The impact of complimentary advertising strategies on sponsored search advertisement

Etienne van der Linde
99043930

A research project submitted to the Gordon Institute of Business Science, University of Pretoria, in partial fulfilment of the requirements for the degree of Master of Business Administration.

10 November 2010
ABSTRACT

The aim of this research was to find relationships between complimentary advertising strategies and sponsored search advertisement (SSA) in order to formulate a model to maximise return on investment achieved from online sponsored search advertisements. The results obtained from statistical analyses of SSA campaign data showed that complimentary online and offline advertisement campaigns have various different correlations to impressions, click-through rates, number of pages visited, time spent visiting a website, bounce rate of visitors to the website, cost-per-click and number of new registrations per keyword search from visitors gained through SSA campaigns.

In particular, online display advertisements were found to have a slight positive correlation with new registrations made by customers gained through a simultaneously running SSA campaign. Offline radio adverts were found to have a positive correlation with impressions gained for SSA campaigns, whilst at the same time showing a negative correlation with the number of pages viewed by website visitors obtained through the SSA campaign. Some negative correlations to SSA campaign performance were also found, with the time visitors spent viewing the website decreasing, their bounce rate increasing and the cost-per-clicks for the keywords in the SSA campaign also increasing during periods when offline radio adverts were active. Offline television adverts were found to have a negative correlation with impressions gained for SSA campaigns, as well as the click-through rate for the keywords in these SSA campaigns. Offline television adverts did however also show a negative correlation with the cost-per-clicks for keywords in the SSA campaigns.

Finally, a graphical model was developed to illustrate these correlations found between complimentary advertisement campaigns and SSA performance metrics.
KEYWORDS

Online Marketing

Sponsored Search Advertisement (SSA)

Impressions

Click-Through Rates (CTR)

Cost-per-Click (CPC)
DECLARATION

I declare that this research project is my own work. It is submitted in partial fulfilment of the requirements for the degree of Master of Business Administration at the Gordon Institute of Business Science, University of Pretoria. It has not been submitted before for any degree or examination at any other university. I further declare that I have obtained the necessary authorisation and consent to carry out his research.

__

Etienne van der Linde
10 November 2010
ACKNOWLEDGEMENTS

A special word of thanks to my supervisor, Justinus Adriaanse, from the Gordon Institute of Business Science at the University of Pretoria for his support, guidance and enthusiasm throughout this research project.

The author would also like to thank the various local and foreign companies who participated in this research, and their representatives who aided in the process of gaining access to and processing sensitive data.

I would last but not least like to thank my family and loved ones, who supported and motivated me throughout this research process. In particular my partner and friend, Melissa, for her dedicated support and compromises made.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>..</td>
</tr>
<tr>
<td>KEYWORDS</td>
<td>..</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>..</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>...</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>..</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>..</td>
</tr>
<tr>
<td>1.1</td>
<td>Research Title</td>
</tr>
<tr>
<td>1.2</td>
<td>Research Problem</td>
</tr>
<tr>
<td>1.3</td>
<td>Research Objectives</td>
</tr>
<tr>
<td>1.4</td>
<td>Research Aim</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>..</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of Advertisement</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Sponsored search advertisement</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Non-sponsored search advertisement</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Display advertisement</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Offline advertisement</td>
</tr>
<tr>
<td>2.3</td>
<td>Combining Strategies</td>
</tr>
<tr>
<td>2.4</td>
<td>Advertisement Success Indicators</td>
</tr>
<tr>
<td>2.5</td>
<td>Conclusion</td>
</tr>
<tr>
<td>3 RESEARCH HYPOTHESES</td>
<td>..</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.2</td>
<td>Objective 1: Influence of Complimentary Adverts on Impressions</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Impressions: Online Adverts</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Impressions: Offline Adverts</td>
</tr>
<tr>
<td>3.3</td>
<td>Objective 2: Influence of Complimentary Adverts on Click-Through Rates</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Click-Through Rate: Online Adverts</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Click-Through Rate: Offline Adverts</td>
</tr>
<tr>
<td>3.4</td>
<td>Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Pages Visited: Online Adverts</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Pages Visited: Offline Adverts</td>
</tr>
</tbody>
</table>
3.4.3 *Time Spent: Online Adverts* ...26
3.4.4 *Time Spent: Offline Adverts* ...26
3.4.5 *Bounce Rate: Online Adverts* ...27
3.4.6 *Bounce Rate: Offline Adverts* ...27

3.5 Objective 4: Influence of Complimentary Advertisements on Cost28
3.5.1 *Cost-per-Click: Online Adverts* ...28
3.5.2 *Cost per Click: Offline Adverts* ..28

3.6 Objective 5: Influence of Complimentary Advertisements on Sales29
3.6.1 *Sales: Online Adverts* ...29
3.6.2 *Sales: Offline Adverts* ..30

4 RESEARCH METHODOLOGY ..31
4.1 Research Methodology ..31
4.2 Unit of Analysis ..32
4.3 Population of Relevance ..32
4.4 Sampling Method and Size ...33
4.5 Data Collection Process ..33
4.6 Data Analysis Approach ..34
4.7 Research Methodology Limitations ..35

5 RESULTS ...37
5.1 Introduction ...37
5.2 Objective 1: Influence of Complimentary Adverts on Impressions37
5.2.1 *Impressions: Online Display Adverts* ...37
5.2.2 *Impressions: Offline Adverts* ..39
5.2.2.1 *Impressions: Offline Radio Adverts* ...39
5.2.2.2 *Impressions: Offline Television Adverts*42
5.3 Objective 2: Influence of Complimentary Adverts on Click-Through Rates ..44
5.3.1 *Click-Through Rate: Online Display Adverts*45
5.3.2 *Click-Through Rate: Offline Adverts* ..47
5.3.2.1 *Click-Through Rate: Offline Radio Adverts*47
5.3.2.2 *Click-Through Rate: Offline Television Adverts*50
5.4 Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour 52
5.4.1 *Pages Visited: Online Display Adverts* ...52
5.4.2 *Pages Visited: Offline Radio Adverts* ..54
5.4.3 *Time Spent: Online Display Adverts* ..57
5.4.4 Time Spent: Offline Radio Adverts ...59
5.4.5 Bounce Rate: Online Display Adverts ...62
5.4.6 Bounce Rate: Offline Display Adverts ...64
5.5 Objective 4: Influence of Complimentary Advertisements on Cost66
 5.5.1 Cost per Click: Online Display Adverts ..67
 5.5.2 Cost per Click: Offline Adverts ...69
 5.5.2.1 Cost per Click: Offline Radio Adverts ...69
 5.5.2.2 Cost per Click: Offline Television Adverts71
5.6 Objective 5: Influence of Complimentary Advertisements on Sales73
 5.6.1 New Registrations: Online Display Adverts ..74
 5.6.2 New Registrations: Offline Radio Adverts ..76
5.7 Conclusion ...78

6 DISCUSSION OF RESULTS ..80
 6.1 Introduction ..80
 6.2 Objective 1: Influence of Complimentary Adverts on Impressions80
 6.3 Objective 2: Influence of Complimentary Adverts on Click-Through Rates .81
 6.4 Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour 83
 6.5 Objective 4: Influence of Complimentary Advertisements on Cost85
 6.6 Objective 5: Influence of Complimentary Advertisements on Sales86
 6.7 Research Question ..87

7 CONCLUSION ...88
 7.1 Introduction ..88
 7.2 Findings ...88
 7.3 Recommendations ...90
 7.4 Limitations ..93
 7.5 Suggestions for future research ...95

REFERENCES ...98

APPENDICES ...1
 A.1 Objective 1.1.1: Statistical Results - Impressions for Online Display Adverts1
 A.2 Objective 1.2.1.a: Statistical Results - Impressions for Offline Radio Adverts (a) 2
 A.3 Objective 1.2.1.b: Statistical Results - Impressions for Offline Radio Adverts (b) 3
 A.4 Objective 1.2.2: Statistical Results - Impressions for Offline Television Adverts .4
 A.5 Objective 2.1: Statistical Results – CTR for Online Display Adverts5
 A.6 Objective 2.2.1.a: Statistical Results – CTR for Offline Radio Adverts (a)6
1 INTRODUCTION

1.1 Research Title

The impact of complimentary advertising strategies on sponsored search advertisement.

1.2 Research Problem

With the ever increasing usage of the internet (Akman and Mishra, 2010), the online advertising sector is overtaking television as the biggest advertising sector by market share (Interactive Advertising Bureau, 2009). World wide spend on internet advertisement is forecasted to increase to $150 billion by 2013 (Weide, 2009), with the adoption of e-marketing techniques shown to be positively associated with performance (Brodie, Winklhofer, Coviello and Johnston, 2007). Locally, internet access in South Africa grew by 11.9% in 2008 to reach a value of $788 million with 3.3 million subscribers (DataMonitor, 2009), and is set to expand even further with lowering connection costs and increasing access by enabling technologies. Seeking more return on their marketing spend, companies are shifting their strategy from predominantly display advertisement to contextual-targeted search advertisement (Barnes and Hair, 2009). With the dynamic and highly addressable nature of the internet, true targeted one-to-one advertising has become an affordable reality, allowing firms to deliver the right customised content to the right person at the right time (Ansari and Mela, 2003). The rise of multi-channel online advertisement has provoked the need from businesses to optimise their online marketing impact by applying the most effective mix of online and offline advertising strategies and therefore the need to know what influence certain delivery channels have on others.
In the early days of online advertisement, the struggle was to recognise what the numbers generated by online ads actually meant, followed by numerous studies to determine the single-channel effectiveness within an online advertising campaign (Robinson, Wysocka and Hand, 2007; Nutley, 2005). As historical data were accumulated, success and failure due to specific online advertisement characteristics, like creativeness (Rosenkrans, 2009) or exposure time (Lin and Chen, 2009), could slowly be identified, and direct comparison between online and offline advertising campaigns could be made (Preiffer and Zinnbauer, 2010). For e-Commerce enabled companies, the synergy between the two general mediums are viewed as one where offline campaigns create brand awareness, whilst online campaigns attract and convert potential customers (McMains and Morrissey, 2009). Research efforts on the moderating effects between two simultaneous advertising campaigns using different channels have been scarce. Naik and Raman (2003) used a Kalman filtering methodology to explore the synergy between television and print advertisements, but did not include online advertising methods in their research. One recent study did find potential advantages of cross-medium advertising over single-medium by investigating the combined effectiveness of an online (banner) and offline (print) campaign (Wakolbinger, Denk and Oberecker, 2009).

With the increasing role of search engines in online activity, trust, and buying decisions of consumers, search engine marketing (SEM) has become a major tool for driving traffic to a website (Sen, 2005). Sponsored search advertising (SSA) offers a more targeted approach to SEM, and increases a consumer’s awareness of and exposure to a product or brand, possibly leading to adoption or purchase (Ghose and Yang, 2009). Little information is however available on the possible synergy between an SSA campaign and simultaneously employing other online and offline marketing channels.
The current challenge for companies following an SEM strategy is to obtain the most effective mixture of complimentary advertising campaigns that will maximise their direct response from sponsored search ads measurable by click-throughs (Hollis, 2005). A more meaningful indicator of campaign success will be the number of click-throughs translating to actual business success, measurable by the number of new registrations or sold products (Pfeiffer and Zinnbauer, 2010). Furthermore, the quality of the visitor traffic generated by the various marketing mixes need to be compared. Visitors portraying increased engagement with the product or service, and more efficient exposure to branding efforts, will involve greater depth (time per page) and lower breadth (total number of pages) (Huang, Lurie and Mitra, 2009).

1.3 Research Objectives

In light of the problem defined above, this research will investigate the effects of secondary online and offline advertisement campaigns on a primary sponsored search advertisement campaign. The research objectives include the following:

- **Objective 1**: To determine if a complimentary advertisement campaign will yield significantly more impressions for a particular sponsored search advertisement campaign.
- **Objective 2**: To determine if a complimentary advertisement campaign will yield significantly higher click-through rates for a particular sponsored search advertisement campaign.
- **Objective 3**: To determine if a complimentary advertisement campaign will yield significantly improved visitor behaviour for a particular sponsored search advertisement campaign.
• Objective 4: To determine if a complimentary advertisement campaign will yield significantly lower cost for a particular sponsored search advertisement campaign.

• Objective 5: To determine if a complimentary advertisement campaign will yield significantly improved sales for a particular sponsored search advertisement campaign.

The research will however not consider any effects on key brand performance indicators or other purchase drivers (Rubinson and Pfeiffer, 2005).

1.4 Research Aim

The aim of this research is to find a relationship between complimentary advertising strategies and sponsored search advertisement in order to formulate a model to maximise return on investment achieved from online sponsored search advertisements. The aim is therefore to find a theoretical approach to the selection of complimentary advertising strategies in order to achieve specific results from a sponsored search campaign, whether it is to improve brand awareness, increase sales, or lower cost.
2 LITERATURE REVIEW

2.1 Introduction

This section will give an overview of the current academic knowledge on advertisement strategies with a focus on sponsored search advertisement, non-sponsored search advertisement, display advertisement and offline advertisement methods. Combining some of these strategies will then be reviewed, followed by a discussion on indicators that can be used to measure success in online advertisement.

The internet provides a permanent record of brand-related communications and is dominated by user-generated content, and can therefore be used by marketers to get a deep understanding of consumer relationships with brands (Aggarwal and Vaidyanathan, 2005). The empirical study performed by Kink and Hess (2008) found that search engines, compared to the traditional alternatives, are gratifying a wider spread of users’ information needs. Search engines try to give some good results for everyone instead of focusing on complete result sets for a specific user type (Lewandowski, 2008). Dai (2007) however protests that the biggest concern with the growing number of internet users relying on search engines for their information needs is its quality rather than quantity. Conti (2008) highlights some concerns over the large-scale accumulation of personal, sensitive data that search engine firms gain when their services are used, whilst Poritz (2007) argues that even data stripped of personal information can be used to generate a moment-by-moment view of what is on the collective mind.
The ever increasing prevalence of the internet in human life resulted in a similar exponential growth in internet advertisement (Weide, 2009). The internet provides a dynamic and highly addressable way to perform true targeted one-to-one advertising (Ansari et al., 2003). The internet allows for detailed measurement of response, where the audience's control of whether to pursue more information on an advertised subject can be traced in each step (Bhatnagar and Papatla, 2001).

Sponsored search advertising (SSA) forms the biggest part of online advertisement today, enabling advertisers to target an unprecedented number of potential customers according to behaviour, and not demographics, at much more affordable rates than traditional marketing channels (Jansen, 2007). Iyer, Soberman and Villas-Boas (2005) showed that the profitability of targeted advertising is still increasing due to improved information on consumers and their consumption habits. They concluded that targeted advertising will yield improved results gained for firms from their marketing spend. Section 2.2.1 will provide an in-depth study on the current body of knowledge on sponsored search advertisement, and how it can be applied in business.

2.2 Types of Advertisement

Currently there exist about eight different online business models, which can be categorised into two major revenue-generating schemes:

- Generate revenue through selling advertising
- Generate customers through buying advertising
Online advertising is an effective means of generating revenue and generating traffic to a business website. Different types of online advertising models exist, which a business can utilise to suit their needs (Josey, 2009). The types of advertising include:

- Paid advertising models
 - Pay-per-Click (PPC) / Cost-per-Click (CPC): Advertisers pay when their ad is clicked on (see section 2.2.1). Dinev, Qing and Yayla (2008) argues that advertisers’ attitudes and subjective norms significantly influence their intention to advertise online using the pay-per-click model, including trust in search engine providers and third-party monitoring and filtering tools.
 - Pay-per-Impression (PPI) / Cost-per-Impression (CPM): Advertisers pay for every appearance of their ad on a web page. The cost for each impression is generally fixed at a fraction of a cent. Fjell (2010) however found that the optimal amount of advertising under pure PPI is decreasing in market power.
 - Pay-per-Action (PPA) / Cost-per-Action (CPA): Advertisers enter into an affiliate program, where they pay per sale of their product. Cudmore, McCoy, Shuhy and Taylor (2009) proposed a cost-per-action advertising model as an engaging and cost-effective alternative to the traditional static cost-per-click advertising model.
 - Cost-per-Lead (CPL): Only cost the purchaser money if a qualified lead is generated on the basis of the ad.

- Free advertising models
 - Article submission: submitting an article to other websites in return for a link to your own.
 - Ad-exchange: advertising a complimentary product or service from an identified partner in exchange for similar advertisement space on the partner’s site.
Search Engine Ranking: perform search engine optimisation (SEO) in order to rank highly for keywords that your target market might search for (see section 2.2.2).

Apart from the normal benefits received from any kind of advertising, including improved customer communication and brand awareness, online advertising provide specific benefits (Josey, 2009):

- **Cost effectiveness**: Online advertising is results-driven (Hoffmann and Novak, 2000).

- **Targeted**: Due to the underlying technology it is easy to reach a specific reader, and differentiate according to geography, areas of interest and context of the content. Brand name recall has been shown to be higher when advertisements are presented in a content-relevant internet environment (Yaveroglu and Donthu, 2008). One of the major challenges for targeted advertising is finding the customers most likely to be interested in the product or service a firm is advertising (Kim, Street, Russell and Menczer, 2005). The extreme case of targeted advertising is personalised one-to-one marketing, allowing firms to communicate directly with all customers based on their behaviour (Ferguson and Hlavinka, 2006). It attracts more attention and fosters loyalty, whilst aiding customers with decisions and reducing information overload (Ansari et al., 2003). Targeting can be based on browser history, the content of the page currently being viewed or a users search preference (Sherman and Deighton, 2001). An improved ability to target customers however also increases the concentration of advertising firms in each market (Bergemann and Bonatti, 2010).

- **Reach**: A much wider audience can be reached online.
• *Measurable*: The technology also provides reporting and analysis functionality, enabling the measurement of click-through rate, page impressions and cost per sale whilst providing comprehensive evidence of the return on investment.

• *Immediate response*: Consumers can immediately click on a link to access more information, make a direct purchase or register for updates and services.

2.2.1 Sponsored search advertisement

Sponsored search advertisement is a form of contextual targeted advertisement making use of a CPC model, where users are invited to express interest in a product or service by clicking on a text ad displayed according to the context of the search text entered into the search engine (Fain and Pedersen, 2006; Jansen and Mullen, 2008). Ads are matched to the search context via "ad words" submitted by the advertiser together with the advert text and link (Iyer *et al.*, 2005).

![Figure 1: Example of a Sponsored Search Advertisement (SSA) on a Google SERP](image-url)
Sponsored search advertisement allows individual level targeting towards consumers when they enter the market for a product (start searching), and also allows advertisers to track the consumers’ actions online providing accurate measurement of profitability (Wilbur and Yi, 2009). Figure 1 shows an example of a sponsored search advertisement on a Google generated Search Engine Results Page (SERP).

For sponsored search advertisement, advertisers need to specify which keywords to include in a campaign, what the maximum bid should be for each keyword (since the pricing model is based on CPC), the design of the text advert, and finally the design of the landing page where the browser will be taken when the advert is clicked on (Rutz and Bucklin, 2007). Figure 2 provides the structure of a sponsored search advertisement campaign hosted on Google AdWords.

![Figure 2: Structure of Google AdWord SSA campaigns](image-url)
Sponsored search has proven to be a successful business model for search engines and online advertisers (Jansen, 2007), who auction off keywords to advertisers by use of a Generalised Second-Price (GSP) auction model (Delman, Ostrovsky and Schwarz, 2007). Chen, Liu and Whinston (2009) derived an optimal share structure for the keywords auctioned by advertising providers based on price elasticity of demand for exposure, their valuation distribution, total resources, and minimum bids. Mehta, Saberi, Vazirani and Vazirani (2007) in turn lays claim on an optimal algorithm that search engines can use for ad-selection in order to maximise revenue. Feng, Bhargava and Pennock (2007) modelled several mechanisms for allocating sponsored slots and devised a rank-revision strategy to modify rank allocations over time in order to maintain user attention and sponsored search revenues. The growth of sponsored search advertising can be ascribed to the reduced risk offered by its pay-per-click model for small advertisers (Mahdian and Tomak, 2008). When internet users are knowledgeable of sponsored links and hold a favourable attitude towards them, the positive impact on click intention is reinforced (Gauzente, 2010).

