Bibliography

[70] A. Benjeddou. Advances in piezoelectric finite element modeling of adaptive structural

Appendix A

A brief introduction to topology optimization

This appendix presents a very brief introduction to topology optimization as a material distribution problem. This brief review stems mainly from the review papers of Eschenauer and Olhoff [149], Frecker [103] and the book of Bendsoe and Sigmund [4]. For a more detailed review, the interested reader is therefore referred to these works and their references. This approach is characterised by the constitutive tensor of a material being parameterized within a predefined design domain \(\Omega \) in order to determine the material domain \(\Omega_{\text{mat}} \), such that a given objective function is optimized.

Two of the most popular material models which parameterise the constitutive tensor are the homogenization and the SIMP (Simple Isotropic Material with Penalization) methods. Of course, a number of alternative approaches have been proposed. For example [98, 150, 151].

The SIMP material model has become very popular in recent times. The SIMP (Simple Isotropic Material with Penalization) was originally independently proposed by Bendsoe [109] and Zhou and Rozvany [110].

The SIMP material model modifies the elasticity tensor by simply premultiplying by a density \(0 \leq \rho \leq 1 \), raised to a power \(p > 1 \):

\[
E_{ijkl} = \rho(x)^p E^0_{ijkl}, \tag{A.1}
\]

where \(E^0_{ijkl} \) is the elasticity tensor of the solid base material. The volume, on the other hand, is linearly dependent on \(\rho \):

\[
v(\rho) = \int_\Omega \rho(x) dV. \tag{A.2}
\]

The penalty power makes intermediate densities uneconomical, since the stiffness of regions with intermediate densities are significantly reduced, while volume is contributed to linearly. If \(p = 1 \) in A.1, the problem is converted to one where the energy depends linearly on \(\rho \). In [13], it is noted that this linear problem provides the “most relaxed” problem and provides a useful bound on the maximum structural efficiency. An example of this type of problem is the variable thickness sheet problem.
Although the SIMP model is often referred to as an artificial or fictitious model since it was argued that intermediate densities could not be physically interpreted (as they can in the homogenization method). However, it was shown in [152] that the SIMP model can indeed be considered a realistic material model if p satisfies:

$$p \geq \max \left\{ \frac{2}{1 - \nu^0}, \frac{4}{1 + \nu^0} \right\} \text{ in 2-D}, \quad (A.3)$$

$$p \geq \max \left\{ \frac{15(1 - \nu^0)}{7 - 5\nu^0}, \frac{3(1 - \nu^0)}{2(1 - 2\nu^0)} \right\} \text{ in 3-D.} \quad (A.4)$$

That is to say, materials constructed from composites (materials with microstructure) which satisfy the Hashin-Shtrikman bounds. The Hashin-Shtrikman bounds for two-phase materials impose limits on materials properties achievable by constructing materials with microstructure from two linear elastic materials.

The simplicity and ease of implementation of the SIMP material model has seen topology optimization being adopted by a significant number of different elasticity problems and even different fields and problems, including: vibration and dynamics [104, 153, 154], buckling [155], flow [156], Micro Electro Mechanical Systems (MEMS) and multiphysics problems [106, 138], and even wave propagation problems [157].

A typical material distribution topology optimization problem can be stated as: Find the subdomain Ω_{mat} with a limited volume (\bar{v}) in Ω which minimizes a given objective function f (for example compliance). In order to solve the problem as a material distribution problem, a density function ρ is introduced which is 1 in Ω_{mat} and 0 elsewhere. Mathematically, this problem can be written as:

$$\min_{\rho} f(\rho)$$

subject to:

$$v(\rho) = \int_{\Omega} \rho \, dV \leq \bar{v} \quad (A.5)$$

$$: \rho(x) = 0 \text{ or } 1, \quad \forall x \in \Omega$$

$$: \text{ Physical laws}$$

These problems are mostly solved using the finite element method. The discrete form of the problem can therefore be written as:

$$\min_{\rho} f(\rho)$$

subject to:

$$v(\rho) = \frac{1}{\Omega} \sum_{i=1}^{N_{el}} \rho_i v_i \leq v^* \quad (A.6)$$

$$: \rho_i = 0 \text{ or } 1, \quad \forall i = 1, 2, \ldots, N_{el}$$

$$: \text{ Physical laws}$$

where v^* is an upper bound on the permissible volume fraction and N_{el} is the number of elements in the finite element mesh.

Of course numerous other methods to solve topology optimization problems exist. Examples include:
A.1. IMPLEMENTATIONAL ISSUES

- *Evolutionary methods* which are related to fully stressed design methods and typically involve the iterative addition of elements in regions where they are predicted to be effective and removal from ineffective areas. Typically sensitivity information is not required or used in these methods. Although these methods are usually relatively easy to implement, Eschenauer and Olhoff [149] warn that evolutionary structural optimization-type methods are heuristic and have been shown to fail for even simple problems [158].

- Employing *topological derivatives* and *bubble methods* extends the use of boundary variation shape optimization techniques to topology optimization. Principally, the sensitivity to the addition of an infinitesimally small hole (a change in topology) at a certain point in the design domain is estimated. The topological derivative is used where necessary to alter the topology, while standard shape optimization techniques are used to manipulate the interior and exterior boundary shapes.

Level set methods have also become quite popular of late. Essentially, as explained by Bendsoe and Sigmund [4], the contours of a parameterized family of level-set functions are used to define and alter the boundaries of a structure.

Although these methods are theoretically sound, they are rather complex and are difficult to implement. Furthermore, although they have been demonstrated on problems such as the minimum compliance problem, they are difficult to extend to practical problems such as compliant mechanism design.

- Since discrete (0-1) solutions are ultimately sought from the topology optimization routine, it seems attractive to tackle the problem using *discrete variables*. Easily implemented gradient-free optimization algorithms such as Genetic Algorithms (GA’s) and Particle Swarm Optimization Algorithms (PSOA’s) have previously been applied to problems in topology optimization. However, these methods have had little success since, due to the large scale of the problems, a restrictively large number of (relatively numerically expensive) function evaluations are required.

Once again, a more detailed survey of these methods can be found in for example [149, 4].

A.1 Implementional issues

There are several known implementational issues which need to be dealt with appropriately if topology optimization procedures are to yield sensible results. These issues include: *existence of solution* (mesh dependency), *checkerboarding*, *one-node connected hinges*, *non-uniqueness*, and *local minima*. In this section, some of the work that has been published in open literature to deal with these issues, will be highlighted.

