Biological activities of extracts and isolated compounds from *Bauhinia galpinii* (Fabaceae) and *Combretum vendae* (Combretaceae) as potential antidiarrhoeal agents

Ahmed Aroke Shahid

BSc (Chemistry) (ABU), MSc (Chemistry) (UNILAG)

A dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

in the

Phytomedicine Programme, Department of Paraclinical Sciences,

Faculty of Veterinary Science

Promoter: Prof. Jacobus N. Eloff
Co-promoters: Dr. Nivan Moodley (CSIR)
 Prof. Vinny Naidoo
 Dr. Lyndy McGaw

January 2012
Declaration

The research work described in the thesis was conducted in the Phytomedicine Programme in the Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria under the supervision of Professor JN. Eloff, Dr. N. Moodley, Prof. V. Naidoo and Dr. LJ. McGaw

The results presented herewith were generated from my own experiments, except where the work of others are quoted and referenced. There is no part of this work that has been submitted to any other University.

Aroke Shahid, Ahmed
Dedication

This work is dedicated to the memory of the following: My Father (Late Mr. Ahmed Aninya Aroke), my brothers (Late Salihu Aroke and Late Ibrahim Onimisi Ahmed), Late Olukemi Ore Udom (A friend and colleague who started her PhD, but could not finish the programme before death) and my dear sister (Late Mrs. Husseinatu Ohunene Abubakar).
Acknowledgements

This Ph.D. study would not have been possible without the support and encouragement of many people. I will thank my mum Mrs Omenekpe Aminatu Ahmed who has been the pillar of my life. The love of my wife Mrs Rabiatu Isoyiza Ahmed and my children Enheu Mazidah, Onize Nusrah, Ometere Shamsiyah, Eneze Azeemah and Ava’ami AbdulAleem have been essential to my success. I thank you all for your understanding and endurance during my absence. I also wish to thank my siblings Mr. Aroke Haruna, Mr. Umar Omeiza Aroke and his wife Rukkayat, Mrs. Zulaiha Mubarak, Dr. Halidu Aroke Ahmed, Mrs. Khaltum Khamilu and Aisha Ahmed for their enormous support. I am also deeply indebted to my friends who stuck by me through the years: Dr. Muhammed Awwalu Usman, Engr. Yakubu Adajah, Mr. Yahaya Ohida Yusuf, Mr. Tijani Muhammed Isah, Abdulmumuni Enesi Umar, Dr. Muhammed Onujagbe Onoda, Mrs. U'achi Ezenwa Igbo, Dr. Caroline Anyakorah, Dr. Oluwatoyin Taiwo and Dr. Chima Cartney Igwe among others. Financial support was a crucial element of my ability to devote so much time to this research. Major support that keeps me and my family afloat during the study was provided by a study leave with pay provide by Federal Institute of Industrial Research Oshodi (FIIRO), Lagos, Nigeria. The University of Pretoria has provided support through University bursary, National Research Foundation (NRF) of South Africa provide fund for the research, Faculty of Veterinary Science also provide research fund through the research committee (RESCOM), and Department of Paraclinical Science also provide research fund.

I am extremely grateful to my supervisor, Prof. J. N. Eloff (overall supervisor) and my co-supervisors, Dr. Nivan Moodley (characterization of isolated compounds), Prof. Vinny Naidoo (isolated organ studies), and Dr. Lyndy J. McGaw (cellular toxicology) for allowing me to tap from the wealth of their knowledge and also giving me much of their time and energy through the duration of this study. I have a great respect and appreciated the instruction and assistance I received from each and every one of you. I sincere thank the Secretary to Phytochemical Programme, Tharien de Winnaar for all her assistance in coordinating the purchase of materials and other important aspects of this project.

I feel honoured to have opportunity to do some of the work at Bioscience, CSIR South Africa and lucky to meet with Dr. Vinesh Maharaj, Dr. Jacqueline Ndlebe, and Ms. Teresa Faleschini who are friends as well as crucial resources of information, techniques and instructions. I express my gratitude to CSIR for allowing me to use her NMR spectroscopic facilities.

