly an

improvement over the case where no groupings are used. If the actual groupings that

are formed are observed, it will be noted that the only groupings were M with W and

F with Y. The tendency for the other window sizes is to form more groups as well

(preserving the unique attributes of the different amino acid residue types).

It is the opinion of the author that no significant performance gain (relative to other

parameters in the algorithm) will be achieved using larger window sizes and ε values

using the current grouping strategy. It is suspected that the current grouping strategy

will eventually (with larger N and ε values) reach a state where G = R is the optimum

grouping, and the performance will thus be the same as that achieved in the experiment

on classification functions (Section 5.4.3).

It is extremely important to note that the current grouping strategy could have been

implemented as a more advanced distance metric. Such a distance metric would assign

a score of 0 to amino acids that are in the same group and a score of 1 to amino

acids that are not in the same group. This would have the same effect as applying

the grouping strategy initially and then applying δ(1) on the resulting patterns. From

this it can be concluded that work should rather be conducted in developing a better

distance metric, as was the conclusion in Section 5.4.3.4.

Figureau et al [110] found that the grouping

{CFWY}{IV}{LM}{HQR}{EK}{DN}{SP}{A}{G}{T} led to good results in the clas-
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sification of pentapeptides. They achieved Q3 scores in the order of 65% using this

grouping, although the technique and application they use are different. To compare

results, their grouping was used in the algorithm designed in this dissertation (adding

an edge as an additional grouping). A Q8 score of 41.57% is achieved (with ψ(2) and

ε ≥ 1). The corresponding Q3 score is 56.97%. This is about 4-5% lower than the best

results achieved using the current grouping strategy.

An interesting aspect to consider is the actual amino acid residue types that were

grouped together using the grouping strategy developed in this experiment. Tables

5.12 and 5.13 list only the optimal groupings. From this it is difficult to find specific

prominent groupings. A better approach is to study how different groups are combined

during the optimization process. This is conveniently illustrated in the dendograms in

Figures 5.10 to 5.22. The dendograms in the figures are associated with window sizes

3 to 15 in Table 5.12.

There are many diverse patterns that form, depending on the window size; however

some are more readily identifiable than others. The most distinct grouping is I with V.

IV is also often associated with L. S and T are found together, often combined with A

and/or with IVL. R and K are found together, as are Q and E. R, K, Q and E are also

found together in various combinations. H and A is sometimes found in combination

with R, K, Q and E. F, Y, C and W are sometimes found in combination. The other

Table 5.14: Application of Grouping Strategy (Forcing Prediction, ε = 1)

N No Grouping Grouping Performance Gain Optimum Grouping m

3 41.8499 41.9732 0.1233 {A}{R}{N}{D}{CIW}{Q}{E}{G}{HK}{L}{MF}{P}{S}{T}{Y}{V}{#} 17

4 41.9897 43.9832 1.9935 {A}{REQK}{ND}{CIVFYW}{G}{HT}{LM}{P}{S}{#} 10

5 46.7193 46.8837 0.1644 {A}{R}{N}{D}{C}{Q}{E}{G}{H}{I}{L}{K}{MW}{FY}{P}{S}{T}{V}{#} 19

6 43.8147 46.6809 2.8662 {A}{R}{N}{D}{CW}{QE}{G}{HM}{IVL}{K}{FY}{P}{ST}{#} 14

7 41.7198 46.6453 4.9255 {A}{RK}{NST}{D}{CIVLFM}{QE}{G}{H}{P#}{WY} 10

Table 5.15: Application of Grouping Strategy (Not Forcing Prediction, ε = 1)

N No Grouping Grouping Performance Gain Optimum Grouping m

3 41.8499 41.9732 0.1233 {A}{R}{N}{D}{CIW}{Q}{E}{G}{HK}{L}{MF}{P}{S}{T}{Y}{V}{#} 17

4 41.9897 43.9832 1.9935 {A}{REQK}{ND}{CIVFYW}{G}{HT}{LM}{P}{S}{#} 10

5 46.6179 46.8577 0.2398 {A}{R}{N}{D}{C}{Q}{E}{G}{H}{I}{L}{K}{MW}{FY}{P}{S}{T}{V}{#} 19

6 34.8857 46.2562 11.3705 {A}{RK}{ND}{CW}{QE}{G}{H}{IVLFM}{P}{S}{T}{Y}{#} 13

7 20.4927 44.6134 24.1207 {ALVIFYM}{RQEK}{ND}{C}{G}{H}{P}{ST}{W}{#} 10

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

116



Chapter 5 Results

types (N, D, M, G, P and #) do not seem to form regular combinations.

It is interesting to compare the above findings with the grouping used by Figureau.

Both seem to suggest that I and V as well as C, F, W and Y could be clustered together.

Figureau clusters H, Q and R as well as E and K, which can be supported with the

findings above. The clustering of D and N is also somewhat suggested by the findings

above.

It is also interesting to consider the chemical properties of the residue: sulfhydryl (C),

small hydrophilic (S, T, P, A, G), acid amide and hydrophilic (N, D, E, Q), basic

(H, R, K), small hydrophobic (M, I, L, V), and aromatic (F, Y, W) ([53], p. 82).

The clustering results found above seem to be somewhat correlated by the chemical

properties of the side chain: ILV, ST, ND, EQ, HRK and FYW share similar chemical

characteristics. The implication of this is important: substitution of amino acids with

similar chemical properties may preserve the formation of secondary structures.

A Q E R H K N D S T C I W M F V Y L G P #

N=3 (l=1 r=1)

Figure 5.10: Dendrogram indicating clusterings for N = 3

A QER HK N DS T C IW MFVY LG P #

N=4 (l=1 r=2)

Figure 5.11: Dendrogram indicating clusterings for N = 4
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A Q ER HK N DS T C IW MFV YLG P #

N=5 (l=2 r=2)

Figure 5.12: Dendrogram indicating clusterings for N = 5

A Q ER HKN DS T C I WMFV YLG P #

N=6 (l=2 r=3)

Figure 5.13: Dendrogram indicating clusterings for N = 6

A QER HK N DS TC I WMFV YL G P #

N=7 (l=3 r=3)

Figure 5.14: Dendrogram indicating clusterings for N = 7
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A Q ER HK N DS TC I W MFV YL G P #

N=8 (l=3 r=4)

Figure 5.15: Dendrogram indicating clusterings for N = 8

A Q ERH KN DS T CI WMFV YL G P#

N=9 (l=4 r=4)

Figure 5.16: Dendrogram indicating clusterings for N = 9

A Q ERH KN DS T CI WMFV YL G P #

N=10 (l=4 r=5)

Figure 5.17: Dendrogram indicating clusterings for N = 10
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A Q ERH KN DS T CI WMFV YL G P#

N=11 (l=5 r=5)

Figure 5.18: Dendrogram indicating clusterings for N = 11

A Q ERH KN DS T CI W MFV YL G P #

N=12 (l=5 r=6)

Figure 5.19: Dendrogram indicating clusterings for N = 12

N=13 (l=6 r=6)

A Q ER HKN DS T CI W MFV YL G P #

Figure 5.20: Dendrogram indicating clusterings for N = 13
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N=14 (l=6 r=7)

A Q ER HK N DS T CI WMFV YL GP #

Figure 5.21: Dendrogram indicating clusterings for N = 14

N=15 (l=7 r=7)

A QER HK N DS T CI W MFV YL G P #

Figure 5.22: Dendrogram indicating clusterings for N = 15
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5.5.1.4 Conclusion

A small but consistent gain can be achieved by grouping different amino acids together.

It was found that (IV)(L), ST, (RK)(QE), FYCW and DN are good groupings. H and

A are sometimes found in combination with R, K, Q and E. The data seems to suggest

that in some cases, substitution of amino acids with similar chemical properties may

preserve the formation of secondary structures.

If more leniency (larger ε values) is allowed in the similarity of patterns, the tendency

is for the optimum grouping to consist of more groups, i.e. the unique attributes of the

amino acids are preserved. This seems to suggest that although a gain can be achieved

by grouping amino acids together, it is not effective when used in conjunction with

other parameters that can be controlled in the algorithm.

The grouping strategy could be implemented as a more advanced distance metric.

Together with the conclusion reached in the previous experiment, this seems to sug-

gest that the distance metric is a large contributing factor to the performance of the

algorithm.

5.5.2 Experiment: Substitution Matrix

5.5.2.1 Objective

Previous experiments indicated the need to be able to determine the similarity between

two different group vectors. From this experiment onwards it is assumed that the

mapping function L is the identity mapping. The aim now is to measure the similarity

between two different sequences of amino acids in more sophisticated ways.

The “grouping strategies” experiment (see Section 5.5.1) illustrated that there are

certain amino acids that behave similarly in general. However, it did not quantify

the similarity between the different amino acids. The objective of this experiment is

to create a substitution matrix - a matrix quantifying the similarity between different

amino acids. This quantification can then be used to create a better distance metric
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(as is done in a the subsequent “distance metric - substitution matrix” experiment (see

Section 5.5.3)).

5.5.2.2 Protocol

For this experiment, the training data was divided into a new training and validation

data set, in order not to bias subsequent experiments that are reliant on the substi-

tution matrix. The division was roughly 80%/20%, with the new training data set

containing 1174 proteins (225019 amino acid residues) and the validation set contain-

ing 320 proteins (60301 amino acid residues). The algorithm used the new training set

for training purposes, and used the validation set to extract values for the substitution

matrix.

A window size of 15 (l = 7, r = 7) was used, with distance metric δ(1). The set of

group labels were the same as the set of residue labels, that is G = R, with L the

identity function. φ(2) was used as assignment function, with a large ε value such that

all sequences in the training data are considered. ψ(1) was used as assignment function.