A.1.1 Mesh dependency

Problem (A.5) is well know to lack solution in general. A somewhat simplified explanation for this is that for a given design, with known volume, allowing the addition of new holes
(without increasing the volume) generally increases the efficiency of the allowable optimal design. More specifically, the set of feasible designs is not closed. This nonexistence problem (mesh dependence in the discrete case (A.6)) can be overcome by either relaxation or by restriction of the design domain.

Problem relaxation involves expanding the set of permissible designs to achieve existence. Bendsoe and Kikuchi [107] famously relaxed the problem by permitting composite microstructure using a homogenization method. The homogenization method describes global behaviour in terms of a microscopic base cell. Using this method, each element's effective density is allowed to vary such that $0 \leq \rho_i \leq 1$, $\forall i = 1, 2, \ldots, Nel$, based on the parameterization of the base cell. Using this procedure however, can result in large areas of intermediate density which can be physically interpreted, but are difficult to manufacture.

Methods do exist to explicitly penalize intermediate densities, e.g. see [13, 159]. The problem with this explicit penalization of intermediate densities is however, that one is essentially reverting back to the problem in (A.6) which lacks solution! More detail on topology optimization using homogenization methods can be found in Section 7.5.1. The detail of this method will therefore not be repeated here since the focus of this study is on the SIMP method.

The other method to overcome the non-existence problem is to restrict the set of admissible designs. Restriction methods involve decreasing the size of the set of feasible designs. In doing so, the set of all possible designs is sufficiently closed.

For detailed reviews of restriction methods, the reader is referred to [4, 13]. Since many of these methods also have the effect of reducing checkerboarding, some details of methods to deal with the mesh dependency problem will be presented here.

Perimeter control

The basic idea of this method is to (as the name suggests) restrict the perimeter of the solid domain Ω_{mat}. Roughly speaking, the perimeter is the sum of the perimeters of all the holes and the perimeter of boundary. Importantly, existence to topology optimization problems with a restriction on the perimeter was proven by Ambrosio and Buttazzo [160]. Haber et al. developed the first numerical implementation of this method. They impose a constraint on the total variation, which is in fact the perimeter of the solid domain if $\rho = 1$ in Ω_{mat} and $\rho = 0$ elsewhere. The discrete form of the total variation is:

$$P = \sum_{k=1}^{K} l_k \left(\sqrt{< \rho >_k^2 + \epsilon^2} - \epsilon \right),$$ \hspace{1cm} (A.7)

where $< \rho >_k$ is the jump in material density over element interface k of length l_k. $K \approx 2Nel$ is the number of element interfaces and ϵ is a small number used to produce a differential function in place of the absolute value. Other workers who have made contributions are Duysinx [161] for continuous variables and Beckers [162] who worked with discrete variables. This method results in the inclusion of only one additional constraint which can easily be accommodated by general purpose optimizers such as MMA.
A.1. IMPLEMENTATIONAL ISSUES

A reported drawback of this method is that that perimeter constraint is relatively difficult to approximate, resulting in fluctuations in the design variables. This is reported to be related to the choice of asymptotes of MMA [4]. These implementational issues were alleviated by an inner loop procedure for the relatively inexpensive perimeter approximation by Duysinx [161]. Furthermore, the choice of the actual bounding value is not easily physically justifiable.

Global gradient constraint

Bendse [139] proved existence of solution when including this bound in topology optimization problems. The global constraint simply involves imposing a bound on the norm of the ρ function in the Sobolov space $H^1(\Omega)$,

$$
||\rho||_{H^1} = \left(\int_{\Omega} (\rho^2 + |\nabla \rho|^2 dV) \right)^{1/2} \leq M. \tag{A.8}
$$

This method also only involves one additional constraint function, however Bendse and Sigmund [4] report that implementation of A.8 also involves some experimentation with a range of values for bound M to achieve acceptable results.

Local gradient constraint

Petersson and Sigmund [163] proved existence of solution for, as well as numerically implemented, a scheme introducing local gradient constraints. Point-wise bounds on the spacial derivatives of function ρ are imposed:

$$
\left| \frac{\partial \rho}{\partial x_i} \right| \leq G, i = 1, 2, 3 \text{ (in three dimensions).} \tag{A.9}
$$

This scheme (which essentially constrains the L^∞ norm of the gradient of ρ) has the advantage that the gradient constraint provides a well defined length scale. That is to say, the transition from solid, to void, back to solid requires a distance of at least $2/G$. However, implementation of this scheme results in (up to) $2Nel$ additional constraints for the optimization problem, making large scale implementation difficult.

MOLE method

Recently a scheme named ‘MOLE’ (MOnoticity based minimum LEngth scale) has been proposed by Poulsen [164]. In essence, the idea is to pass a circular filter over the design domain and measure the monotonicity of the density function (horizontally, vertically and at +/- 45°). If a non-monotonic density distribution is detected at a smaller length scale than desired, a constraint function becomes non-zero. A permissible tolerance is placed on this function, resulting in only one additional constraint being added to the optimization problem.
Filtering of elemental densities

In a discrete implementation, this scheme modifies each element’s density as some weighted sum of the surrounding elements within a certain distance [4]. Features larger than the filter size are implicitly penalised, since any non-uniformities within the filter area will result in a ‘grey’ element which is uneconomical in the SIMP model.

Implementation requires sensitivities of each element to take into account the mutual energy of elements within the filter radius. Therefore, although no additional constraints are added to the optimization problem, but bookkeeping in the computation of sensitivities may be somewhat involved.

Filtering sensitivities

A method which has been widely used by numerous authors is to filter the sensitivity information of the optimization problem. Although the method is purely heuristic, it is extremely efficient and has been shown to provide very good results for a wide range of problems, for examples see [4], with very little additional computational expense. Furthermore no additional constraints are added to the optimization problem, and therefore standard optimality criteria methods can be used.

The filter was originally proposed by Sigmund [100, 165] and not only does this scheme impose a sensible length scale on the problem but also eliminates checkerboarding. The scheme works by modifying the sensitivities as follows:

\[
\frac{\partial f}{\partial \rho_k} = (\rho_k)^{-1} \frac{1}{\sum_{i=1}^{Nel} \tilde{H}_i} \sum_{i=1}^{Nel} \tilde{H}_i \rho_i \frac{\partial f}{\partial \rho_i}, \tag{A.10}
\]

where a linear convolution operator \(\tilde{H}_i \) can be written as

\[
\tilde{H}_i = \min \left(\text{dist}(k, i), \{i \in \text{Nel}|\text{dist}(k, i) \leq r_{\min}\} \right), k = 1, 2, \ldots, \text{Nel}, \tag{A.11}
\]

and \(\text{dist}(k, i) \) is the distance between the centroid of elements \(k \) and \(i \), and \(\tilde{H}_i \) is zero outside the filter area.