At the UPBRC where I got my isolated organ part, the assistance of Dr. Tamsyn Pulleer, Mrs. Stephanie Keulder and Mrs. Ilse Janse van Rensburg were highly appreciated. The ability to collect plant material was essential to this project, and for that I want to recognize the help and outstanding collaboration of Ms Magda Nel of the Manie van der Schyff Botanical Garden and Ms Elsa van Wyk (Curator of the HGW Schweickert Herbarium of the University of Pretoria) for assistance in collection, identification and authentication of the plant samples. My appreciation also goes to Ms Lita Pauw of the Phytomedicine Programme for allowing me access her stored
I also appreciated working in harmony with all other students of the Phytomedicine Programme, most especially Mr. Thanyani Ramandwa, Ms Bellonah Sakong, Ms Salaelo Raphatelelo, Ms Imelda Ledwaba and Mrs Edwina Muleya. I thank you all for your co-operation and immeasurable assistance.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xix</td>
</tr>
<tr>
<td>List of tables</td>
<td>xxi</td>
</tr>
<tr>
<td>List of appendix</td>
<td>xxii</td>
</tr>
<tr>
<td>CHAPTER ONE</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal disorders in diarrhoea diseases mechanisms and medicinal plants potentiality as therapeutic agents</td>
<td></td>
</tr>
<tr>
<td>1.0. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Plant metabolites as potential therapeutic agent</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Aims</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Specific objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Hypothesis</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER TWO</td>
<td></td>
</tr>
<tr>
<td>2.0 Literature review</td>
<td></td>
</tr>
<tr>
<td>2.1. Diarrhoea as a disease</td>
<td>5</td>
</tr>
<tr>
<td>2.2. Pathophysiology of Diarrhoea</td>
<td>6</td>
</tr>
<tr>
<td>2.3. Detailed pathophysiology of diarrhoea</td>
<td>8</td>
</tr>
<tr>
<td>2.3.1. Inflammation in diarrhoea</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2. Oxidative damage in diarrhoea</td>
<td>11</td>
</tr>
<tr>
<td>2.3.3. Enteric nervous system in diarrhoea</td>
<td>15</td>
</tr>
<tr>
<td>2.3.4. Cystic fibrosis transmembrane conductance regulator (CFTR) regulation</td>
<td>16</td>
</tr>
<tr>
<td>2.4. Specific Agents of Diarrhoea</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1. Bacterial causes of diarrhoea</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.1. Escherichia coli</td>
<td>16</td>
</tr>
<tr>
<td>2.4.1.2. Staphylococcus aureus</td>
<td>17</td>
</tr>
<tr>
<td>2.4.1.3. Campylobacter jejuni</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1.4. Shigella spp</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1.5. Vibrio cholerae</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1.6. Bacillus cereus</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1.7. Yersinia enterocolitica</td>
<td>19</td>
</tr>
<tr>
<td>2.4.1.8. Listeria monocytogenes</td>
<td>20</td>
</tr>
</tbody>
</table>
2.4.1.9. *Clostridium* spp 20
2.4.1.10. *Salmonella typhimurium* 20
2.4.1.11. *Enterococcus faecalis* 21
2.5. Fungal induced diarrhoea symptoms 21
2.5.1. *Candida albicans* 21
2.6. Viral induced diarrhoea 21
2.6.1. Rotavirus 21
2.6.2. Norovirus 22
2.6.3. Hepatitis A virus 22
2.6.4. Human immunodeficiency virus (HIV) 22
2.7. Protozoa induced diarrhoea 22
2.7.1. *Giardia intestinalis* 22
2.7.2. *Entamoeba histolytica* 23
2.7.3. *Cryptosporidium parvum* 23
2.7.4. *Cyclospora cayetanensis* 23
2.8. Parasitic induced diarrhoea 23
2.8.1. *Trichinella spiralis* 23
2.9. Immune disordered induced diarrhoea 24
2.9.1. Compromised immune system 24
2.9.2. Hyperactive immune system 24
2.10. Antibiotic therapy induced diarrhoea 24
2.10.1. Antibiotic toxicity 24
2.10.2. Alteration of digestive functionality 25
2.10.3. Overgrowth of pathogenic microorganisms 25
2.11. Diabetic complications induced diarrhoea 25
2.12. Food allergy induced diarrhoea 26
2.13. Potential mechanisms in the control of diarrhoea 26
2.13.1. Oxidative damage and antioxidants in diarrhoeal management 26
2.13.2. Inflammation and anti-inflammatory agents in diarrhoea management 26
2.13.3. Enteric nervous system in diarrhoea symptoms and treatment 26
2.14. Plants as potential source of therapeutic agents in alleviating diarrhoeal symptoms 28
2.14.1. Anti-infectious mechanisms of plant secondary metabolites against diarrhoeal pathogens 28
2.14.2. Antioxidative mechanisms of plant phytochemical as potential antidiarrhoeal agents 29
2.14.3. Anti-inflammatory mechanisms of plant phytochemical in diarrhoea management 29
2.14.4. Antidiarrhoeal mechanisms of plant phytochemical 30
2.15. Classification of phytochemicals with antidiarrhoea potential 30
2.15.1. Terpenoids 30
CHAPTER THREE
Plant selection, collection, extraction and analysis of selected species