Under this experimental setup, the “nearest neighbour(s)” to each target sequence in

the validation data set were determined under the distance metric δ(1). For the 60301

target sequences, 247949 such neighbours were found.

Consider now making a prediction for a single target sequence using a single neighbour.

The target sequence and neighbour will have similar amino acid residue types in some

positions and different residue types in others. Given a residue type A in position k of

the target sequence and a residue type B in position k of the neighbour, it is said that

a substitution of A with B has been made (even where A and B are equal).

Let Ck and Ik be matrices of dimension 21 x 21, where k ∈ [1, 15] is an index asso-

ciated with the kth position in the window. Let Ck
m,n indicate the number of times

that a residue type n has been substituted with residue type m in position k over all

target sequences and their neighbours, such that the neighbour correctly predicted the

secondary structure associated with the target sequence. Similarly, let Ik
m,n indicate

the number of times that a residue type n has been substituted with residue type m
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in position k over all target sequences and their neighbours, such that the neighbour

incorrectly predicted the secondary structure associated with the target sequence.

Let

C =
15∑

k=1

Ck, (5.4)

and

I =
15∑

k=1

Ik. (5.5)

The matrices C and I thus indicate the total number of times that different substi-

tutions were made in all positions of a window for correctly and incorrectly predicted

secondary structures respectively.

Let P be a matrix where element pm,n of P is defined according to elements cm,n and

im,n of C and I by

pm,n =
cm,n

cm,n + im,n

. (5.6)

Element pm,n thus indicates the fraction of times that a substitution of residue type n

with residue type m was observed in a correctly predicted secondary structure.

Let S be a substitution matrix where element sm,n is defined by

sm,n =
pm,n

max15
l=1 pl,n

. (5.7)
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The elements of S are thus normalised similarity values between different residue types.

5.5.2.3 Results and Discussion

Table 5.16 shows the calculated substitution matrix. With the exception of R, D, E,

I and L, all diagonal entries have values equal to 1, as should be expected. It is also

evident that the matrix is not symmetrical, implying that substitution between two

amino acids is not commutative.

Substitutions with a similarity value between 0.8 and 1 are shown in Table 5.17. The

table illustrates that I and V are similar as was found in the previous experiment. It

also suggests that L and M are similar (and that I, V, L and M are alike in general),

a result which was indicated by Figureau et al [110], but was not duplicated in the

previous experiment. I, V, L and M are all small hydrophobic amino acids.

The results also show that R and K are similar, as are E and Q, and these four residues

are in general very alike, a result that was also found in the previous experiment. It

also indicates that A is somewhat alike to elements in this group. Although not shown

in the table, there is some evidence that H shares some similarity with these residue

types.

F and Y are similar. However, no evidence was found to show that C and W are similar

as was found in the previous experiment. In fact, C, W and P are the only residue

types that seem not to have any good substitutions. Interestingly, C, W and P seem

to be most alike to the edge type.

S and T are alike, as are D and N, both results having been suggested by the previous

experiment. There is also some new evidence that N and K are alike, as are E and D.

There are a surprising number of residue types that can be exchanged with an edge

type. This may be due to the regularity with which edge types in a window are

predictive of the coil secondary structure. No readily discernable patterns could be

detected from the other high scoring substitutions.
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5.5.2.4 Conclusion

The experiment reinforces the findings of the “grouping strategies” experiment, namely

that (IV)(LM), (RK)(QE), ST, DN and FY are similarity groups, but shows no evidence

that C and W are similar to one another or to the FY group.

More importantly, the experiment quantifies the similarity between different residue

types, which makes it possible to develop a better distance metric. It is also noted that

substitution between two residue types is not commutative.

5.5.3 Experiment: Distance Metric - Substitution Matrix

5.5.3.1 Objective

The objective of this experiment is to determine whether the substitution matrix de-

veloped in the previous experiment can be used to develop a distance metric that has

better success than the δ(1) distance metric that was used in previous experiments.

Table 5.17: Substitutions with similarity values between 0.8 and 1

I V 1.000 R K 1.000 A E 0.864 R # 0.945 D S 0.901

L M 1.000 E Q 1.000 A K 0.850 G # 0.936 D Q 0.894

I M 0.959 K R 0.955 R A 0.839 # C 0.919 N H 0.884

V I 0.945 R Q 0.938 K A 0.839 P # 0.902 A M 0.871

L I 0.913 K Q 0.935 A R 0.814 K # 0.900 A S 0.841

I L 0.897 Q E 0.861 E A 0.811 D # 0.881 D A 0.836

M L 0.865 Q K 0.859 N # 0.869 K M 0.832

L V 0.837 K E 0.849 A # 0.857 R H 0.814

V L 0.823 R E 0.848 E # 0.852 A V 0.807

E K 0.832 T # 0.843 N E 0.806

Q R 0.827 # Q 0.807

F Y 0.916 T S 0.873 D N 0.957 N K 0.842 D E 1.000

Y F 0.845 S T 0.860 N D 0.822 K N 0.829 E D 0.839
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5.5.3.2 Protocol

A window size of 15 (l = 7, r = 7) was used. The set of group labels were the same as

the set of residue labels, that is G = R, with L the identity function. ψ(1) was used as

assignment function.

The distance metric δ(3) (see Section 4.5.3) is designed with elements ui,j of matrix U

defined by

ui,j = 1− si,j, (5.8)

where the si,j (defined by Equation 5.7) are elements of the substitution matrix S

created in the “substitution matrix” experiment, and the weights wi associated with

positions in the window are all set to 1.

The performance of this distance metric is compared to the performance of distance

metric δ(1) used in previous experiments. To make the comparison fair, classification

function φ(2) was used but adapted in such a way that exactly the k closest neighbours

in the training set contribute to the prediction. For each target sequence the number

of contributing neighbours is thus equal under both δ(3) and δ(1) (more precisely, equal

to k), where there would otherwise be different numbers contributing. k was tested in

the range [1, 10].

5.5.3.3 Results and Discussion

Table 5.18 shows the performance of δ(3) and δ(1) under the experimental setup using

exactly k contributing neighbours.

For both δ(3) and δ(1), best performance is achieved using k = 1, with performance

values of 55.37% and 52.42% respectively. δ(3) thus performs roughly 3% better than

δ(1), indicating that there is a significant benefit in the new way in which sequences are

compared.
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An interesting observation is that for the Q3 performance, there is a local maximum

for both δ(3) and δ(1) at k = 5. For δ(3), the Q8 values are already in a declining phase,

but still a maximum is achieved for Q3. This might be indicative that certain amino

acid sequences form “similar” secondary structures in the eight class problem, in the

sense that secondary structures are similar if they are mapped to the same class in the

three class problem.

Table 5.18: Comparison between the performance of δ(3) and δ(1) using exactly k

neighbours

δ(3) δ(3) δ(3) δ(3) δ(1) δ(1) δ(1) δ(1)

k #Q8 Q8 (%) #Q3 Q3 (%) #Q8 Q8(%) #Q3 Q3 (%)

1 40411 55.367 48876 66.965 38260 52.420 46544 63.770

2 39061 53.518 46203 63.303 36801 50.421 43147 59.116

3 38673 52.986 46001 63.026 36637 50.197 42737 58.554

4 38754 53.097 46706 63.992 36563 50.095 43320 59.353

5 38545 52.811 46834 64.168 36594 50.138 43492 59.589

6 38302 52.478 46599 63.846 36585 50.125 43341 59.382

7 38044 52.124 46387 63.555 36340 49.790 43001 58.916

8 37952 51.998 46507 63.720 36271 49.695 42950 58.846

9 37781 51.764 46443 63.632 36292 49.724 43058 58.994

10 37545 51.441 46251 63.369 36223 49.629 42986 58.895

It is also useful to understand what happens if φ(2) is not limited to exactly k neigh-

bours, but is used as originally defined, i.e. that all nearest neighbours to a particular

target sequence contribute to classification.

Under this condition, δ(3) correctly predicts 55.59% of the secondary structures, a

marginal improvement over the 55.37% achieved using k = 1. In doing so, 94588

neighbours were used, an average of 1.29 neighbours per sequence.

δ(1) correctly predicts 55.82% of the secondary structures, but uses 294076 neighbours

in doing so (an average of 4.02 per sequence). At first glance it may appear that this

result should be more or less equal to the one obtained using k = 4. It should however

be kept in mind that with k = 4, every sequence has exactly 4 neighbours whilst here

the average is roughly 4 (thus some sequences have fewer and some more neighbours
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of equal minimum distance).

δ(3) and δ(1) thus have similar performance under φ(2), however δ(3) requires much fewer

neighbours to achieve this performance than δ(1). This should be expected, since the

similarity values between different amino acid residue types are now much more diverse

than under the hard 1/0 function, resulting in a more measurable difference between

different sequences. In terms of a pattern recognition problem, this means that the

decision boundary used under the δ(3) metric is “less fuzzy” than under the δ(1) metric.

Another interesting observation is that of the 294076 neighbours found under δ(1),

only 117270 (39.88%) correctly predict secondary structures when viewed in isolation,

yet when neighbours of equal minimum distance are combined per target sequence, it

manages to correctly predict 55.82% of the structures. An investigation into the nature

of these neighbours (results not listed here) showed that there are more neighbours

for sequences that are further from the target sequences. This implies a relationship

between the number of qualifying neighbours and the distance of these neighbours from

the target sequence. This relationship is further analysed in the “adaptive classification

function” experiment (Section 5.5.5).

5.5.3.4 Conclusion

The distance metric based on the substitution matrix created in the previous exper-

iment is an improvement on the distance metric used up to now, in the sense that

fewer training samples are required to achieve similar performance. This reinforces

the findings about specific amino acids that were found to be similar in the previous

experiment.