A.1.2 Checkerboarding, one-node connected hinges

The checkerboarding phenomena is described in detail in Chapter 7, and therefore only a condensed treatment will be presented here. The checkerboarding problem is characterised by material distributions in “optimal topologies” being distributed in alternating solid and void elements. Checkerboarding is largely as a result of poor numerical modelling of this spurious material distribution, as shown by Díaz and Sigmund [14] and Jog and Haber [102]. In essence, the numerical behaviour of this material distribution is over-stiff.

The one-node connected hinge is characterised by four elements surrounding a node, where two diagonally opposite elements are solid and the other two are void. Although it is reported...
that the mesh-independency sensitivity filtering scheme also eliminates checkerboarding, one-node connected hinges are still possible, and are in fact somewhat common when applied in the design of compliant mechanisms. The reason is that in compliant mechanism design, solid state hinges are employed to achieve the required motion and the numerical model of a one-node hinge employing standard Q4 elements is ideal (if unrealistic and inaccurate) since it offers zero resistance to bending.

Methods to overcome the problems of checkerboarding or one-node hinges (or both) are numerous, and therefore only selected popular methods will be presented here.

Higher order elements

It was shown by Díaz and Sigmund [14] and by Jog and Haber [102] that checkerboarding is to a large extent eliminated when higher order (Q8 or Q9 planar) elements are employed with the homogenization material model. However, as was shown in Chapter 7, checkerboarding is only prevented in the SIMP model for a limited range of values for the penalty power p. A significant drawback is that higher order elements are significantly more numerically expensive than standard elements.

Patches

An alternative is to eliminate checkerboarding in a patch of elements. Patches are comprised of four regular elements with a common node in the centre of the patch. The complete mesh is therefore made up of $P_x \times P_y$ patches or $2P_x \times 2P_y$ elements. Each patch of four elements can be viewed as a single “super-element”.

Four orthogonal basis functions are defined for the patch, similar to those described in Section 5.5.2, one of which defines a pure checkerboard pattern. The ρ function is then restricted to lie within a reduced, checkerboard-free space. This is achieved by, for each patch, modifying the updated design variables by removing the component associated with the pure checkerboard basis function [4].

Alternatively wavelet methods can be employed to directly work in a space without checkerboarding [98, 151]. It was shown that this method can be used to prevent checkerboarding as well as to obtain some geometry control.

Filters

The scheme employed to impose mesh-independency, introduced by Sigmund [100] also efficiently alleviates the checkerboarding problem.

NoHinge

Poulsen [15] developed a simple scheme to avoid the formation of one-node connected hinges and checkerboard patterns. This scheme results in a single additional constraint based on a
measure of non-monotonicity of density around each interior node in the mesh. This method is the basis of the new scheme developed in Section 5.5.2.

Other Methods

Most of the restriction methods described in the previous section also alleviate the effects of checkerboarding.

A.1.3 Other complications

Other common complications in topology optimization problems are multiple (local) optima and non-uniqueness. If one observes the many different optimal solutions which have been published for, for example the MBB beam problem, it is clear that there are many local optima present in these problems. This is due to the fact that most topology optimization problems are non-convex. A popular method to alleviate non-convexity is the use of continuation methods, in which problems are gradually changed from (artificial) convex or nearly convex problems to the original non-convex problem. An example would be raising the penalty exponent p from 1 to higher values gradually, or gradually raising the value of filter radius until the desired value is reached.

Problems with multiple optimal solutions (with the same objective value) are termed non-unique. An example commonly cited is that of a structure under uniaxial tension, in which only the cross-sectional area is of importance and not the topology. The only sensible way to deal with this problem is to impose manufacturing preference constraints.

A.2 Compliant mechanism design

Since the ultimate application of the scheme developed in this investigation, is a piezoelectrically driven mirror scanning device designed using topology optimization, a brief review of previous work in the field is appropriate.

This review is not meant to be an exhaustive review, but is simply meant to give some background to problems previously considered in this field. Again, for a more comprehensive review the reader is referred to the book of Bendsøe and Sigmund [4] and to the review article by Frecker [103].

Compliant mechanisms achieve their mobility via the solid-state flexibility of different regions (components) within a single connected structure\(^1\). The fact that they are solid-state makes their use especially attractive when piezoelectric actuators are used. Piezoelectric actuators are capable of relatively small strokes (usually in the order of μm), which can easily be lost to any play in the system.

Original works in the field are credited to Ananthasuresh *et al.* [166] and Sigmund [100]. Since then, numerous works have appeared, e.g. see [101, 138]. Mechanisms able to gen-

\(^1\)Of course the mechanism itself can include multiple parts e.g. actuation mechanism connected to a mechanical amplifier.
erate specific prescribed paths have been developed by (for example Pedersen et al. [167]. Optimization of mechanisms for dynamic response has been considered by for example Min and Kikuchi [168]. In most of these works, the output load is modelled using a spring with specific stiffness against which the mechanism works.

In [169], instead of using a spring for the output to work against, various alternative function specifications are investigated. Examples include, mechanical advantage, geometrical advantage and work ratio.

Topology optimization of smart structures is now specifically considered, especially those employing piezoelectric actuation. Notably, far less attention has been paid to other smart materials, such as shape memory alloys [170].

Canfield and Frecker [171] used a ground structure approach to design mechanical amplifiers for piezoelectric stack actuators by maximizing geometrical advantage or maximizing mechanical efficiency. The ground structure approach results in relatively sparse structures which are not easily manufacturable.

In Silva and Nishiwaki [172] a micromanipulator is designed using the homogenization topology optimization method. This multi-flexible structure requires various prescribed output displacements at different points in the domain for various excitations due to piezoelectric actuators.

Silva et al. [173] also used the homogenization method in the design of piezoelectric composite material microstructures. They maximize given performance measures by designing a material microstructure with prescribed material properties. Sigmund and Torqato [174] employed a similar procedure to design and manufacture piezoelectric material microstructures, except that the SIMP method is employed.