3.1. Introduction

3.2. Solid-liquid extraction

3.3. Liquid-liquid fractionation

3.4. Thin layer chromatography (TLC)

3.4.1. Phytochemical fingerprints

3.5. Materials and Methods

3.5.1. Selection of South Africa medicinal plants for antidiarrhoeal screening

3.5.2. Collection of plant materials

3.5.3. Preparation of plant material and optimization of phenolic-enriched extraction process

3.5.4. Phytochemical profiling

3.6. Quantification of the phenolic constituents of the extracts

3.6.1. Determination of total phenolic constituents

3.6.2. Determination of total tannin

3.6.3. Determination of proanthocyanidin

3.6.4. Determination of condensed tannin

3.6.5. Determination of hydrolysable tannin (gallotannin)

3.6.6. Determination of total flavonoids and flavonol

3.6.7. Determination of anthocyanin

3.7. Results

3.7.1. Yield of extractions and fractionations processes

3.7.2. Phytochemical screening (fingerprints)

3.7.3. Phenolic composition of the crude extracts

3.8. Discussion

3.8.1. Yield

3.8.2. Thin layer chromatogram

3.8.3. Phenolic constituents of the crude extract

3.9. Conclusion

CHAPTER FOUR
Antimicrobial activities of the plant extracts against potential diarrhoeal pathogens

4.0. Introduction
4.1. Qualitative antimicrobial (Bioautography) assay
4.2. Quantitative antimicrobial activity (Minimum inhibitory concentration (MIC)) assay
4.3. Selection of microorganisms used in the study
4.4. Material and Methods
4.4.1. Microorganism strains
4.4.2. Culturing of the Bacteria
4.4.3. Bioautography against some pathogenic microorganisms
4.4.4. Determination of Minimum Inhibitory Concentration (MIC) against the bacteria pathogens
4.4.5. Determination of Minimum Inhibitory Concentration (MIC) against the fungal pathogens
4.5. Results
4.5.1. Microbial bioautography
4.5.2. Minimum inhibitory concentration against bacteria
4.5.3. Minimum inhibitory concentration (MIC)
4.6. Discussion
4.6.1. Antimicrobial bioautography
4.6.2. Minimum inhibitory concentration (MIC)
4.7. Conclusion

CHAPTER FIVE
Free radical scavenging and antioxidant activities of the extracts and fractions as antidiarrhoeal mechanism
5.1. Introduction
5.1.1. Superoxide ion
5.1.2. Hydrogen peroxide
5.1.3. Hydroxyl radical
5.1.4. Peroxyl radical
5.1.5. Hypochlorous acid
5.1.6. Nitric oxide
5.2. Antioxidant assays
5.2.1. Antioxidant bioautography
5.2.2. The chemistry of some common antioxidant assays
5.2.2.1. Hydroxyl radical
5.2.2.2. Hydrogen peroxide scavenging
5.2.2.3. Superoxide scavenging capacity
5.2.2.4. DPPH
5.2.2.5. ABTS
5.2.2.6. Ferric reducing antioxidant power (FRAP)
5.3. Materials and Methods
5.3.1. Antioxidative profile of the crude extracts and fractions using DPPH radical solution 86
5.3.2. Antioxidative assays 86
5.3.2.1. DPPH free radical-scavenging method 86
5.3.2.2. ABTS free radical-scavenging method 86
5.3.2.3. Ferric reducing antioxidant power (FRAP) 87
5.3.2.4. Hydroxyl radical scavenging assay 87
5.3.2.5. Lipid peroxidation inhibition assay 87
5.4. Result 87
5.4.1. TLC-DPPH analyses 87
5.4.2. DPPH effective concentration (EC_{50}) 90
5.4.3. ABTS effective concentration (EC_{50}) 92
5.4.4. FRAP gradient 93
5.4.5. Hydroxyl radical effective concentration (EC_{50}) 94
5.4.6. Lipid peroxidation inhibition effective concentration (EC_{50}) 95
5.5. Discussion 96
5.5.1. Qualitative antioxidant analyses (DPPH-TLC bioautography) 96
5.6. Conclusion 98