There is also evidence to suggest that there is a relationship between the number of

qualifying neighbours and the distance of those neighbours to the target sequence.
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5.5.4 Experiment: Distance Metric - BLOSUM

5.5.4.1 Objective

As was the case in the previous experiment, the objective of this experiment is to design

a distance metric based on a substitution matrix. This time, an existing substitution

matrix, namely the BLOSUM matrix (refer to Table 2.4) is used. If the algorithm

performs well using this metric, it implies that the matrix is indicative of good amino

acid substitutions.

5.5.4.2 Protocol

A metric was designed based on the BLOSUM matrix (refer to Table 2.4). The notation

δ(B) will be used to indicate this metric. The metric is defined by

d
(B)
a,b = δ(B)(ga, gb) = −

p∑
i=1

si, (5.9)

where si is the entry in the BLOSUM matrix for substituting ga,i with gb,i. Note that

G = R is used, with L the identity mapping. This ensures that the group labels are

simply the residue types, which makes it possible to use the matrix. The matrix does

not define substitution values for edges. A value of s = 12 was used for substitution of

an edge with another edge and a value of s = −3 for substitution of an edge with an

amino acid or vice versa.

Note the minus sign in the distance metric. Positive values in the BLOSUM matrix

indicate likely substitutions and negative values unlikely substitutions. The minus

sign is used to ensure smaller distance values for patterns that are more alike to one

another. Note that under this metric, distances of less than 0 are possible. The

restriction that da,b ≥ 0 is relaxed in this case, since it does not influence the execution

of the algorithm and the results achieved with it. By adding a constant value of 17N

(17 being the largest value for any substitution) to the distance calculation, the metric

can easily be guaranteed to evaluate to a value greater or equal to zero.
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Experiments were executed for N = 15 (l = 7, r = 7). Different ε values in the range

[-45,10] were examined. φ(1) and φ(2) were tested as classification functions and ψ(1) as

assignment function.

5.5.4.3 Results and Discussion

The results obtained are shown in Table 5.19 and are illustrated in Figure 5.23. An

increase from 51.57% to 53.75% for φ(1) and from 55.19% to 56.18% for φ(2) is achieved

using δ(B) instead of δ(1).

Table 5.19: Performance achieved by using BLOSUM distance metric

ε Q8(φ
(1)) Q8(φ

(2)) ε Q8(φ
(1)) Q8(φ

(2)) ε Q8(φ
(1)) Q8(φ

(2))

-45 50.2350 50.2377 -25 51.6133 56.1799 -5 43.4735 56.1744

-44 50.6487 50.6556 -24 51.6284 56.1730 -4 42.7473 56.1744

-43 51.0461 51.0666 -23 51.3941 56.1744 -3 42.0253 56.1744

-42 51.3982 51.4366 -22 51.3023 56.1744 -2 41.1936 56.1744

-41 51.7339 51.8106 -21 51.0420 56.1744 -1 40.4387 56.1744

-40 52.0641 52.1942 -20 50.8090 56.1744 0 39.6947 56.1744

-39 52.3710 52.5696 -19 50.6433 56.1744 1 38.8110 56.1744

-38 52.7053 52.9642 -18 50.2692 56.1744 2 38.1232 56.1744

-37 53.0642 53.4218 -17 49.9034 56.1744 3 37.2998 56.1744

-36 53.3848 53.8863 -16 49.5842 56.1744 4 36.4983 56.1744

-35 53.5863 54.3206 -15 49.2197 56.1744 5 35.7173 56.1744

-34 53.7575 54.8002 -14 48.5826 56.1744 6 34.8843 56.1744

-33 53.6657 55.1701 -13 48.1360 56.1744 7 34.0280 56.1744

-32 53.4876 55.5784 -12 47.5852 56.1744 8 33.2730 56.1744

-31 53.1574 55.7866 -11 47.0440 56.1744 9 32.4948 56.1744

-30 52.7080 55.9579 -10 46.5069 56.1744 10 31.8783 56.1744

-29 52.2723 56.0305 -9 45.9767 56.1744

-28 52.0449 56.1470 -8 45.3807 56.1744

-27 51.9312 56.1785 -7 44.7847 56.1744

-26 51.8476 56.1867 -6 44.1969 56.1744

The good performance under this metric indicates that the substitution values in the
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matrix are good indicators of the similarity between different amino acid residue types.

It is thus a good idea to further investigate the values in the matrix.

The first observation is that the matrix is symmetrical, i.e. substitutions between

different residue types are commutative. Both C and W, and to a lesser extent P, are

not well substituted with any other other residue type, as was found in the previous

experiment. G now joins the ranks of amino acids that are not well substituted by

other amino acids. F and Y are a good substitution, as are I and V, M and L and all

four these with each other as was found in the previous experiment. R and K are good

substitutes as are E and Q. However, unlike in the previous experiment, there is no

strong correspondences between R and K with E and Q. H and A can be substituted

with elements from the R, K, E, Q group but there is no strong correspondence. The

similarity between N and D and between D and E is confirmed using this matrix, and

to a lesser extent the similarities between S and T and between N and K.
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Figure 5.23: Performance achieved by using BLOSUM distance metric
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5.5.4.4 Conclusion

The experiment confirmed that there are similarities between certain types of amino

acid residues. Although there are exceptions, most of these similarities are the same

as those found in the “grouping strategies” and “substitution matrix” experiments.

5.5.5 Experiment: Adaptive Classification Function

5.5.5.1 Objective

In the “distance metric - substitution matrix” experiment (Section 5.5.3), it was shown

that better performance is achieved if the number of similar sequences that are used in

the prediction of the secondary structure associated with a particular target sequence

is not fixed, but rather depends on the target sequence itself. The objective of this

experiment is to see whether a more intelligent choice can be made in the classification

function, and in doing so, how the dependency between the number of similar sequences

and their distance from the target sequence is quantified.

5.5.5.2 Protocol

A window size of 15 (l = 7, r = 7) was used. The set of group labels were the same as

the set of residue labels, that is G = R, with L the identity function. ψ(1) was used as

assignment function.

The distance metric δ(3) was used, with the matrix U as defined by Equation 5.8.

Classification functions φ(4) and φ(5) were tested (refer to Sections 4.6.4 and 4.6.5

respectively). For φ(4), d values in the range [0, 1.5] were tested and for φ(5), c values

in the range [1, 1.5]. Given that the distance from the target sequence to its nearest

neighbour in the training set is given by m, φ(4) simply states that all sequences in the

training set that are as close as m + d should take part in the classification process.

Likewise, φ(5) simply states that all sequences in the training set that are as close as

mc should take part in the classification process.
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5.5.5.3 Results and Discussion

The resulting performance using φ(4) is shown in Table 5.20 and Figure 5.24. The

resulting performance using φ(5) is shown in Table 5.21 and Figure 5.25.

Both classification functions achieve a best performance of about 59.2%, a substantial

improvement on the 55.59% achieved using φ(2) under similar test conditions (which

is by design the value achieved using d = 0 and c = 1). This performance is achieved

using d = 0.35 and c = 1.18. The average number of qualifying neighbours used to

achieve this performance are 14.06 and 15.52 respectively.
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Figure 5.24: Performance using φ(4)

5.5.5.4 Conclusion

The number of contributing neighbours used for classification of a particular sequence

should not be a fixed number but should be dependent on properties of the sequence

itself. In this experiment, it was found that better prediction results are achieved if all
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Table 5.20: Performance using φ(4)

d #Q8 Q8 (%) #Q3 Q3 (%) total neighbours

neighbours per sequence

0.00 40578 55.596 48986 67.116 94588 1.296

0.05 41444 56.783 49233 67.454 125384 1.718

0.10 41942 57.465 49440 67.738 170793 2.340

0.15 42446 58.156 49856 68.308 241928 3.315

0.20 42687 58.486 50019 68.531 343268 4.703

0.25 42893 58.768 50311 68.931 493645 6.763

0.30 43123 59.083 50596 69.322 711592 9.750

0.35 43215 59.209 50789 69.586 1026242 14.061

0.40 43083 59.028 50759 69.545 1480537 20.285

0.45 42971 58.875 50710 69.478 2128628 29.164

0.50 42768 58.597 50624 69.360 3059005 41.912

0.55 42578 58.336 50509 69.203 4349743 59.596

0.60 42250 57.887 50256 68.856 6145464 84.199

0.65 41914 57.427 50009 68.518 8625779 118.182

0.70 41581 56.970 49685 68.074 12008961 164.536

0.75 41242 56.506 49397 67.679 16659348 228.251

0.80 40849 55.968 49016 67.157 22827053 312.755

0.85 40420 55.380 48592 66.576 31034220 425.202

0.90 40034 54.851 48177 66.008 41871486 573.684

0.95 39607 54.266 47771 65.451 55999729 767.256

1.00 39152 53.642 47348 64.872 74555133 1021.485

1.05 38767 53.115 46937 64.309 98074815 1343.730

1.10 38342 52.533 46484 63.688 127959621 1753.184

1.15 37941 51.983 46034 63.072 165675807 2269.936

1.20 37521 51.408 45551 62.410 212712873 2914.394

1.25 37115 50.852 45083 61.769 271778896 3723.662

1.30 36709 50.295 44531 61.012 343354249 4704.321

1.35 36330 49.776 44014 60.304 430388303 5896.780

1.40 35913 49.205 43466 59.553 535486618 7336.740

1.45 35445 48.563 42828 58.679 660840087 9054.216

1.50 34962 47.902 42202 57.821 811391789 11116.936
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Table 5.21: Performance using φ(5)