Keyword selection can be argued to be a dynamic form of metatagging, which focuses on associating possible search terms with specific websites and pages within these sites (Jansen et al., 2007). This keyword selection can be designed according to long tail principles in order to improve return on investment by increasing click-through rates and reducing cost-per-click (Adriaanse, 2009).

Click fraud is the practice of deceptively clicking on search ads with the intention of either increasing third-party website revenues or exhausting an advertiser's budget. Click fraud is a growing concern for pay-per-click (PPC) advertising programs, so much that Matin...
(2007) investigated possible legal, regulatory and market-based solutions to consider in handling click fraud. Midha (2008) derived an ethical behavior model for developing strategies to curb this problem, whilst Wilbur et al. (2009) proposed the use of a neutral third party to audit search engines' click fraud detection algorithms.

2.2.2 Non-sponsored search advertisement

There is a strong preference for non-sponsored links (organic results), with searchers viewing these results first more than 82% of the time (Jansen and Resnick, 2006). Figure 1 shows where the organic results are displayed on a Google generated Search Engine Results Page (SERP). Searching self-efficacy and experience does not increase the likelihood of viewing sponsored links, and the order of the result listing does not appear to affect searcher evaluation of sponsored links (Jansen et al., 2006). Dou, Lim, Su, Zhou and Cui (2010) identified key contextual factors that are conducive for creating brand positioning online via search engine results pages (SERPs) for non-sponsored links. They also found that internet users with little search skills tend to evaluate unknown brands more favourably and that feature priming increases the importance of display order in SERPs.

Malaga (2008) states that 62% of search engine users click only on the results that appear on the first page of the SERP, leading to businesses using search engine optimization techniques to improve their probability of appearing on the first page of a SERP. Users will, in general, tend to click on top results over results lower down the list, though this tendency should not be as strong when the relevance of the top results is weakened (O’Brien and Keane, 2007). By use of page ranking, search engines tend to
retrieve and display stored pieces of information in response to a query in a similar manner that human memory would (Griffiths, Steyvers and Firl, 2007). Search engines that rely on histories of previous user choices or linkage-based algorithms for SERP rankings could misleadingly over-promote an initially popular page due to re-recursive preferential clicks on the higher placed items by users (Keane, O’Brien and Smyth, 2008).

2.2.3 Display advertisement

Graphical advertisements featured on websites are known as Display Ads or Banner Ads. Display ads are often available in many standard shapes and sizes, including: banners, leader boards, skyscrapers, large boxes, and other sized graphical ads (Shakya, 2008) where the designers engage in an imaginary dialogue with their audience (Fourquet-Courbet, Courbet and Vanhuele, 2007). Lohtia, Donthu and Hershberger (2003) found that medium coloured and animated banners provided high CTR’s, which were again confirmed by Chen, Ross, Yen and Akhapon (2009). Interactive display advertisements surprisingly does the opposite, with Yoo and Kim’s (2005) results showing that high-animation conditions lead to subjects experiencing negative thoughts with inhibited recognition performance.

Banner spaces are usually sold by impressions, or banner views, but it is sometimes sold by click-throughs, when you pay only when the user clicks on the banner. Other forms of display ads include flash and video ads, pop-ups, floating ads, interstitial ads and take-over ads (Aggarwal, 2007). Chatterjee (2005) did not find any improvements in CTR’s by repeating banner ads. Rosenkrans (2009) proved that interactive ads exhibit higher levels of interactivity and click-through rates than non-interactive ads. Yaveroglu et al. (2008)
however concluded that a repetition strategy delivers improved results in a competitive internet environment, whereas a variation strategy for banner-ads only leads to higher brand name recall and intention to click in a non-competitive internet environment. Dahlen (2001) found that advertisements for familiar brands tend to wear out quickly, whereas banner ads for unfamiliar brands need multiple exposures to wear in. He also argues that novice users are more affected by banner ads than are expert users.

Display advertisements have been found to not necessarily increase the click-through rate (CTR) to a website, but on a longer term generate meaningful increases in site visitation and both online and offline sales (Fulgoni and Mörn, 2009). It was found that display advertising increases the probability of a consumer to conduct a search using the advertiser's branded terms by 38%, whilst increasing the probability of purchasing the advertised brand online by 27% and offline by 17% (Fulgoni et al., 2009). Manchanda, Dubé, Goh and Chintagunta (2006) has shown that banner advertising has a positive effect on repeat internet purchase probabilities, specifically the number of exposures, number of websites and number of pages the banner features on. The level of congruency between an advertised product and the content of the webpage it is displayed on play significant roles in affecting consumers' responses to incidentally exposed banner ads (Yoo, 2009).

Consumers have however grown increasingly annoyed with online advertising, resorting to software and restrictive web browser settings in an attempt to reduce pop-up ads and other marketing strategies (Taylor, Loiacono and Watson, 2008). McCoy, Everard, Polak and Galleta (2007) developed a methodology for web designers to determine the
appropriate amount of advertisement on a website in order not to interfere with the user's ability to remember the site's content.

E-mail advertising is also a form of display advertising. Martin, Van Durme, Raulas and Merisavo (2003) however found that its effectiveness in creating direct sales is limited, but that repeated exposure can create brand awareness.

2.2.4 Offline advertisement

The best advertising methods have traditionally been newspapers, radio and television, but all these have seen changes in trends over the years. Some other radical offline methods include large helium balloons, colourful mobile signs, humans dressing in costumes and promoting a product, airplanes towing advertising banners, painted water tanks or other large structures, smoke and aroma of food being prepared in restaurant kitchens propelled through vents and unfortunately telemarketers (Barnes, 2010). The effectiveness of magazine advertisement is in constant decline, with the exception of magazines with high reach at high frequencies (Collins, Dixon, Eadie, Reggimenti, Shiffman and Soukhareva, 2010). The monotone message given to all consumers by traditional media no longer meets business requirements due to the growing sophistication of consumers (Kazienko and Adamski, 2007).

Ilfeld and Winer (2002) have concluded that offline advertising will increase direct site visitation through the significant influence on consumer awareness. Rojas-Méndez and Davies (2005) argued that an increasing number of consumers try to avoid television advertisements.
Where the internet is build on a many-to-many communications model, traditional media is based on a one-to-many model (Hoffmann et al., 2000). Rust and Varki (1996) argued that interactive media, such as the internet, will functionally displace traditional mass media, because interactive media will be better able to serve the communication needs of individuals. The internet used to be ineffective for stimulating emotions, and less effective than other media at incorporating attention-getting devices and changing attitudes (La Ferle, Edwards and Wei-Na, 2000). A few years later, Graham and Havlena (2007) found that both online and offline advertising models still have significant impact on consumer behaviour, but states in some earlier research that brand awareness generated in online consumers decay much faster (Havlena and Graham, 2004).

2.3 Combining Strategies

Companies have been employing a variety of online and offline methods to improve their branding profiles, which included communication vehicles like newspapers, radio, magazines, television, public relations, trade events and promotions, personalised e-mail notifications, affiliate programmes with other websites and banner advertisements (Ibeh, Ying and Dinnie, 2005). It is crucial for any advertising medium, be it print, radio, television or internet, to reach a core targeted audience in order to maximise the return in placing advertisement in the particular medium (Chandra, 2009). Wakolbinger et al. (2009) studied the potential advantages of cross-medium advertising over a single-medium by investigating the combined effectiveness of an online (banner) and offline (print) campaigns. They concluded that combined online and offline advertising strategies do not exhibit improved effectiveness.
Ha (2003) analysed the advertising strategies of leading U.S. TV networks' websites and online portals, which respectively represent websites with strong offline media support and websites with no offline media counterparts. She found that TV websites were much more moderate in their display of advertising than online portals and use primarily brand integration as their convergence strategy in advertising recruitment.

2.4 Advertisement Success Indicators

Pfeiffer *et al.* (2010) advocates that online advertising campaign success can be measured by the number of click-throughs translating to actual business success (number of new registrations / sold products). Furthermore, Huang *et al.* (2009) postulated that the quality of the visitor traffic generated by the various marketing mixes can be inferred from the exposure a visitor has to the targeted website, where greater depth (time per page) and lower breadth (total number of pages) translates to desirable behaviour.

An impression is a single display of a particular advert on a webpage, with some advertising hosts charging fees based upon the number of impressions (CPM model). There is however no standard way to count impressions, leading to some attempts to standardise the measurement of online advertising impressions (Carysforth, 2005). Early studies on online marketing found a strong correlation between impressions gained by online advertisements and visitors gained to targeted websites (Mack, 2000).

Click-through rates (CTR's) are a fast and easy measure of the success of an online advertising campaign (Hollis, 2005). CTR’s can be seen as an immediate response to an
advertisement, or a request for further information (Chandon, Chtourou and Fortin, 2003). Yoo (2008) has argued that a single exposure to advertisement is already beneficial to the advertiser, regardless of whether a click-through was generated. He confirmed that consumers build a more favourable attitude towards a brand unconsciously exposed to through banner-ads regardless of the levels of attention they paid to the advertisements, and were more likely to include the advertised brand in their consideration set than those who had no exposure. This was countered by Ilfeld and Winer’s (2002) argument that online advertisement has the purpose of generating web-traffic and not brand awareness. Drèze and Hussherr (2003) however found that CTR’s are an ineffective measure of banner-ad performance because surfers actually avoid looking at banner ads during their online activities. They also found that banner-ads still have an impact on traditional memory-based measure of effectiveness improving brand recognition and awareness, and therefore the performance of banner-ads needs to be measured by brand-equity indicators rather than CTR’s. Bucklin and Sismeiro (2009) highlights a number of inherent limitations of clickstream data for understanding and predicting the behavior of internet users or researching marketing phenomena.

An improved indication of the quality of a click generated by an advertisement can be measured by visitor behaviour after the click-through has occurred, in terms of frequency of visits, time spent on site (TS), bounce rate (BR) and number of pages viewed (PV) (Hoffman et al., 2000). The bounce rate (BR) is defined as the percentage of users that view only one page per session. Lin, Jen-Hwa, Sheng and Lee (2010) also found a positive correlation between the time spent visiting a website and purchases made, and also between purchasing behaviour and the number of webpages viewed at a site during a visit. Danaher, Mullarkey and Essegaier (2006) concluded that older people and
females tend to visit websites for longer periods. Wolk and Theysohn (2007) found that
the number of visitors to a website employing paid-for online advertisement strategies is
directly and positively influenced by the quality of the offering, interactivity, accessibility,
and relevance while the number of page views is positively influenced by credibility,
interactivity, personalisation and navigation.

In conjunction with CTR, the cost-per-click (CPC) metric provides advertisers with the
ability to measure the consumer's response and how it is charged for (Hoffman et al.,
2000). Agencies and advertisers appear to be moving increasingly from online advertising
models where pricing is based on exposure toward models where payment is based on
performance (Fulgoni et al., 2009). The ease of use, low cost and transparency of CPC
makes it a very attractive model employed by most search engines today (Edelman,
Ostrovsky and Schwarz, 2007). In order to maximise return on investment for a CPC
based advertising model, a firm should aim to get the maximum number of quality leads
for a given budget by reducing the cost-per-click (CPC).

2.5 Conclusion

With sponsored search advertising (SSA) offering firms the desired one-to-one
advertising at affordable rates (Ansari et al., 2003), search engine marketing (SEM) has
become the dominant tool for driving online sales (Sen, 2005). Little information were
however found during this literature study on simultaneously employing other online and
offline advertising channels together with sponsored search advertising campaigns, and
the possible synergies that can be achieved by such multi-channel approaches. The
current challenge for companies following an SEM strategy is to obtain the most effective
mixture of complimentary advertising campaigns that will maximise their direct response from sponsored search ads measurable by click-throughs (Hollis, 2005).
3 RESEARCH HYPOTHESES

3.1 Introduction

This section describes the purpose of the research to be undertaken. The relation between secondary online and offline advertisement campaigns and the results achieved from a primary sponsored search advertisement (SSA) campaign needs to be researched. The return to be made from the different SSA marketing campaigns will be measured by the number of click-throughs obtained directly from the SSA and subsequent sales or sign-ups actuated from these click-throughs (Pfeiffer et al., 2010). The quality of visitors generated from the different SSA marketing campaigns will be measured by the time spent by visitors viewing pages, and the number of pages viewed (Huang et al., 2009). The bounce rate (BR), defined as the percentage of users that view only one page per session, also acts as a quality indicator of visitor behaviour (Hoffman et al., 2000).

- Objective 1: To determine if a complimentary advertisement campaign will yield significantly higher impressions for a particular sponsored search advertisement campaign.

- Objective 2: To determine if a complimentary advertisement campaign will yield significantly higher click-through rates for a particular sponsored search advertisement campaign.

- Objective 3: To determine if a complimentary advertisement campaign will yield significantly improved visitor behaviour for a particular sponsored search advertisement campaign.
- Objective 4: To determine if a complimentary advertisement campaign will yield significantly reduced cost for a particular sponsored search advertisement campaign.

- Objective 5: To determine if a complimentary advertisement campaign will yield significantly higher sales for a particular sponsored search advertisement campaign.

Each of these objectives will be covered in more detail in the following sections.

3.2 Objective 1: Influence of Complimentary Adverts on Impressions

The first research objective is to determine whether a complimentary advertisement campaign will yield significantly higher impressions for a particular sponsored search advertisement campaign.

3.2.1 Impressions: Online Adverts

The null hypothesis under the first research objective states that impressions will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that impressions will significantly improve when a complimentary online advertisement campaign is implemented:

Null hypothesis: Impressions (IMP) obtained with a complimentary online advertisement campaign (on+) is equal to impressions obtained without a complimentary online advertisement campaign (on-):

\[H_{10}: \quad \text{IMP}_{\text{on+}} = \text{IMP}_{\text{on-}} \]
\[\therefore \quad \text{IMP}_{\text{on+}} - \text{IMP}_{\text{on-}} = 0 \]

Alternate hypothesis: Impressions (IMP) obtained with a complimentary online advertisement campaign (on+) is significantly more than impressions obtained without a complimentary online advertisement campaign (on-):

\[H_{1a}: \quad \text{IMP}_{\text{on+}} > \text{IMP}_{\text{on-}} \]
\[\therefore \quad \text{IMP}_{\text{on+}} - \text{IMP}_{\text{on-}} > 0 \]
3.2.2 Impressions: Offline Adverts

The first research objective also requires an investigation into whether a complimentary offline advertisement campaign will yield significantly higher impressions for a particular sponsored search advertisement campaign. This null hypothesis under the first objective states that impressions will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that impressions will significantly improve when a complimentary offline advertisement campaign is implemented:

Null hypothesis: Impressions (IMP) obtained with a complimentary offline advertisement campaign (off+) is equal to impressions obtained without a complimentary offline advertisement campaign (off-):

\[H_2^0: \text{IMP}_{\text{off}+} = \text{IMP}_{\text{off}-} \]
\[\therefore \text{IMP}_{\text{off}+} - \text{IMP}_{\text{off}-} = 0 \]

Alternate hypothesis: Impressions (IMP) obtained with a complimentary offline advertisement campaign (off+) is significantly more than impressions obtained without a complimentary offline advertisement campaign (off-):

\[H_2^a: \text{IMP}_{\text{off}+} > \text{IMP}_{\text{off}-} \]
\[\therefore \text{IMP}_{\text{off}+} - \text{IMP}_{\text{off}-} > 0 \]

3.3 Objective 2: Influence of Complimentary Adverts on Click-Through Rates

The second research objective is to determine whether a complimentary advertisement campaign will yield significantly higher click-through rates for a particular sponsored search advertisement campaign.

3.3.1 Click-Through Rate: Online Adverts

The null hypothesis under the second objective states that click-through rates will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that click-through rates will significantly improve when a complimentary online advertisement campaign is implemented:

Null hypothesis: Click-through rates (CTR) obtained with a Complimentary Online Advertisement Campaign (CTR_{off+}) is equal to CTR obtained without a Complimentary Online Advertisement Campaign (CTR_{off-}):

\[H_3^0: \text{CTR}_{\text{off}+} = \text{CTR}_{\text{off}-} \]
complimentary online advertisement campaign (on+) is equal to click-through rates obtained without a complimentary online advertisement campaign (on-):

\[\therefore CTR_{on+} - CTR_{on-} = 0 \]

Alternate hypothesis: Click-through rates (CTR) obtained with a complimentary online advertisement campaign (on+) is significantly more than click-through rates obtained without a complimentary online advertisement campaign (on-):

\[H3_a: \quad CTR_{on+} > CTR_{on-} \]

\[\therefore CTR_{on+} - CTR_{on-} > 0 \]

3.3.2 Click-Through Rate: Offline Adverts

The second research objective also requires an investigation into whether a complimentary offline advertisement campaign will yield significantly higher click-through rates for a particular sponsored search advertisement campaign. This null hypothesis under the second objective states that click-through rates will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that click-through rates will significantly improve when a complimentary offline advertisement campaign is implemented:

Null hypothesis: Click-through rates (CTR) obtained with a complimentary offline advertisement campaign (off+) is equal to click-through rates obtained without a complimentary offline advertisement campaign (off-):

\[H4_0: \quad CTR_{off+} = CTR_{off-} \]

\[\therefore CTR_{off+} - CTR_{off-} = 0 \]

Alternate hypothesis: Click-through rates (CTR) obtained with a complimentary offline advertisement campaign (off+) is significantly more than click-through rates obtained without a complimentary offline advertisement campaign (off-):

\[H4_a: \quad CTR_{off+} > CTR_{off-} \]

\[\therefore CTR_{off+} - CTR_{off-} > 0 \]
3.4 Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour

The third research objective is to determine whether the behaviour of visitors gained through complimentary advertisement methods yield better results than those obtained without them. Visitor behaviour will be measured by *number of pages* viewed, *time spent* viewing the website and the *bounce rate* of visitors to the website. Huang *et al.* (2009) found that visitors portraying increased engagement with the product or service, and more efficient exposure to branding efforts, will involve greater depth (time per page) and lower breadth (total number of pages). Table 1 shows how these different variables may relate to each other on a more abstract level, from which six hypotheses can be derived:

Table 1: Behavioural measures related to complimentary advertisement methods

<table>
<thead>
<tr>
<th>Complimentary method:</th>
<th>Behavioural measure:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of pages</td>
</tr>
<tr>
<td>Online Advertisement</td>
<td>Hypothesis 5</td>
</tr>
<tr>
<td>Offline Advertisement</td>
<td>Hypothesis 6</td>
</tr>
</tbody>
</table>

3.4.1 Pages Visited: Online Adverts

The fifth null hypothesis states that the *number of pages* viewed by a visitor will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that the *number of pages* viewed by a visitor will significantly decrease with implementation of a complimentary online campaign:

Null hypothesis: the *number of pages* (PV) viewed by a visitor with a complimentary online advertisement campaign (on+) is equal to the *number of pages* viewed without a complimentary online advertisement campaign (on-):

\[
H_{50}: \quad PV_{on+} = PV_{on-} \\
\therefore \quad PV_{on+} - PV_{on-} = 0
\]

Alternate hypothesis: the *number of pages* (PV) viewed by a visitor with a complimentary online advertisement campaign (on+) is significantly less than to the *number of pages* viewed without a complimentary online advertisement campaign (on-):

\[
H_{5a}: \quad PV_{on+} < PV_{on-} \\
\therefore \quad PV_{on+} - PV_{on-} < 0
\]
3.4.2 Pages Visited: Offline Adverts

The sixth null hypothesis states that the number of pages viewed by a visitor will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that the number of pages viewed by a visitor will significantly decrease when a complimentary offline advertisement campaign is implemented:

Null hypothesis: the number of pages (PV) viewed by a visitor with a complimentary offline advertisement campaign (off+) is equal to the number of pages viewed without a complimentary offline advertisement campaign (off-):

\[H_{60} : PV_{off+} = PV_{off-} \]
\[\therefore PV_{off+} - PV_{off-} = 0 \]

Alternate hypothesis: the number of pages (PV) viewed by a visitor with a complimentary offline advertisement campaign (off+) is significantly less than to the number of pages viewed without a complimentary offline advertisement campaign (off-):

\[H_{6a} : PV_{off+} < PV_{off-} \]
\[\therefore PV_{off+} - PV_{off-} < 0 \]

3.4.3 Time Spent: Online Adverts

The seventh null hypothesis states that the time spent viewing the website will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that the time spent viewing the website will significantly improve when a complimentary online advertisement campaign is implemented:

Null hypothesis: the time spent (TS) viewing the website with a complimentary online advertisement campaign (on+) is equal to the time spent viewing the website without a complimentary online advertisement campaign (on-):

\[H_{70} : TS_{on+} = TS_{on-} \]
\[\therefore TS_{on+} - TS_{on-} = 0 \]

Alternate hypothesis: the time spent (TS) viewing the website with a complimentary online advertisement campaign (on+) is significantly more than the time spent viewing the website without a complimentary online advertisement campaign (on-):

\[H_{7a} : TS_{on+} > TS_{on-} \]
\[\therefore TS_{on+} - TS_{on-} > 0 \]

3.4.4 Time Spent: Offline Adverts

The eighth null hypothesis states that the time spent viewing the website will remain the same when a complimentary offline advertisement campaign is implemented. The
alternative hypothesis states that the *time spent* viewing the website will significantly improve when a complimentary offline advertisement campaign is implemented:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Formula</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null hypothesis: the time spent (TS) viewing the website with a complimentary offline advertisement campaign (off+) is equal to the time spent viewing the website without a complimentary offline advertisement campaign (off-):</td>
<td>H_{08}: $TS_{off+} = TS_{off-}$</td>
<td>$TS_{off+} - TS_{off-} = 0$</td>
</tr>
<tr>
<td>Alternate hypothesis: the time spent (TS) viewing the website with a complimentary offline advertisement campaign (off+) is significantly more than the time spent viewing the website without a complimentary offline advertisement campaign (off-):</td>
<td>H_{08a}: $TS_{off+} > TS_{off-}$</td>
<td>$TS_{off+} - TS_{off-} > 0$</td>
</tr>
</tbody>
</table>

3.4.5 Bounce Rate: Online Adverts

The ninth null hypothesis states that the *bounce rate* of visitors will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that the *bounce rate* will significantly decrease when a complimentary online advertisement campaign is implemented:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Formula</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null hypothesis: the bounce rate (BR) of visitors to the website with a complimentary online advertisement campaign (on+) is equal to the bounce rate of visitors to the website without a complimentary online advertisement campaign (on-):</td>
<td>H_{09}: $BR_{on+} = BR_{on-}$</td>
<td>$BR_{on+} - BR_{on-} = 0$</td>
</tr>
<tr>
<td>Alternate hypothesis: the bounce rate (BR) of visitors to the website with a complimentary online advertisement campaign (on+) is significantly less than the bounce rate of visitors to the website without a complimentary online advertisement campaign (on-):</td>
<td>H_{09a}: $BR_{on+} < BR_{on-}$</td>
<td>$BR_{on+} - BR_{on-} < 0$</td>
</tr>
</tbody>
</table>

3.4.6 Bounce Rate: Offline Adverts

The tenth null hypothesis states that the *bounce rate* of visitors will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that the *bounce rate* will significantly decrease when a complimentary offline advertisement campaign is implemented:
Null hypothesis: the bounce rate (BR) of visitors to the website with a complimentary offline advertisement campaign (off+) is equal to the bounce rate of visitors to the website without a complimentary offline advertisement campaign (off-):

\[H_{100}: \quad BR_{off+} = BR_{off-} \]
\[\therefore BR_{off+} - BR_{off-} = 0 \]

Alternate hypothesis: the bounce rate (BR) of visitors to the website with a complimentary offline advertisement campaign (off+) is significantly less than the bounce rate of visitors to the website without a complimentary offline advertisement campaign (off-):

\[H_{10a}: \quad BR_{off+} < BR_{off-} \]
\[\therefore BR_{off+} - BR_{off-} < 0 \]

3.5 Objective 4: Influence of Complimentary Advertisements on Cost

The fourth research objective is to determine whether a complimentary advertisement campaign will result in significantly lower sponsored search advertisement campaign cost.

3.5.1 Cost-per-Click: Online Adverts

The null hypothesis under the fourth research objective states that cost-per-click will remain the same when a complimentary online advertisement campaign is implemented.

The alternative hypothesis states that cost-per-click will significantly reduce when a complimentary online advertisement campaign is implemented:

Null hypothesis: Cost-per-click (CPC) obtained with a complimentary online advertisement campaign (on+) is equal to cost-per-click obtained without a complimentary online advertisement campaign (on-):

\[H_{110}: \quad CPC_{on+} = CPC_{on-} \]
\[\therefore CPC_{on+} - CPC_{on-} = 0 \]

Alternate hypothesis: Cost-per-click (CPC) obtained with a complimentary online advertisement campaign (on+) is significantly less than cost-per-click obtained without a complimentary online advertisement campaign (on-):

\[H_{11a}: \quad CPC_{on+} < CPC_{on-} \]
\[\therefore CPC_{on+} - CPC_{on-} < 0 \]

3.5.2 Cost per Click: Offline Adverts

The fourth research objective also requires an investigation into whether a complimentary offline advertisement campaign will result in significantly lower sponsored search advertisement campaign cost. This null hypothesis under this objective states that cost-
per-click will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that cost-per-click will significantly reduce when a complimentary offline advertisement campaign is implemented:

Null hypothesis: Cost-per-click (CPC) obtained with a complimentary offline advertisement campaign (off+) is equal to cost-per-click obtained without a complimentary offline advertisement campaign (off-):

\[H_{120}: \quad \text{CPC}_{\text{off+}} = \text{CPC}_{\text{off-}} \]
\[\therefore \quad \text{CPC}_{\text{off+}} - \text{CPC}_{\text{off-}} = 0 \]

Alternate hypothesis: Cost-per-click (CPC) obtained with a complimentary offline advertisement campaign (off+) is significantly less than cost-per-click obtained without a complimentary offline advertisement campaign (off-):

\[H_{12a}: \quad \text{CPC}_{\text{off+}} < \text{CPC}_{\text{off-}} \]
\[\therefore \quad \text{CPC}_{\text{off+}} - \text{CPC}_{\text{off-}} < 0 \]

3.6 Objective 5: Influence of Complimentary Advertisements on Sales

The last research objective is to determine whether a complimentary advertisement campaign will yield significantly higher sales (products company) or sign-ups (services company) for a particular sponsored search advertisement campaign.

3.6.1 Sales: Online Adverts

The null hypothesis under the fifth objective states that sales (new registrations) will remain the same when a complimentary online advertisement campaign is implemented. The alternative hypothesis states that sales (new registrations) will significantly improve when a complimentary online advertisement campaign is implemented:

Null hypothesis: New registrations (NR) obtained with a complimentary online advertisement campaign (on+) is equal to new registrations obtained without a complimentary online advertisement campaign (on-):

\[H_{130}: \quad \text{NR}_{\text{on+}} = \text{NR}_{\text{on-}} \]
\[\therefore \quad \text{NR}_{\text{on+}} - \text{NR}_{\text{on-}} = 0 \]

Alternate hypothesis: New registrations (NR) obtained with a complimentary online advertisement campaign (on+) is significantly more than new registrations obtained without a complimentary online advertisement campaign (on-):

\[H_{13a}: \quad \text{NR}_{\text{on+}} > \text{NR}_{\text{on-}} \]
\[\therefore \quad \text{NR}_{\text{on+}} - \text{NR}_{\text{on-}} > 0 \]
3.6.2 Sales: Offline Adverts

The fifth research objective also requires an investigation into whether a complimentary offline advertisement campaign will result in significantly higher sales gained from a sponsored search advertisement campaign. The null hypothesis under this research objective states that sales (new registrations) will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis states that sales (new registrations) will significantly improve when a complimentary offline advertisement campaign is implemented:

Null hypothesis: New registrations (NR) obtained with a complimentary offline advertisement campaign (off+) is equal to new registrations obtained without a complimentary offline advertisement campaign (off-):

H14₀:
NR_{off+} = NR_{off-}
∴ NR_{off+} – NR_{off-} = 0

Alternate hypothesis: New registrations (NR) obtained with a complimentary offline advertisement campaign (off+) is significantly more than new registrations obtained without a complimentary offline advertisement campaign (off-):

H14ₐ:
NR_{off+} > NR_{off-}
∴ NR_{off+} – NR_{off-} > 0
4 RESEARCH METHODOLOGY

4.1 Research Methodology

A quantitative causal research methodology was used to identify cause-and-effect relationships between the readily quantifiable variables identified in section 3, following a pre-test-post-test group experimental design proposed by Zikmund (2003) to control the testing effect and other sources of extraneous variation. Results from two groups of sponsored search advertisement campaigns were compared where those campaigns in the experimental group implemented a complimentary advertising strategy (O_1) and those in the control group did not (O_2). Historical data from both groups (O_1 and O_2) was used to identify and compare campaign data after the complimentary advertising strategy had been implemented for the experimental group:

<table>
<thead>
<tr>
<th>Experimental Group:</th>
<th>R</th>
<th>X</th>
<th>O_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Group:</td>
<td>R</td>
<td></td>
<td>O_2</td>
</tr>
</tbody>
</table>

The dependent variables that were measured within these groups were the *impressions* gained by the SSA advert, *click-through rates* (CTR) and *cost-per-click* (CPC) gained through the advert, number of *pages viewed* (PV), *time spent* (TS) viewing the target website, *bounce rate* (BR) of visitors to the website and number of *new registrations* by users gained from the advert, whilst the presence (+) or absence (-) of secondary complimentary advertising campaigns was the independent variable, for both online (on) and offline (off) variations.
4.2 Unit of Analysis

The study specifically focused on sponsored search advertisement campaigns implemented by companies with online advertising strategies for one or multiple websites. Each SSA campaign consisted of one or multiple Ad Groups, which in turn consisted of identified keywords linked to advert text and cost-per-click information (see Figure 2). The first two objectives therefore made use of accumulative impression and click-through rate data analysed per keyword in the SSA campaign. The third objective used accumulative number of pages viewed per keyword, total time spent on a targeted website by visitors gained from keyword searches within the SSA campaign and the bounce rate of these visitor’s sessions. The fourth objective used accumulated cost-per-click data for each of the keywords in the SSA campaign, whilst the last objective made use of the number of new registrations measured for each keyword in the SSA campaign. The duration of campaigns paired for comparison in the experimental and control groups were closely matched, with some comparisons being two week-long periods, and others being two month-long periods.

4.3 Population of Relevance

All sponsored search advertisement campaigns would ideally have been the population of reference. However, access to website statistical data were limited to a few targeted companies making use of SSA campaigns with Google AdWords, resulting in a sample-frame representing the above mentioned population. These companies were selected based on online presence and research accessibility.
4.4 Sampling Method and Size

Due to the limited access to companies’ statistical data, all suitable SSA campaigns in the above-mentioned sample-frame were used in this study. Keywords within each available SSA campaign ranged from 1 000 up to 30 000 keywords that could be used in the analyses.

4.5 Data Collection Process

The targeted companies was contacted via e-mail or telephone and requested to share their website and SSA campaign statistical data and complimentary advertisement strategy information. A total of 16 companies were contacted, of which 5 responded positively, constituting a response rate of 31%. The data used in this research was obtained from an actual field environment, enhancing its external validity to other SSA campaigns in general.

Trace analysis was used through the collection of secondary data gathered from SSA and website statistics and company records on advertisement strategies to test the hypotheses detailed in Chapter 3. For click-through rates, click-through data obtained from Google AdWords was used, whilst number of pages viewed per campaign, time spent per campaign and the bounce rate were obtained from website statistical data or Google Analytics. These statistical engines make use of cookies to collect and track session data.

SSA results data for two distinct periods (one with complimentary advertisements active, and another without complimentary advertisements) were obtained from the corresponding firms. In order to control for extraneous variables, the delay
between the two sample periods used ranged from two weeks to two months: enough for
direct effects from complimentary advertisements to subside, but not too long in order to
maintain constancy of conditions, allowing for the dependent variable (SSA campaigns
from both periods) to be exposed to identical situations apart from the independent
variable (absence or presence of complimentary advertisements).

Statistical and complimentary data obtained from responding companies was processed
and merged into a single database repository for statistical analysis. Identifiers were
stored with the data, but anonymous results will be represented in this report. In order to
reduce the effect that keywords appearing only once in a datasets obtained for an SSA
campaign may have on the results, only keywords appearing in all datasets (and hence
used in all periods) of a responding firm’s SSA campaign were used in the analysis.
Keywords appearing in only one of the datasets were removed by use of a specially
written program, resulting in final datasets containing only paired keywords.

4.6 Data Analysis Approach

Comparison of impressions, click-through rates, pages viewed, time spent, bounce rate,
cost-per-click and new registrations between different groups resemble a cross-sectional
study. Statistical analyses on the results were performed using NCSS (2007). In
particular, paired T-tests (Albright, Winston and Zappe, 2009) between observations O₁
and O₂ for each of the result variables IMP, CTR, PV, TS, BR, CPC and NR were used to
determine a statistically significant difference incurred by changing the independent
variable; presence (+) or absence (-) of complimentary advertisements. When the two
pairs (O₁ and O₂) of observations showed a statistically significant difference, a
conclusive relation could be proven between the independent variable (±) and the particular dependent variable under study (IMP, CTR, PV, TS, BR, CPC and NR).

4.7 Research Methodology Limitations

A sampling frame error may have occurred if the sample frame of targeted companies implementing SSA campaigns did not accurately represent the entire world population of sites implementing any kind of sponsored search advertisement, therefore influencing the external validity of the findings (Zikmund, 2003). This may be due to differences in how the targeted companies’ potential website visitors react to complimentary advertisement compared to the rest of the population.

There was also a possibility of non-response error in terms of no contacts (when the desired targeted companies were unreachable) and refusals (when these companies / contact person felt no obligation to participate in the research). There also existed a possibility of social desirability bias, where statistical data provided by the company were deliberately falsified to present favourable popularity.

The use of historical data from different timelines exposed the research to a cohort effect, a special case of the history effect (Zikmund, 2003). A change in one of the dependent variables (IMP, CTR, PV, TS, BR, CPC and NR) could have been due to the fact that members (in this case internet users) of one experimental group / condition experienced different historical situations from those members of another experimental group / condition, like seasonal effects or major influencing events. Although implementing a causal design, this study did not attempt to exclude all other factors (extraneous
variables) that may have influenced IMP, CTR, PV, TS, BR, CPC or NR result measurements, therefore influencing the internal validity of the findings (Zikmund, 2003).
5 RESULTS

5.1 Introduction

This section will analyse SSA data obtained from various internet-based companies in order to investigate the research objectives set in Chapter 3. For each of the objectives, statistical data for a particular SSA campaign will be compared between two distinct periods: one where a complimentary advertisement campaign was active and the other where no complimentary advertisement campaign was running. Making use of statistical methods, each of these dataset comparisons will aim to prove the presence or absence of a significant difference between the SSA results obtained during each period, dependent on the influence of a complimentary marketing campaign.

5.2 Objective 1: Influence of Complimentary Adverts on Impressions

The null hypothesis under the first objective stated that \(\text{impressions} \) (IMP) obtained with a complimentary advertisement campaign are equal to \(\text{impressions} \) obtained without a complimentary campaign running. The alternative hypothesis stated that \(\text{impressions} \) obtained with a complimentary advertisement campaign are significantly higher than \(\text{impressions} \) obtained without a complimentary advertisement campaign.

5.2.1 Impressions: Online Display Adverts

SSA results data for two distinct periods (one with complimentary online display advertisements active, and another without complimentary online advertisements) were obtained from a prominent internet-based company making use of only online display advertisements at various stages. The dataset for the week long period when
complimentary online advertisements were running, contained 2045 keyword entries, whilst the dataset for the week long period when no complimentary online ads were running, contained 2104 keyword entries. In order to reduce the effect that keywords appearing in one dataset and not the other may have on the results, only keywords appearing in both datasets (and hence used in both periods) were used in the analysis, whilst keywords appearing in only one of the sets were removed (by use of a specially written program), resulting in a final dataset with 946 paired keywords.

Figure 3 shows a box plot frequency representation of the *impressions* for the keywords in the SSA campaign during which complimentary online display advertisements were active (IMP$_{on^+}$), and the *impressions* for a similar duration when no complimentary online display advertisements (IMP$_{on^-}$) were active.

![Box Plot comparing impression for campaigns with and without display ads](image_url)

Figure 3: Box Plot comparing impression for campaigns with and without display ads
From this descriptive analysis, the *impressions* for both sets seem to be fairly similar, with IMP\(_{on^+}\) having average *impressions* of 996.39 whilst IMP\(_{on^-}\) has a 978.13 average.

With the sample size big enough (\(n_1 = n_2 = 946 > 30\)) to assume that the sampling distribution takes on a normal distribution, and impression entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the IMP\(_{on^+}\) and IMP\(_{on^-}\) datasets. The statistical output of this process is shown in appendix A.1.

For difference \((\text{IMP}_{on^+} - \text{IMP}_{on^-}) \neq 0\) under the Paired T-Test with \(\alpha = 0.05\), the *p-value* is given as 0.851, and the null hypothesis \(H_{10}\) can not be rejected, meaning that the two sample means \((\text{IMP}_{on^+} \text{ and } \text{IMP}_{on^-})\) can not be statistically proven to be significantly different at the 10% level. The T-Value of 0.1877 also indicates that the two sample means differ only with 0.2 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that *impressions* for SSA campaigns making use of complimentary online display advertisements are different to *impressions* for SSA campaigns without complimentary online display advertisements.

5.2.2.1 Impressions: Offline Radio Adverts

The second null hypothesis under objective 1 also stated that *impressions* (IMP) obtained with a complimentary offline advertisement campaign (off+) is equal to *impressions* obtained without a complimentary offline advertisement campaign (off-). The alternative
hypothesis stated that impressions (IMP) obtained with a complimentary offline advertisement campaign (off+) are significantly more than impressions obtained without a complimentary offline advertisement campaign (off-).

To fulfil this objective, data from an internet-based company making use of SSA whilst supplementing it with intermittent radio adverts were used. SSA results data for four distinct week-long periods were obtained. During two of these sample periods the company ran complimentary offline radio advertisements, whilst the samples for the periods when no complimentary offline advertisements ran, were taken two weeks after the initial two periods respectively. The four datasets contained 2500 independent keyword entries for the periods. In order to reduce the effect that keywords appearing in one dataset and not the others may have on the results, only keywords appearing in all four datasets (and hence used in all four periods) were used in the analysis, whilst keywords appearing in only one of the sets were removed (by use of a specially written program), resulting in a final dataset with 1164 keywords.

Figure 4 shows a box plot frequency representation of the impressions for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (IMP\textsubscript{off+}), and the impressions for a similar duration when no complimentary offline radio advertisements (IMP\textsubscript{off-}) were running.

From this descriptive analysis, the impressions for both pairs of datasets seems to be fairly similar, with IMP\textsubscript{off+a} having average impressions of 2474.4 whilst IMP\textsubscript{off-a} has a 1919.4 average, and IMP\textsubscript{off+b} has average impressions of 1790.7 whilst IMP\textsubscript{off-b} has a 1371.4 average.
Figure 4: Box Plot comparing impressions for campaigns with and without radio ads

With the sample size big enough \((n_1 = n_2 = 1164 > 30) \) to assume that the sampling distribution takes on a normal distribution, and impression entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the IMP\(_{\text{off+a}}\) and IMP\(_{\text{off-a}}\) datasets, with the statistical output of this process shown in appendix A.2. Similarly, a paired T-Test was used to test for a statistically significant difference between the IMP\(_{\text{off+b}}\) and IMP\(_{\text{off-b}}\) datasets, with the statistical output of this process shown in appendix A.3.