CHAPTER SIX
Anti-inflammatory activities of the crude extracts as antidiarrhoeal mechanisms
6.0. Introduction 100
6.1. Effect of cyclooxygenases (COX) on GIT 101
6.2. Effects of lipooxygenase (LOX) on GIT 101
6.3. Effects of cytokines on GIT 102
6.4. Oxidative species as inflammatory mediator 102
6.5. Allopathic anti-inflammatory therapies and adverse effects on GIT 103
6.6. Plant phytochemicals as anti-inflammatory agents 105
6.7. Mechanisms of anti-inflammatory assay models 105
6.8. Materials and Methods 106
6.8.1. COX assay 106
6.8.2. LOX assay 106
6.9. Results 107
6.9.1. COX 107
6.9.2. LOX 108
6.10. Discussion 109
6.10.1. COX 109
6.10.2. LOX 109
6.11. Conclusion 110
CHAPTER SEVEN
Cytotoxicity evaluation of the crude extracts against Vero African green monkey kidney cell lines

7.0. Introduction 111
7.1. Materials and Methods 112
7.1.1. Preparation of plant extracts 112
7.1.2. Cytotoxicity assay against Vero cell 112
7.2. Results 113
7.3. Discussion 114
7.4. Conclusion 115

CHAPTER EIGHT
Motility modulation potential of Bauhinia galpinii and Combretum vendae phenolic-enriched leaf extracts on isolated rat ileum

8.0. Introduction 116
8.1. Drugs and reagents 117
8.2. Animal care 117
8.2.1. Isolated ileum preparation 118
8.3. Contractility test 118
8.3.1. Spasmogen assay 118
8.3.2. Spasmolytic assays 118
8.3.2.1. Effects on acetylcholine-induced contractility 118
8.3.2.2. Effects on serotonin-induced contractility 118
8.3.2.3. Effects on KCl-induced contractility 119
8.4. Data analysis 119
8.5. Results 119
8.5.1. Effect of B. galpinii crude extract on isolated rat ileum 119
8.5.2. Effect of C. vendae crude extract on isolated rat ileum 122
8.6. Discussion 123
8.7. Conclusion 126

CHAPTER NINE
Isolation and characterization of antimicrobial and antioxidant compounds from Bauhinia galpinii and Combretum vendae

9.0. Introduction 127
9.1.1. Column chromatography 128
9.1.2. Mass spectrometry 128
9.2. Materials and Methods 128
9.2.1. Preparation of plant extracts 128
9.2.2. Bioautography 128
9.2.3. Isolation of bioactive triterpenoids from *C. vendae* 129
9.2.4. Isolation of phenolic compounds from *C. vendae* 130
9.3. Isolation of compounds from *B. galpinii* 130
9.3.1. Isolation of bioactive triterpenoids from *B. galpinii* 130
9.3.2. Isolation of phenolic compounds from *B. galpinii* 130
9.4. **Characterization of the isolated compounds** 131
9.4.1. NMR spectroscopy 132
9.4.2. Mass spectrometry 132
9.4.3. Ultra-violet spectroscopy 132
9.5. **Results** 132
9.5.1. Identification of the chemical structures of isolated compounds from *C. vendae* 132
9.5.2. Antimicrobial activity of isolated compounds from *C. vendae* 135
9.5.3. Identification of the chemical structures of isolated compounds from *B. galpinii* 136
9.5.4. Antimicrobial activity of isolated compounds from *B. galpinii* 140
9.6. **Discussion** 140
9.6.1. Bioactive compounds from *C. vendae* 140
9.6.2. Bioactive compounds from *B. galpinii* 141
9.7. **Conclusion** 143

CHAPTER 10
General conclusion and future prospects

10. **Introduction** 144
10.1. Identification of diarrhoeal pathogenesis and medicinal plants used as therapeutic Agents 145
10.2. Antimicrobial evaluation of the extracts against infectious pathogens 145
10.3. Antioxidant evaluation of the extracts 145
10.4. Anti-inflammatory potential of the extracts 146
10.5. Toxicity risk of the extracts 146
10.6 Motility modulatory effects of *Bauhinia galpinii* and *Combretum vendae* 147
10.7. Isolation and characterisation of bioactive compounds 147