c #Q8 Q8 (%) #Q3 Q3 (%) total neighbours

neighbours per sequence

1.00 40578 55.596 48986 67.116 94588 1.296

1.01 40953 56.110 49058 67.215 104470 1.431

1.02 41236 56.498 49107 67.282 116502 1.596

1.03 41500 56.859 49237 67.460 130900 1.793

1.04 41702 57.136 49316 67.568 147892 2.026

1.05 41822 57.301 49371 67.644 168131 2.304

1.06 42065 57.634 49567 67.912 191613 2.625

1.07 42196 57.813 49645 68.019 219636 3.009

1.08 42400 58.093 49839 68.285 252742 3.463

1.09 42554 58.304 49975 68.471 291863 3.999

1.10 42639 58.420 50017 68.529 337654 4.626

1.11 42743 58.562 50164 68.730 391414 5.363

1.12 42851 58.710 50323 68.948 454026 6.221

1.13 42834 58.687 50355 68.992 528269 7.238

1.14 42991 58.902 50478 69.160 614324 8.417

1.15 43088 59.035 50584 69.305 715767 9.807

1.16 43110 59.065 50617 69.351 834108 11.428

1.17 43174 59.153 50728 69.503 972358 13.322

1.18 43230 59.230 50800 69.601 1133385 15.529

1.19 43172 59.150 50819 69.627 1319442 18.078

1.20 43123 59.083 50798 69.599 1535899 21.043

1.21 43203 59.193 50917 69.762 1787768 24.494

1.22 43171 59.149 50917 69.762 2079701 28.494

1.23 43105 59.058 50864 69.689 2417576 33.123

1.24 43009 58.927 50799 69.600 2806913 38.458

1.25 43027 58.952 50834 69.648 3256182 44.613

1.26 42915 58.798 50721 69.493 3774825 51.719

1.27 42857 58.719 50736 69.514 4368207 59.849

1.28 42823 58.672 50689 69.449 5049444 69.183

1.29 42771 58.601 50654 69.401 5830512 79.884

1.30 42735 58.552 50656 69.404 6723672 92.122

1.31 42677 58.472 50630 69.369 7744682 106.110

1.32 42577 58.335 50505 69.197 8910715 122.086

1.33 42474 58.194 50390 69.040 10237340 140.263

1.34 42343 58.014 50313 68.934 11742912 160.890

1.35 42220 57.846 50192 68.768 13452230 184.310

1.36 42156 57.758 50155 68.718 15390154 210.862

1.37 42052 57.616 50087 68.625 17584299 240.924

1.38 41932 57.451 49967 68.460 20061561 274.865

1.39 41821 57.299 49828 68.270 22857820 313.177

1.40 41674 57.098 49674 68.059 25998688 356.210

1.41 41613 57.014 49614 67.976 29534671 404.657

1.42 41502 56.862 49498 67.818 33495635 458.926

1.43 41395 56.716 49412 67.700 37934486 519.743

1.44 41290 56.572 49299 67.545 42897131 587.737

1.45 41222 56.479 49216 67.431 48437402 663.644

1.46 41149 56.379 49158 67.352 54609948 748.215

1.47 41029 56.214 49023 67.167 61475988 842.287

1.48 40902 56.040 48850 66.930 69094126 946.663

1.49 40790 55.887 48707 66.734 77547428 1062.483

1.50 40719 55.789 48604 66.593 86852705 1189.975
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Figure 5.25: Performance using φ(5)
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neighbours within a band of the nearest neighbour to the target sequence contribute to

the classification. This size of this band can either be a small fixed value (0.35 under

δ(3) with N = 15) or can depend on the distance of the nearest neighbour (in this case

a width of 0.18 times the distance of the nearest neighbour was found to be effective

under δ(3)). The latter method seems slightly more preferable, since it is invariant with

respect to the size of the window.

A Q8 score of 59.2% was achieved and a Q3 score of 69.76%. It should be noted that

in recent results published by Martin et al [96], Q3 scores of 67.9% and 66.8% for the

OSS-HMM and PSIPRED predictions on single sequences were achieved. The current

method thus compares well with some of the best existing methods.

5.5.6 Experiment: Use of Secondary Structure Information

5.5.6.1 Objective

In all previous experiments, a secondary structure is predicted by comparing the se-

quence of amino acids associated with that secondary structure to other sequences in

the training set. The prediction of the secondary structure is based solely on the sec-

ondary structures associated with similar sequences. It is however known that there is

a strong correspondence between neighbouring secondary structures [96]. For instance,

given that a number of consecutive alpha helix structures have been observed, there is

a strong preference for the next secondary structure to be a helix as well. The objective

of this experiment is investigate whether predicted secondary structure information can

be fruitfully incorporated in the prediction process.

5.5.6.2 Protocol

A window size of 15 (l = 7, r = 7) was used. The set of group labels were the same as

the set of residue labels, that is G = R, with L the identity function. φ(2) was used as

classification function and ψ(1) was used as assignment function.

The idea in this experiment is that already predicted secondary structures should be
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incorporated in the prediction process to predict neighbouring secondary structures.

Initially however, there will be no such predicted secondary structures to begin with. It

should also be noted that there is an uncertainty in any predicted secondary structure:

thus, good predictions are required to start the sequence off.

Target proteins are considered one at a time. The process followed is an iterative one.

In each iteration, one or more secondary structures are predicted at different positions

in the protein. In following iterations, it is assumed that already predicted secondary

structures were correctly predicted, and subsequent predictions are based on this as-

sumption. It is thus entirely possible that an incorrectly predicted secondary structure

could steer the whole process in a wrong direction. For this reason, at each iteration,

the only secondary structures predicted are the ones with the highest confidence of

being correct.

To illustrate the idea further, Figure 5.26 shows an example of a prediction that was

done for a protein in the test set. The line marked “-P” is the primary structure

of the protein and the line marked “-S” the secondary structure of the protein. The

lines from “01” to “27” indicate that 27 iterations were necessary to predict all 55

secondary structures in the protein and each corresponding line shows the secondary

structures that was predicted up to that iteration. In the final line, a star (*) indicates

which secondary structures were correctly assigned. The four columns to the side

of each iteration indicate respectively the cumulative number of predicted secondary

structures at that iteration, the cumulative number of correctly predicted secondary

structures at that iteration, the Q8 value at that iteration and a similarity value used

in that iteration; a concept that will be explained below.

In the first iteration, 11 secondary structures were predicted. These predictions were

based solely on the primary structure. Furthermore, the algorithm determined that

these 11 predictions are the most likely (and equally likely) candidates in all the posi-

tions of the protein. In the second iteration, 4 additional predictions were made. This

time however, the primary structure information was used and it was assumed that the

11 predicted secondary structures in the previous iteration were correctly predicted.

Of course, of the 11 predicted structures only 6 were correctly predicted. The impact it

had can be observed by considering the sequence of six secondary structures CCCCST

in the first iteration. Of these CCCC were correctly predicted but ST were incorrectly
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Figure 5.26: Example of iteratively incorporating secondary structure information in

the prediction process

-P AYVINEACISCGACEPECPVDAISQGGSRYVIDADTCIDCGACAGVCPVDAPVQA

-S CEEECTTCCCCCTTGGGCTTCCEECCSSSCEECTTTCCCCCHHHHTCTTCCEEEC

01 CC----------------------------------CCCCST----------CCC 11 6 54.54 39

02 CC--------------------------------TTCCCCSTTT--------CCC 15 8 53.33 42

03 CC-------------------------------TTTCCCCSTTTTTC-----CCC 19 11 57.89 43

04 CC-------------------------------TTTCCCCSTTTTTC--C--CCC 20 12 60.00 44

05 CC-------------------------------TTTCCCCSTTTTTCT-CC-CCC 22 14 63.63 44

06 CC-------------------------------TTTCCCCSTTTTTCTTCCBCCC 24 15 62.50 45

07 CC------------------------------CTTTCCCCSTTTTTCTTCCBCCC 25 16 64.00 43

08 CC-----------------------------ECTTTCCCCSTTTTTCTTCCBCCC 26 17 65.38 43

09 CC----------------------------EECTTTCCCCSTTTTTCTTCCBCCC 27 18 66.66 43

10 CC---------------------------EEECTTTCCCCSTTTTTCTTCCBCCC 28 18 64.28 43

11 CC--------------------------SEEECTTTCCCCSTTTTTCTTCCBCCC 29 19 65.51 43

12 CC-------------------------SSEEECTTTCCCCSTTTTTCTTCCBCCC 30 20 66.66 40

13 CC------------------------SSSEEECTTTCCCCSTTTTTCTTCCBCCC 31 21 67.74 40

14 CC-----------------------CSSSEEECTTTCCCCSTTTTTCTTCCBCCC 32 22 68.75 40

15 CC----------------------ECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 33 22 66.66 40

16 CC---------------------EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 34 23 67.64 40

17 CC----------------T----EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 35 24 68.57 39

18 CC---------------ST-C--EECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 37 25 67.56 39

19 CC--------------TSTTC-EEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 40 27 67.50 40

20 CC--------------TSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 41 28 68.29 42

21 CC-------------TTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 42 28 66.66 40

22 CC------------TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 43 28 65.11 40

23 CCEECTT-------TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 48 33 68.75 38

24 CCEECTTC------TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 49 34 69.38 40

25 CCEECTTCC-----TTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 50 35 70.00 40

26 CCEECTTCCC--TTTTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 53 38 71.69 40

27 CCEECTTCCCCCTTTTTSTTCCEEECSSSEEECTTTCCCCSTTTTTCTTCCBCCC 55 40 72.72 42

-- *.************....******.****.**********.....******...*
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predicted. In the second iteration, this had a likely influence on predicting the two TT

structures to the left and right of CCCCST, of which TT structure to the left of the

correctly CCCC structure is correctly predicted but the TT structure to the right of

the incorrectly predicted ST is also incorrect.

The question now becomes how the algorithm decides which secondary structure to

predict next and how already predicted secondary structures are incorporated in the

prediction. The solution presented in the algorithm is to adapt the distance metric.