In Li et al. [175], the optimal shape and location of piezoelectric materials within the (optimal) compliant mechanism were generated. The placement of the piezoelectric material was performed in an outer loop, optimized with a G.A. and the compliant mechanism optimization carried out (for fixed location) in an inner loop.

Generally, mechanisms obtained using linear modelling in the topology optimization infrastructure do not behave optimally when subjected to large input/output displacements. For these applications geometrically non-linear modelling is required to generate optimal compliant mechanisms which produce the required motion. This problem was considered by for example Bruns et al. [137] and Pedersen et al. [167]. Non-linear modelling is not necessary for our applications driven by a piezoelectric actuator since free strains in the stacks employed are typically in the order of 0.1–0.2%.

Finally, topology optimization of mechanical amplifiers subjected to dynamic motion was considered by [176].
APPENDIX A. A BRIEF INTRODUCTION TO TOPOLOGY OPTIMIZATION
Appendix B

Additional plate and shell results

In order to maintain the conciseness of Chapter 6, only the most important and immediately relevant results were presented within the chapter itself. In this appendix supplemental results are presented which corroborate the evidence and support the conclusions drawn during the course of the investigation. The additional results that are referred to, but not explicitly given in Chapter 6, are therefore presented herein.

B.1 Additional membrane results

Firstly, the supplemental membrane results are given. For details of the considered problem, the reader is referred to Section 6.5.1.

B.1.1 MBB beam

The geometry, material properties, restraints and loading are all depicted in Figure 6.6. Although symmetry is used to model the structure, the complete topology is reported. In total 2700 square elements are used, 90 elements along the length of the finite element model, \(L/2 \) and 30 elements in the height \(h \). Of course, since only membrane components are evaluated, only the single layer material model is tested. The available volume fraction is half of the design domain.

Figure B.1 depicts the convergence histories for the topologies shown in Figure 6.8. In order to stabilize the convergence, the penalty exponent is stepped from 1 to 3 as shown on the convergence history plots. Also, the objective is normalized with respect to the starting value of compliance in order to improve the problem scaling.
Figure B.1: Convergence histories for MBB beam for various values of α.

(a) Q4 element. (same for all α)

(b) Q4 element, $\alpha = 0$.

(c) Q4 element, $\alpha = 10^{-6}$.

(d) Q4 element, $\alpha = 10^{-4}$.

(e) Q4 element, $\alpha = 10^{-2}$.

(f) Q4 element, $\alpha = 10^{0}$.

(g) Q4 element, $\alpha = 10^{2}$.

APPENDIX B. ADDITIONAL PLATE AND SHELL RESULTS
B.2 ADDITIONAL PLATE RESULTS

B.2 Additional plate results

In this section, supplemental plate results are detailed. For more information about the considered problems, see Section 6.5.3 herein.

B.2.1 Simply supported square plate with centre point load

The geometry and constraints for the first plate problem are depicted in Figure 6.9(a). The problem consists of a square plate which is simply supported, and subjected to a unit point load applied to the center of the plate. Three material models are analyzed, namely single layer, ribbed and honeycomb material models.

The results for this problem are depicted in Figures B.2 to B.7. Figures B.2 and B.3 depict respectively the optimal topologies and convergence histories for the thin and thick single layer models. Figures B.4 and B.5 represent the optimal topologies for the thin and thick ribbed material models, with corresponding convergence histories. The results for the thin and thick honeycomb material models are depicted in Figures B.6 and B.7, respectively.

The tables accompanying each figure, tabulate the difference in compliance between the optimal topologies, analyzed using the three plate elements utilized in this study. The values represent the percentage difference between the compliance of the optimal topology computed with a given element, and the compliance calculated using the remaining two elements. Of course, there is no difference between the compliance of the optimal topology calculated with any element and itself, accounting for the zero terms on the diagonal of each table.

Single layer material model

Figure B.2 illustrates that similar topologies are computed using each of the different elements when considering the thin simply supported plate, with single layer material model. Table B.1, further shows that the solutions obtained from the two Mindlin-Reissner elements (in particular the ANS element) are marginally better than the result obtained using the DKQ element. A possible explanation for the slight improvement on the DKQ results, is that the regions of intermediate density (which contribute little to the compliance) are less pronounced in the two Mindlin-Reissner elements. The correctness of these results may be confirmed when compared to previously published results for similar problems [3, 115, 4].

Figure B.3 contains the results for the thick single layer problem. In this case the topology obtained using the DKQ element differs from the topologies obtained using the two Mindlin-Reissner elements. Since the DKQ element is shear rigid, the thick optimal topology is identical to the thin result as expected. Table B.2 shows, the compliance of the structure generated using DKQ elements has approximately 18% higher compliance (lower stiffness) than the topology computed with ANS elements, when both are modelled using ANS elements. The DKQ result has a 24% higher compliance than the result obtained with SRI elements, when both are analysed using SRI elements. Although the 18% and 24% differences cannot directly be compared since the percentage differences are calculated relative...
APPENDIX B. ADDITIONAL PLATE AND SHELL RESULTS

<table>
<thead>
<tr>
<th>Optimal topology generated using:</th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>-0.4871</td>
<td>-0.0641</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.6021</td>
<td>0.0000</td>
<td>0.2734</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.7677</td>
<td>-0.1193</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>5.5924e-05</td>
<td>-4.4603e-05</td>
<td>-6.8271e-05</td>
</tr>
</tbody>
</table>

Table B.1: Percentage difference: Simply supported square plate subjected to center point load, single layer model, $t = 0.01$.

![Optimal topologies](image)

(a) DKQ. (b) ANS. (c) SRI. (d) DKQ. (e) ANS. (f) SRI.

Figure B.2: Optimal topologies of a simply supported square plate subjected to center point load, single layer model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.

to different designs, the discrepancy is significant. This difference is likely as a result of the SRI element being softer than the ANS elements in transverse shear.

<table>
<thead>
<tr>
<th>Optimal topology generated using:</th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>1.3109</td>
<td>3.1641</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>17.5832</td>
<td>0.0000</td>
<td>1.1297</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>24.3415</td>
<td>-0.4341</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>5.5924e-05</td>
<td>1.1389e-05</td>
<td>-7.5900e-06</td>
</tr>
</tbody>
</table>

Table B.2: Percentage difference: Simply supported square plate subjected to center point load, single layer model, $t = 0.1$.
Figure B.3: Optimal topologies of a simply supported square plate subjected to center point load, single layer model, \(t = 0.1 \): (a)-(c) optimal topologies, (d)-(f) convergence histories.
Ribbed material model

Figures B.4 and B.5, together with Tables B.3 and B.4 indicate that the ribbed design solutions are similar for the thin and thick structures. The shape of the thick Mindlin-Reissner solutions differ slightly from the thin results, but the difference in compliance, presented in Table B.4, is insignificant.