CHAPTER 11
References 149
Abstract

Diarrhoea is one of the killer diseases resulting from the dehydration and loss of electrolytes through profuse and excessive excretion of loose stool. The pathoetiologies include infections, intestinal inflammation, imbalanced intestinal oxidative homeostasis and altered motility. Treatment with oral rehydration therapy (ORT) is a key intervention especially in secretory diarrhoea as supportive therapy. Symptomatic and non-symptomatic therapies directed at treating the intestinal tissues are available. However, these conventional treatments are still not sufficient in curing diarrhoea due to their associated hazards such as the development and spread of drug-resistant pathogens, changes in normal intestinal bacteria flora and potential chronic toxicity. Therapies targeted at intestinal tissue include antimotility and antisecretory agents have adverse effects such as addictiveness, constipation and fatal ischaemic colitis. Many ethnopharmacological and ethnotraditional therapies for treating diarrhoea exist among different cultures. The aims of this study were to evaluate the biological activities of plant extracts against some diarrhoeal pathophysiologicals.

A literature search in English of published articles and books that discussed ethnotraditional uses of medicinal plants in southern Africa was conducted. A list of 230 medicinal plants used in South African traditional medicines for treating diarrhoea and associated complications was created. The list included family, genus, species, biological activities and bioactive isolates as well as the remedies for diarrhoea. Twenty seven species were selected to evaluate for antimicrobial, antioxidant and anti-inflammatory activities. Safety of the plants was determined by determining the cytotoxicity of the crude extracts against Vero African green monkey kidney cell lines using a standard method. Motility effects of Bauhinia galpinii (BGE) and Combretum vendae (CVE) were determined by modulation of the contractility process of the isolated rat ileum induced by spasmosgens.

Phenolic compositions of the crude extract were determined using various standard methods and finally bioactivity guided isolation of antimicrobial and antioxidant compounds from BGE and CVE were carried out using open column chromatography. Identification and characterization of the isolated compounds was achieved by NMR, EI-MS and UV spectroscopy.

The non-polar fractions had good antimicrobial activities with MIC ranged between 19 – 1250 µg/ml while the polar fraction had moderate antimicrobial activities with MIC ranged between 39 - >2500 µg/ml. In general the non-polar fractions had a higher antimicrobial activity.

The crude extracts contained wide range phenolic compounds with a total phenolic (74.91±1.26 to 467.04±15.82 mg GAE/g plant material), and total flavonoids (11.27±3.37 to 176±5.96 mg EQ/g plant material). The antioxidant activities were concentrated and potentiated in the polar fractions. The non-polar fractions had poor antioxidant activities with EC$_{50}$ values ranging from 0.21±0.03 to 303.65±3.84 µg/ml for DPPH radical scavenging and 0.43±0.03 to 1709±91.44 µg/ml for ABTS radical scavenging.

The crude extracts had selective COX-1 inhibitory activities ranging between 41.70 to 84.61% and had no COX-2 inhibitory activity. All the extracts tested had 15-LOX inhibitory capacity with LC$_{50}$ values ranging between 0.86±0.27 and 111.44±37.28 µg/ml. The cytotoxicity results indicated a wide variation in toxic potential of the crude extracts with LC$_{50}$ values ranging from 3.51 to 741.90µg/ml.
The BGE extracts had dual activities as spasmolytic by stimulating the spontaneous contractility and also agonised contractions induced by spasmogens but it inhibited K+ induced contraction. CVE had spasmodic activities through a multiple mechanisms inhibiting contractions induced by spasmogens and K+ in a dose-dependent manner.

Several bioactive compounds were isolated from the *Combretum vendae* leaves. There were triterpenoids (ursol-12-en-28-oic acid, mixtures of corosolic acid and maslinic acid, and asiatic acid and arjunolic acid) as well as bibenzyls combretastatin B5-O-2'-β-D-glucopyranoside, combretastatin B1-O-2’-β-D-glucopyranoside and a flavonoid (apigenin). From *Bauhinia galpinii* the following bioactive compounds were isolated and characterized: β-3 ethoxy sitosterol, one new flavone (5, 7, 4’ 5’ tetrahydroxy-2’-methoxyflavone (isoetin 2’-methyl ether) or 5, 7, 2’ 5’ tetrahydroxy-4’-methoxyflavone (isoetin 4’-methyl ether)), 3, 5, 7, 3’, 4’-pentahydroxyflavone and 3, 5, 7, 3’, 4’, 5’-hexahydroxyflavone, quercetin-3-O-β-galactopyranoside and myricetin-3-O-β-galactopyranoside.