During each iteration, all unpredicted secondary structures are considered for predic-

tion. For each of these, a window of length 15 is created in the target protein and both

the primary structure and partially predicted secondary structure is noted. Thus, for

every such window, there are exactly 15 amino acid residues and between 0 and 14

partially predicted secondary structures. This sequence of amino acids and secondary

structures is then compared to similarly construed structures in the training set.

Comparison of amino acids is straightforward, and can be done using any of the already

created distance metrics. The algorithm was however slightly adapted such that a

score of w is assigned to two matching residue types, and a score of 0 is assigned to

two non-matching residue types. A similarity value is then calculated as the sum of

all these values over 15 residues. Comparison of secondary structures is slightly more

complicated. If a partially predicted secondary structure matches a secondary structure

in the training set in the same position, a value of 1 is assigned. If a partially predicted

secondary structure does not match the secondary structure in the training set in the

same position, or if no prediction has been made, a value of 0 is assigned. A value is

then calculated as the sum of all these values over the 14 secondary structures. The

combined residue and secondary structure score is then used as a similarity value. The

algorithm was tested for w ∈ [1, 4].

During each iteration, all the similarity values are calculated for all unpredicted sec-

ondary structures. All structures with the highest similarity values are retained and a

prediction of secondary structure is then made using a process akin to that used with

φ(2).

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

142



Chapter 5 Results

5.5.6.3 Results and Discussion

The results of the experiment are shown in Table 5.22. The best result is obtained using

w = 3, with a Q8 score of 56.87% (a comparative Q3 score of 67.09% was achieved).

w = 2 and w = 4 perform similarly, but w = 1 performs significantly worse. This is

to be expected, since with w = 1 each predicted secondary structure contributes as

much to the similarity value as each amino acid in the primary structure. A number

of consecutive incorrect predictions can thus more easily lead the process astray. With

a larger value of w, it is easier for the algorithm to “resynchronise”.

Table 5.22: Performance achieved using different methods incorporating predicted sec-

ondary structure information

Method #Q8 Q8 (%)

w = 1 39351 53.915

w = 2 41195 56.442

w = 3 41513 56.877

w = 4 41431 56.765

w = 3 (no edges) 40862 55.985

w = 3 (no coils) 41301 56.587

A test was conducted to see the effect that edges have on a prediction. In the “edge

analysis” experiment (Section 5.3.3), it was demonstrated that coils are very likely to

form near the edge of the protein. This behaviour was readily observed in analysis

of the order in which secondary structures are predicted. Consider Figure 5.26 as

an example, where the coil structures towards the edges of a protein are predicted

first, and other structures are then predicted working inwards. This behaviour could

possibly bias structures toward the center of the protein, which are more likely to

contain biological function. To counter this effect, the function calculating similarity

was changed in such a way that edge types in the primary structure do not contribute to

the calculated similarity values. The forming behaviour changed such that structures

toward the center of the protein are predicted first. However, the achieved performance

dropped to 55.985%. Since no improvement was made in the performance (and actually

an inferior result was achieved), it might be concluded that it is useful to include edge

information in the prediction process.
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A test was also conducted where predicted coil secondary structures do not contribute

to the similarity score. The idea was that since coils do not form regular structures,

their predictive power may be limited. In this scenario, the performance achieved

reduced slightly to 56.59%. Since no improvement was made in the performance, it is

not harmful to include coils as predicted secondary structures.

5.5.6.4 Conclusion

The performance of 56.87% achieved by including predicted secondary structures in

the prediction process is better than the 55.82% achieved in a prior experiment under

similar circumstances. It can thus be concluded that secondary structures are predictive

of other secondary structures, but that it is difficult to incorporate this information to

achieve significantly better performance scores.

This is made especially difficult in some cases where there is difficulty in making good

predictions initially. For such cases, inclusion of predicted secondary structures in the

prediction process may lead it astray rather than improving it.

A good feature about this method is that it can be descriptive of some theories regarding

the actual forming process. In the nucleation and directed folding models (Section

2.2.3) local stable folded conformations form, from which the eventual structure of the

protein is determined. Similar behaviour is observed using this iterative method. First,

local structures that are the most likely to form at certain positions in a sequence are

predicted. The process continues by filling in “gaps” and/or predicting other local

structures, propagating from the already formed structures.
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CONCLUSION

6.1 KEY FINDINGS

The best performance achieved using the method developed in this dissertation for

secondary structure prediction is Q8 = 59.2%. The comparative Q3 score is 69.76%.

In a recent study (2006), Martin et al [96] reported Q3 scores of 67.9% and 66.8% for

OSS-HMM and PSIPRED, two of the leading techniques for prediction of secondary

structure. These results are achieved when predictions are made on single sequences, as

is done in this dissertation. It is difficult to compare the results directly, since different

datasets are used. It is safe to say that the new method compares well with the leading

existing methods. It should be noted however that OSS-HMM achieves a score of 75.5%

[96] and PSIPRED a score of 76% [65] when multiple sequence alignments are used.

Multiple sequences alignments have not been considered in this dissertation.

A number of key findings have been made. Of these, the main ones are discussed below.

• Good predictions can be made when sections of the primary sequence in a target

protein can be mapped to similar sequences in a training set, especially for larger

stretches of matching sequences, i.e. longer sequences have more predictive power

then smaller sequences. This is however practically limited for larger sequences

by the amount of training data available, since not all possible target sequences
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would be covered in the training data. It is thus necessary to have some method

by which the similarity of different sequences can be compared.

• Information about which secondary structure would form for a particular se-

quence of amino acids is distributed across the whole window. However, there is

a tendency for more central amino acids to contribute more to secondary struc-

ture.

• The similarity of sequences can be expressed as a measure of the similarity of

amino acids in matching positions. This similarity can be quantified through the

creation of a similarity matrix. One observation from the similarity matrix is

that substitution between two residue types is not totally commutative. Specific

groups of similar amino acids residues that have been found through different

experiments are: (IV)(LM), (RK)(EQ)(H)(A), ST, FY, DN, NK and ED. C, W

and P are not well substituted by any other residue type.

• An interesting effect, named the “transfer phenomenon” is observed, namely

that secondary structures that can be predicted using sequences of both lengths

N and N +1, are considerably more accurate than secondary structures that can

be predicted using sequences of length N but not N + 1, even when sequences of

only length N are considered. This occurs for N from about 3 to 7 and where an

exact match is required to make a prediction.

• It is advantageous to use a number of sequences similar to a target sequence

when a secondary structure is predicted. The number of such similar sequences

that should be used is not fixed but rather is dependent on the distance of those

sequences to the target sequence. Good performance is achieved when all neigh-

bours that contribute to the prediction lie within a certain band of the distance

of the nearest neighbour. The size of the band can either be a small fixed value

or a small multiple of the distance of the nearest neighbour.

• Secondary structures are predictive of other secondary structures. In order to

incorporate this fact into a prediction scheme requires use of the already predicted

secondary structures. This implies making good predictions initially. Due to the

inherent uncertainty in the predictions, it is difficult to incorporate relationships

between secondary structures in the prediction process in order to achieve better

results.
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6.2 FUTURE WORK

A number of suggestions for future work are discussed below. Each of these is believed

to add valuable insight in understanding the formation of secondary structures and can

be used to further enhance the method developed in this dissertation.

6.2.1 Iterative Adaptation of Substitution Matrix

The substitution matrix developed in Section 5.5.2 was created using the hard δ(1) dis-

tance metric. Using this substitution matrix, a new distance metric δ(3) was developed

in the “distance metric - substitution matrix” experiment (Section 5.5.3).

One idea is that this process can be iteratively repeated, i.e. the new distance metric

can be used instead of the old distance metric, to create a new substitution matrix.

The new substitution matrix is then used to create a new distance metric, and this

process is then repeated until values in the substitution matrix settle.

Although it is suspected that the values in the final substitution matrix will not differ

much from the ones in the current matrix, it will be a more truthful expression of

the similarity between different residue types. It may also lead to better classification

performance.

6.2.2 Position Specific Substitution Matrices

The matrices Ck and Ik (defined by Equations 5.4 and 5.5 respectively), can be used

to define position specific substitution matrices. These matrices indicate the similarity

of amino acids in specific positions in a window.

By studying these matrices, it may be possible to determine whether there are position

specific substitutions that influence the formation of secondary structures at the central

amino acid.
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These matrices can also be iteratively adapted. By incorporating these matrices into

a new distance metric, it may be possible to increase the performance score.

6.2.3 Weight Assignment

Experiments such as “window structure” (Section 5.4.1) and “varying window size”

(Section 5.4.2) indicated that central amino acids influence the formation of local sec-

ondary structure more than amino acids toward the edges of a window.

This influence has not been quantified and could perhaps be used with success in

distance metrics such as δ(2) and δ(3), where equal weight assignments have been made

in current experiments. The influence could perhaps be quantified by studying the Ck

and Ik matrices or using a brute force search for appropriate values.

6.2.4 Secondary Structure Similarity

It has been suggested in the experiments that some secondary structures may be more

alike than others. This is an assumption that is often implicit in secondary structure

research, where the eight classes in the DSSP code are mapped to three, implying

similarity between classes that map to the same structure.

This similarity has not been quantified in the experiments conducted, and it may be

interesting to determine how alike different secondary structures are. It may be possible

to use an approach similar to that used in the creating of the substitution matrix to

create a secondary structure similarity matrix.

6.2.5 Use of Predicted Secondary Structure in Other Predictions

The “Use of Secondary Structure Information” experiment (Section 5.5.6) indicated

that secondary structures are predictive of other secondary structures, but that it is

difficult to incorporate this information to achieve significantly better results using the

suggested algorithm.
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Chapter 6 Conclusion

Perhaps other methods which incorporate predicted secondary structures in the pre-

diction process could be created, or the current method extended. One way to extend

the current method is to determine whether there are small sequences (window size

of seven and smaller) that are reliably indicative of secondary structures. These good

predictions can then be used (together with larger matching sequences) to start off the

prediction process.