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>-0.1651</td>
<td>-0.2534</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.1721</td>
<td>0.0000</td>
<td>-0.0868</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.2514</td>
<td>0.0823</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>7.0194e-05</td>
<td>2.4505e-05</td>
<td>-2.5642e-06</td>
</tr>
</tbody>
</table>

Table B.3: Percentage difference: Simply supported square plate subjected to center point load, ribbed model, $t = 0.01$.

Figure B.4: Optimal topologies of a simply supported square plate subjected to center point load, ribbed model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>1.4849</td>
<td>1.5135</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.4956</td>
<td>0.0000</td>
<td>0.0404</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.5351</td>
<td>-0.0030</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>7.0194e-05</td>
<td>-1.1443e-04</td>
<td>4.4419e-05</td>
</tr>
</tbody>
</table>

Table B.4: Percentage difference: Simply supported square plate subjected to center point load, ribbed model, $t = 0.1$.
Figure B.5: Optimal topologies of a simply supported square plate subjected to center point load, ribbed model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Honeycomb material model

Considering the honeycomb layered model, the Mindlin-Reissner elements recover the same topology as the Kirchhoff element for the thin structure. For the thick plate however, although the percentage difference in function values presented in Table B.6 are very small, the optimal topologies calculated using each element differ. What is more, Table B.6 confirms that the optimal topology generated with each element, is superior to the topologies calculated using the remaining two elements. This illustrates that the ‘optimal’ (shape or) topology is dependent on which element is employed in the finite element analysis. Again, the assumption is that the difference, especially between the two Mindlin-Reissner elements is due to the ANS element being slightly stiffer than the SRI element in transverse shear.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>-0.0005</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>-0.0003</td>
</tr>
<tr>
<td>Constraint value</td>
<td>1.3423e-04</td>
</tr>
</tbody>
</table>

Table B.5: Percentage difference: Simply supported square plate subjected to center point load, honeycomb model, $t = 0.01$.

Figure B.6: Optimal topologies of a simply supported square plate subjected to center point load, honeycomb model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
B.2. ADDITIONAL PLATE RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.1873</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.1218</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.4893</td>
<td>0.1351</td>
</tr>
<tr>
<td>Constraint value</td>
<td>1.3423e-04</td>
<td>1.6512e-04</td>
</tr>
</tbody>
</table>

Table B.6: Percentage difference: Simply supported square plate subjected to center point load, honeycomb model, $t = 0.1$.

Figure B.7: Optimal topologies of a simply supported square plate subjected to center point load, honeycomb model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
B.2.2 Clamped square plate with centre point load

The geometry for this problem is depicted in Figure 6.9(b). The load considered is again a unit point load applied to the center of the plate. This problem has been considered by a number of authors [4, 115], and our thin plate results compare favorably with theirs.

Single layer material model

The results for this problem are contained in Figures B.8 to B.13, and Tables B.7 to B.12. Figures B.8 and B.9, together with Tables B.7 and B.8 present the results for the thin and thick single layer models, respectively. Figures B.10 and B.11 and Tables B.9 and B.10 present the analysis thin and thick ribbed material models. The results for the thin and thick honeycomb material models are presented in Figures B.12 and B.13 with corresponding analysis in Tables B.11 and B.12, respectively.

From Figure B.8 and Table B.7 it is evident that, for the thin single layer material model, almost identical topologies are achieved for all elements. Although there is no visible difference between the three topologies, the negative values in the third column of Table B.7 indicate that the SRI result is marginally superior. The thick plate model on the other hand, results in slightly different topologies when Mindlin-Reissner elements are used compared to the result with the DKQ element. The finite element model is highly constrained, which could explain the slightness in difference between the thin and thick results. Nevertheless, the effect on the compliance is significant, with a 14% improvement on the thin topology’s compliance compared to the result using ANS elements, when analysed with ANS elements and a 37% improvement when compared to the SRI results, analysed with SRI elements. Again, although the 14% and 37% difference cannot be directly compared (because the differences are computed with respect to different optimal topologies) the indication is that the ANS elements are slightly more stiff in transverse shear than the SRI elements.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.1733</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.6954</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-5.5042e-05</td>
</tr>
</tbody>
</table>

Table B.7: Percentage difference: Clamped square plate subjected to center point load, single layer model, \(t = 0.01 \).
B.2. ADDITIONAL PLATE RESULTS

Figure B.8: Optimal topologies of a clamped square plate subjected to center point load, single layer model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.

<table>
<thead>
<tr>
<th>Analysed with</th>
<th>Optimal topology generated using:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>1.3371</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>13.9028</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>37.0471</td>
<td>0.8543</td>
</tr>
<tr>
<td>Constraint value</td>
<td>$-5.5042e-05$</td>
<td>$-7.2254e-05$</td>
</tr>
</tbody>
</table>

Table B.8: Percentage difference: Clamped square plate subjected to center point load, single layer model, $t = 0.1$.

Figure B.9: Optimal topologies of a clamped square plate subjected to center point load, single layer model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
APPENDIX B. ADDITIONAL PLATE AND SHELL RESULTS

Ribbed material model

For the ribbed material model, the thin and thick structures result in the same topologies for all elements as depicted in Figures B.10 and B.11. However, again the shape of the Mindlin-Reissner results differs slightly from the DKQ results for the thick plate. The values of compliance for the thin and thick plates are again similar for all elements, as shown in Tables B.9 and B.10.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
<td>SRI</td>
<td></td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.5273</td>
<td>0.5113</td>
<td></td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.1536</td>
<td>0.0000</td>
<td>0.0024</td>
<td></td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.2054</td>
<td>0.0593</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Constraint value</td>
<td>7.4645e-05</td>
<td>-9.2086e-05</td>
<td>7.4218e-05</td>
<td></td>
</tr>
</tbody>
</table>

Table B.9: Percentage difference: Clamped square plate subjected to center point load, ribbed model, $t = 0.01$.

![Optimal topologies](image1)

(a) DKQ. (b) ANS. (c) SRI. (d) DKQ. (e) ANS. (f) SRI.

