
Chapter 1

Introduction

The analysis of modern designs and systems is becoming ever more complex. Closed form an-
alytical solutions to problems, although extremely important, are often limited to relatively
simple geometries or restricted to specific loadings, and are therefore difficult to generalise to
industrial applications. For some time now numerical solution techniques, implemented on
digital computers, have been an invaluable tool in the analysis of complex physical problems.
Indeed, commercial, general purpose, finite element analysis (FEA) and computational fluid
dynamics (CFD) software are now commonplace in the engineering community.

Although numerical methods are commonly used commercially in the analysis of mechanical
designs, they are often not fully exploited in the design process itself. Generally this process
starts with the designer conceiving an initial concept design which is analysed, possibly
using numerical methods, and the results are judged based on predetermined objectives or
criteria. If the design is not satisfactory the designer then, based on past experience, predicts
an improved design. This process is repeated until a satisfactory design is found, upon which
the process is terminated. Some of the disadvantages of such a procedure include:

• There is no guarantee that the design is optimal, or even good, although it satisfies
the prescribed requirements. That is to say, unknown to the designer, significant
improvements may still be possible.

• The process relies on the experience of the designer (and often trial-and-error) to
predict design improvements. This process may not be systematic, and in fact the
designer’s intuition or experience could at times be misleading.

• The process is not repeatable, and is difficult to describe as a fixed procedure. If a
designer gains experience with a given problem, it is would take a significant effort to
pass this experience on, or document a procedure, to repeatably come up with a good
design for similar problems.

Structural optimization holds the potential to improve upon or optimize designs conceived
by designers in a systematic, repeatable manner. Furthermore, using structural topology
optimization, the design process itself can largely be described and automated1. Structural

1Within reason and for specific components only.
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Figure 1.1: Three categories of structural optimization. Initial design and problem descrip-
tion on the left, optimal designs on the right. Note that optimal designs in this figure are
for illustrative purposes only.

optimization is therefore an important tool which can assist in finding not only good, but
optimal solutions to structural design problems.

1.1 Structural topology optimization

Structural optimization seeks to find the best design (out of all possible designs) which is
capable of satisfying a number of prescribed criteria. The measure of how good the design is
and the criteria which the design is required to fulfil are usually conflicting. A simple example
of such a problem is to determine the stiffest possible structure, under given loading and
support conditions, such that the weight of the structure is limited. The requirements are
conflicting because physically the more material the structure contains, the stiffer it will
generally be, but the heavier it becomes.

Broadly speaking, structural optimization problems can be classified into one of three cate-
gories, namely sizing, shape or topology optimization. These three classes are schematically
depicted in Figure 1.1.

Sizing optimization generally uses truss or grillage member cross-sectional areas, or mem-
brane, plate or shell component thicknesses as design variables in the optimization process.
More specifically, in sizing optimization problems the shape and topology of the design anal-
ysis domain considered are fixed, and do not change during the optimization process, as
shown in Figure 1.1. Therefore, if a finite element model is used, the nodes remain in fixed
positions throughout the process.

 
 
 



1.1. STRUCTURAL TOPOLOGY OPTIMIZATION 3

On the other hand, shape optimization generally involves finding the analysis domain shape
which optimally performs a given function, subject to certain constraints. The design domain
is usually determined parametrically by the design variables. If gradient based optimization
methods are employed, considerable difficulties would be encountered if holes were to merge
during the process, and it is certainly not a trivial task to determine the effect of adding
or removing holes a priori, or indeed to determine where to introduce additional holes if
necessary. Therefore, during this process the topology is generally fixed. For example, in
the shape optimization illustration in Figure 1.1, the starting design has three holes and the
final design also has three holes.

Finally, topology optimization can be considered the most general type of structural opti-
mization. In topology optimization, the optimal boundary and connectivity, as well as the
optimal size, shape, location and number of features (including holes) in an analysis domain
are sought. Topology optimization is therefore also sometimes referred to as generalised
shape or layout optimization.

These classes of problems can be combined in procedures to exploit the advantages of the
different techniques. For example, some authors have combined shape and topology opti-
mization to take advantage of the salient features of both classes simultaneously, especially
in the design of generally curved shell structures [1, 2]. In this work, however, attention is
exclusively focused on the topology optimization problem.

Furthermore, the optimization of low volume fraction, inherently discrete, structures (such
as truss structures) is not considered, and attention is focused on continuum structural
problems only. Having said that, much of the theory and many techniques employed in the
optimization of continuum structures are derived from the topology optimization of truss and
grillage problems, see [3, 4] for examples. Furthermore, many of the difficulties encountered
are similar, for example singularity problems with stress constraints [4, 5, 6, 7].