Another way could be to incorporate a secondary structure similarity matrix as dis-

cussed in Section 6.2.4 as well as the substitution matrix to create a better distance

metric for matching structures.

It may also be possible to use a probabilistic approach when assigning secondary struc-

tures. Thus, instead of assigning a specific secondary structure to a specific position

(and thereafter assuming that it was correctly predicted), it may be possible to as-

sign probabilities of observing the different secondary structures to each such position.

These probabilities are then used in subsequent iterations. It may even be possible to

adapt the method such that the probabilities can change in subsequent iterations.

The findings of the “adaptive classification function” experiment (Section 5.5.5) also

need to be included, which will further improve performance results. Finally, there

is good reason to suspect that the substitution matrices should themselves actually

depend on the surrounding secondary structure.

6.2.6 Multiple sequence alignment

The current method is applicable to the prediction of single sequences. This method

may be extended such that multiple sequence information is taken into account.

It is suspected that this will further increase performance of the algorithm, and will

make it possible to compare this method more reliably with others found in literature.
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Appendix A

LIST OF PROTEINS

Table A.1 lists the proteins that were used in the training set for the results obtained

in chapter 5.

Table A.1: Proteins in the Training Set

No. No. No. No. No. No. No. No.

119l00 1a0aA0 1a0b00 1a34A0 1aab00 1aaf00 1ab300 1aboA0

1abrA0 1abv00 1abz00 1ac000 1ac500 1aca00 1acf00 1acp00

1ad0A0 1ad0B0 1ad200 1ad3A0 1ad9H0 1ad9L0 1adeA0 1adjA0

1adn00 1adoA0 1adr00 1ads00 1adwA0 1adx00 1ae6H0 1ae700

1aeiA0 1aep00 1aew00 1af700 1af800 1afi00 1afoA0 1afp00

1afvH0 1ag200 1ag8A0 1ag9A0 1agdA0 1agg00 1agi00 1agjA0

1agnA0 1agrE0 1agt00 1agx00 1ah600 1ah700 1ah900 1ahdP0

1ahl00 1aho00 1ahpA0 1ahq00 1ahsA0 1ahtL0 1ai1H0 1aie00

1aihA0 1aijL0 1aijM0 1aikC0 1aikN0 1aim00 1aipC0 1air00

1aisB0 1ajj00 1ajsA0 1ajyA0 1ak000 1ak200 1ak4C0 1ak600

1akz00 1al010 1al0B0 1al300 1ala00 1alo00 1alvA0 1aly00

1am300 1amb00 1amf00 1amk00 1amm00 1amp00 1amw00 1amy00

1an2A0 1an4A0 1an9A0 1ang00 1ann00 1ans00 1anu00 1anwA0

1ao7D0 1aocA0 1aoeA0 1aogA0 1aohB0 1aokB0 1aoo00 1aorA0

1aotF0 1aoy00 1aozA0 1ap6A0 1ap800 1apa00 1apf00 1apq00

1aps00 1apxA0 1apyB0 1aq0A0 1aq5A0 1aq6A0 1aqb00 1aqdA0

Continued on next page. . .
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Appendix A List of Proteins

Table A.1 – Continued

No. No. No. No. No. No. No. No.

1aqdB0 1aqkH0 1aqt00 1ar1A0 1ar1B0 1ar1C0 1ar1D0 1arb00

1ard00 1ark00 1arn00 1ars00 1aru00 1as4A0 1as8A0 1ash00

1ass00 1atiA0 1atlA0 1atu00 1aty00 1au7A0 1auiA0 1auiB0

1aun00 1autC0 1auuA0 1auwA0 1auyA0 1avk00 1avmA0 1avoA0

1avoB0 1avpA0 1avqA0 1avsA0 1avyA0 1aw2A0 1awcA0 1awcB0

1awd00 1awe00 1awj00 1axh00 1axj00 1axsH0 1axsL0 1ayaA0

1ayj00 1aym10 1aym20 1azcA0 1azsA0 1azsC0 1azvA0 1azzA0

1b5m00 1babA0 1babB0 1bafH0 1bak00 1bal00 1bba00 1bbjL0

1bbpA0 1bbt10 1bbt20 1bbt30 1bbt40 1bcpC0 1bcpD0 1bcpF0

1bdo00 1bds00 1bec00 1beo00 1bet00 1bfd00 1bfg00 1bfi00

1bfmA0 1bfs00 1bftA0 1bgf00 1bgk00 1bgp00 1bhgA0 1bhp00

1bi6H0 1bif00 1binA0 1ble00 1blf00 1blj00 1blu00 1bme00

1bmfG0 1bmg00 1bmtA0 1bmv10 1bmv20 1bnb00 1bndB0 —–

1bomA0 1bor00 1bovA0 1bp100 1bpyA0 1bquB0 1breA0 1brnL0

1bryY0 1bsrA0 1btl00 1btmA0 1btn00 1btq00 1bts00 1bucA0

1bunA0 1burS0 1bv100 1bvd00 1bvp10 1bw300 1c2rA0 1cauA0

1cauB0 1cb100 1cb2A0 1cbg00 1cbh00 1cbn00 1cbs00 1cc500

1ccd00 1cdg00 1cdkI0 1cdlG0 1cdq00 1cdtA0 1cdy00 1ceaA0

1cei00 1cem00 1cewI0 1cex00 1cfaA0 1cfb00 1cfe00 1cfh00

1cfr00 1cfvH0 1cfvL0 1cfyA0 1cghA0 1cgmE0 1cgt00 1chc00

1chkA0 1chl00 1cid00 1cii00 1ciu00 1ciy00 1ckaA0 1cksA0

1clc00 1cleA0 1clf00 1clh00 1cll00 1cloL0 1clpA0 1clxA0

1clzH0 1cmr00 1cod00 1coi00 1colA0 1coo00 1cosA0 1cov20

1cov30 1cpcA0 1cpo00 1cpq00 1cpy00 1crb00 1cre00 1crkA0

1cry00 1cseI0 1csh00 1csn00 1csp00 1csyA0 1ctaA0 1ctf00

1ctn00 1cto00 1ctt00 1cwpA0 1cxc00 1cydA0 1cynA0 1cyo00

1cyx00 1d66A0 1daaA0 1dad00 1danH0 1dapA0 1dbbH0 1dcoA0

1dctA0 1ddf00 1deaA0 1-Dec-00 1def00 1dehA0 1dem00 1dfbH0

1dfnA0 1dhmA0 1dhpA0 1difA0 1dipA0 1div00 1djxA0 1dkzA0

1dlc00 1dmb00 1dmc00 1dme00 1dmr00 1dnpA0 1dokA0 1dorA0

1dpe00 1dpgA0 1dpo00 1dro00 1drs00 1drw00 1dtc00 1dubA0

1dupA0 1dutA0 1dvfC0 1dxgA0 1dxy00 1dynA0 1dyr00 1eaf00

1eal00 1eapB0 1ebdA0 1eca00 1ecfA0 1eciA0 1eciB0 1ecmA0

1ecrA0 1ede00 1edg00 1edhA0 1edi00 1edmB0 1edn00 1edt00

1efnB0 1eft00 1efuB0 1efvA0 1efvB0 1eg1A0 1ego00 1ehs00
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No. No. No. No. No. No. No. No.