Figure B.10: Optimal topologies of a clamped square plate subjected to center point load, ribbed model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
<td>SRI</td>
<td></td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.0028</td>
<td>0.0115</td>
<td></td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>-0.0026</td>
<td>0.0000</td>
<td>0.0099</td>
<td></td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>-0.0098</td>
<td>-0.0069</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Constraint value</td>
<td>7.4645e-05</td>
<td>-2.9307e-05</td>
<td>-4.0355e-05</td>
<td></td>
</tr>
</tbody>
</table>

Table B.10: Percentage difference: Clamped square plate subjected to center point load, ribbed model, $t = 0.1$.
Figure B.11: Optimal topologies of a clamped square plate subjected to center point load, ribbed model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Honeycomb material model

Although in the case of the honeycomb material model, the optimal topologies for the thick plate generated using Mindlin-Reissner elements (see Figure B.13) are different to the results for the thin plate (depicted in Figure B.12), the result on the compliance is modest. However, the compliance results presented in Table B.12 do confirm that the optimal topology calculated using Mindlin-Reissner elements is lower than the DKQ topology for thick plates, whereas the DKQ result is indeed superior for thin plate problems.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.0063</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>-0.0058</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-5.9377e-05</td>
</tr>
</tbody>
</table>

Table B.11: Percentage difference: Clamped square plate subjected to center point load, honeycomb model, $t = 0.01$.

Figure B.12: Optimal topologies of a clamped square plate subjected to center point load, honeycomb model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.6686</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>1.2910</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-5.9377e-05</td>
</tr>
</tbody>
</table>

Table B.12: Percentage difference: Clamped square plate subjected to center point load, honeycomb model, $t = 0.1$.
Figure B.13: Optimal topologies of a clamped square plate subjected to center point load, honeycomb model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
B.2.3 Corner supported square plate with centre point load

The final plate geometry with restraints is depicted in Figure 6.9(c). It represents a corner supported plate (i.e. transverse displacement is constrained at the four corner nodes only). For this problem, the first load case considered, is again a center point load as before. Again the single layer, ribbed and honeycomb material models are analyzed.

Figures B.14 to B.19 with corresponding Tables B.13 to B.18 present the results for the corner supported square plate subjected to a center point load, for the single layer, ribbed and honeycomb material models.

Single layer material model

In Figure B.14 the optimal topologies for the thin, single layer material model are depicted. Once again, the topologies of all three elements are very similar. Although the SRI elements convergence history shows that some numerical problems were encountered during the optimization process, the final topology is not significantly affected. Albeit similar topologies are computed for the DKQ and ANS elements, Table B.13 indicates that the DKQ topology shows a 1% improvement over the optimal ANS results, when analysed using ANS elements.

<table>
<thead>
<tr>
<th>Analysed with</th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>-1.0090</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>2.1438</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-5.2618e-05</td>
</tr>
</tbody>
</table>

Table B.13: Percentage difference: Corner supported square plate subjected to center point load, single layer model, \(t = 0.01 \).

![Optimal topologies](a) DKQ. (b) ANS. (c) SRI. (d) DKQ. (e) ANS. (f) SRI.

Figure B.14: Optimal topologies of a corner supported square plate subjected to center point load, single layer model, \(t = 0.01 \): (a)-(c) optimal topologies, (d)-(f) convergence histories.

The results for the thick single layer material model are depicted in Figure B.15. In this case, the SRI result is distinctly different from the results using the other two elements.
Table B.14 shows that the compliance of the SRI result is approximately 4.5% lower than the DKQ result when both designs are analysed with DKQ elements and approximately 8.5% better than the ANS result when analysed using ANS elements. In this specific case the SRI element clearly realised the best design. This is again, probably due to the SRI element being ‘softer’ in transverse shear than the other two elements, which results in the optimizer searching different parts of the design domain. For this specific problem, the optimality criteria based algorithm appears to have terminated in local optima for the DKQ and ANS elements.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>3.4167</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>16.4448</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-5.2541e-05</td>
</tr>
</tbody>
</table>

Table B.14: Percentage difference: Corner supported square plate subjected to center point load, single layer model, \(t = 0.1 \).

Figure B.15: Optimal topologies of a corner supported square plate subjected to center point load, single layer model, \(t = 0.1 \): (a)-(c) optimal topologies, (d)-(f) convergence histories.
To confirm this, the same problem was run with identical finite element settings using the well-known MMA algorithm of Svanberg [10]. The optimal topologies for the MMA run are depicted in Figure B.16 with analysis of results in Table B.15. Ironically upon employing MMA as optimizer the results are reversed and the ANS element finds a superior design! Although for this specific problem the optimality criteria based updating scheme is unable to find the globally optimal solution for the ANS or DKQ elements, the effect of the finite element employed on ‘optimal topology’ is clearly demonstrated. This problem in particular serves also as a demonstration of the complexity (in global optimization terms) of the topology optimization problem.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>15.2086</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>6.5512</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-2.8216e-03</td>
</tr>
</tbody>
</table>

Table B.15: Percentage difference

Figure B.16: Optimal topologies of a corner supported square plate subjected to center point load, single layer model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories. Solved using MMA not OC.
B.2. ADDITIONAL PLATE RESULTS

Ribbed material model

Note that the results for the thin ribbed material model are presented and discussed in Section 6.5.3 on page 168. Considering the thick plate results for the ribbed material model, depicted in Figure B.17, again a distinctly different topology results from the use of Mindlin-Reissner elements. The numerical problems encountered with the SRI elements in the thin plate analysis are not experienced in this case. The negative values in the first row of Table B.16 indicate that the thick plate results is marginally superior, even for thin plates.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
<td>SRI</td>
<td></td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>-0.2379</td>
<td>-0.1029</td>
<td></td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>4.2660</td>
<td>0.0000</td>
<td>0.0515</td>
<td></td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>4.4234</td>
<td>-0.0099</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Constraint value</td>
<td>-3.3457e-05</td>
<td>-2.8658e-05</td>
<td>-2.1399e-06</td>
<td></td>
</tr>
</tbody>
</table>

Table B.16: Percentage difference: Corner supported square plate subjected to center point load, ribbed model, $t = 0.1$.