The iterative process of structural topology optimization used in this study is schematically
depicted in Figure 1.2. In the remainder of this section, an informal description of the process
is presented in more detail for readers unfamiliar with the process.

Initial design and design parameterization

The first step in the process is to select an initial or starting design. This design could be
based on the experience of the designer, but could also simply be randomly selected within
a given design domain or could be the result of a previous (more general) optimization
procedure.

At this stage the parameters that describe the design, and which will be allowed to change
during the process (the design variables, x) are defined. The initial design is accordingly
described by an initial design vector x0. The type of parameterization chosen will dictate
(or is dictated by) the type or category of structural optimization that is employed. The
design variables used in topology optimization typically describe the material distribution
within the design domain using a density function.
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Figure 1.2: Schematic of the process of structural topology optimization.

Structural analysis

After the physical problem has been identified and a representative mathematical model con-
structed, the initial design can be analysed. If necessary, simplifying assumptions are made
in the construction of the mathematical model. Often, the model of the physical problem
results in a system of differential equations. These equations can be solved using classical
analytical methods, the finite element method (FEM), the boundary element method (BEM)
or any of numerous other numerical methods. In this work, the finite element method is
exclusively used to perform the structural analyses.

Design evaluation and sensitivity analysis

The next step in the process involves the computation of the measure of how good the design
is (the objective function denoted f(x)) and the criteria which the design is required to fulfil
(the constraint functions, with inequality and equality constraints denoted gi(x) and hj(x)
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respectively).

Often the structural analysis is rather general, especially if general purpose finite element
software is used, and it may therefore be necessary to post-process the results in order to
extract the specific information used to construct the objective and constraint functions.

Furthermore, if a gradient based optimization procedure is to be employed, gradient or
sensitivity information is also required. The process by which sensitivity information is
obtained is usually referred to as design sensitivity analysis. For the problems considered in
this work, sensitivity information is relatively easily and numerically inexpensively obtained,
and therefore solely gradient based methods will be used.

Systematic design improvement

The step in which a prediction is made for an improved design is at the heart of the structural
optimization process. Mathematical optimization techniques are employed to systematically
generate a series of improving designs. Mathematical optimization can be described as
consisting of the formulation and the solution of a constrained optimization problem of the
general mathematical form:

min
x

f(x)

subject to : gi(x) ≤ 0, i = 1, 2, ...,m

hj(x) = 0, j = 1, 2, ..., r

(1.1)

where x = [x1, x2, ..., xn]T ∈ R
n is the vector of real numbered design variables. The real

scalar functions f , g and h represent the objective function and inequality and equality
constraint functions respectively. For more details see for example Haftka et al. [8] or
Snyman [9].

Over the years, many techniques have been developed to solve the optimization problem, each
well suited to particular problems. Many of the classical methods for solving convex problems
are gradient-based, including classical line search methods and sequential approximation
methods.

In this study, two different gradient based methods are used, namely the Method of Moving
Asymptotes (MMA) of Svanberg [10], and the well known heuristic updating scheme based
on Optimality Criteria (OC) [4].

Stopping criterion

The above process is repeated until some termination criterion has been satisfied, upon which
the process is stopped. The stopping criterion can be based on the number of iterations
performed, the norm of the change in function value, the norm of the change in design
variables, the gradient of the objective function or any combination of the above. If it is not
possible to further improve upon this design with a given algorithm, it is considered a local
optimal solution, usually denoted x∗.
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For some classes of problems, such as problems with strictly convex objective and constraint
functions, this local optimum may be shown to also be the global optimal solution. However,
if this is not possible (as is the case with topology optimization) this local optimum is often
accepted as a reasonable approximation to the global optimum.

1.2 Background to the study

Arguably one of the most popular and immediately useful applications of structural topology
optimization is in the synthesis of compliant mechanisms. Whereas traditional mechanisms
employ rigid links connected by movable joints, compliant mechanisms are mechanical de-
vices used to transfer or transform motion, force or energy via mobility gained through the
deflection of flexible members. Manually designing compliant mechanisms to carry out all
but the simplest of tasks is a challenging exercise. Therefore, finite element modelling and
topology optimization have become increasingly useful design tools of late.

Compliant mechanisms have a number of advantages over conventional jointed mechanisms.
For example, they have fewer moving parts, reducing or eliminating backlash, play, noise as
well as weight. Furthermore, compliant mechanisms are easily miniaturized making them
ideal for use in Micro Electro Mechanical Systems (MEMS) or precision engineering appli-
cations where smart materials are regularly used as transducers.