1eit00 1elg00 1elpA0 1elt00 1emn00 1emy00 1enh00 1enp00

1eny00 1epmE0 1eps00 1erd00 1eriA0 1erk00 1erp00 1erv00

1esc00 1esl00 1etfB0 1etpA0 1eur00 1exg00 1exp00 1extA0

1ezm00 1f3z00 1faiH0 1fas00 1fbaA0 1fbiH0 1fbr00 1fcdA0

1fdhG0 1fdx00 1fgjA0 1fgjA2 1fgnH0 1fgp00 1fgvL0 1figH0

1fipA0 1fjlA0 1fjmA0 1fkf00 1fleI0 1fliA0 1flp00 1fmb00

1fmcA0 1fmd10 1fmd30 —– 1fna00 1fonA0 1fosF0 1fptH0

1frd00 1fre00 1froA0 1frrA0 1frsA0 1frvA0 1frvB0 1fsd00

1ft1A0 1ft1B0 1ftn00 1ftpA0 1ftt00 1fua00 1fujA0 1furA0

1fvcB0 1fvkA0 1fvl00 1fwcB0 1fwp00 1fxd00 1fxiA0 1fxrA0

1fyc00 1fzbA0 1gadO0 1gafH0 1gafL0 1gai00 1gal00 1ganA0

1gbqA0 1gcb00 1gcmA0 1gcn00 1gd1O0 1gdhA0 1gecE0 1gen00

1gesA0 1gfc00 1ggaO0 1ggiH0 1ggiL0 1ghc00 1ghfH0 1ghj00

1gia00 1gifA0 1gigH0 1gks00 1gky00 1gln00 1glqA0 1gnd00

1gnhA0 1gnwA0 1gof00 1gotB0 1gotG0 1gp2G0 1gpb00 1gpc00

1gpl00 1gpmA0 1gpoH0 1gps00 1gpt00 1gsa00 1gseA0 1gsuA0

1gta00 1gtqA0 1guaA0 1guaB0 1gur00 1gvp00 1gypA0 1hae00

1havA0 1hbg00 1hbhA0 1hcc00 1hcd00 1hcgB0 1hcnA0 1hcrA0

1hcv00 1hcz00 1hdaA0 1hdaB0 1hdcA0 1hdgO0 1hdp00 1hdsB0

1hev00 1hfc00 1hfi00 1hfs00 1hfyA0 1hiaI0 1hilA0 1hip00

1hiwA0 1hjrA0 1hks00 1hleA0 1hlm00 1hloA0 1hme00 1hml00

1hmpA0 1hmt00 1hnf00 1hnr00 1hocA0 1hoe00 1hp800 1hpgA0

1hplA0 1hpm00 1hpt00 1hqi00 1hrc00 1hrdA0 1hrjA0 1hrm00

1hroA0 1hrtI0 1hryA0 1hsbA0 1hsbB0 1hslA0 1hsq00 1htiA0

1htn00 1htrB0 1hucA0 1hueA0 1huiB0 1hulA0 1humA0 1hup00

1hurA0 1huw00 1hxn00 1hymA0 1hymB0 1hyxH0 1iab00 1iag00

1iaiI0 1iaiM0 1iba00 1ibeA0 1ibeB0 1ibgH0 1ibgL0 1ica00

1iceA0 1iceB0 1idaA0 1idk00 1idsA0 1idy00 1ieaA0 1ieaB0

1if1A0 1ifc00 1ife00 1ifi00 1ift00 1igcL0 1igd00 1igfH0

1igl00 1igmH0 1igmL0 1igtB0 1ihfA0 1ihfB0 1ihvA0 1iibA0

1il600 1iml00 1indH0 1inp00 1ioaA0 1iob00 1iow00 1iphA0

1ipsA0 1irsA0 1iscA0 1iskA0 1isuA0 1itf00 1ithA0 1iuz00

1iva00 1ivd00 1ivyA0 1ixh00 1jacA0 1jafA0 1jbc00 1jcv00

1jdc00 1jdw00 1jer00 1jetA0 1jhgA0 1jhlL0 1jli00 1jlyA0

1joi00 1jrhI0 1jsg00 1jsuC0 1jswA0 1jtb00 1jug00 1-Jul-00
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1junA0 1kal00 1kao00 1kapP0 1kaz00 1kbaA0 1kbcA0 1kdu00

1kevA0 1kit00 1klo00 1kmmA0 1knb00 1koa00 1kptA0 1krn00

1krs00 1ksr00 1kst00 1ktx00 1kuh00 1kvdA0 1kveA0 1kvoA0

1kxu00 1kzuA0 1kzuB0 1lam00 1latA0 1lba00 1lbd00 1lbeA0

1lbu00 1lcl00 1lct00 1ldg00 1ldl00 1ldnA0 1ldr00 1lea00

1lefA0 1lehA0 1lenB0 1lfaA0 1lghA0 1lghB0 1lht00 1liaA0

1liaB0 1lid00 1lilA0 1lis00 1lkkA0 1lldA0 1llp00 1lmb30

1lmkA0 1lmq00 1lmwB0 1loeB0 1loi00 1lopA0 1lpbB0 1lpfA0

1lpp00 1lpt00 1lqh00 1lre00 1lrv00 1lsi00 1lt5D0 1lte00

1ltsA0 1ltsC0 1lucA0 1lve00 1lvl00 1lxa00 1lxdA0 1lybB0

1lyp00 1lzr00 1maj00 1mamH0 1mat00 1maz00 1mba00 1mbe00

1mbs00 1mcpH0 1mctA0 1mctI0 1mdaH0 1mdl00 1mdyA0 1mea00

1meeA0 1mek00 1melA0 1memA0 1meyC0 1mgsA0 1mh100 1mhcA0

1mhlA0 1mhyB0 1mhyD0 1mimH0 1mimL0 1mioA0 1mioB0 1mjc00

1mkaA0 1mla00 1mlbB0 1mldA0 1mmc00 1mml00 1mn100 1mnmA0

1mnmC0 1mntA0 1mof00 1molA0 1mpp00 1mrg00 1mrj00 1mrk00

1msc00 1msi00 1msk00 1mspA0 1mtx00 1mtyB0 1mtyG0 1mugA0

1mup00 1mvi00 1mvj00 1mwe00 1mzm00 1nah00 1nal10 1nar00

1nawA0 1nbaA0 1nbvH0 1ncbH0 1ncbL0 1nciA0 1ncs00 1nct00

1ncvA0 1nea00 1nfa00 1nfdA0 1nfdE0 1nfdF0 1nfp00 1ngr00

1nhkL0 1nhp00 1nif00 1nin00 1nipA0 1nirA0 1nkl00 1nloC0

1nmbH0 1nnc00 1nnt00 1noa00 1nor00 1novA0 1novD0 1nox00

1noyA0 1np400 1npc00 1npk00 1npoA0 1nqbA0 1nra00 1nscA0

1nsgB0 1nsj00 1nsyA0 1ntn00 1ntr00 1ntx00 1nueA0 1nxb00

1nzyA0 1obpA0 1obr00 1obwA0 1obwB0 1oef00 1oeg00 1ofgA0

1ofv00 1ojt00 1omn00 1onrA0 1opbA0 1opc00 1opgH0 1opr00

1osa00 1ospH0 1ospL0 1ospO0 1otfA0 1otgA0 1ounA0 1outA0

1ovwA0 1oxa00 1oyc00 1p3800 1pamA0 1pax00 1paz00 1pbk00

1pbn00 1pbwA0 1pce00 1pcfA0 1pch00 1pcs00 1pdc00 1pdo00

1pdr00 1pdz00 1pea00 1peh00 1pei00 1pex00 1pfc00 1pfiA0

1pfkA0 1pft00 1pfxC0 1pgb00 1pgs00 1pgtA0 1phb00 1phk00

1phnA0 1pho00 1php00 1phr00 1pht00 1pidA0 1pidB0 1pk400

1pkm00 1pkp00 1pla00 1plc00 1plfA0 1plgH0 1plp00 1plq00

1pls00 1pmaA0 1pmaB0 1pmc00 1pmlA0 1pmpA0 1pmy00 1pnbB0

1pnh00 1pnkA0 1pnkB0 1poa00 1poc00 1poiA0 1poiB0 1ponB0
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1pot00 1poxA0 1pp2R0 1ppa00 1ppeI0 1ppfE0 1ppo00 1pprM0

1ppt00 1prn00 1pru00 1ps200 1psdA0 1pse00 1pskL0 1psm00

1psoE0 1ptf00 1pth00 1ptq00 1pty00 1puc00 1pud00 1pueE0

1put00 1pvc20 1pvc30 1pyaA0 1pyc00 1pyiA0 1pysA0 1pysB0

1pytA0 1pytD0 1qapA0 1qba00 1qdp00 1qli00 1qnf00 1qoaA0

1qorA0 1que00 1qyp00 1r0910 1r0920 1r1a10 1r1a20 1r1a30

1r6900 1ra900 1raiA0 1raiB0 1rblA0 1rblM0 1rcb00 1rcf00

1rcy00 1rdg00 1rdo10 1rds00 1reqA0 1reqB0 1res00 1rfs00

1rhi20 1rhi30 1rhpA0 1rie00 1ril00 1ris00 1rlw00 1rmd00

1rmfH0 1rmvA0 1rodA0 1roe00 1rom00 1roo00 1rot00 1rpa00

1rpb00 1rpmA0 1rpo00 1rro00 1rsy00 1rvaA0 1sacA0 1sap00

1sat00 1sba00 1sbp00 1schA0 1scmA0 1sco00 1sctA0 1sctB0

1scuB0 1scy00 1se400 1semA0 1sesA0 1sfe00 1sgpE0 1sgpI0

1sh100 1shaA0 1shfA0 1sis00 1sju00 1sltA0 1sly00 1smd00

1smeA0 1smpI0 1smrA0 1smtA0 1snb00 1sol00 1sp100 1sp200

1spf00 1spgA0 1sphA0 1spiA0 1sqc00 1srdA0 1sro00 1srrA0

1srsA0 1stfI0 1stmA0 1stu00 1sup00 1sva10 1svb00 1svn00

1svpA0 1svq00 1sxm00 1tafA0 1tap00 1tbd00 1tbrR0 1tc3C0

1tca00 1tdtA0 1tehA0 1ten00 1ter00 1tf3A0 1tf4A0 1tfe00

1tfi00 1tfpA0 1tfs00 1tfxC0 1tgsI0 1tgxA0 1theA0 1thm00

1thv00 1thx00 1tib00 1tih00 1tiiC0 1tiiD0 1tis00 1tiv00

1tlfA0 1tme10 1tme20 1tmy00 1tnrA0 1tns00 1tocR0 1tof00

1tph10 1trkA0 1trlA0 1trnA0 1try00 1tsg00 1tsk00 1tsy00

1ttbA0 1tuc00 1tud00 1tul00 1tupA0 1tvdA0 1tvs00 1tvxA0

1txa00 1txm00 1tys00 1tzeE0 1uae00 1ubdC0 1ubi00 1ubsB0

1uby00 1ucbH0 1ucbL0 1uch00 1ucyH0 1ucyJ0 1udc00 1udg00

1udh00 1udiI0 1ukrA0 1ukz00 1ula00 1unkA0 1urnA0 1utg00

1uxc00 1uxy00 1vapA0 1vcaA0 1vdc00 1vdfA0 1vdrA0 1vfaA0

1vfaB0 1vgeH0 1vgeL0 1vhh00 1vhiA0 1vhp00 1vhrA0 1vid00

1vii00 1vin00 1vip00 1vktA0 1vls00 1vlxA0 1vnc00 1vnd00

1vokA0 1volA0 1vpi00 1vpsA0 1vpu00 1vsd00 1vsgA0 1vtmP0

1vtx00 1vvc00 1wab00 1wad00 1waj00 1wapA0 1wba00 1wdcA0

1wdcB0 1wdcC0 1wer00 1wfbA0 1wgjA0 1whi00 1who00 1whtA0

1wtuA0 1xaa00 1xbl00 1xbrA0 1xdtR0 1xgsA0 1xib00 1xikA0

1ximA0 1xlaA0 1xnb00 1xsm00 1xtcA0 1xtcC0 1xxbA0 1xyn00
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1xyzA0 1yaiA0 1yasA0 1yat00 1ycqA0 1ycrA0 1ycsB0 1ydvA0

