REFERENCES

CHIVINGE, O.A. 1990. Weed science technological needs of the communal areas of Zimbabwe. Zambezia XV, 133-143.

Use. Furthering Cooperation Between People and Institutions Vol. II. Advances in Geoecology 31. Catena Verlag GMBH Reiskirchen, Germany.

EKELEME, F., FORCELLA, F., ARCHER, D.W., AKOBUNDU, O.I. & CHIKOYE, D.
2005. Seedling emergence model for tropical ageratum (Ageratum conyzoides). Weed Sci. 53,
55-61.

EGHBALL, B & LESOING, G.W. 2000. Viability of weed seeds following manure windrow

EGLEY, G.H. 1990. High temperature effects on germination and survival of weeds in soil.
Weed Sci. 38, 429-435.

ELLIS-JONES, J., TWOMLOW, S., WILCOCKS, T., RICHES, C., DHLIWAYO, H. &
MUDHARA, M. 1993. Conservation tillage/weed control system for communal farming area

ERENSTEIN, O. 2002. Crop residue mulching in tropical and semi-tropical countries: An
evaluation of residue availability and other technological implications. Soil Tillage Res. 67,
115-133.

yield and weed management in rainfed conservation agriculture. Soil Tillage Res. 117, 172-
183.

and Tam’o M. (eds.), Challenges and opportunities for enhancing sustainable cowpea
production. Proceedings of the World Cowpea Conference III. International Institute of
Tropical Agriculture (IITA), Ibadan, Nigeria. 4-8 September 2000, pp. 52-61.

tillage systems on the composition of the seedbank. Weed Res. 37, 71-76.

LAWES AGRICULTURAL TRUST. 2006. GENSTAT RELEASE 9.1. Rothamstead Experimental Station. VSN International Ltd. Hertfordshire HP1 1ES, UK.

LIEBMANN, M., BASTIAANS, L. & BAUMANN, D.T. 2004. Weed management in low-
external-input and organic systems. In: Inderjit (ed.) Weed Biology and Management.

communal areas in three agro-ecological zones of Zimbabwe. Fourth Eastern and
Southern Africa Regional Maize Conference. 28th-1st April 1994, 219-222.

dactylon in communal areas of Zimbabwe. Brighton Crop Protection Conference – Weeds,
pp. 201-206.

CHATIZWA, I. 1998. Tillage and weed control responses on a semi-arid granitic catena. II
Weed responses. Paper presented at CIMMYT 6th Regional Maize Conference for Eastern

agroforestry systems in two contrasting agroecological zones of Zimbabwe. Transactions of
the Zimbabwe Scientific Association 72, 31-42.

Princeton, New Jersey.

Weed composition and cover after three years of soil fertility management in the central
Brazilian Amazon: Compost, fertilizer, manure and charcoal applications. Weed Bio. Manag.
5, 69-76.

NAVAYANAN, S. 2011. Canopy architecture and water production in sorghum. MSc. Thesis, Kansas State University, Manhattan, USA.

NHAMO, N., MUPANGWA, W., SIZIBA, S., GATSI, T. & CHIKAZUNGA, D. 2003. The role

NZUMA, J.K., MPEPEREKI, S. & MURWIRA, HK. 1999. Use of participatory methods to

SHRESTHA, S.,LANINI, T., WRIGHT, S., VARGAS, R & MITCHELL, J. 2006. Conservation

APPENDICES

Appendix A. Handling of heap stored cattle manure on farms during the 2009/10 season in Wards 12 and 14 of Masvingo District

<table>
<thead>
<tr>
<th>Farm</th>
<th>Storage</th>
<th>Material added</th>
<th>Heaping period (months)</th>
<th>Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$</td>
<td>Heap</td>
<td>Maize stover, dry weeds</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>11</td>
<td>Deep stall</td>
<td>Maize stover</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>12</td>
<td>Heap</td>
<td>Maize stover, grass weeds</td>
<td>6</td>
<td>None</td>
</tr>
<tr>
<td>13</td>
<td>Heap</td>
<td>Maize stover</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>14</td>
<td>Heap</td>
<td>Maize stover</td>
<td>3</td>
<td>None</td>
</tr>
<tr>
<td>15</td>
<td>Heap</td>
<td>Maize stover</td>
<td>4</td>
<td>None</td>
</tr>
<tr>
<td>16</td>
<td>Deep stall</td>
<td>Maize stover</td>
<td>1</td>
<td>None</td>
</tr>
</tbody>
</table>

$ paired immature and mature samples obtained.
Appendix B. Handling of pit stored compost on farms in Wards 12 and 14 of Masvingo District during the 2009/10 season

<table>
<thead>
<tr>
<th>Farm</th>
<th>Storage</th>
<th>C source</th>
<th>N source</th>
<th>Water</th>
<th>Cover</th>
<th>Turned</th>
<th>Period (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Pit 2.5 m deep</td>
<td>30 cm layers of maize stover, forest litter.</td>
<td>Poultry and goat manure, household wastes.</td>
<td>Added</td>
<td>Anthill soil and ash.</td>
<td>No</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Pit</td>
<td>Crop stover, weeds</td>
<td>Kraal manure, household wastes.</td>
<td>Added</td>
<td>Soil</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Pit 1 m(depth)*</td>
<td>Forest and fruit tree litter, maize stover.</td>
<td>Kraal manure, green grass, ammonium nitrate (AN).</td>
<td>Added</td>
<td>AN</td>
<td>No</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4 m * 4 m</td>
<td>Forest litter, crop stover.</td>
<td>Household wastes.</td>
<td>Rainbow</td>
<td>None</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Pit</td>
<td>Forest litter, maize stover.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Shallow pit</td>
<td>Forest litter.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Pit</td>
<td>Forest litter, maize stover.</td>
<td>Added</td>
<td>None</td>
<td>None</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Pit</td>
<td>Maize stover and cobs.</td>
<td>Household wastes.</td>
<td>Added</td>
<td>None</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Pit</td>
<td>Maize stover, weeds.</td>
<td>Household wastes.</td>
<td>Added</td>
<td>None</td>
<td>No</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Pit</td>
<td>Maize stover, forest litter.</td>
<td>Household wastes, green grass weeds.</td>
<td>Added</td>
<td>Ash</td>
<td>No</td>
<td>4</td>
</tr>
</tbody>
</table>

§ paired immature and mature samples obtained from site 2