Piezoelectric materials in particular are very attractive as actuator smart materials for com-
pliant mechanisms due to their high energy density, large force capacity and excellent oper-
ational bandwidth. However their low induced strain (typically in the order of 0.1−0.2%2)
means that output displacements are small, limiting their direct application. To convert
these small induced strains to usable displacements, piezoelectric ceramics commonly em-
ploy some form of mechanical amplification. Often, this mechanical amplification takes the
form of a compliant mechanism.

In 2003 the Department of Mechanical Engineering, and in particular the Structural Opti-
mization Research Group (SORG) at the University of Pretoria, and the Centre for Inte-
grated Sensing Systems (CISS)3 at the Council for Scientific and Industrial Research (CSIR)
in South Africa became jointly involved in a project aimed at investigating the development
of novel finite elements and structural optimization techniques for application in compliant,
piezoelectrically actuated, micropositioning systems.

The goal of this study was to develop accurate finite elements, or procedures used in their
calculation, which could be used for (but are not limited to) the modelling of piezoelectri-
cally driven compliant mechanisms. Furthermore, the study aimed to show how the salient
features of these specially developed finite elements and procedures could be exploited in
a topology optimization environment to overcome common numerical instabilities such as
checkerboarding. In the remainder of this section a very brief background to relevant topics
in topology optimization and the finite element method, is presented.

2However, new relaxor ferroelectric single crystals (PZN-PT and PMN-PT) can reportedly deliver in
excess of 1% strain [11, 12].

3Now known as Sensor Science and Technology (SST).
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1.2.1 Topology optimization

In topology optimization, there are several acknowledged fundamental, theoretical issues
which need to be appropriately addressed if sensible results are to be achieved [13]. These
issues include non-existence of the solution (mesh dependency), multiple local optima, and
non-uniqueness of the solution.

Firstly, it is well known that the 0-1 problem statement in topology optimization lacks exis-
tence of solution in a continuum setting [4]. This problem exists due to a lack of closedness of
the set of admissible designs.4 In a discrete (finite element) setting, this problem manifests
itself as a mesh dependency problem. One possible way to deal with this problem is to a
priori allow composite materials constructed from the original isotropic material (and void).
This method extends the design space and sufficiently relaxes the original problem. Alter-
natively, the design space can be restricted by limiting local or global variations in material
distribution, thereby sufficiently closing the the set of admissible designs.

Another common complication is that of multiple (local) optima. If one observes the many
different optimal solutions which have been published for benchmark problems, for example
the well known MBB beam problem, it is clear that there are many local optima present.
This is due to the fact that most topology optimization problems are non-convex. Unfortu-
nately, there is no way to overcome this problem, although a popular method to alleviate
non-convexity is the use of continuation methods. Continuation methods gradually change
problems from artificial (strictly) convex, or nearly convex, problems to the original non-
convex problem.

Finally, problems with multiple globally optimal solutions are termed non-unique. An ex-
ample commonly cited is that of a structure under uniaxial tension, in which only the
cross-sectional area is of importance and not the topology. The only sensible way to deal
with this problem is to impose manufacturing preference constraints.

Unfortunately these fundamental issues cannot be resolved solely through the use of finite
element technology, no matter how sophisticated the finite element. Therefore attention in
this study is rather focused on problems which occur locally in material distributions, and
which can be attributed to the numerical deficiencies of the finite element model, such as
checkerboarding and one-node connected hinges.

The checkerboarding problem is characterised by material in ‘optimal topologies’ being dis-
tributed in alternating solid and void elements, similar to the pattern created by the squares
on a checkerboard. Checkerboarding is largely a result of poor numerical modelling of this
spurious material distribution, as shown by Dı́az and Sigmund [14]. In essence, the numerical
behaviour of this material distribution is over-stiff and is therefore especially common in the
solutions of minimum compliance problems.

The one-node connected hinge is characterised by four elements surrounding a node, where
two diagonally opposite elements are solid and the other two are void, see for example

4As more holes are introduced without changing the volume of the structure, the efficiency of the structure
is generally improved. Eventually, variations on the microstructural level are introduced (requiring composite
material descriptions) which cannot be described by the original problem which permits isotropic material
only.
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Poulsen [15]. This material distribution is somewhat common in the design of compliant
mechanisms such as those for which this work is ultimately aimed. This is due to the fact
that in compliant mechanism design, solid state hinges are employed to achieve the required
motion and the numerical model of a one-node hinge employing standard elements is ideal
(albeit unrealistic) since it offers zero resistance to rotation about the common node.