The extraction protocol used in this work potentiated the antimicrobial activities in the non-polar fractions while antioxidant activities were potentiated in the polar fractions. This indicated that using polar solvents as extractant for treating infectious diarrhoea may not be quite effective unless some other antidiarrhoeal mechanisms are involved. Therefore, mixture of organic solvent (ethanol) and water can be recommended for broad-based activity.

Bauhinia galpinii extracts had a dual-mechanism of action (prokinetic and relaxant) on gastro-intestinal motility, depending on the prevalent patho-physiological condition and *Combretum vendae* mediated spasmyolytic effects on isolated rat ileum through multiple inhibitions of a wide range of contractile stimuli. Hence, the presence of multiple acting spasmyolytic activities in the plant extract might be contributing towards its effectiveness in treating diarrhoea and abdominal spasm. The uses of these plants in traditional medicine need to be monitored closely because of the selective inhibition of COX-1 and its associated GIT injury, and the high toxicity potential of some of the extracts.

Further work evaluating the antidiarrhoea mechanisms, identification and isolation of bioactive compounds, sub-acute and acute toxicity of the plant extracts is recommended.

Key words: Antimicrobial, antioxidant, anti-inflammatory, diarrhoeal, antispasmyotic, enteric nervous system, cytotoxicity.
List of Abbreviations

A
ABTS=2.2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid
AMP=Antimicrobial peptides

B
BAB= Bauhinia bowkeri
BAG= Bauhinia galpinii
BAP= Bauhinia petersiana
BAV= Bauhinia variegata
BGE= Bauhinia galpinii extract

C
Ca^{2+}= Calcium ion
Cl^{-}= chloride ions
CNF-1= Cytotoxic necrotising factor 1
CNS= Central nervous system
COB= Combretum bracteosum
COP= Combretum padoides
COV= Combretum vendae
COX= Cyclooxygenase
COW= Combretum woodii
CVE= Combretum vendae extract

D
DAEC= diffusively adherent Escherichia coli
DNA
DPPH=2, 2-diphenyl-1-picrylhydrazyl

E
EAEC= Enteroaggregative Escherichia coli
EHEC= Enterohaemorrhagic Escherichia coli
EIEC= Enteroinvasive Escherichia coli
ENS= Enteric nervous system
EPEC= Enteropathogenic Escherichia coli
ETEC= Enterotoxigenic Escherichia coli
EUC=Euclea crispa
EUN= Euclea natalensis
F
FIC= Ficus cratestoma
FIG= Ficus glumosa
FRAP= Ferric reducing antioxidant capacity

G
GIT= Gastrointestinal tract

H
HIV/AIDS= Human immune deficiency virus/Acquired immune deficiency syndrome
HOCl= hypochlorite
HUB= Haemolytic uremic syndrome

I
IBS= Irritable bowel syndrome
IL= Interleukin
INC= Indigofera cylindrica
iNOS= inducible nitric oxide synthase
INT= p-i’d’nitrite’tetraz’lium

L
LT= Heat labile enterotoxin
LTB= Leukotriene B

M
MDA= Malondialdehyde
MCP-1= Monocyte chemoattractant protein
MIC= Minimum inhibitory concentration
MPD= Maytenus peduncularis
MPR= Maytenus procumbens
MSE= Maytenus senegalensis
MUN= Maytenus undata

N
Na+= sodium ions
NAME= nitro
NH₂Cl= Ammonium chloride
NO= Nitric oxide

O
OH= Hydroxyl radical
ORT= Oral rehydration therapy
OZM= Ozoroa mucronata
OZP= Ozoroa paniculosa
P
PG= Prostaglandin

R
ROS= Reactive oxygen species
RNS= Reactive nitrogen species

S
SCB= Schotia brachypetalia
SLE= Searsia leptodictya
SPD= Searsia pendulina
SPT= Searsia pentheri
ST= Heat stable enterotoxins
SYP= Syzygium paniculatum

T
TLC= Thin layer chromatography
TNF-α= Tumour necrosis factor-α
Trolox= 6-hydroxy-2, 5, 7, 8-tetrahydroxyl-chroman-2-carboxylic acid