Figure B.17: Optimal topologies of a corner supported square plate subjected to center point load, ribbed model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Honeycomb material model

The results for the corner supported plate subjected to center point load with the thin honeycomb material model are depicted in Figure B.18. Again, although all converged topologies are similar, the iteration history of the SRI element suggests that some numerical instabilities occurred. In this case, many elements with negative compliance (or positive compliance gradient) were encountered at iteration 90. Figure B.19 illustrates how each of the element used to analyze the thick honeycomb material model, result in different topologies. In this case, the SRI element did not encounter any numerical problems in the iteration history. Although the SRI and ANS topologies (and shapes) are different, the compliance of the two structures is very similar. However, this problem demonstrates that even the two Mindlin-Reissner based elements result in different optimal shapes and topologies even though no numerical problems were encountered during the optimization history.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.0331</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.0046</td>
<td>0.0000</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>0.0184</td>
<td>0.0065</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-1.5311e-04</td>
<td>3.8396e-05</td>
</tr>
</tbody>
</table>

Table B.17: Percentage difference: Corner supported square plate subjected to center point load, honeycomb model, $t = 0.01$.

Figure B.18: Optimal topologies of a corner supported square plate subjected to center point load, honeycomb model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Table B.18: Percentage difference: Corner supported square plate subjected to center point load, honeycomb model, $t = 0.1$.

<table>
<thead>
<tr>
<th></th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.3268</td>
<td>0.6250</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>1.8237</td>
<td>0.0000</td>
<td>0.1043</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>3.3749</td>
<td>0.0978</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>-1.5311e-04</td>
<td>2.7573e-04</td>
<td>6.2309e-05</td>
</tr>
</tbody>
</table>

Figure B.19: Optimal topologies of a corner supported square plate subjected to center point load, honeycomb model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
B.2.4 Corner supported square plate with distributed load

In this problem the same corner supported geometry and restraints, depicted in Figure 6.9(c), are used but the applied load in this case is uniformly distributed over the plate surface. In order to ensure that the load is not design dependent, only the ribbed and honeycomb material models are considered. The results for the thin ribbed material model are not repeated here since they are presented in Section 6.5.3, on page 168.

Figure B.20 depicts the optimal topologies for the thick ribbed models, with analysis in Table B.19. The results for the honeycomb material model are shown in Figures B.21 and B.22 with compliance results presented in Tables B.20 and B.21.

Ribbed material model

For the thick plate, again DKQ results in the same topology as the thin plate analysis, while the result of the ANS element is distinctly different. The compliance of the DKQ result is almost 3% higher than that of the ANS result when analysed with ANS plate elements. Again, the SRI element has an extremely erratic convergence history and a completely spurious, unsymmetric optimal topology results.

<table>
<thead>
<tr>
<th>Analysed with</th>
<th>Optimal topology generated using:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DKQ</td>
<td>0.0000</td>
<td>ANS</td>
</tr>
<tr>
<td>ANS</td>
<td>2.7370</td>
<td>0.0000</td>
</tr>
<tr>
<td>SRI</td>
<td>121.3774</td>
<td>713.3591</td>
</tr>
<tr>
<td>Constraint value</td>
<td>3.0994e-05</td>
<td>-3.2532e-05</td>
</tr>
</tbody>
</table>

Table B.19: Percentage difference: Corner supported square plate subjected to uniform distributed load, ribbed model, \(t = 0.1 \).

Figure B.20: Optimal topologies of a corner supported square plate subjected to uniform distributed load, ribbed model, \(t = 0.1 \): (a)-(c) optimal topologies, (d)-(f) convergence histories.
Honeycomb material model

Similar observations can be made for the honeycomb layered models, depicted in Figures B.21 and B.22, with compliance analysis in Tables B.20 and B.21. The displaced shape of the thick honeycomb topologies computed with DKQ and ANS elements respectively, and analyzed using SRI elements, are plotted in Figures B.23 and B.24. In both the thin and thick honeycomb material models (especially the thin model), the compliance of the final topology computed with SRI elements is extremely large, due to the propagating mode. Therefore, the DKQ and ANS optimal topologies appear to be much better in Table B.20 since they are compared to a structure with almost zero stiffness.

<table>
<thead>
<tr>
<th></th>
<th>Optimal topology generated using:</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DKQ</td>
<td>ANS</td>
<td>SRI</td>
</tr>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.0031</td>
<td>1.5821</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>-0.0017</td>
<td>0.0000</td>
<td>1.9462</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>-99.6858</td>
<td>-99.6666</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>1.9059e-04</td>
<td>1.7756e-04</td>
<td>-8.6728e-03</td>
</tr>
</tbody>
</table>

Table B.20: Percentage difference: Corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.01$.

Figure B.21: Optimal topologies of a corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.01$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
APPENDIX B. ADDITIONAL PLATE AND SHELL RESULTS

<table>
<thead>
<tr>
<th></th>
<th>DKQ</th>
<th>ANS</th>
<th>SRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed with DKQ</td>
<td>0.0000</td>
<td>0.1147</td>
<td>1.5020</td>
</tr>
<tr>
<td>Analysed with ANS</td>
<td>0.2618</td>
<td>0.0000</td>
<td>2.1867</td>
</tr>
<tr>
<td>Analysed with SRI</td>
<td>2344.5765</td>
<td>-22.7655</td>
<td>0.0000</td>
</tr>
<tr>
<td>Constraint value</td>
<td>1.9057e-04</td>
<td>4.6099e-05</td>
<td>7.0618e-04</td>
</tr>
</tbody>
</table>

Table B.21: Percentage difference: Corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.1$.

Figure B.22: Optimal topologies of a corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.1$: (a)-(c) optimal topologies, (d)-(f) convergence histories.
Figure B.23: Optimal topology, computed using DKQ, of the corner supported plate subjected to distributed load with thick honeycomb material model: Displaced shape analyzed using SRI elements, amplification factor 1×10^{-4}.

Figure B.24: Optimal topology, computed using ANS, of the corner supported plate subjected to distributed load with thick honeycomb material model: Displaced shape analyzed using SRI elements, amplification factor 1×10^{-4}.
B.3 Additional shell results

In the final section of this appendix, results not included in Section 6.5.5 are offered.

B.3.1 Cylindrical shell

The first shell problem is depicted in Figure 6.15. The geometry, restraints, applied loads and material properties are all depicted in the figure. The symmetry of the problem is exploited by only modeling one quarter of the structure with a 30×30 discretization. Once again, results are reported for the single layer, ribbed and honeycomb material models. A volume constraint of half of the design volume is again imposed.