For difference \((\text{IMP}_{\text{off+a}} - \text{IMP}_{\text{off-a}}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \textit{p-value} is given as 0.02, and the null hypothesis \(H_0\) can be rejected, meaning that the two sample means (IMP\(_{\text{off+a}}\) and IMP\(_{\text{off-a}}\)) can be statistically proven to be significantly
different at the 10% level. The T-Value of 2.3164 also indicates that the two sample means differ by 2.3 standard errors. The difference \((\text{IMP}_{\text{off+a}} - \text{IMP}_{\text{off-a}}) > 0\) also has a \(p\)-value of 0.01, meaning that \(\text{IMP}_{\text{off+a}}\) are significantly more than \(\text{IMP}_{\text{off-a}}\).

For \(\text{Difference} (\text{IMP}_{\text{off+b}} - \text{IMP}_{\text{off-b}}) <> 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.001, and the null hypothesis \(H_20\) can again be rejected, meaning that the two sample means (\(\text{IMP}_{\text{off+b}}\) and \(\text{IMP}_{\text{off-b}}\)) can be statistically proven to be significantly different at the 10% level. The T-Value of 3.161 also indicates that the two sample means differ by 3.1 standard errors. The difference \((\text{IMP}_{\text{off+b}} - \text{IMP}_{\text{off-b}}) > 0\) also has a \(p\)-value of 0.001, meaning that \(\text{IMP}_{\text{off+b}}\) are significantly more than \(\text{IMP}_{\text{off-b}}\).

We can therefore conclude that enough statistical evidence exists to suggest that impressions for SSA campaigns exhibiting a complimentary offline radio advertisement campaign are significantly more than impressions for SSA campaigns without the use of complimentary offline radio advertisements.

5.2.2.2 Impressions: Offline Television Adverts

To further research the second null hypothesis under objective 1, data from an internet-based company making use of SSA whilst supplementing it with intermittent television adverts were also investigated. SSA results data for two distinct periods (one with complimentary offline television advertisements running, and another without complimentary offline television advertisements) were obtained from a prominent internet-based company making use of offline television advertisements at various stages. The dataset for the 4-week period when complimentary offline television advertisements were
running contained 26281 keyword entries, as well as the dataset for the 4-week long period when no complimentary offline television ads were running.

Figure 5 shows a box plot frequency representation of the *impressions* for the keywords in the SSA campaign during which complimentary offline television advertisements were running (IMP\textsubscript{off+}), and the *impressions* for a similar duration when no complimentary offline television advertisements (IMP\textsubscript{off-}) were active.

From this descriptive analysis, there seems to be some difference between the two *impression* data sets, with IMP\textsubscript{off+} having average *impressions* of 208.7 whilst IMP\textsubscript{off-} has a 254.2 average.

Figure 5: Box Plot comparing impressions for campaigns with and without television ads
With the sample size big enough \((n_1 = n_2 = 26281 > 30)\) to assume that the sampling distribution takes on a normal distribution, and impression entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the IMP\(_{off^+}\) and IMP\(_{off^-}\) datasets. The statistical output of this process is shown in appendix A.4.

For difference \((\text{IMP}_{off^+} - \text{IMP}_{off^-}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.002, and the null hypothesis \(H_2_0\) can therefore be rejected, meaning that the two sample means (IMP\(_{off^+}\) and IMP\(_{off^-}\)) can be statistically proven to be significantly different at the 10% level. However, the difference \((\text{IMP}_{off^+} - \text{IMP}_{off^-}) > 0\) has a the \(p\)-value of 0.99, whilst the difference \((\text{IMP}_{off^+} - \text{IMP}_{off^-}) < 0\) has a the \(p\)-value of 0.002, meaning that the opposite of the research objective can be inferred from the results. The T-Value of -3.032 indicates that the two sample means differ by 3 standard errors.

We can therefore conclude that statistical evidence exists to suggest that impressions for SSA campaigns during complimentary offline television advertisements are significantly less than impressions for SSA campaigns without complimentary offline television advertisements.

5.3 Objective 2: Influence of Complimentary Adverts on Click-Through Rates

The null hypothesis under objective 2 stated that click-through rates (CTR) obtained with a complimentary advertisement campaign is equal to click-through rates obtained without a complimentary advertisement campaign. The alternative hypothesis stated that the
click-through rates (CTR) obtained with a complimentary advertisement campaign is significantly higher than click-through rates obtained without a complimentary advertisement campaign.

5.3.1 Click-Through Rate: Online Display Adverts

SSA results data for two distinct periods (one with complimentary online display advertisements active, and another without complimentary online advertisements) were obtained from a prominent internet-based company making use of only online display advertisements at various stages. The dataset for the week long period when complimentary online advertisements were running, contained 2045 keyword entries, whilst the dataset for the week long period when no complimentary online ads were running, contained 2104 keyword entries. In order to reduce the effect that keywords appearing in one dataset and not the other may have on the results, only keywords appearing in both datasets (and hence used in both periods) were used in the analysis, whilst keywords appearing in only one of the sets were removed (by use of a specially written program), resulting in a final dataset with 946 paired keywords.

Figure 6 shows a box plot frequency representation of the click-through rates for the keywords in the SSA campaign during which complimentary online display advertisements were active (CTR_on+), and the click-through rates for a similar duration when no complimentary online display advertisements (CTR_on-) were active.

From this descriptive analysis, the click-through rates for both sets seems to be fairly similar, with CTR_on+ having an average click-through rate of 0.12 whilst CTR_on- has a 0.13 average.
With the sample size big enough (n₁ = n₂ = 946 > 30) to assume that the sampling distribution takes on a normal distribution, and CTR entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the CTR₁ and CTR₀ datasets. The statistical output of this process is shown in appendix A.5.

For difference (CTR₁ – CTR₀) < > 0 under the Paired T-Test with α = 0.05, the p-value is given as 0.18, and the null hypothesis H₀ can not be rejected, meaning that the two sample means (CTR₁ and CTR₀) can not be statistically proven to be significantly different at the 10% level. The T-Value of -1.3229 also indicates that the two sample means differ only with 1.3 standard errors.
We can therefore conclude that no statistical evidence exists to suggest that click-through rates for SSA campaigns with complimentary online display advertisements are different to click-through rates for SSA campaigns without complimentary online display advertisements.

5.3.2.1 Click-Through Rate: Offline Radio Adverts

The null hypothesis under objective 2 also stated that click-through rates (CTR) obtained with a complimentary offline advertisement campaign (off+) is equal to click-through rates obtained without a complimentary offline advertisement campaign (off-). The alternative hypothesis stated that click-through rates (CTR) obtained with a complimentary offline advertisement campaign (off+) are significantly more than click-through rates obtained without a complimentary offline advertisement campaign (off-).

To fulfil this objective, data from two independent internet-based companies were obtained; one making use of SSA whilst supplementing it with intermittent radio adverts, and the other supplementing its SSA campaign with television adverts. SSA results data for four distinct week-long periods were obtained from the company making use of only offline radio advertisements at various stages. During two of these sample periods the company ran complimentary offline radio advertisements, whilst the samples for the periods when no complimentary offline advertisements ran, were taken two weeks after the initial two periods respectively. The four datasets contained 2500 independent keyword entries for the periods. In order to reduce the effect that keywords appearing in one dataset and not the others may have on the results, only keywords appearing in all
four datasets (and hence used in all four periods) were used in the analysis, whilst keywords appearing in only one of the sets were removed (by use of a specially written program), resulting in a final dataset with 1164 keywords.

Figure 7 shows a box plot frequency representation of the click-through rates for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (CTR\textsubscript{off+}), and the click-through rates for a similar duration when no complimentary offline radio advertisements (CTR\textsubscript{off-}) were running.

![Complimentary Radio Campaign: CTR](image)

Figure 7: Box Plot comparing CTR's for campaigns with and without offline radio ads

From this descriptive analysis, the click-through rates for both pairs of datasets seems to be fairly similar, with CTR\textsubscript{off+a} having an average click-through rate of 0.0535 whilst CTR\textsubscript{off-a} has a 0.055 average, and CTR\textsubscript{off+b} with an average click-through rate of 0.045 whilst CTR\textsubscript{off-b} has a 0.046 average.
With the sample size big enough \(n_1 = n_2 = 1164 > 30 \) to assume that the sampling distribution takes on a normal distribution, and CTR entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the CTR\(_{off+a}\) and CTR\(_{off-a}\) datasets, with the statistical output of this process shown in appendix A.6. Similarly, a paired T-Test was used to test for a statistically significant difference between the CTR\(_{off+b}\) and CTR\(_{off-b}\) datasets, with the statistical output of this process shown in appendix A.7.

For difference \((CTR_{off+a} - CTR_{off-a}) <> 0\) under the Paired T-Test with \(\alpha = 0.05 \), the \(p\)-value is given as 0.38, and the null hypothesis \(H_0 \) can not be rejected, meaning that the two sample means \((CTR_{off+a} and CTR_{off-a})\) can not be statistically proven to be significantly different at the 10\% level. The T-Value of -0.878 also indicates that the two sample means differ only with 0.9 standard errors.

For difference \((CTR_{off+b} - CTR_{off-b}) <> 0\) under the Paired T-Test with \(\alpha = 0.05 \), the \(p\)-value is given as 0.35, and the null hypothesis \(H_0 \) can once again not be rejected, meaning that the two sample means \((CTR_{off+b} and CTR_{off-b})\) can not be statistically proven to be significantly different at the 10\% level. The T-Value of -0.931 also indicates that the two sample means differ only with 0.9 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that click-through rates for SSA campaigns with complimentary offline radio advertisements are different to
click-through rates for SSA campaigns without complimentary offline radio advertisements.

5.3.2.2 Click-Through Rate: Offline Television Adverts

SSA results data for two distinct periods (one with complimentary offline television advertisements running, and another without complimentary offline television advertisements) were obtained from a prominent internet-based company making use of offline television advertisements at various stages. The dataset for the 4-week period when complimentary offline television advertisements were running contained 26281 keyword entries, as well as the dataset for the 4-week long period when no complimentary offline television ads were running.

Figure 8 shows a box plot frequency representation of the *click-through rates* for the keywords in the SSA campaign during which complimentary offline television advertisements were running (CTR\(_{off+}\)), and the *click-through rates* for a similar duration when no complimentary offline television advertisements (CTR\(_{off-}\)) were active.

From this descriptive analysis, there seems to be some difference between the two *click-through rates*, with CTR\(_{off+}\) having an average *click-through rate* of 1.06 whilst CTR\(_{off-}\) has a 1.17 average.

With the sample size big enough (n\(_1 = n_2 = 26281 > 30\)) to assume that the sampling distribution takes on a normal distribution, and CTR entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference
between the $\text{CTR}_{\text{off}+}$ and $\text{CTR}_{\text{off}-}$ datasets. The statistical output of this process is shown in appendix A.8.

![Box Plot comparing CTR's for campaigns with and without offline television ads](image)

Figure 8: Box Plot comparing CTR's for campaigns with and without offline television ads

For difference $(\text{CTR}_{\text{off}+} - \text{CTR}_{\text{off}-}) > 0$ under the Paired T-Test with $\alpha = 0.05$, the *p*-value is given as 0.01, and the null hypothesis H_0 can therefore be rejected, meaning that the two sample means ($\text{CTR}_{\text{off}+}$ and $\text{CTR}_{\text{off}-}$) can be statistically proven to be significantly different at the 10% level. However, the difference $(\text{CTR}_{\text{off}+} - \text{CTR}_{\text{off}-}) < 0$ has a *p*-value of 0.99, whilst the difference $(\text{CTR}_{\text{off}+} - \text{CTR}_{\text{off}-}) > 0$ has a *p*-value of 0.01, meaning that the opposite of the research objective can be inferred from the results. The T-Value of -2.54 indicates that the two sample means differ by 2.5 standard errors.
We can therefore conclude that statistical evidence exists to suggest that *click-through rates* for SSA campaigns during complimentary offline television advertisements are significantly less than *click-through rates* for SSA campaigns without complimentary offline television advertisements.

5.4 Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour

The following section shows the results obtained from investigating the differences measured in the behaviour of visitors gained through SSA campaigns, dependent on various complimentary advertisement campaigns mixed with the SSA campaign, as per the third objective of the research.

5.4.1 Pages Visited: Online Display Adverts

The fifth null hypothesis stated that the *number of pages viewed* by a visitor will remain the same when a complimentary online display advertisement campaign is implemented. The alternative hypothesis stated that the number of *pages viewed* by a visitor will significantly decrease when a complimentary online display advertisement campaign is implemented.

SSA results data for two distinct periods (one with complimentary online display advertisements active, and another without complimentary online advertisements) from a prominent internet-based company making use of only online display advertisements at various stages were again used. The dataset for the two week long periods were again
reduced to only contain corresponding keywords, resulting in a final dataset with 946 paired keywords.

Figure 9 shows a box plot frequency representation of the *pages per visit* for the keywords in the SSA campaign during which complimentary online display advertisements were active (PV\(_{on+}\)), and the *pages per visit* for a similar duration when no complimentary online display advertisements (PV\(_{on-}\)) were active.

![Box Plot of PVs for Campaigns with and without Online Display Ads](image)

Figure 9: Box Plot comparing PV’s for campaigns with and without online display ads

From this descriptive analysis, the *pages per visit* for both sets seems to be fairly similar, with PV\(_{on+}\) having an average of 7.55 whilst PV\(_{on-}\) has a 7.39 average.

With the sample size big enough (\(n_1 = n_2 = 946 > 30\)) to assume that the sampling distribution takes on a normal distribution, and PV entries in both sets for corresponding
keywords, a paired T-Test was used to test for a statistically significant difference between the PV_{on+} and PV_{on-} datasets. The statistical output of this process is shown in appendix A.9.

For $\text{difference } (PV_{on+} - PV_{on-}) < > 0$ under the Paired T-Test with $\alpha = 0.05$, the \textit{p-value} is given as 0.684, and the null hypothesis H_0 can not be rejected, meaning that \textbf{the two sample means (PV_{on+} and PV_{on-}) can not be statistically proven to be significantly different at the 10% level}. The T-Value of 0.407 also indicates that the two sample means differ only with 0.4 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that \textit{pages per visit} for SSA campaigns with complimentary online display advertisements are different to \textit{pages per visit} for SSA campaigns without complimentary online display advertisements.

5.4.2 Pages Visited: Offline Radio Adverts

The sixth null hypothesis stated that the \textit{number of pages viewed} by a visitor will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis stated that the \textit{number of pages viewed} by a visitor will significantly decrease when a complimentary offline advertisement campaign is implemented.

SSA results data for four distinct week-long periods from a prominent internet-based company making use of only offline radio advertisements at various stages were again used for this analysis. During two of these sample periods the company ran complimentary offline radio advertisements, whilst the samples for the periods when no
complimentary offline advertisements ran, were taken two weeks after the initial two periods respectively. The four datasets were again merged to contain only corresponding keywords, resulting in a final dataset with 1164 keywords.

Figure 10 shows a box plot frequency representation of the number of pages per visit for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (PV\(_{\text{off+}}\)), and the pages per visit for a similar duration when no complimentary offline radio advertisements (PV\(_{\text{off-}}\)) were running.

From this descriptive analysis, the pages per visit for both pairs of datasets seems to be more for periods when no offline radio campaigns were active, with PV\(_{\text{off-a}}\) having an average of 7.34 whilst PV\(_{\text{off-a}}\) has a 8.31 average, and PV\(_{\text{off+b}}\) with an average of 7.57 whilst PV\(_{\text{off-b}}\) has a 8.96 average.

Figure 10: Box Plot comparing PV’s for campaigns with and without offline radio ads
With the sample size big enough \((n_1 = n_2 = 1164 > 30)\) to assume that the sampling distribution takes on a normal distribution, and *pages per visit* entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the \(PV_{\text{off+}}\) and \(PV_{\text{off-}}\) datasets, with the statistical output of this process shown in appendix A.10. Similarly, a paired T-Test was used to test for a statistically significant difference between the \(PV_{\text{off+}}\) and \(PV_{\text{off-}}\) datasets, with the statistical output of this process shown in appendix A.11.

For difference \((PV_{\text{off+}} - PV_{\text{off-}}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the *p*-value is given as 0.01, and the null hypothesis \(H_0\) can therefore be rejected, meaning that the two sample means \((PV_{\text{off+}}\) and \(PV_{\text{off-}}\)) can be statistically proven to be significantly different at the 10% level. The difference \((PV_{\text{off+}} - PV_{\text{off-}}) > 0\) has a the *p*-value of 0.99, whilst the difference \((PV_{\text{off+}} - PV_{\text{off-}}) < 0\) has a the *p*-value of 0.003, meaning that the alternative hypothesis can be inferred from the results. The T-Value of -2.74 indicates that the two sample means differ by 2.7 standard errors.

For difference \((PV_{\text{off+}} - PV_{\text{off-}}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the *p*-value is given as less than 0.001, and the null hypothesis \(H_0\) can therefore again be rejected, meaning that the two sample means \((PV_{\text{off+}}\) and \(PV_{\text{off-}}\)) can be statistically proven to be significantly different at the 10% level. However, the difference \((PV_{\text{off+}} - PV_{\text{off-}}) > 0\) has a *p*-value of more than 0.99, whilst the difference \((PV_{\text{off+}} - PV_{\text{off-}}) < 0\) has a the *p*-value of less than 0.001, meaning that the alternative hypothesis can once again
be proven. The T-Value of -4.161 indicates that the two sample means differ by 4.6 standard errors.

We can therefore conclude that sufficient statistical evidence exists to suggest that the number of pages per visit for SSA campaigns during complimentary offline radio advertisements are significantly less than the number of pages per visit for SSA campaigns without complimentary offline radio advertisements.

5.4.3 Time Spent: Online Display Adverts

The seventh null hypothesis under the third research objective stated that the time spent viewing the website will remain the same when a complimentary online display advertisement campaign is implemented. The alternative hypothesis stated that the time spent viewing the website will significantly improve when a complimentary online display advertisement campaign is implemented.

The SSA results data of a prominent internet-based company making use of only online display advertisements at various stages were once again used for this analysis, where the dataset were merged to contain only corresponding keywords, resulting in a final dataset with 946 paired keywords.

Figure 11 shows a box plot frequency representation of the time spent viewing a website generated from the keywords in the SSA campaign during which complimentary online display advertisements were active (TS_{on^+}), and the time spent for a similar duration when no complimentary online display advertisements (TS_{on^-}) were active.
From this descriptive analysis, the *time spent* for both sets seems to be fairly similar, with $T_{S_{on+}}$ having an average of 451.7 seconds whilst $T_{S_{on-}}$ has a 442.5 second average.

With the sample size big enough ($n_1 = n_2 = 946 > 30$) to assume that the sampling distribution takes on a normal distribution, and TS entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the $T_{S_{on+}}$ and $T_{S_{on-}}$ datasets. The statistical output of this process is shown in appendix A.12.

For *difference* $(T_{S_{on+}} - T_{S_{on-}}) < > 0$ under the Paired T-Test with $\alpha = 0.05$, the *p-value* is given as 0.737, and the null hypothesis H_7 can not be rejected, meaning that the two sample means ($T_{S_{on+}}$ and $T_{S_{on-}}$) can not be statistically proven to be significantly
different at the 10% level. The T-Value of 0.336 also indicates that the two sample means differ only with 0.3 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that time spent visiting the website for SSA campaigns with complimentary online display advertisements are different to time spent visiting the website for SSA campaigns without complimentary online display advertisements.

5.4.4 Time Spent: Offline Radio Adverts

The eighth null hypothesis stated that the time spent viewing the website will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis stated that the time spent viewing the website will significantly improve when a complimentary offline advertisement campaign is implemented.