U
UNICEF= United Nation Children Fund

W
WHO= World Health Organization
List of Figures

Chapter 2

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Classification of the diarrhoea and the stimulants</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Cytokines production network in the tissues</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Biosynthetic pathways for the eicosanoids</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Intestinal epithelial TJs as a physical barrier</td>
<td>10</td>
</tr>
<tr>
<td>2.5</td>
<td>The integrative pathophysiology and mechanism of diarrhoeal disease</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Lipid peroxidation chain reactions</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Chemical structures of the lipid peroxidation intermediates</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>Mechanisms of antibiotic-induced diarrhoea</td>
<td>25</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical structures of bioactive terpenoids against diarrhoeal mechanisms</td>
<td>31</td>
</tr>
<tr>
<td>2.10</td>
<td>Chemical structures of bioactive alkaloids against diarrhoeal mechanisms</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>Sub-classes of biologically important phenolic compounds</td>
<td>34</td>
</tr>
<tr>
<td>2.12</td>
<td>Chemical structures of bioactive phenolics against diarrhoeal mechanisms</td>
<td>36</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Flow chart for the extraction, phytochemical analysis and fractionation of the crude extracts</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>TLC phytochemical profile of the crude extracts</td>
<td>48</td>
</tr>
<tr>
<td>3.3</td>
<td>TLC phytochemical profile of the hexane fractions</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>TLC phytochemical profile of the dichloromethane fraction</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>TLC phytochemical profile of the ethyl acetate fraction</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Total phenolic and non-tannin constituents of the crude extract</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Total tannin and condensed tannin constituents of the crude extracts</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Proanthocyanidin and gallotannin constituents of the crude extract</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Total flavonoid and flavonol constituents of the crude extract</td>
<td>56</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>The classification of microbiological methods for biological detection</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Bioautography of the hexane fractions against S. aureus</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Bioautography of the dichloromethane fractions against S. aureus</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Bioautography of hexane fractions of different plant species against E. faecalis</td>
<td>66</td>
</tr>
<tr>
<td>4.5</td>
<td>Bioautography of dichloromethane fractions of different plant species against E. coli</td>
<td>67</td>
</tr>
<tr>
<td>4.6</td>
<td>Bioautography of dichloromethane fractions of different plant species against E. faecalis</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Bioautography of hexane of different plant species against C. neoformans</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Bioautography of dichloromethane fractions against C. neoformans</td>
<td>68</td>
</tr>
<tr>
<td>4.9</td>
<td>Bioautography of hexane fractions against A. fumigatus</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Bioautography of dichloromethane fractions against A. fumigatus</td>
<td>69</td>
</tr>
<tr>
<td>4.11</td>
<td>Bioautography of hexane fractions against C. albicans</td>
<td>70</td>
</tr>
</tbody>
</table>
Fig. 4.12. Bioautography of dichloromethane fractions against C. albicans

Chapter 5

Fig. 5.1. Some deleterious reactions from the production of reactive free radicals in biological systems
Fig. 5.2. TLC-DPPH profiles of the crude extracts of extracts of different plants
Fig. 5.3. TLC-DPPH profile of the hexane fractions of different plants
Fig. 5.4. TLC-DPPH profiles of the dichloromethane fractions of different plants
Fig. 5.5. TLC-DPPH profiles of the ethyl acetate fractions of different plants

Chapter 6

Fig. 6.1: Roles of COX in the pathogenesis mechanism of NSAID-induced intestinal damage
Fig. 6.2: Factors involved in the pathogenesis of indomethacin-induced small intestinal lesions
Fig. 6.3: COX-1 inhibitory activity of some selected phenolic-enriched crude extracts

Chapter 8

Fig. 8.1. Schematic presentation of the contractility assay using isolated rat ileum
Fig. 8.2. Stimulatory effects of B. galpinii on spontaneous contraction of isolated rat ileum
Fig. 8.3. Effects of 70% acetone crude leaf extract of B. galpinii on the acetylcholine cumulative concentration dependent-induced contraction in the absence and presence of atropine
Fig. 8.4. Agonized effects of B. galpinii on serotonin-induced contraction of the isolated rat ileum
Fig. 8.5. Relaxant effects of B. galpinii on KCl-induced contraction of the isolated rat ileum
Fig. 8.6. Spasmolytic effects of 70% acetone crude leaf extract of C. vendae on acetylcholine-induced contraction of the isolated rat ileum
Fig. 8.7. Spasmolytic effects of 70% acetone crude leaf extract of C. vendae on serotonin-induced contraction of the isolated rat ileum
Fig. 8.8. Spasmolytic effect of the C. vendae on the depolarised KCl-induced isolated rat ileum contractions