Single layer material model

Figures B.25 and B.26 present details of the optimal topologies depicted in Figure 6.16, and their corresponding convergence histories. Since the x-axis of Figure 6.16 is plotted on a logarithmic scale, the topology at $\alpha = 0$ could not be included.

Figures B.25(a) and B.25(g) depict the optimal topologies for $\alpha = 0$ using the $Q4\alpha\text{DKQ}$ and $Q4\gamma\text{DKQ}$ elements respectively, with convergence histories in Figures B.26(a) and B.26(g), respectively. Notably, the $Q4\alpha\text{DKQ}$ has numerical instabilities if no stiffness is allotted to the rotational DOFs. No such problem is encountered when employing the $Q4\gamma\text{DKQ}$ element. The stability of the $Q4\gamma\text{DKQ}$ element at $\alpha = 0$ is due to the fact that α (which only scales γ) eliminates the penalty matrix $p_{m}^{\gamma} = 0$ in (6.29). However, enough stiffness is present to prevent numerical problems in the topology optimization environment. Of course this does not mean that the value of compliance will be very accurately calculated, and since this element is rank deficient its use in general should be avoided.
B.3. ADDITIONAL SHELL RESULTS

Figure B.25: Optimal topologies of corner supported cylinder with single layer material model for various values of α.

Figure B.26: Convergence histories for corner supported cylinder with single layer material model for various values of α.
Ribbed material model

Figure B.27 depicts the optimal topologies, as well as the function and constraint values, for the ribbed material model as a function of scaling parameter α. Again, the results for the Q4αDKQ element differ from the Q4γDKQ results at high values of α. Conversely, the optimal topologies calculated using the Q4γDKQ element are relatively insensitive to α.

Figures B.29(a) once again indicate that, with α is set to zero, an unstable convergence history results for the Q4αDKQ element is recorded, although the a ‘correct’ optimal topology results. Figure B.29(g) confirms that no such problems are encountered when employing the Q4γDKQ element.

![Figure B.27: Optimal topologies of a corner supported cylinder with ribbed material model. Above are the optimal topologies solved employing the standard Q4γDKQ element. On the second row are the optimal topologies employing Q4αDKQ for various values of scaling factor α. Also shown are the optimal function and constraint values for various values of scaling factor α.](image-url)
Figure B.28: Optimal topologies of corner supported cylinder with ribbed material model for various values of α.

Figure B.29: Convergence histories for corner supported cylinder with ribbed material model for various values of α.
Honeycomb material model

Finally, the optimal topologies for the honeycomb material model, are presented in Figure B.30. Again, the sensitivity of optimal topologies using Q4αDKQ elements is highlighted, in contrast to the Q4γDKQ element. Figure B.32(a) shows that although the optimal topology of the Q4αDKQ element corresponds to that using Q4γDKQ elements, some numerical instabilities are once again encountered when $\alpha = 0$ in the Q4αDKQ element.

Figure B.30: Optimal topologies of a corner supported cylinder with honeycomb material model. Above are the optimal topologies solved employing the standard Q4γDKQ element. On the second row are the optimal topologies employing Q4αDKQ for various values of scaling factor α. Also shown are the optimal function and constraint values for various values of scaling factor α.

B.3.2 Pretwisted beam

The final shell example is depicted in Figure 6.17. The problem is that of a pretwisted beam, which is clamped at the root, with two point loads applied at the vertices opposite the fixed end. The full geometry is modeled with a 40×40 discretization. A volume constraint of half of the design volume is imposed. For brevity, only the single layer results will be presented. This problem has previously been shown to be sensitive to the value of α [135].

For this problem, the range of values of α for which the Q4αDKQ and Q4γDKQ elements result in similar topologies is much smaller than the cylindrical shell problem. In fact, Figure B.33 shows that values of $\alpha = 0, 10^{-6}, 10^{-4}$ and 10^{-2}, each result in different topologies when
B.3. ADDITIONAL SHELL RESULTS

the finite element model employs Q4αDKQ elements! In contrast, the Q4γDKQ element is once again shown to be stable for all tested values of α.

Single layer material model
Figure B.31: Optimal topologies of corner supported cylinder with honeycomb material model for various values of α.

Figure B.32: Convergence histories for corner supported cylinder with honeycomb material model for various values of α.
B.3. ADDITIONAL SHELL RESULTS

(a) Q4αDKQ element, \(\alpha = 0 \).
(b) Q4αDKQ element, \(\alpha = 10^{-6} \).
(c) Q4αDKQ element, \(\alpha = 10^{-4} \).
(d) Q4αDKQ element, \(\alpha = 10^{-2} \).
(e) Q4αDKQ element, \(\alpha = 10^{0} \).
(f) Q4αDKQ element, \(\alpha = 10^{2} \).

(g) Q4γDKQ element, \(\alpha = 0 \).
(h) Q4γDKQ element, \(\alpha = 10^{-6} \).
(i) Q4γDKQ element, \(\alpha = 10^{-4} \).
(j) Q4γDKQ element, \(\alpha = 10^{-2} \).
(k) Q4γDKQ element, \(\alpha = 10^{0} \).
(l) Q4γDKQ element, \(\alpha = 10^{2} \).

Figure B.33: Optimal topologies of pretwisted beam with single layer material model for various values of \(\alpha \).
Figure B.34: Convergence histories for pretwisted beam with single layer material model for various values of α.

(a) $Q_4\alpha$DKQ element, $\alpha = 0$.
(b) $Q_4\alpha$DKQ element, $\alpha = 10^{-6}$.
(c) $Q_4\alpha$DKQ element, $\alpha = 10^{-4}$.
(d) $Q_4\alpha$DKQ element, $\alpha = 10^{-2}$.
(e) $Q_4\alpha$DKQ element, $\alpha = 10^0$.
(f) $Q_4\alpha$DKQ element, $\alpha = 10^2$.

(g) $Q_4\gamma$DKQ element, $\alpha = 0$.
(h) $Q_4\gamma$DKQ element, $\alpha = 10^{-6}$.
(i) $Q_4\gamma$DKQ element, $\alpha = 10^{-4}$.
(j) $Q_4\gamma$DKQ element, $\alpha = 10^{-2}$.
(k) $Q_4\gamma$DKQ element, $\alpha = 10^0$.
(l) $Q_4\gamma$DKQ element, $\alpha = 10^2$.

APPENDIX B. ADDITIONAL PLATE AND SHELL RESULTS