SSA results data for four distinct week-long periods were obtained from a prominent internet-based company making use of only offline radio advertisements at various stages. During two of these sample periods the company ran complimentary offline radio advertisements, whilst the samples for the periods when no complimentary offline advertisements ran, were taken two weeks after the initial two periods respectively. The four datasets were reduced to contain only corresponding keywords, resulting in a final dataset with 1164 keywords.

Figure 12 shows a box plot frequency representation of the time spent for visits to the website generated from the keywords in the SSA campaign during two periods in which
complimentary offline radio advertisements were running (TS_{off^+}), and the *time spent* for a similar duration when no complimentary offline radio advertisements (TS_{off^-}) were running.

Complimentary Radio Campaign: TS

![Box Plot comparing time spent for campaigns with and without radio ads](image)

Figure 12: Box Plot comparing time spent for campaigns with and without radio ads

From this descriptive analysis, the *time spent* for both pairs of datasets seems to be more for periods when no offline radio campaigns were active, with TS_{off^+a} having an average of 295.58 seconds whilst TS_{off^-a} has a 334.1 average, and TS_{off^+b} with an average of 337.1 whilst TS_{off^-b} has a 372.9 average.

With the sample size big enough ($n_1 = n_2 = 1164 > 30$) to assume that the sampling distribution takes on a normal distribution, and *time spent* entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the TS_{off^+a} and TS_{off^-a} datasets, with the statistical output of this process shown in appendix A.13. Similarly, a paired T-Test was used to test for a
statistically significant difference between the TS_{off+b} and TS_{off-b} datasets, with the statistical output of this process shown in appendix A.14.

For \textit{difference} (TS_{off+a} - TS_{off-a}) \neq 0 under the Paired T-Test with \(\alpha = 0.05\), the \textit{p-value} is given as 0.01, and the null hypothesis H8_0 can therefore be rejected, meaning that \textbf{the two sample means (TS_{off+a} and TS_{off-a}) can be statistically proven to be significantly different at the 10% level.} However, the \textit{difference} (TS_{off+a} - TS_{off-a}) > 0 has a \textit{p-value} of more than 0.99, whilst the \textit{difference} (TS_{off+a} - TS_{off-a}) < 0 has a \textit{p-value} of 0.005, meaning that the opposite of the research objective can be inferred from the results. The T-Value of -2.59 indicates that the two sample means differ by 2.6 standard errors.

For \textit{difference} (TS_{off+b} - TS_{off-b}) \neq 0 under the Paired T-Test with \(\alpha = 0.05\), the \textit{p-value} is given as less than 0.03, and the null hypothesis H8_0 can therefore again be rejected, meaning that \textbf{the two sample means (TS_{off+b} and TS_{off-b}) can be statistically proven to be significantly different at the 10% level.} However, the \textit{difference} (TS_{off+b} - TS_{off-b}) > 0 has a \textit{p-value} of more than 0.98, whilst the \textit{difference} (TS_{off+b} - TS_{off-b}) < 0 has a \textit{p-value} of less than 0.016, meaning that the opposite of the research objective can be inferred from the results. The T-Value of -2.17 indicates that the two sample means differ by 2.2 standard errors.

We can therefore conclude that sufficient statistical evidence exists to suggest that the \textit{time spent} visiting the website for SSA campaigns during complimentary offline radio
advertisements are significantly less than the time spent for SSA campaigns without complimentary offline radio advertisements.

5.4.5 Bounce Rate: Online Display Adverts

The ninth null hypothesis stated that the bounce rate of visitors will remain the same when a complimentary online display advertisement campaign is implemented. The alternative hypothesis stated that the bounce rate of visitors will significantly decrease when a complimentary online display advertisement campaign is implemented.

SSA results data for two distinct periods (one with complimentary online display advertisements active, and another without complimentary online advertisements) from a prominent internet-based company making use of only online display advertisements at various stages were again used. The dataset for the two week long periods were again reduced to only contain corresponding keywords, resulting in a final dataset with 946 paired keywords.

Figure 15 shows a box plot frequency representation of the bounce rate for the keywords in the SSA campaign during which complimentary online display advertisements were active (BR_{on+}), and the bounce rate for a similar duration when no complimentary online display advertisements (BR_{on-}) were active.

From this descriptive analysis, the bounce rate for both sets seems to be very similar, with BR_{on+} having an average of 0.404 whilst BR_{on-} has a 0.406 average.
Figure 13: Box Plot comparing BR's for campaigns with and without online display ads

With the sample size big enough \((n_1 = n_2 = 946 > 30) \) to assume that the sampling distribution takes on a normal distribution, and BR entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the \(\text{BR}_{\text{on}+} \) and \(\text{BR}_{\text{on}-} \) datasets. The statistical output of this process is shown in appendix A.15.

For difference \(\left(\text{BR}_{\text{on}+} - \text{BR}_{\text{on}-} \right) < > 0 \) under the Paired T-Test with \(\alpha = 0.05 \), the \(p\)-value is given as 0.896, and the null hypothesis \(H_0 \) can not be rejected, meaning that the two sample means (\(\text{BR}_{\text{on}+} \) and \(\text{BR}_{\text{on}-} \)) can not be statistically proven to be significantly different at the 10% level. The T-Value of -0.1309 also indicates that the two sample means differ only with 0.1 standard errors.
We can therefore conclude that no statistical evidence exists to suggest that the *bounce rate* for SSA campaigns with complimentary online display advertisements is different to the *bounce rate* for SSA campaigns without complimentary online display advertisements.

5.4.6 Bounce Rate: Offline Display Adverts

The tenth null hypothesis stated that the *bounce rate* will remain the same when a complimentary offline advertisement campaign is implemented. The alternative hypothesis stated that the *bounce rate* will significantly decrease when a complimentary offline advertisement campaign is implemented.

SSA results data for four distinct week-long periods from a prominent internet-based company making use of only offline radio advertisements at various stages were again used for this analysis. During two of these sample periods the company ran complimentary offline radio advertisements, whilst the samples for the periods when no complimentary offline advertisements ran, were taken two weeks after the initial two periods respectively. The four datasets were again merged to contain only corresponding keywords, resulting in a final dataset with 1164 keywords.

Figure 16 shows a box plot frequency representation of the *bounce rate* for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (BR$_{off+}$), and the *bounce rate* for a similar duration when no complimentary offline radio advertisements (BR$_{off-}$) were running.

From this descriptive analysis, the *bounce rate* for both pairs of datasets seems to be more for periods when no offline radio campaigns were active, with BR$_{off+a}$ having an
average of 0.387 whilst BR\textsubscript{off-a} has a 0.382 average, and BR\textsubscript{off+b} with an average of 0.385 whilst BR\textsubscript{off-b} has a 0.360 average.

![Box Plot comparing BR's for campaigns with and without offline radio ads](image)

Figure 14: Box Plot comparing BR's for campaigns with and without offline radio ads

With the sample size big enough ($n_1 = n_2 = 1164 > 30$) to assume that the sampling distribution takes on a normal distribution, and bounce rate entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the BR\textsubscript{off+a} and BR\textsubscript{off-a} datasets, with the statistical output of this process shown in appendix A.16. Similarly, a paired T-Test was used to test for a statistically significant difference between the BR\textsubscript{off+b} and BR\textsubscript{off-b} datasets, with the statistical output of this process shown in appendix A.17.
For $\text{difference } (\text{BR}_{\text{off+a}} - \text{BR}_{\text{off-a}}) < \neq 0$ under the Paired T-Test with $\alpha = 0.05$, the p-value is given as 0.628, and the null hypothesis H_{10} can therefore not be rejected, meaning that the two sample means ($\text{BR}_{\text{off+a}}$ and $\text{BR}_{\text{off-a}}$) can not be statistically proven to be significantly different at the 10% level. The T-Value of 0.485 indicates that the two sample means only differ by 0.5 standard errors.

For $\text{difference } (\text{BR}_{\text{off+b}} - \text{BR}_{\text{off-b}}) < \neq 0$ under the Paired T-Test with $\alpha = 0.05$, the p-value is given as less than 0.02, and the null hypothesis H_{10} can be rejected here, meaning that the two sample means ($\text{BR}_{\text{off+b}}$ and $\text{BR}_{\text{off-b}}$) can be statistically proven to be significantly different at the 10% level. However, the $\text{difference } (\text{BR}_{\text{off+b}} - \text{BR}_{\text{off-b}}) < 0$ has a p-value of more than 0.98, whilst the $\text{difference } (\text{BR}_{\text{off+b}} - \text{BR}_{\text{off-b}}) > 0$ has a the p-value of 0.011, meaning that the alternative hypothesis can not be proven. The T-Value of 2.2791 indicates that the two sample means differ by 2.3 standard errors.

We can therefore conclude that some statistical evidence exists to suggest that the bounce rate for SSA campaigns during complimentary offline radio advertisements are significantly more than the bounce rate for SSA campaigns without complimentary offline radio advertisements.

5.5 Objective 4: Influence of Complimentary Advertisements on Cost

The eleventh null hypothesis stated that the cost-per-click for an SSA campaign will remain the same when a complimentary advertisement campaign is implemented. The alternative hypothesis stated that the cost-per-click will significantly decrease when a complimentary advertisement campaign is implemented. The following section shows the
results obtained from investigating the differences measured in the cost-per-click obtained from different SSA campaigns, dependent on various complimentary advertisement campaigns mixed with the SSA campaign, as per the fourth objective of the research.

5.5.1 Cost per Click: Online Display Adverts

SSA results data from a prominent internet-based company making use of only online display advertisements at various stages were once again used for this analysis. The two distinct datasets were reduced to contain only corresponding keywords, resulting in a final merged dataset with 946 paired keywords.

Figure 15 shows a box plot frequency representation of the cost-per-click for the keywords in an SSA campaign during which complimentary online display advertisements were active (CPCon+), and the cost-per-click for a similar duration when no complimentary online display advertisements (CPCon-) were active.

From this descriptive analysis, the cost-per-click for both sets seems to be fairly similar, with CPCon+ having an average cost-per-click of 0.448 whilst CPCon- has a 0.447 average.

With the sample size big enough (n₁ = n₂ = 946 > 30) to assume that the sampling distribution takes on a normal distribution, and CPC entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the CPCon+ and CPCon- datasets. The statistical output of this process is shown in appendix A.18.
Figure 15: Box Plot comparing CPC for campaigns with and without online display ads

For \(\text{difference (CPC}_{\text{on+}} - \text{CPC}_{\text{on-}}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.966, and the null hypothesis \(H_{10}\) can not be rejected, meaning that the two sample means (CPC\(_{\text{on+}}\) and CPC\(_{\text{on-}}\)) can not be statistically proven to be significantly different at the 10% level. The T-Value of 0.042 also indicates that the two sample means differ only with 0.04 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that cost-per-click for SSA campaigns with complimentary online display advertisements are different to cost-per-click for SSA campaigns without complimentary online display advertisements.
5.5.2.1 Cost per Click: Offline Radio Adverts

The twelfth null hypothesis under objective 4 also stated that cost-per-click (CPC) obtained with a complimentary offline advertisement campaign (off+) is equal to cost-per-click obtained without a complimentary offline advertisement campaign (off-). The alternative hypothesis stated that cost-per-click (CPC) obtained with a complimentary offline advertisement campaign (off+) are significantly less than cost-per-click obtained without a complimentary offline advertisement campaign (off-).

SSA results data for four distinct week-long periods were obtained from a prominent internet-based company making use of only offline radio advertisements at various stages. The dataset were reduced to only contain common keywords appearing in all the sets, resulting in a final dataset with 1164 keywords.

Figure 16 shows a box plot frequency representation of the cost-per-click for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (CPC_{off+}), and the cost-per-click for a similar duration when no complimentary offline radio advertisements (CPC_{off-}) were running.

From this descriptive analysis, the cost-per-click for both pairs of datasets seems to be slightly more for periods when complimentary radio advertisement were active, with CPC_{off+a} having an average cost-per-click of 1.155 whilst CPC_{off-a} has a 1.146 average, and CPC_{off+b} with an average cost-per-click of 1.203 whilst CPC_{off-b} has a 1.108 average.
Complimentary Radio Ad Campaign: CPC

Figure 16: Box Plot comparing CPC's for campaigns with and without offline radio ads

With the sample size big enough ($n_1 = n_2 = 1164 > 30$) to assume that the sampling distribution takes on a normal distribution, and CPC entries in all four sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the CPC$_{off+a}$ and CPC$_{off-a}$ datasets, with the statistical output of this process shown in appendix A.19. Similarly, a paired T-Test was used to test for a statistically significant difference between the CPC$_{off+b}$ and CPC$_{off-b}$ datasets, with the statistical output of this process shown in appendix A.20.

For difference ($CPC_{off+a} - CPC_{off-a}$) $<> 0$ under the Paired T-Test with $\alpha = 0.05$, the p-value is given as 0.863, and the null hypothesis $H_{12} = 0$ can not be rejected, meaning that the two sample means (CPC$_{off+a}$ and CPC$_{off-a}$) can not be statistically proven to be
significantly different at the 10% level. The T-Value of 0.1729 also indicates that the two sample means differ only with 0.2 standard errors.

For difference \((CPC_{off+b} - CPC_{off-b}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.0001, and the null hypothesis \(H_{120}\) can be rejected, meaning that the two sample means \((CPC_{off+b} and CPC_{off-b})\) can indeed be statistically proven to be significantly different at the 10% level. For difference \((CPC_{off+b} - CPC_{off-b}) > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is also less than 0.0001, meaning that \(CPC_{off+b}\) entries are significantly more than \(CPC_{off-b}\) entries. The T-Value of 4.712 also indicates that the two sample means differ with 4.7 standard errors.

We can therefore conclude that the one comparison set exhibited no statistical evidence to suggest that \textit{cost-per-click} for SSA campaigns with complimentary offline radio advertisements are significantly different to \textit{cost-per-click} for SSA campaigns without complimentary offline radio advertisements. The second comparison set however showed that \textit{cost-per-click} for SSA campaigns with complimentary offline radio advertisements are significantly higher than \textit{cost-per-click} for SSA campaigns without complimentary offline radio advertisements active.

5.5.2.2 Cost per Click: Offline Television Adverts

SSA results data for two distinct periods (one with complimentary offline television advertisements running, and another without complimentary offline television advertisements) were obtained from a prominent internet-based company making use of offline television advertisements at various stages. The dataset for the 4-week period
when complimentary offline television advertisements were running contained 26281
keyword entries, as well as the dataset for the 4-week long period when no
complimentary offline television ads were running.

Figure 17 shows a box plot frequency representation of the cost-per-click for the
keywords in the SSA campaign during which complimentary offline television
advertisements were running (CPC_{off+}), and the cost-per-click for a similar duration when
no complimentary offline television advertisements (CPC_{off-}) were active.

![Complimentary TV Ad Campaign: CPC](image)

Figure 17: Box Plot comparing CPC’s for campaigns with and without offline television
ads

From this descriptive analysis, there seems to be some difference between the two cost-
per-click data sets, with CPC_{off+} having an average cost-per-click of 0.007387 whilst
CPC_{off-} has a 0.0764 average.
With the sample size big enough \((n_1 = n_2 = 26281 > 30)\) to assume that the sampling distribution takes on a normal distribution, and CPC entries in both sets for corresponding keywords, a paired T-Test was used to test for a statistically significant difference between the \(\text{CPC}_{\text{off}^+}\) and \(\text{CPC}_{\text{off}^-}\) datasets. The statistical output of this process is shown in appendix A.21.

For difference \((\text{CPC}_{\text{off}^+} - \text{CPC}_{\text{off}^-}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.005, and the null hypothesis \(H_{120}\) can therefore be rejected, meaning that the two sample means \((\text{CPC}_{\text{off}^+} \text{ and } \text{CPC}_{\text{off}^-})\) can be statistically proven to be **significantly different at the 10\% level**. However, the difference \((\text{CPC}_{\text{off}^+} - \text{CPC}_{\text{off}^-}) > 0\) has a the \(p\)-value of more than 0.99, whilst the difference \((\text{CPC}_{\text{off}^+} - \text{CPC}_{\text{off}^-}) < 0\) has a the \(p\)-value of less than 0.01, meaning that \(\text{CPC}_{\text{off}^+}\) is indeed less than \(\text{CPC}_{\text{off}^-}\). The T-Value of -2.798 indicates that the two sample means differ by 2.8 standard errors.

We can therefore conclude that statistical evidence exists to suggest that cost-per-click for SSA campaigns during complimentary offline television advertisements are significantly less than cost-per-click for SSA campaigns without complimentary offline television advertisements.

5.6 Objective 5: Influence of Complimentary Advertisements on Sales

The thirteenth null hypothesis under the last objective stated that sales will remain the same when a complimentary advertisement campaign is implemented. The alternative hypothesis stated that sales will significantly improve when a complimentary
advertisement campaign is implemented. The following section shows the results obtained from investigating the differences measured in new registrations per keyword obtained from different SSA campaigns, dependent on various complimentary advertisement campaigns mixed with the SSA campaign, as per the fifth objective of the research.

5.6.1 New Registrations: Online Display Adverts

SSA results data for two distinct periods (one with complimentary online display advertisements active, and another without complimentary online advertisements) from a prominent internet-based company making use of only online display advertisements at various stages were obtained for this analysis. A reduced dataset containing only 946 paired keywords were used.

Figure 18 shows a box plot frequency representation of the new registrations obtained from a keyword search in the SSA campaign during which complimentary online display advertisements were active (NR_{on+}), and new registrations for a similar duration when no complimentary online display advertisements (NR_{on-}) were active.

From this descriptive analysis, new registrations per keyword search for campaigns with complimentary online display adverts seems to be more than those obtained when no online display adverts were active, with NR_{on+} having average new registrations of 0.0001989 whilst NR_{on-} has a mere 0.000004703 average.

With the sample size big enough (n_1 = n_2 = 946 > 30) to assume that the sampling distribution takes on a normal distribution, and NR entries in both sets for corresponding
keywords, a paired T-Test was used to test for a statistically significant difference between the NR$_{on^+}$ and NR$_{on^-}$ datasets. The statistical output of this process is shown in appendix A.22.

Figure 18: Box Plot comparing NR’s for campaigns with and without online display ads

For *difference* (NR$_{on^+}$ – NR$_{on^-}$) < > 0 under the Paired T-Test with $\alpha = 0.05$, the *p-value* is given as 0.09, and the null hypothesis H_{13} can just not be rejected. However, the *difference* (NR$_{on^+}$ – NR$_{on^-}$) > 0 has a *p-value* of 0.045, meaning that the sample mean of NR$_{on^+}$ can be statistically proven to be more than the sample mean of NR$_{on^-}$ at the 10% level. The T-Value of 1.694 also indicates that the two sample means differ by 1.7 standard errors.
We can therefore conclude that enough statistical evidence exists to suggest that new registrations for SSA campaigns with complimentary online display advertisements are slightly more than new registrations for SSA campaigns without complimentary online display advertisements.

5.6.2 New Registrations: Offline Radio Adverts

The null hypothesis under objective 5 also stated that new registrations (NR) obtained with a complimentary offline advertisement campaign (off+) is equal to new registrations obtained without a complimentary offline advertisement campaign (off-). The alternative hypothesis stated that new registrations (NR) obtained with a complimentary offline advertisement campaign (off+) are significantly more than new registrations obtained without a complimentary offline advertisement campaign (off-).

SSA results data for four distinct week-long periods were obtained from a prominent internet-based company making use of only offline radio advertisements at various stages. The dataset were reduced to only contain common keywords appearing in all the sets, resulting in a final merged dataset with 1164 keywords.

Figure 19 shows a box plot frequency representation of new registrations for the keywords in the SSA campaign during two periods in which complimentary offline radio advertisements were running (NR_{off+}), and new registrations for a similar duration when no complimentary offline radio advertisements (NR_{off-}) were running.