Chapter 9

Fig. 9.1. Extraction, fractionation and isolation of bioactive compounds from the leaf extract of Combretum vendae
Fig. 9.2. Extraction, fractionation and isolation of bioactive compounds from the leaf extract of Bauhinia galpinii
Fig. 9.3 Chemical structures isolated bioactive compounds from the leaf extract of C. vendae
Fig. 9.4 Chemical structures isolated bioactive compounds from the leaf extract of B. galpinii
List of Tables

Chapter 2
Table 2.1. The mechanism of action and symptoms of enteric pathogenic *E. coli* 17
Table 2.2. Neurotransmitters of ENS causing intestinal secretion in diarrhoea 27

Chapter 3
Table 3.1. Medicinal plants selected for the antidiarrhoeal investigations in this study 42
Table 3.2. The percentage yield of the crude extract and fractions (g/g dried plant material) 47

Chapter 4
Table 4.1. The minimum inhibitory concentration (MIC) of the crude extracts and fractions against bacterial strains tested 72
Table 4.2. The minimum inhibitory concentration (MIC) of the crude extracts and fractions against fungal strains tested 74

Chapter 5
Table 5.1. DPPH radical scavenging potential of the crude extracts and fractions expressed as EC50 (µg/ml) 91
Table 5.2. ABTS radical scavenging potential of the crude extracts and fractions expressed as EC50 (µg/ml) 92
Table 5.3. FRAP 94
Table 5.4. Hydroxyl radical scavenging potential of the crude extracts and fractions expressed as EC50 (µg/ml) 94
Table 5.5. Linoleic acid peroxidation inhibition expressed as LC50 (µg/ml) 95

Chapter 6
Table 6.1. Lipoxygenase inhibitory activity of the crude extracts 107

Chapter 7
Table 7.1. The LD50 of the cytotoxicity assay of some medicinal plants used in South African traditional medicine to treat diarrhoea and related ailments 112

Chapter 9
Table 9.1: NMR experiments commonly applied for natural product structural elucidation 126
Table 9.2: Minimum inhibitory concentration (µg/ml) of the isolated compounds from the leaf extract of *C. vendae* 135
Table 9.2: Minimum inhibitory concentration (µg/ml) of the isolated compounds from the leaf extract of *B. galpinii* 139
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Ethnobotanical and literature information of medicinal plant species used traditionally for treating diarrhoea in South Africa</td>
<td>172</td>
</tr>
<tr>
<td>9.1</td>
<td>1D and 2D NMR spectra data of Ursolic acid</td>
<td>197</td>
</tr>
<tr>
<td>9.2</td>
<td>1D and 2D NMR spectra data of mixture of corosolic acid and maslinic acid</td>
<td>198</td>
</tr>
<tr>
<td>9.3</td>
<td>1D and 2D NMR spectra data of mixture of asiatic acid and arjunolic acid</td>
<td>199</td>
</tr>
<tr>
<td>9.4</td>
<td>1D and 2D NMR spectra data of combretastatin B5-2′-O- glucopyranoside</td>
<td>200</td>
</tr>
<tr>
<td>9.5</td>
<td>1D and 2D NMR spectra data of combretastatin B1-2′-O- glucopyranoside</td>
<td>200</td>
</tr>
<tr>
<td>9.6</td>
<td>1D and 2D NMR spectra data of 3β-ethoxy sitosterol</td>
<td>201</td>
</tr>
<tr>
<td>9.7</td>
<td>1D and 2D NMR spectra data of quercetin</td>
<td>201</td>
</tr>
<tr>
<td>9.8</td>
<td>1D and 2D NMR spectra data of myricetin</td>
<td>202</td>
</tr>
<tr>
<td>9.9</td>
<td>1D and 2D NMR spectra data of isoein 2′ methyl ether/ isoein 4′ methyl ether</td>
<td>202</td>
</tr>
<tr>
<td>9.10</td>
<td>1D and 2D NMR spectra data of quercetin-3-O-β-galactopyranoside</td>
<td>203</td>
</tr>
<tr>
<td>9.11</td>
<td>1D and 2D NMR spectra data of myricetin-3-O-β-galactopyranoside</td>
<td>203</td>
</tr>
</tbody>
</table>