For a more detailed introduction to the topology optimization problem, the reader is referred
to Appendix A.

1.2.2 The finite element method

The finite element method (FEM) is essentially a numerical method for the solution of
differential equations [16]. Originally, FEM gained popularity among engineers as a method
for structural stress analysis. With the advent of ever faster and less expensive digital
computers, FEM found application in other fields including heat transfer, fluid dynamics,
as well as electric, piezoelectric and electromagnetic analysis. In fact, many commercial
finite element codes now support these types of analyses as standard and some even have
structural optimization algorithms included.

FEM topics for consideration in this study were identified based on the topology optimiza-
tion problems selected for attention, namely checkerboarding and one-node connected hinges.
Finite element procedures which could alleviated or eliminate the numerical modelling defi-
ciencies associated with, or leading, to these material distributions were sought.

Since checkerboarding has been attributed to an over-stiff numerical model of a checkerboard
layout, a procedure to effectively soften elements in this layout was sought. One common
technique used to soften (especially higher order deformation modes) is to employ a reduced
numerical integration scheme in the calculation of elemental quantities.

In the finite element method, the equilibrium equations involve integration over the element
volume. This is also true for the expressions for consistent nodal loads, mass matrices,
penalty matrices, etc. For simple elements the integrand may be formed explicitly, resulting
in exact integration. However, numerical integration schemes are necessary when element
geometries are distorted, of which the Gaussian rules are possibly the best known and most
frequently employed. The effects of numerical integration schemes are summarized in a clear
manner by Cook et al. [17].

A lower-order quadrature rule, called reduced integration, may be desirable for two reasons.
Firstly, since the expense of generating the stiffness matrix by numerical integration is pro-
portional to the number of sampling points, fewer points results in lower computational cost.
Secondly, a low order rule tends to soften an element, thus countering the overly-stiff be-
havior associated with assumed displacement fields. (The displacement based finite element
method is monotonically convergent from below.) Softening comes about because certain
higher-order polynomial terms happen to vanish at Gauss points of a low-order rule. Simply
stated, with fewer sampling points, some of the more complicated displacement modes offer
less resistance to deformation.

Conversely, the numerical model of a one-node hinge comprised of standard displacement-
based elements is known to possess little or no stiffness in rotation. In fact, for planar
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problems most elements do not possess in-plane rotational degrees of freedom at all. However,
elements with in-plane rotational degrees of freedom do exist, and their use in schemes to
effectively stiffen one-node connected hinges is evaluated.

In recent times, elements with in-plane rotational (drilling) degrees of freedom have become
quite popular. Apart from enrichment of the displacement field, which increases element
accuracy, drilling degrees of freedom allow for the modelling of, for instance, folded plates
and beam-slab intersections.

The membrane elements used in this study account for in-plane rotations based on a con-
tinuum mechanics definition of rotation. The approach relies on a variational formulation
employing an independent rotation field, as presented by Hughes and Brezzi [18]. It utilizes
the skew-symmetric part of the stress tensor as a Lagrange multiplier to enforce equality of
independent rotations and the skew-symmetric part of the displacement gradient in a weak
sense. The stress tensor is therefore not a priori assumed to be symmetric.

1.3 Objectives of the study

There has been a steady stream of publications reporting on improvements and advances in
finite element technology since the 1970’s, when FEM was conceived as a general computer
implementation [19]. Improvements can be judged on several measures, including accuracy,
numerical robustness or computational cost. Unfortunately though, as with most things,
there is ‘no free lunch’, and generally accuracy is traded for robustness or computational
effort, or vice versa.

Advances in finite element technology are of particular interest to practitioners of structural
optimization, since multiple finite element analyses (at least one per iteration) are required
to determine the optimal structure. Procedures which increase accuracy or decrease compu-
tational effort are of significant benefit in such an iterative environment, and are therefore
per se of interest.

However, finite element formulation does not only affect the accuracy (and/or numerical
effort) required to perform the structural analyses in topology optimization, it can actu-
ally influence the resulting topology itself. For example, the use of higher order elements
are known to lessen or eliminate checkerboarding, common in minimum compliance solu-
tions employing 4-node planar elements. Although it may be argued that topology results
containing checkerboarding are physically unreasonable, the conclusion is that under certain
circumstances finite element formulation indeed affects the results of a topology optimization
procedure.

The goal of this work is essentially to investigate this observation further. In principal,
the intention is to develop new finite elements and/or procedures (or to identify existing
elements and procedures) and to exploit their unique characteristics to overcome numerical
instabilities or deficiencies in a topology optimization setting.