From this descriptive analysis, new registrations for both pairs of datasets seems to be less for periods when complimentary offline advertisements were active, with NR_{off+a}
having average new registrations of 0.008277 whilst NR\textsubscript{off-a} has a 0.01147 average, and
NR\textsubscript{off+b} with average new registrations of 0.007563 whilst NR\textsubscript{off-b} has a 0.01032 average.

![Box Plot comparing NR's for campaigns with and without offline radio ads](image.png)

Figure 19: Box Plot comparing NR's for campaigns with and without offline radio ads

With the sample size big enough ($n_1 = n_2 = 1164 > 30$) to assume that the sampling
distribution takes on a normal distribution, and NR entries in all four sets for
 corresponding keywords, a paired T-Test was used to test for a statistically significant
difference between the NR\textsubscript{off+a} and NR\textsubscript{off-a} datasets, with the statistical output of this
process shown in appendix A.23. Similarly, a paired T-Test was used to test for a
statistically significant difference between the NR\textsubscript{off+b} and NR\textsubscript{off-b} datasets, with the
statistical output of this process shown in appendix A.24.
For difference \((NR_{off+a} - NR_{off-a}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.113, and the null hypothesis \(H14_0\) can just not be rejected, meaning that the two sample means \((NR_{off+a} \text{ and } NR_{off-a})\) can not be statistically proven to be significantly different at the 10% level. The T-Value of -1.586 also indicates that the two sample means differ only with 1.6 standard errors.

For difference \((NR_{off+b} - NR_{off-b}) < > 0\) under the Paired T-Test with \(\alpha = 0.05\), the \(p\)-value is given as 0.171, and the null hypothesis \(H14_0\) can once again not be rejected, meaning that the two sample means \((NR_{off+b} \text{ and } NR_{off-b})\) can not be statistically proven to be significantly different at the 10% level. The T-Value of -1.368 also indicates that the two sample means differ only with 1.4 standard errors.

We can therefore conclude that no statistical evidence exists to suggest that new registrations for SSA campaigns with complimentary offline radio advertisements are different to new registrations for SSA campaigns without complimentary offline radio advertisements.

5.7 Conclusion

To recap the results obtained from the data analysed in this section, Table 2 provides a summary of all the statistical findings related to each of the research objectives with regards to the presence and absence of online and offline complimentary advertisement campaigns.
Table 2: Summary of results obtained from data analyses

<table>
<thead>
<tr>
<th>Objective</th>
<th>Data</th>
<th>Online</th>
<th>Radio Ads (a)</th>
<th>Radio Ads (b)</th>
<th>Television Ads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Impressions</td>
<td>IMP_{on} < > IMP_{on-}</td>
<td>IMP_{off+a} > IMP_{off-a}</td>
<td>IMP_{off+b} > IMP_{off-b}</td>
<td>IMP_{off+} < IMP_{off-}</td>
<td></td>
</tr>
<tr>
<td>2 Click-Through Rate</td>
<td>CTR_{on} < > CTR_{on-}</td>
<td>CTR_{off+a} < > CTR_{off-a}</td>
<td>CTR_{off+b} < > CTR_{off-b}</td>
<td>CTR_{off+} < CTR_{off-}</td>
<td></td>
</tr>
<tr>
<td>Pages Visited</td>
<td>PV_{on} < > PV_{on-}</td>
<td>PV_{off+a} < PV_{off-a}</td>
<td>PV_{off+b} < PV_{off-b}</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>3 Time Spent</td>
<td>TS_{on} < > TS_{on-}</td>
<td>TS_{off+a} < TS_{off-a}</td>
<td>TS_{off+b} < TS_{off-b}</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>Bounce Rate</td>
<td>BR_{on} < > BR_{on-}</td>
<td>BR_{off+a} < > BR_{off-a}</td>
<td>BR_{off+b} > BR_{off-b}</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>4 Cost-per-Click</td>
<td>CPC_{on} < > CPC_{on-}</td>
<td>CPC_{off+a} < CPC_{off-a}</td>
<td>CPC_{off+b} > CPC_{off-b}</td>
<td>CPC_{off+} < CPC_{off-}</td>
<td></td>
</tr>
<tr>
<td>5 New Registrations</td>
<td>NR_{on} < > NR_{on-}</td>
<td>NR_{off+a} < > NR_{off-a}</td>
<td>NR_{off+b} < > NR_{off-b}</td>
<td>no data</td>
<td></td>
</tr>
</tbody>
</table>
6 DISCUSSION OF RESULTS

6.1 Introduction

This chapter will discuss in detail the results obtained in chapter 5, providing some possible explanations for the trends observed. Supporting literature for some of the findings will be given, whilst some of the other findings will be shown to be in contradiction with current literature.

6.2 Objective 1: Influence of Complimentary Adverts on Impressions

From the data analysed in Chapter 5, no statistical evidence were found to suggest that supplementary online display advertisements will improve impressions of an SSA campaign. This result seems counter intuitive, since one would expect that marketing efforts through an online channel (like display adverts) will generate more awareness about a certain theme, and hence prompt users to search more for topics covered in the SSA campaign keyword list resulting in higher impressions. This result once again begs to question the effectiveness of online display adverts, especially since banner ads seems to be more successful for novice internet users (Dahlen, 2001) where it tends to only annoy expert internet users (Taylor et al., 2008). This also agrees with Havlena et al.’s (2004) finding that brand awareness generated in online consumers decay much faster than those generated in offline consumers. Still the effectiveness of content-relevant display ads are deemed to be higher in terms of brand name recall (Yaveroglu et al., 2008). This finding do not support that of Fulgoni et al. (2009), who concluded that...
display advertising can increase the probability of a consumer to conduct an online search using the branded terms of the advertisers by 38%.

The analysis did however find a positive correlation between complimentary offline radio advertisements and higher *impressions* gained for a simultaneously active SSA campaign. Since offline radio adverts should increase the awareness on a targeted searchable topic, but not necessarily link that topic directly to the advertising company, it can be expected that the greater awareness can lead to increased search queries on the topic (Sen, 2005), and hence increased SSA impressions gained from keywords on that topic. This agrees with the findings of McMains *et al.* (2009) that offline campaigns create brand awareness, whilst online campaigns attract and convert potential customers.

However, a negative correlation was also found between complimentary offline television advertisement and *impressions* for a simultaneously active SSA campaign. This difference in correlation between offline radio and television advertisements may be ascribed to improved brand recognition gained from television adverts (Yaveroglu *et al.*, 2008), negating the need to first make use of a search engine to find data on a particular advertised topic, and prompting the users to go directly to the advertisers website, resulting in fewer *impressions* for a particular SSA campaign when run in conjunction with a television advert.

6.3 Objective 2: Influence of Complimentary Adverts on Click-Through Rates

The research analysis found no statistical evidence to suggest a positive correlation between complimentary online display advertisements and *click-through rates* obtained
from a simultaneously running SSA campaign. This disappointing performance from online display adverts may once again be the result of the general aversion with which display ads are met on the internet these days (Taylor et al., 2008). Since Chatterjee (2005) did not find any improvements in display advert click-through rates for repeating ads, it only seems natural that no improvements can be expected for SSA click-through rates. Display adverts have been found to not necessarily increase click-through rates to a website, but on a longer term generate meaningful increases in brand awareness and site visitations (Fulgoni et al., 2009). Drèze et al. (2003) even argued that brand-equity indicators should be used to measure the performance of display ads instead of CTR, because internet users are increasingly avoiding display ads during their online activities. Since display adverts are also employed through an online channel, targeting existing online users to click on them, it may even stand in competition with SSA adverts, eroding the clicks an SSA advert might have received if a display advert were not simultaneously employed.

Similarly no statistical evidence were found to suggest a positive correlation between click-through rates for SSA campaigns and complimentary offline radio advertisements. This result comes as a surprise, since offline radio adverts were expected to increase brand awareness, and hence improve the probability for an SSA advert to be clicked on when displayed amongst competing ads. The result do however agree with the findings of McMains et al. (2009) that offline campaigns create brand awareness, whilst online campaigns attract and convert potential customers. It also aligns with the research of Wakolbinger et al. (2009) who found that combined online and offline advertising strategies do not exhibit improved effectiveness. Once again, segmenting the market into experienced and novice users may provide a reasonable explanation for this result, as
Dou *et al.* (2010) found that lesser skilled internet users tend to evaluate unknown brands on search engine result pages more favourably. For this theory to hold true, we must speculate that traditional offline radio adverts are biased towards the novice internet user segment.

The analysis also found a negative correlation between complimentary offline television advertisements and the *click-through rates* obtained for a simultaneously running SSA campaign. Once again this decrease in CTR stands in contrast with the expected increase in brand awareness gained from television adverts, and also with Gauzente's (2010) findings that internet users who are knowledgeable on a specific sponsored link will have a favourable attitude towards it with a positive click intention. The poor results gained from offline television adverts may be due to consumers’ ever decreasing level of tolerance with traditional marketing efforts, as Collins *et al.* (2010) found to be the case for the decreasing effectiveness of magazine adverts. This observation also agrees with Rojas-Méndez *et al.*'s (2005) finding that an increasing number of consumers try to avoid television advertisements.

6.4 Objective 3: Influence of Complimentary Advertisements on Visitor Behaviour

The statistical analysis performed in Chapter 3 found no evidence to suggest that the number of *pages per visit* for SSA campaigns has decreased when employing complimentary online display advertisements. Similarly, a complimentary online display advertisement resulted in no significant changes in the *time spent* on a website for visitors generated through an SSA campaign, or the bounce rate of these visitors. This lack of correlation between online display adverts and the quality of behaviour from visitors
gained through an SSA campaign may once again be due to the possibility that simultaneously running online adverts are in general competing with SSA adverts for clicks gained, and hence the two campaigns may deprive each other from obtaining quality users.

The results did however show that the number of pages per visit decreased for SSA campaigns when an offline radio advertisement were used to supplement it, whilst offline radio adverts also exhibited a negative correlation with the time visitors spent on the website. This result also comes as a surprise, since it was expected that increased offline marketing efforts will lead to increased first-time users, who will generally be more explorative, spending more time and visiting more pages on a website. Huang et al. (2009) postulated that visitors portraying increased engagement with the product or service, and more efficient exposure to branding efforts, will involve greater depth (time per page) and lower breadth (total number of pages). Offline adverts however had a negative correlation with both these metrics at the same time. The bounce rate of visitors to the website also increased during one instance when offline radio adverts were active. During the other instance (which were subject to the same experimental design), no significant difference was found. This may be due to a random sampling error where repetition of the basic experiment sometimes favours one experimental condition, and sometimes the other on a chance basis (Albright et al., 2009). Another possible explanation may be an unclear message delivered in the radio advert, resulting in an increased number of unsatisfied visitors to the website, leaving it soon after not finding what they expected.
6.5 Objective 4: Influence of Complimentary Advertisements on Cost

Online display advertisements did not show any correlation with the cost-per-click for a corresponding SSA campaign. Since online display ads also did not influence the impressions gained for an SSA campaign (due to reasons elicited in section 6.2), it can be inferred that display adverts have no correlation with search volumes for a particular topic, hence the demand for keywords will also remain constant, leading to a lack of change in cost-per-click for keywords in an SSA campaign relating to the display advert.

Whilst one of the datasets analysed showed that offline radio advertisements also had no affect on the cost-per-click for a simultaneous running SSA campaign, a second comparison showed a positive correlation between complimentary offline radio advertisement and cost-per-click. This may be ascribed to the improved awareness that radio adverts generate on a particular topic, whilst not necessarily linking this topic awareness directly to its brand within the customer's mindset. Therefore, instead of potential customers going directly to an advertiser's website (for which the exact URL needs to be known), they would rather tend to first search for the particular topic on a search engine (hence the increased SSA impressions linked to offline radio adverts), prompting increased bids from competitors for these successful keywords, eventually resulting in higher cost-per-click. All these "market forces" in play do however react with a lagging effect and may not translate into increased cost-per-click within the relatively short periods under investigation in this research.

On the other hand, offline television adverts were shown to have a significant negative correlation with cost-per-click for simultaneously running SSA campaigns. Once again
this seems to be linked to the reduced impressions observed over the same period for SSA campaigns employing offline television adverts, which may be due to television adverts resulting in more direct website accesses and decreased searches on the targeted topic, hence less competition and cost involved with clicks.

6.6 Objective 5: Influence of Complimentary Advertisements on Sales

The results obtained from the statistical analysis showed that complimentary online display advertisements had a positive correlation with new registrations generated from SSA campaigns. This comes as a surprise, since online display adverts did not show any correlation with impressions, click-through rates nor visitor behaviour. One explanation may be that online display adverts target more experienced online users, who will be more likely to register for new services online whilst taking less time than novice users to first explore a website. Another explanation may be that online display adverts offer a more targeted approach to complimentary advertisements, and increases the awareness and exposure of internet users with a higher probability to convert into customers, similar to the effects found for SSA campaigns by Ghose et al. (2009). Likewise McMains et al. (2009) found that online campaigns attracted and converted potential customers, where offline campaigns only created brand awareness. Manchanda et al. (2006) did however find that banner advertising have a positive effect on repeat internet purchase probabilities, whilst Ilfeld et al. (2002) concluded that online advertisement rather generate web-traffic than brand awareness. This result also supports that of Fulgoni et al. (2009), who concluded that display advertising can increase the probability of a consumer purchasing an advertised brand online by 27%.
Offline radio advertisements showed to have no significant influence on new registrations from users gained through SSA campaigns. This may also be explained by segmenting the target market into experienced internet users and novice internet users, where offline adverts may still be biased towards the latter segment who will be sceptical of registering for online services. This low success rate gained from the SSA campaign further promotes Cudmore et al.’s (2009) argument for a pay-per-action (PPA) model, where advertisers only pay per sale of their product.

6.7 Research Question

The aim of this research was to find relationships between complimentary advertising strategies and sponsored search advertisement in order to formulate a model to maximise return on investment achieved from online sponsored search advertisements. The results obtained from statistical analyses of SSA campaign data showed that complimentary online and offline advertisement campaigns can have various different correlations with impressions, click-through rates, number of pages visited, time spent visiting a website, bounce rate, cost-per-click and number of new registrations per keyword from visitors gained through the SSA campaign.

Some cross-correlations between these results, as eluded to in the literature study, were however not prevalent in these findings. Where Lin et al. (2010) found a positive correlation between the time spent visiting a website and purchases made, and also between purchasing behaviour and the number of web pages viewed at a site during a visit, our results did not show any such correlations.
7 CONCLUSION

7.1 Introduction

This chapter will summarise the findings of this research project, followed by some recommendations on how it can be applied to business, specifically in optimising marketing spend. Limitations of this research are then discussed, followed by suggestions for future research in related fields.

7.2 Findings

The results obtained from this research found that online advertisement campaigns had no significant correlation with the performance of simultaneously running SSA campaigns in terms of impressions gained, click-through rates, visitor behaviour or cost-per-click for keywords within the SSA campaign. Complimentary online display advertisements did however show a slight positive correlation with new registrations made by customers gained through a simultaneously running SSA campaign. On average the registration rate during times when online display adverts were active were 42 times more than during times when online display adverts were not active. These findings adds to the body of knowledge about sponsored search advertisement on a keyword level, and provided evidence of a relationship between online registrations gained through SSA campaigns and online display advertisements. This also provides the online marketer with a theoretical approach to increase return on investment (ROI) in terms of online marketing spend by possibly increasing sales. Despite the limited benefits measured for SSA results when employing complimentary online display ads, exposure to these advertisements are
already beneficial to the firm regardless of click-throughs generated, because consumers will unconsciously build a more favourable attitude towards the brand and are more likely to include the brand in future considerations (Yoo, 2008).

Offline radio adverts were found to have a positive correlation with impressions gained for simultaneously running SSA campaigns, whilst at the same time showing a negative correlation with cost-per-click for the keywords in these SSA campaigns. On average impressions of SSA campaigns improved by 30% when offline radio adverts were active. Offline radio adverts were also found to exhibit a negative correlation with the number of pages viewed by website visitors gained through the SSA campaign, which decreased by an average of 14%, whilst the time these visitors spent viewing the website decreased by 11%. The bounce rate of visitors to the website however increased during periods when offline radio adverts were active. Altogether, these findings also provide evidence of a relationship between impressions gained for SSA adverts and offline radio advertisements, whilst giving the marketer a theoretical approach to positively influence the return on investment (ROI) in terms of offline marketing spend by increasing brand awareness.

Lastly, offline television adverts were found to have a negative correlation with impressions gained from simultaneously running SSA campaigns, which decreased by an average of 18%, whilst at the same time the related cost-per-clicks for the keywords in these SSA campaigns decreased by 90%. Offline television adverts were also found to have a negative correlation with the click-through rate for simultaneously running SSA campaigns which decreased by 9.4%. These findings add to the body of knowledge about sponsored search advertisement in terms of the impact different offline
advertisement channels may have on SSA performance. It provides the marketing team with improved guidelines on how to spend their offline marketing budget more effectively, with the evidence suggesting television adverts to be a poorly performing complimentary marketing channel when it comes to results obtained from SSA adverts.

7.3 Recommendations

Due to the growing importance of the internet, marketers should increasingly pursue an integrated multi-channel communication strategy to increase advertising effectiveness (Diehl and Terlutter, 2006). Sponsored search advertisement is a very effective way of achieving more targeted advertising at much lower cost (Barnes et al., 2009). Unlike traditional advertising driven by media owners, the targeted nature of sponsored search advertisement requires a much more hands-on approach by firms in order to achieve acceptable results from this medium. Firms, especially internet-based companies, should develop a clear strategy towards sponsored search advertisement in order to develop the skills needed to turn these campaigns into a strategic advantage. These skill-sets should include clear knowledge on the relationships between various complimentary advertising channels and sponsored search advertisements, and how to exploit these other mediums in order to achieve specific results from a sponsored search campaign, whether it is to improve brand awareness, increase sales, or lower cost.

Other techniques to improve results obtained from sponsored search advertisements should also be incorporated into the firms’ online marketing strategy. These include improving the quality score of a webpage, which in turn will improve organic rankings and lower bidding costs for keywords (Jansen, 2007), and basing keyword selection on a long
tail distribution in order to improve sponsored search campaign performances (Adriaanse, 2009).

Following are some detailed recommendations that marketing managers may want to exploit in terms of complimentary advertising strategies in order to achieve specific goals for sponsored search advertisement campaigns. The evidence obtained in this research suggests various positive and negative correlations between complimentary advertisements and measured SSA metrics.

This research found a positive correlation between offline radio advertisements and impressions gained for sponsored searched advertisements, which in turn is correlated with brand awareness. The number of SSA impressions increased 30% during periods when offline radio advertisements were active. This agrees with the findings of McMains et al. (2009) that offline campaigns create brand awareness, whilst online campaigns attract and convert potential customers. Online display adverts however have no correlation with impressions, whilst offline television adverts showed a negative correlation with impressions gained for an SSA campaign.

No online or offline advertisement campaigns showed any positive correlation with click-through rates for SSA campaigns. Television adverts in fact showed a negative correlation with click-through rates for simultaneously running SSA campaigns.

The quality of the visitors gained through SSA campaigns also did not show significant improvements during any of the periods when online or offline complimentary advertising strategies were active, where quality of a visitor was measured by the time they spent
viewing the website, number of pages they visited on the website, or their bounce rate.

Offline radio adverts in fact showed a negative correlation with the time spent and pages viewed metrics, and a positive correlation with the bounce rate.

A 90% reduction in cost-per-click was measured during periods when offline television adverts were active in conjunction with an SSA campaign. A 4% increase in cost-per-click was however prevalent during periods when offline radio adverts were active.

Online marketing success should however still be measured by the number of new registrations or products sold (Pfeiffer et al., 2010), which were found to be positively correlated with online display adverts. This research found a 40 fold increase in the rate of new registrations during periods when complimentary online display adverts were employed to supplement SSA campaigns.