1yecL0 1yedH0 1yge00 1ykfA0 1yna00 1ypcI0 1yprA0 1yrnA0

1yrnB0 1ytbA0 1ytfB0 1ytfC0 1ytiA0 1ytw00 1yua00 1yub00

1yuf00 1yuhH0 1yuiA0 1yveI0 1zaq00 1zda00 1zec00 1zfd00

1zfo00 1zia00 1zin00 1ztn00 1zxq00 256bA0 2aaa00 2aaiB0

2aak00 2abk00 2abxA0 2acg00 2act00 2afgA0 2ak3A0 2-Apr-00

2asr00 2atcB0 2baa00 2bbkH0 2bbkL0 2bbmB0 2bltA0 2bnh00

2bopA0 2bpa10 2bpa20 2bpa30 2btfA0 2cba00 2ccyA0 2cdx00

2cgpC0 2cgrH0 2chbD0 2chr00 2chsA0 2cnd00 2cro00 2cstA0

2ctx00 2cy300 2cyp00 2dgcA0 2dldA0 2drpA0 2dtr00 2ech00

2eql00 2eti00 2ezdA0 2ezh00 2fb4L0 2fbjH0 2fx200 2fxb00

2gdm00 2gf100 2gliA0 2gmfA0 2gsq00 2gsrA0 2h1pH0 2hipA0

2hmqA0 2hpdA0 2hppP0 2hpqP0 2hrpH0 2hrpL0 2hvm00 2ifo00

2ilk00 2imn00 2jxrA0 2ldx00 2leu00 2lhb00 2liv00 2ltnA0

2masA0 2mcm00 2mev10 2mev20 2mev30 2mhr00 2mhu00 2mrb00

2mtaC0 2nacA0 2nllA0 2ohxA0 2omf00 2pelA0 2pgd00 2pghA0

2pghB0 2phy00 2pia00 2pii00 2pkaA0 2pkaB0 2plc00 2pldA0

2plt00 2polA0 2por00 2prd00 2pspA0 2ptd00 2ptl00 2rbiA0

2rhe00 2rmcA0 2rn200 2sas00 2scpA0 2sfa00 2sga00 2sicI0

2sil00 2sn300 2sns00 2spcA0 2sttA0 2stv00 2tbs00 2tbvA0

2tgi00 2tmdA0 2tmvP0 2trxA0 2tysB0 2u1a00 2ucz00 2vaaA0

2vik00 2vpfB0 2wbc00 351c00 3adk00 3btoA0 3c2c00 3chy00

3cla00 3cyr00 3dfr00 3gar00 3gpdR0 3grs00 3il800 3ladA0

3ldh00 3lip00 3lzt00 3mddA0 3ovo00 3p2pA0 3pchA0 3pfk00

3pmgA0 3pte00 3rnt00 3rp2A0 3rubS0 3sdhA0 3sdpA0 3sicI0

3tgl00 3tss00 4aahA0 4cpv00 4fxc00 4gatA0 4gpd10 4kbpA0

4mdhA0 4pgaA0 4pgmA0 4rhn00 4sbvA0 4sgbI0 5cytR0 5hpgA0

5icb00 5ldh00 5nul00 5p2100 5pal00 5pti00 5znf00 6cel00

6fabH0 6fd100 6gsvA0 6rlxB0 6rxn00 6taa00 7aatA0 7ahlA0

7pcy00 7rsa00 8abp00 8acn00 8dfr00 8fabA0 8i1b00 8rucI0

8rucK0 8rxnA0 8tlnE0 9ldtA0 9pcy00 9rnt00
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Table A.2 lists the proteins that were used in the testing set for the results obtained

in chapter 5.

Table A.2: Proteins in the Testing Set

No. No. No. No. No. No. No. No.

1aa200 1aa7A0 1abrB0 1ac6A0 1aci00 1acw00 1ae6L0 1af6A0

1afrA0 1afsA0 1afwB0 1aijH0 1ail00 1aisA0 1aj300 1aj8A0

1aje00 1ajz00 1ak100 1akeA0 1ako00 1akp00 1aky00 1alkA0

1allA0 1allB0 1aonO0 1aoqA0 1ap2B0 1apj00 1apo00 1apyA0

1aqkL0 1as4B0 1aszA0 1ata00 1atx00 1atzA0 1aua00 1auoA0

1avdA0 1aw000 1axn00 1aym30 1bbhA0 1bbi00 1bbrL0 1bcpB0

1bebA0 1bed00 1bkf00 1bmfA0 1bmfD0 1bmp00 1bndA0 1bno00

1broA0 1bunB0 1caa00 1cbiA0 1cby00 1cch00 1ccr00 1cd1A0

1cd800 1cdcB0 1cdkA0 1cdoA0 1cdwA0 1cerO0 1cfg00 1cfpA0

1cg2A0 1chd00 1chmA0 1cis00 1ckmA0 1cld00 1cmbA0 1cnpA0

1cnv00 1cot00 1cov10 1cpcB0 1cpn00 1cseE0 1ctj00 1cx2A0

1cyg00 1cyj00 1cyu00 1dhkA0 1dhr00 1dhx00 1dja00 1dktA0

1doi00 1dot00 1dox00 1drf00 1dsuA0 1dtk00 1dvh00 1eapA0

1ebdC0 1ebpA0 1eceA0 1ecpA0 1egdA0 1egf00 1ethA0 1fca00

1fcdC0 1fct00 1fecA0 1fgnL0 1fmd20 1fnc00 1forH0 1fosE0

1fsb00 1ftz00 1fvcA0 1fvpA0 1fwcA0 1fzbB0 1gab00 1gatA0

1gbg00 1gca00 1gclA0 1gdoA0 1gff10 1gff20 1gggA0 1ghsA0

1gluA0 1gowA0 1gpoL0 1gpr00 1gtmA0 1guqA0 1gzi00 1hbhB0

1hcb00 1hcnB0 1hcqA0 1hdj00 1hdsA0 1hfx00 1hgeA0 1hlb00

1hlcA0 1hleB0 1hlpA0 1hma00 1hmy00 1hna00 1hph00 1hpi00

1hra00 1hstA0 1htmB0 1htp00 1htrP0 1hucB0 1hyp00 1hyxL0

1iaiH0 1ido00 1igjB0 1igtA0 1ikfH0 1ilr10 1imp00 1irf00

1iro00 1itbB0 1iyu00 1jfo00 1jhlH0 1jmcA0 1jpc00 1jud00

1jvr00 1jxpA0 1kelH0 1kid00 1knyA0 1kpf00 1ksaA0 1kte00

1kveB0 1kxiA0 1lab00 1lccA0 1lgyA0 1lit00 1lki00 1lktA0

1lpbA0 1lucB0 1lybA0 1mai00 1mbg00 1mblA0 1mdaL0 1mhcB0

1mhlC0 1mhyG0 1mil00 1mmq00 1mpaH0 1mpgA0 1mrp00 1mtyD0

1mut00 1mvmA0 1myjA0 1mylA0 1myn00 1nbcA0 1ndh00 1neq00

1nfdB0 1nldH0 1nls00 1nsa00 1nsqA0 1nwpA0 1oatA0 1ocp00

1octC0 1oneA0 1orc00 1ordA0 1outB0 1ovaA0 1paa00 1pafA0

1pal00 1pbe00 1pca00 1pdnC0 1pfsA0 1pi200 1pii00 1pmi00
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No. No. No. No. No. No. No. No.

1pnbA0 1pne00 1pov10 1pov30 1ppn00 1prr00 1pscA0 1psj00

1psv00 1pvaA0 1pvc10 1pyaB0 1qpg00 1qrdA0 1r0930 1r0940

1rcd00 1regX0 1reiA0 1rfbA0 1rgeA0 1rgs00 1rhi10 1rip00

1rkd00 1rlaA0 1rmg00 1ron00 1rtp10 1ryt00 1scuA0 1sdf00

1seiA0 1sftA0 1sgt00 1shcA0 1shg00 1shp00 1skyE0 1skz00

1smnA0 1smvA0 1spbP0 1sra00 1srb00 1sso00 1std00 1sxcA0

1sxl00 1tabI0 1tadA0 1tcrA0 1tgj00 1thjA0 1tif00 1tig00

1tit00 1tlk00 1tme40 1tml00 1tnfA0 1tpfA0 1tpg00 1tx4A0

1ulo00 1vcc00 1vcpA0 1vie00 1vig00 1vmoA0 1vtp00 1vwlB0

1whtB0 1wit00 1wjdB0 1wtlA0 1xsoA0 1xvaA0 1ybvA0 1ycc00

1yecH0 1ytc00 1zer00 1zncA0 1znf00 1zto00 1zymA0 2acy00

2arcA0 2atjA0 2ayh00 2bb200 2bbvA0 2cmd00 2ctc00 2dkb00

2dri00 2ebn00 2end00 2erl00 2ezk00 2fb4H0 2fbjL0 2fcr00

2fha00 2gsaA0 2hlcA0 2knt00 2lbp00 2mltA0 2msbA0 2myr00

2ncm00 2nllB0 2pkc00 2plh00 2pna00 2pta00 2pth00 2ran00

2sak00 2uce00 3minB0 3mra00 4aahB0 4hb100 4mt200 6fabL0

6ldh00 7catA0 7timA0

Department of Electrical, Electronic and Computer Engineering
University of Pretoria

168