The results obtained during this research project were used to develop a model for graphically displaying the correlations found between the various complimentary advertising campaigns, and the sponsored search advertisement metrics investigated during this research. Figure 20 shows which of the SSA metrics (impressions, click-through rate, pages viewed, time spent, bounce rate, cost-per-click or new registrations) showed a positive or negative correlation with each of the investigated online (display) or offline (radio and television) advertising strategies, and also whether an increment or decrement in the particular metric can be considered as an improvement or impairment in the overall SSA campaign results. The model can be used as a quick index for looking up the correlations that the evidence suggests can be expected between complimentary online and offline advertising strategies and SSA results.
7.4 Limitations

This research only considered the immediate effects that complimentary advertisements have on the results obtained from SSA campaigns, and not the carry-over improvements advertisements may have on these results a week or two after the complimentary advertisements were run. The research also did not consider how the complimentary advertisements may improve brand recognition or reputation, and its effect on the SSA results.
The research also did not take into account the different strategies online companies follow to select keywords for their SSA campaigns and what influence this might have on the SSA results found in this research.

It was also accepted but not verified that the complimentary advertisement campaigns employed by the various companies used in the research were all related to the core business of the companies. Similarly it was also accepted but not verified that the SSA campaigns employed by the various companies used in the research were all related to their core business, and hence also to the complimentary advertisement campaigns. The quality of their offerings, interactivity, accessibility and relevance of the adverts were not taken into account. Similarly the credibility of the individual firms were ignored together with the interactivity and personalisation of their adverts employed.

Most of the companies used in this research sold services online. A company purely selling its products online were not analysed, and may exhibit different results due to different consumer behaviour.

The research also did not investigate the influence that fluctuations in one of the objectives may have in the results observed in other objectives, for example cost-per-click seemed to be directly related to impressions gained for an SSA campaign. Proven cross-sectional links may aid in improved explanations of the results observed, an aid in more focused research.

Return on investment (ROI) was defined as visitors who were successfully converted into customers by purchasing a product through the online website or registering for a service.
For some firms, ROI may be defined differently, requiring a different set of metrics to be analysed in order to find successful complimentary advertising strategies for "improved" SSA results.

The SSA results data of only a few firms operating in limited (but diverse) industries were used, each with a unique set of possible external influences. The results obtained from the research may however not be relevant to other firms operating in different industries.

7.5 Suggestions for future research

Although the body of academic knowledge on sponsored search advertisement has grown immensely over the past decade, there are still large gaps for improvement on the subject, in particular regarding other external influences on the results obtained from SSA campaigns.

A similar study to this one should be conducted over longer periods in order to properly account for possible increases in brand awareness gained from the complimentary advertisements, and also exposure to sponsored search advertisements. Such a study may find improved results gained from complimentary offline advertisements over a longer period, not necessarily reflected in short-term direct gains, as investigated in this research.

The influence that a visitor’s knowledge about and attitude towards a firm / brand prior to SSA exposure and website visitation have on the SSA results measured should also be
investigated, together with the role complimentary advertisements played in forming this knowledge.

A prevailing question that aroused from analysing the results was the difference in reaction to advertisement campaigns between experienced and novice internet users. Investigation of these differences may provide advertisers with improved criteria for segmenting their target market, where more focused campaigns can lead to improved results obtained from each segment. With focused segmentation, similar research to that performed in this project may find distinctly unique results for each segment, providing marketers with even more focused tools for gaining specific results from their employed SSA campaigns.

Some of the results obtained in this research were in contradiction with current literature. In particular, the influence that increased brand awareness has on the following aspects needs to be revisited:

- Online searches on brand-related topics
- Competition for brand-related keywords and higher related cost
- Direct access to a website versus those generated through search engines

The notion that visitor behaviour is constructed of time spend (TS) viewing a website, number of pages visited (PV) on a website and bounce rate (BR) of visitors needs to be investigated again, especially in terms of visitors gained from search engines. Do visitors who are successfully converted into customers (by buying or registering on the website) indeed spend increased time viewing a website or visit less pages than those visitors who
are not converted? In other words, how desirable are increased TS, decreased PV and decreased BR metrics?

Finally, the influence of SSA campaigns itself on other complimentary marketing activities should be investigated, including how impressions gained for sponsored search adverts influence the brand awareness of firms.
REFERENCES

APPENDICES

A.1 Objective 1.1.1: Statistical Results - Impressions for Online Display Adverts

Paired T-Test Report

Variable X1 = IMP\text{on+}, X2 = IMP\text{on-}

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP\text{on+}</td>
<td>946</td>
<td>996.3943</td>
<td>12189.15</td>
<td>396.3034</td>
<td>217.769</td>
<td>1775.02</td>
</tr>
<tr>
<td>IMP\text{on-}</td>
<td>946</td>
<td>978.1311</td>
<td>11726.46</td>
<td>381.2602</td>
<td>229.0616</td>
<td>1727.201</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>18.26321</td>
<td>2992.785</td>
<td>97.30384</td>
<td>-172.9116</td>
<td>209.438</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>ProbReject H0 at .05 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP\text{on+} - IMP\text{on-} < > 0</td>
<td>0.1877</td>
<td>No</td>
<td>0.054045</td>
<td>0.011326</td>
</tr>
<tr>
<td>IMP\text{on+} - IMP\text{on-} < 0</td>
<td>0.1877</td>
<td>No</td>
<td>0.033435</td>
<td>0.005968</td>
</tr>
<tr>
<td>IMP\text{on+} - IMP\text{on-} > 0</td>
<td>0.1877</td>
<td>No</td>
<td>0.072536</td>
<td>0.016232</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.2 Objective 1.2.1.a: Statistical Results - Impressions for Offline Radio Adverts (a)

Paired T-Test Report

Variable \(X_1 = IMP_{off+a}, X_2 = IMP_{off-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP_{off+a}</td>
<td>1164</td>
<td>2474.445</td>
<td>47827.95</td>
<td>1401.862</td>
<td>-279.8211</td>
<td>5228.711</td>
</tr>
<tr>
<td>IMP_{off-a}</td>
<td>1164</td>
<td>1919.4</td>
<td>45057.31</td>
<td>1320.653</td>
<td>-675.313</td>
<td>4514.114</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>555.047</td>
<td>8174.957</td>
<td>239.6122</td>
<td>84.27377</td>
<td>1025.816</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP_{off+a} - IMP_{off-a} <> 0</td>
<td>2.3164</td>
<td>Yes</td>
<td>0.639263</td>
<td>0.397664</td>
</tr>
<tr>
<td>IMP_{off+a} - IMP_{off-a} < 0</td>
<td>2.3164</td>
<td>No</td>
<td>0.000037</td>
<td>0.000002</td>
</tr>
<tr>
<td>IMP_{off+a} - IMP_{off-a} > 0</td>
<td>2.3164</td>
<td>Yes</td>
<td>0.749073</td>
<td>0.496043</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.3 Objective 1.2.1.b: Statistical Results - Impressions for Offline Radio Adverts (b)

Paired T-Test Report

Variable \(X_1 = \text{IMP}_{\text{off+b}}, \ X_2 = \text{IMP}_{\text{off-b}} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IMP}_{\text{off+b}})</td>
<td>1164</td>
<td>1790.7</td>
<td>32366.76</td>
<td>948.6865</td>
<td>-73.15482</td>
<td>3654.651</td>
</tr>
<tr>
<td>(\text{IMP}_{\text{off-b}})</td>
<td>1164</td>
<td>1371.4</td>
<td>28760.27</td>
<td>842.9786</td>
<td>-284.776</td>
<td>3027.657</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>419.3</td>
<td>4525.36</td>
<td>132.6407</td>
<td>158.7058</td>
<td>679.9093</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob at .050</th>
<th>Reject H0 @ (Alpha=.05)</th>
<th>Power at (Alpha=.05)</th>
<th>Power at (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{IMP}{\text{off+b}} - \text{IMP}{\text{off-b}} < 0)</td>
<td>3.1612</td>
<td>0.001612</td>
<td>Yes</td>
<td>0.885176</td>
<td>0.720861</td>
</tr>
<tr>
<td>(\text{IMP}{\text{off+b}} - \text{IMP}{\text{off-b}} > 0)</td>
<td>3.1612</td>
<td>0.000806</td>
<td>Yes</td>
<td>0.935288</td>
<td>0.798108</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.4 Objective 1.2.2: Statistical Results - Impressions for Offline Television Adverts

Paired T-Test Report

Variable \(X_1 = \text{IMP}_{\text{off}+}, X_2 = \text{IMP}_{\text{off}-} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP(_{off}^+)</td>
<td>26281</td>
<td>208.6706</td>
<td>3292.69</td>
<td>20.31094</td>
<td>168.7653</td>
<td>248.5759</td>
</tr>
<tr>
<td>IMP(_{off}^-)</td>
<td>26281</td>
<td>254.2412</td>
<td>4374.089</td>
<td>26.98154</td>
<td>201.23</td>
<td>307.2523</td>
</tr>
<tr>
<td>Difference</td>
<td>26281</td>
<td>-45.5706</td>
<td>2436.587</td>
<td>15.03007</td>
<td>-75.10048</td>
<td>-16.04073</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMP({off}^+) - IMP({off}^-) <> 0</td>
<td>0.002430</td>
<td>Yes</td>
<td>0.858140</td>
</tr>
<tr>
<td>IMP({off}^+) - IMP({off}^-) < 0</td>
<td>0.001215</td>
<td>Yes</td>
<td>0.917296</td>
</tr>
<tr>
<td>IMP({off}^+) - IMP({off}^-) > 0</td>
<td>0.998785</td>
<td>No</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

Plots Section

- **Histogram of Differences**
- **Normal Probability Plot of Differences**
- **Scatter Plot**
- **Average-Difference Plot**
A.5 Objective 2.1: Statistical Results – CTR for Online Display Adverts

Paired T-Test Report
X1 = CTR_{on+}, X2 = CTR_{on-}

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{on+}</td>
<td>946</td>
<td>0.1211192</td>
<td>0.1793812</td>
<td>5.832185E-03</td>
<td>0.1096606</td>
<td>0.1325778</td>
</tr>
<tr>
<td>CTR_{on-}</td>
<td>946</td>
<td>0.1303023</td>
<td>0.1852391</td>
<td>6.022643E-03</td>
<td>0.1184695</td>
<td>0.1421351</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>-9.183106E-03</td>
<td>0.213512</td>
<td>6.941873E-03</td>
<td>-2.282194E-02</td>
<td>4.455728E-03</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .050</th>
<th>Reject H0 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{on+} - CTR_{on-} <= 0</td>
<td>-1.3229</td>
<td>0.186203</td>
<td>No</td>
<td>0.262542</td>
<td>0.105156</td>
</tr>
<tr>
<td>CTR_{on+} - CTR_{on-} < 0</td>
<td>-1.3229</td>
<td>0.093101</td>
<td>No</td>
<td>0.373728</td>
<td>0.157812</td>
</tr>
<tr>
<td>CTR_{on+} - CTR_{on-} > 0</td>
<td>-1.3229</td>
<td>0.906899</td>
<td>No</td>
<td>0.001500</td>
<td>0.000132</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.6 Objective 2.2.1.a: Statistical Results – CTR for Offline Radio Adverts (a)

Paired T-Test Report

Variable \(X_1 = CTR_{off+a}, \ X_2 = CTR_{off-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{off+a}</td>
<td>1164</td>
<td>5.353727E-02</td>
<td>7.297245E-02</td>
<td>2.13886E-03</td>
<td>4.933501E-02</td>
<td>5.773953E-02</td>
</tr>
<tr>
<td>CTR_{off-a}</td>
<td>1164</td>
<td>5.499537E-02</td>
<td>7.876384E-02</td>
<td>2.308609E-03</td>
<td>5.045959E-02</td>
<td>5.953113E-02</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>-1.458091E-03</td>
<td>5.665522E-02</td>
<td>1.660594E-03</td>
<td>-4.720693E-03</td>
<td>1.80451E-03</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{off+a} - CTR_{off-a} <>0</td>
<td>-0.8781</td>
<td>0.380096 No</td>
<td>0.141916</td>
<td>0.045051</td>
</tr>
<tr>
<td>CTR_{off+a} - CTR_{off-a} <0</td>
<td>-0.8781</td>
<td>0.190048 No</td>
<td>0.221600</td>
<td>0.073767</td>
</tr>
<tr>
<td>CTR_{off+a} - CTR_{off-a} >0</td>
<td>-0.8781</td>
<td>0.809952 No</td>
<td>0.005819</td>
<td>0.000677</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.7 Objective 2.2.1.b: Statistical Results – CTR for Offline Radio Adverts (b)

Paired T-Test Report

Variable \(X_1 = \text{CTR}_{\text{off}+b}, X_2 = \text{CTR}_{\text{off}-b} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CTR}_{\text{off}+b})</td>
<td>1164</td>
<td>4.506368E-02</td>
<td>6.705208E-02</td>
<td>1.965331E-03</td>
<td>4.120236E-02</td>
<td>4.892501E-02</td>
</tr>
<tr>
<td>(\text{CTR}_{\text{off}-b})</td>
<td>1164</td>
<td>4.638977E-02</td>
<td>7.021726E-02</td>
<td>2.058104E-03</td>
<td>4.234618E-02</td>
<td>5.043337E-02</td>
</tr>
</tbody>
</table>

Difference 1164 -1.32609E-03 4.861851E-02 1.425034E-03 -4.125882E-03 1.473702E-03

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level</th>
<th>Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CTR}{\text{off}+b} - \text{CTR}{\text{off}-b}) <> 0</td>
<td>-0.9306</td>
<td>0.352270</td>
<td>No</td>
<td>0.153570</td>
<td>0.050185</td>
</tr>
<tr>
<td>(\text{CTR}{\text{off}+b} - \text{CTR}{\text{off}-b}) < 0</td>
<td>-0.9306</td>
<td>0.176135</td>
<td>No</td>
<td>0.237525</td>
<td>0.081390</td>
</tr>
<tr>
<td>(\text{CTR}{\text{off}+b} - \text{CTR}{\text{off}-b}) > 0</td>
<td>-0.9306</td>
<td>0.823865</td>
<td>No</td>
<td>0.005006</td>
<td>0.000563</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Scatter Plot

Normal Probability Plot of Differences

Average-Difference Plot
A.8 Objective 2.2.2: Statistical Results - CTR for Offline Television Adverts

Paired T-Test Report
Variable \(X_1 = \text{CTR}_{\text{off}+}, \ X_2 = \text{CTR}_{\text{off}-} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{off}+</td>
<td>26281</td>
<td>1.056231</td>
<td>5.306477</td>
<td>3.273297E-02</td>
<td>0.9919204</td>
<td>1.120543</td>
</tr>
<tr>
<td>CTR_{off}-</td>
<td>26281</td>
<td>1.170202</td>
<td>6.046772</td>
<td>3.729947E-02</td>
<td>1.096919</td>
<td>1.243485</td>
</tr>
<tr>
<td>Difference</td>
<td>26281</td>
<td>-0.1139702</td>
<td>7.273945</td>
<td>4.486928E-02</td>
<td>-0.2021257</td>
<td>-2.581461E-02</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob</th>
<th>Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR_{off}+ - CTR_{off}- <> 0</td>
<td>-2.5400</td>
<td>0.011084</td>
<td>Yes</td>
<td>0.719075</td>
<td>0.485729</td>
</tr>
<tr>
<td>CTR_{off}+ - CTR_{off}- < 0</td>
<td>-2.5400</td>
<td>0.005542</td>
<td>Yes</td>
<td>0.814659</td>
<td>0.584610</td>
</tr>
<tr>
<td>CTR_{off}+ - CTR_{off}- > 0</td>
<td>-2.5400</td>
<td>0.994458</td>
<td>No</td>
<td>0.000014</td>
<td>0.000001</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.9 Objective 3.1: Statistical Results – PV for Online Display Adverts

Paired T-Test Report
Variable \(X_1 = \text{PV}_{on+} \), \(X_2 = \text{PV}_{on-} \).

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PV}_{on+})</td>
<td>946</td>
<td>7.551699</td>
<td>10.14598</td>
<td>0.3298744</td>
<td>6.903588</td>
<td>8.19981</td>
</tr>
<tr>
<td>(\text{PV}_{on-})</td>
<td>946</td>
<td>7.390146</td>
<td>8.70246</td>
<td>0.2829414</td>
<td>6.834245</td>
<td>7.946046</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>0.1615532</td>
<td>12.20865</td>
<td>0.3969374</td>
<td>-0.6183177</td>
<td>0.9414241</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .050 (Alpha=.05)</th>
<th>Reject H0</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PV}{on+} - \text{PV}{on-}), <> 0</td>
<td>0.4070</td>
<td>0.684101</td>
<td>No</td>
<td>0.069183</td>
<td>0.016476</td>
</tr>
<tr>
<td>(\text{PV}{on+} - \text{PV}{on-}), < 0</td>
<td>0.4070</td>
<td>0.657950</td>
<td>No</td>
<td>0.020092</td>
<td>0.003135</td>
</tr>
<tr>
<td>(\text{PV}{on+} - \text{PV}{on-}), > 0</td>
<td>0.4070</td>
<td>0.342050</td>
<td>No</td>
<td>0.107885</td>
<td>0.027470</td>
</tr>
</tbody>
</table>

Plots Section

- **Histogram of Differences**
- **Normal Probability Plot of Differences**
- **Scatter Plot**
- **Average-Difference Plot**
A.10 Objective 3.2.a: Statistical Results – PV for Offline Radio Adverts (a)

Paired T-Test Report
Variable \(X_1 = PV_{off+a}, X_2 = PV_{off-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PV_{off+a})</td>
<td>1164</td>
<td>7.343465</td>
<td>9.407217</td>
<td>0.2757304</td>
<td>6.801733</td>
<td>7.885199</td>
</tr>
<tr>
<td>(PV_{off-a})</td>
<td>1164</td>
<td>8.3069</td>
<td>10.88035</td>
<td>0.3189088</td>
<td>7.680334</td>
<td>8.933467</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>-0.96343</td>
<td>11.98796</td>
<td>0.3513735</td>
<td>-1.653785</td>
<td>-0.2730842</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PV_{off+a} - PV_{off-a}) <> 0</td>
<td>-2.7419</td>
<td>0.006202 Yes</td>
<td>0.782878</td>
<td>0.565954</td>
</tr>
<tr>
<td>(PV_{off+a} - PV_{off-a}) < 0</td>
<td>-2.7419</td>
<td>0.003101 Yes</td>
<td>0.863692</td>
<td>0.661135</td>
</tr>
<tr>
<td>(PV_{off+a} - PV_{off-a}) > 0</td>
<td>-2.7419</td>
<td>0.996899 No</td>
<td>0.000006</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.11 Objective 3.2.b: Statistical Results – PV for Offline Radio Adverts (b)

Paired T-Test Report
Variable \(X_1 = PV_{off+b} \), \(X_2 = PV_{off-b} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV_{off+b}</td>
<td>1164</td>
<td>7.573748</td>
<td>7.7482</td>
<td>0.2271038</td>
<td>7.127553</td>
<td>8.019943</td>
</tr>
<tr>
<td>PV_{off-b}</td>
<td>1164</td>
<td>8.962056</td>
<td>10.86519</td>
<td>0.3184645</td>
<td>8.336362</td>
<td>9.587749</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>-1.388308</td>
<td>11.38252</td>
<td>0.3336275</td>
<td>-2.043793</td>
<td>-0.7328235</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV_{off+b} - PV_{off-b} <> 0</td>
<td>-4.1613</td>
<td>0.000034 Yes</td>
<td>0.986142</td>
<td>0.943565</td>
</tr>
<tr>
<td>PV_{off+b} - PV_{off-b} < 0</td>
<td>-4.1613</td>
<td>0.000017 Yes</td>
<td>0.994072</td>
<td>0.966740</td>
</tr>
<tr>
<td>PV_{off+b} - PV_{off-b} > 0</td>
<td>-4.1613</td>
<td>0.999983 No</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.12 Objective 3.3: Statistical Results – TS for Online Display Adverts

Paired T-Test Report
Variable \(X_1 = \text{TS}_\text{on}^+, \ X_2 = \text{TS}_\text{on}^- \).

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TS}_\text{on}^+)</td>
<td>946</td>
<td>451.7469</td>
<td>688.1854</td>
<td>22.37484</td>
<td>407.7866</td>
<td>495.7072</td>
</tr>
<tr>
<td>(\text{TS}_\text{on}^-)</td>
<td>946</td>
<td>442.469</td>
<td>652.0724</td>
<td>21.2007</td>
<td>400.8156</td>
<td>484.1225</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>9.277893</td>
<td>850.2018</td>
<td>27.64245</td>
<td>-45.03177</td>
<td>63.58756</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level</th>
<th>Reject H0 at .05</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TS}\text{on}^+ - \text{TS}\text{on}^- < 0)</td>
<td>0.3356</td>
<td>0.737217</td>
<td>No</td>
<td>0.063003</td>
<td>0.014338</td>
</tr>
<tr>
<td>(\text{TS}\text{on}^+ - \text{TS}\text{on}^- > 0)</td>
<td>0.3356</td>
<td>0.631391</td>
<td>No</td>
<td>0.023824</td>
<td>0.003884</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.13 Objective 3.4.a: Statistical Results – TS for Offline Radio Adverts (a)

Paired T-Test Report
Variable \(X_1 = \text{TS}_{\text{off}+a}, X_2 = \text{TS}_{\text{off}-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS_{off+a}</td>
<td>1164</td>
<td>295.5798</td>
<td>369.5465</td>
<td>10.8316</td>
<td>274.2987</td>
<td>316.8608</td>
</tr>
<tr>
<td>TS_{off-a}</td>
<td>1164</td>
<td>334.0568</td>
<td>468.0846</td>
<td>13.7198</td>
<td>307.1012</td>
<td>361.0124</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>(T) Value</th>
<th>Prob at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TS}{\text{off}+a} - \text{TS}{\text{off}-a} \leq 0)</td>
<td>-2.5874</td>
<td>0.009790</td>
<td>Yes</td>
<td>0.734821</td>
</tr>
<tr>
<td>(\text{TS}{\text{off}+a} - \text{TS}{\text{off}-a} < 0)</td>
<td>-2.5874</td>
<td>0.004895</td>
<td>Yes</td>
<td>0.827048</td>
</tr>
<tr>
<td>(\text{TS}{\text{off}+a} - \text{TS}{\text{off}-a} > 0)</td>
<td>-2.5874</td>
<td>0.995105</td>
<td>No</td>
<td>0.000012</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot

A.14 Objective 3.4.b: Statistical Results – TS for Offline Radio Adverts (b)

Paired T-Test Report
Variable \(X_1 = \text{TS}_{\text{off}+b}, X_2 = \text{TS}_{\text{off}-b} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS(_{\text{off}+b})</td>
<td>1164</td>
<td>337.1469</td>
<td>460.1668</td>
<td>13.48773</td>
<td>310.6473</td>
<td>363.6465</td>
</tr>
<tr>
<td>TS(_{\text{off}-b})</td>
<td>1164</td>
<td>372.917</td>
<td>458.0118</td>
<td>13.42456</td>
<td>346.5415</td>
<td>399.2925</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>-35.77009</td>
<td>561.8389</td>
<td>16.46779</td>
<td>-68.12469</td>
<td>-3.415496</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob</th>
<th>Reject H0 at .050 (Alpha=.05)</th>
<th>Power if Reject H0 at .050 (Alpha=.05)</th>
<th>Power if Do Not Reject H0 at .050 (Alpha=.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{TS}{\text{off}+b} - \text{TS}{\text{off}-b} < 0)</td>
<td>-2.1721</td>
<td>0.030048</td>
<td>Yes</td>
<td>0.584027</td>
<td>0.343216</td>
</tr>
<tr>
<td>(\text{TS}{\text{off}+b} - \text{TS}{\text{off}-b} = 0)</td>
<td>-2.1721</td>
<td>0.015024</td>
<td>Yes</td>
<td>0.700997</td>
<td>0.438717</td>
</tr>
<tr>
<td>(\text{TS}{\text{off}+b} - \text{TS}{\text{off}-b} > 0)</td>
<td>-2.1721</td>
<td>0.984976</td>
<td>No</td>
<td>0.000068</td>
<td>0.000003</td>
</tr>
</tbody>
</table>

Plots Section

![Histogram of Differences](image)

![Normal Probability Plot of Differences](image)

![Scatter Plot](image)

![Average-Difference Plot](image)
A.15 Objective 3.5: Statistical Results – BR for Online Display Adverts

Paired T-Test Report
Variable \(X_1 = \text{BR}_{\text{on}+}, X_2 = \text{BR}_{\text{on}-} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR_{\text{on}+}</td>
<td>946</td>
<td>0.4036048</td>
<td>0.3894038</td>
<td>1.266061E-02</td>
<td>0.3787303</td>
<td>0.4284794</td>
</tr>
<tr>
<td>BR_{\text{on}-}</td>
<td>946</td>
<td>0.4056584</td>
<td>0.3799255</td>
<td>1.235245E-02</td>
<td>0.3813893</td>
<td>0.4299275</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>-2.05357E-03</td>
<td>0.4824749</td>
<td>1.568661E-02</td>
<td>-3.287337E-02</td>
<td>0.0287662</td>
</tr>
</tbody>
</table>

\[
T \text{ for Confidence Limits} = 1.9647
\]

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .050</th>
<th>Reject H0 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR_{\text{on}+} - BR_{\text{on}-} < 0</td>
<td>-0.1309</td>
<td>0.895873</td>
<td>No</td>
<td>0.051966</td>
<td>0.010642</td>
</tr>
<tr>
<td>BR_{\text{on}+} - BR_{\text{on}-} < 0</td>
<td>-0.1309</td>
<td>0.447936</td>
<td>No</td>
<td>0.065020</td>
<td>0.014066</td>
</tr>
<tr>
<td>BR_{\text{on}+} - BR_{\text{on}-} > 0</td>
<td>-0.1309</td>
<td>0.552064</td>
<td>No</td>
<td>0.037886</td>
<td>0.007000</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.16 Objective 3.6.a: Statistical Results – BR for Offline Radio Adverts (a)

Paired T-Test Report

Variable \(X_1 = BR_{off+a} \), \(X_2 = BR_{off-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR_{off+a}</td>
<td>1164</td>
<td>0.3874972</td>
<td>0.3149697</td>
<td>9.231926E-03</td>
<td>0.369359</td>
<td>0.4056354</td>
</tr>
<tr>
<td>BR_{off-a}</td>
<td>1164</td>
<td>0.3821402</td>
<td>0.3074443</td>
<td>9.011352E-03</td>
<td>0.3644355</td>
<td>0.399845</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>5.356962E-03</td>
<td>0.376655</td>
<td>1.103995E-02</td>
<td>-1.63334E-02</td>
<td>2.70473E-02</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR_{off+a} - BR_{off-a} <> 0</td>
<td>0.4852</td>
<td>0.627602 No</td>
<td>0.077381</td>
<td>0.019385</td>
</tr>
<tr>
<td>BR_{off+a} - BR_{off-a} < 0</td>
<td>0.4852</td>
<td>0.686199 No</td>
<td>0.016582</td>
<td>0.002465</td>
</tr>
<tr>
<td>BR_{off+a} - BR_{off-a} > 0</td>
<td>0.4852</td>
<td>0.313801 No</td>
<td>0.123102</td>
<td>0.032802</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.17 Objective 3.6.b: Statistical Results – BR for Offline Radio Adverts (b)

Paired T-Test Report

Variable $X_1 = \text{BR}_{off+b}, X_2 = \text{BR}_{off-b}$

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR_{off+b}</td>
<td>1164</td>
<td>0.384737</td>
<td>0.2816831</td>
<td>8.256279E-03</td>
<td>0.3685158</td>
<td>0.4009583</td>
</tr>
<tr>
<td>BR_{off-b}</td>
<td>1164</td>
<td>0.3603724</td>
<td>0.3035697</td>
<td>8.897785E-03</td>
<td>0.3428907</td>
<td>0.377854</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>2.436469E-02</td>
<td>0.3647287</td>
<td>1.069039E-02</td>
<td>3.361074E-03</td>
<td>4.536831E-02</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob</th>
<th>Reject H0 at .05 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BR}{off+b} - \text{BR}{off-b} <> 0$</td>
<td>2.2791</td>
<td>0.022840</td>
<td>Yes</td>
<td>0.625208</td>
<td>0.383345</td>
</tr>
<tr>
<td>$\text{BR}{off+b} - \text{BR}{off-b} < 0$</td>
<td>2.2791</td>
<td>0.988580</td>
<td>No</td>
<td>0.000044</td>
<td>0.000002</td>
</tr>
<tr>
<td>$\text{BR}{off+b} - \text{BR}{off-b} > 0$</td>
<td>2.2791</td>
<td>0.011420</td>
<td>Yes</td>
<td>0.737047</td>
<td>0.481166</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.18 Objective 4.1.1: Statistical Results - CPC for Online Display Adverts

Paired T-Test Report

Variable: $X_1 = \text{CPC}_{\text{on}+}, X_2 = \text{CPC}_{\text{on}-}$

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC_{on+}</td>
<td>946</td>
<td>0.4476888</td>
<td>0.5036374</td>
<td>1.637466E-02</td>
<td>0.4155172</td>
<td>0.4798604</td>
</tr>
<tr>
<td>CPC_{on-}</td>
<td>946</td>
<td>0.4472573</td>
<td>0.4791347</td>
<td>1.557801E-02</td>
<td>0.4166509</td>
<td>0.4778637</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>4.314664E-04</td>
<td>0.3151645</td>
<td>1.024688E-02</td>
<td>-1.970079E-02</td>
<td>2.0563E-02</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .050 (Alpha=.05)</th>
<th>Reject H0</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC_{on+} - CPC_{on-} < 0</td>
<td>0.0421</td>
<td>0.966422</td>
<td>No</td>
<td>0.050203</td>
<td>0.010066</td>
</tr>
<tr>
<td>CPC_{on+} - CPC_{on-} < 0</td>
<td>0.0421</td>
<td>0.516789</td>
<td>No</td>
<td>0.045805</td>
<td>0.008931</td>
</tr>
<tr>
<td>CPC_{on+} - CPC_{on-} > 0</td>
<td>0.0421</td>
<td>0.483211</td>
<td>No</td>
<td>0.054495</td>
<td>0.011179</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.19 Objective 4.2.1.a: Statistical Results - CPC for Offline Radio Adverts (a)

Paired T-Test Report

Variable \(X_1 = \text{CPC}_{\text{off}+a} , \, X_2 = \text{CPC}_{\text{off}-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CPC}_{\text{off}+a})</td>
<td>1164</td>
<td>1.155105</td>
<td>1.839941</td>
<td>5.392963E-02</td>
<td>1.049148</td>
<td>1.261062</td>
</tr>
<tr>
<td>(\text{CPC}_{\text{off}-a})</td>
<td>1164</td>
<td>1.146465</td>
<td>1.725884</td>
<td>5.066568E-02</td>
<td>1.046921</td>
<td>1.246009</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>8.639811E-03</td>
<td>1.704771</td>
<td>4.996772E-02</td>
<td>-8.953276E-02</td>
<td>0.1068124</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob at .050 (Alpha=.05)</th>
<th>Power at .01 (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CPC}{\text{off}+a}) - (\text{CPC}{\text{off}-a}) <> 0</td>
<td>0.1729</td>
<td>No</td>
<td>0.053432</td>
</tr>
<tr>
<td>(\text{CPC}{\text{off}+a}) - (\text{CPC}{\text{off}-a}) < 0</td>
<td>0.1729</td>
<td>No</td>
<td>0.034550</td>
</tr>
<tr>
<td>(\text{CPC}{\text{off}+a}) - (\text{CPC}{\text{off}-a}) > 0</td>
<td>0.1729</td>
<td>No</td>
<td>0.070518</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.20 Objective 4.2.1.b: Statistical Results - CPC for Offline Radio Adverts (b)

Paired T-Test Report

Variable \(X_1 = \text{CPC}_{\text{off}+b}, \text{X}_2 = \text{CPC}_{\text{off}-b} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL</th>
<th>95.0% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CPC}_{\text{off}+b})</td>
<td>1164</td>
<td>1.203412</td>
<td>1.060631</td>
<td>3.108765E-02</td>
<td>1.142334</td>
<td>1.264491</td>
</tr>
<tr>
<td>(\text{CPC}_{\text{off}-b})</td>
<td>1164</td>
<td>1.107898</td>
<td>0.906741</td>
<td>2.657706E-02</td>
<td>1.055681</td>
<td>1.160114</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>9.551472E-02</td>
<td>0.6915606</td>
<td>0.02027</td>
<td>5.568985E-02</td>
<td>0.1353396</td>
</tr>
</tbody>
</table>

T for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .05 (Alpha=.05)</th>
<th>Power Reject H0 (Alpha=.01)</th>
<th>Power Reject H0 (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CPC}{\text{off}+b} = \text{CPC}{\text{off}-b})</td>
<td>4.7121</td>
<td>0.000003</td>
<td>Yes</td>
<td>0.997040</td>
</tr>
<tr>
<td>(\text{CPC}{\text{off}+b} < \text{CPC}{\text{off}-b})</td>
<td>4.7121</td>
<td>0.999999</td>
<td>No</td>
<td>0.000000</td>
</tr>
<tr>
<td>(\text{CPC}{\text{off}+b} > \text{CPC}{\text{off}-b})</td>
<td>4.7121</td>
<td>0.000001</td>
<td>Yes</td>
<td>0.998920</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.21 Objective 4.2.2: Statistical Results - CPC for Offline Television Adverts

Paired T-Test Report

Variable \(X_1 = \text{CPC}_{\text{off+}} \), \(X_2 = \text{CPC}_{\text{off-}} \).

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC_{off+}</td>
<td>26281</td>
<td>7.386705E-03</td>
<td>2.386058E-02</td>
<td>1.471838E-04</td>
<td>7.09753E-03</td>
<td>7.6758E-03</td>
</tr>
<tr>
<td>CPC_{off-}</td>
<td>26281</td>
<td>7.63974E-03</td>
<td>2.394525E-02</td>
<td>1.477061E-04</td>
<td>7.349539E-03</td>
<td>7.9299E-03</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Level at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC_{off+} - CPC_{off-} < 0</td>
<td>-2.7981</td>
<td>0.005141 Yes</td>
<td>0.799014</td>
<td>0.587935</td>
</tr>
<tr>
<td>CPC_{off+} - CPC_{off-} > 0</td>
<td>-2.7981</td>
<td>0.002570 Yes</td>
<td>0.875588</td>
<td>0.681435</td>
</tr>
<tr>
<td>CPC_{off+} - CPC_{off-} > 0</td>
<td>-2.7981</td>
<td>0.997430 No</td>
<td>0.000004</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

Plots Section

- Histogram of Differences
- Normal Probability Plot of Differences
- Scatter Plot
- Average-Difference Plot
A.22 Objective 5.1: Statistical Results – New Registrations for Online Display Adverts

Paired T-Test Report
Variable \(X_1 = NR_{on+}, X_2 = NR_{on-} \).

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR_{on+}</td>
<td>946</td>
<td>1.9890E-04</td>
<td>3.5249E-03</td>
<td>1.1460E-04</td>
<td>-2.6263E-05</td>
<td>4.2407E-04</td>
</tr>
<tr>
<td>NR_{on-}</td>
<td>946</td>
<td>4.7028E-06</td>
<td>8.8226E-05</td>
<td>2.8684E-06</td>
<td>-9.3289E-07</td>
<td>1.0338E-05</td>
</tr>
<tr>
<td>Difference</td>
<td>946</td>
<td>1.9420E-04</td>
<td>3.5257E-03</td>
<td>1.1463E-04</td>
<td>-3.1018E-05</td>
<td>4.1945E-04</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR_{on+} - NR_{on-} <> 0</td>
<td>1.6941</td>
<td>0.090570 No</td>
<td>0.395313</td>
<td>0.188980</td>
</tr>
<tr>
<td>NR_{on+} - NR_{on-} < 0</td>
<td>1.6941</td>
<td>0.954715 No</td>
<td>0.000420</td>
<td>0.000029</td>
</tr>
<tr>
<td>NR_{on+} - NR_{on-} > 0</td>
<td>1.6941</td>
<td>0.045285 Yes</td>
<td>0.519651</td>
<td>0.263623</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.23 Objective 5.2.a: Statistical Results – New Registrations for Offline Radio Adverts (a)

Paired T-Test Report
Variable \(X_1 = NR_{off+a} \), \(X_2 = NR_{off-a} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR_{off+a}</td>
<td>1164</td>
<td>8.2768E-03</td>
<td>0.0496186</td>
<td>1.4543E-03</td>
<td>5.4194E-03</td>
<td>1.1134E-02</td>
</tr>
<tr>
<td>NR_{off-a}</td>
<td>1164</td>
<td>1.1473E-02</td>
<td>4.8853E-02</td>
<td>1.4319E-03</td>
<td>8.6605E-03</td>
<td>1.4287E-02</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob at .050</th>
<th>Power at .050 (Alpha=.05)</th>
<th>Power at .050 (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR_{off+a} - NR_{off-a} <> 0</td>
<td>-1.5857</td>
<td>0.113078</td>
<td>No</td>
<td>0.354302</td>
</tr>
<tr>
<td>NR_{off+a} - NR_{off-a} < 0</td>
<td>-1.5857</td>
<td>0.056539</td>
<td>No</td>
<td>0.476417</td>
</tr>
<tr>
<td>NR_{off+a} - NR_{off-a} > 0</td>
<td>-1.5857</td>
<td>0.943461</td>
<td>No</td>
<td>0.000618</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot
A.24 Objective 5.2.b: Statistical Results – New Registrations for Offline Radio Adverts (b)

Paired T-Test Report

Variable \(X_1 = NR_{off+b}, \quad X_2 = NR_{off-b} \)

Descriptive Statistics Section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Count</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error of Mean</th>
<th>95.0% LCL of Mean</th>
<th>95.0% UCL of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NR_{off+b})</td>
<td>1164</td>
<td>7.5632E-03</td>
<td>3.1763E-02</td>
<td>9.3099E-04</td>
<td>5.7340E-03</td>
<td>9.3923E-03</td>
</tr>
<tr>
<td>(NR_{off-b})</td>
<td>1164</td>
<td>1.0317E-02</td>
<td>6.1257E-02</td>
<td>1.7955E-03</td>
<td>6.7897E-03</td>
<td>1.3845E-02</td>
</tr>
<tr>
<td>Difference</td>
<td>1164</td>
<td>-2.7541E-03</td>
<td>6.8674E-02</td>
<td>2.0128E-03</td>
<td>-6.7088E-03</td>
<td>1.2006E-03</td>
</tr>
</tbody>
</table>

\(T \) for Confidence Limits = 1.9647

T-Test For Difference Between Means Section

<table>
<thead>
<tr>
<th>Alternative Hypothesis</th>
<th>T-Value</th>
<th>Prob Reject H0 at .050 (Alpha=.05)</th>
<th>Power (Alpha=.01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(NR_{off+b} - NR_{off-b} <> 0)</td>
<td>-1.3683</td>
<td>No 0.171495</td>
<td>0.277461</td>
</tr>
<tr>
<td>(NR_{off+b} - NR_{off-b} < 0)</td>
<td>-1.3683</td>
<td>No 0.085748</td>
<td>0.391046</td>
</tr>
<tr>
<td>(NR_{off+b} - NR_{off-b} > 0)</td>
<td>-1.3683</td>
<td>No 0.914252</td>
<td>0.001293</td>
</tr>
</tbody>
</table>

Plots Section

Histogram of Differences

Normal Probability Plot of Differences

Scatter Plot

Average-Difference Plot