Firstly, traditional planar elements do not possess nodal rotational degrees of freedom.
Therefore if two of these elements are connected at a single node, the assembly offers no
resistance to rotation about the common node. Although this model of a compliant hinge is
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completely unrealistic and therefore undesirable in topological results, one-node hinges are
regularly encountered in compliant mechanism design using topology optimization. Conse-
quently, the idea to exploiting the nodal rotational stiffness associated with elements with
drilling degrees of freedom to prevent (or at least improve the numerical model of) a one-node
connected hinge is investigated.

Ultimately, the practical application of this investigation is in the design of piezoelectrically
driven compliant mechanisms. Therefore new piezoelectric elements with drilling degrees
of freedom are required. Furthermore, although it was decided to focus the finite element
development on 2-D planar elements, planar membrane elements also form part of flat shell
elements, and therefore developments in planar element technology are not restricted to
planar problems. Accordingly, the effects of membrane (and plate) element formulations on
flat shell topology optimization results are also investigated.

Secondly, since the model of a checkerboard patch of elements is commonly known to exhibit
over-stiff behaviour, a method to soften the finite element model is sought. A popular
method of softening (especially higher-order) deformation modes associated with elements
is to employ reduced integration schemes. Subsequently, the notion of employing alternative
reduced order integration schemes to soften patches of elements arranged in a checkerboard
layout is investigated.

In summary, the primary objectives of this study are to:

1. Develop new finite elements, or elemental procedures, which not only improve model
accuracy, robustness and/or efficiency, but can also be used in schemes which alleviate
or eliminate the numerical instabilities, or improper modelling, associated with spuri-
ous material layouts in topology optimization. Attention is focused on the following
topics in particular:

• Determining the sensitivity of elements with drilling degrees of freedom to the
penalty parameter, usually denoted γ.

• The formulation, implementation and evaluation of planar piezoelectric finite el-
ements with drilling degrees of freedom.

• Investigating the use of reduced order integration rules in higher order elements
to enhance element accuracy.

Note that application of these finite element developments is not restricted to struc-
tural topology problems. Their increased accuracy, modelling capacity or numerical
efficiency could also be applied in general purpose finite element codes.

2. To develop procedures which exploit the salient features of the new finite elements, or
elemental procedures, in order to overcome or alleviate the numerical instabilities, or
modelling deficiencies, leading to spurious material layouts in topology optimization.
More specifically, the topics under consideration include:

• Exploiting elements with drilling degrees of freedom in schemes to prevent unde-
sirable local material distributions in topology optimization.
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• Evaluating the effect of element formulation in plate and shell topology optimiza-
tion problems.

• Quantifying the effect of reduced order integration rules on the stiffness of a
checkerboard patch of elements.

1.4 Thesis overview and list of contributions

The thesis is divided into six main research chapters. Each of these chapters represent sci-
entific contributions (in the form of conference or journal papers) made during the course of
this work. As such, each chapter is intended to be self-contained and can be read indepen-
dently of the other chapters. Note also that the notation in each chapter is therefore slightly
different.

A schematic depiction of the thesis layout is presented in Figure 1.3. As indicated in the
figure, the thesis body is divided into two parts. The first part contains Chapters 2 to 4,
and details contributions made in finite element development and technology. The second,
comprising Chapters 5 to 7, explores the application of finite element technology in a topol-
ogy optimization environment. Furthermore, the finite element developments presented in
Chapters 2 and 3 are related to topology optimization topics communicated in Chapters 5
and 6. Similarly the finite element developments offered in Chapter 4 find application in
Chapter 7.

In Chapter 2 an introduction to elements with drilling degrees of freedom (DOFs) is pre-
sented. Furthermore, the effect of the parameter which relates in-plane displacements and
rotations, usually denoted γ, is studied. A unique feature of this study is the novel use of
the skew symmetric part of the stress tensor to assess element accuracy. This contribution
has been published in Finite Elements in Analysis and Design, with the full reference:

• C.S. Long, S. Geyer, and A.A. Groenwold. A numerical study of the effect of penalty
parameters for membrane elements with independent rotation fields and penalized
equilibrium. Finite Elements in Analysis and Design, 42:757–765, 2006.

Chapter 3 details the development of planar 4-node piezoelectric elements with drilling
DOFs. Firstly, two families of variational formulations accounting for piezoelectricity and
in-plane rotations are derived. The first retains the skew-symmetric part of the stress tensor,
while in the second, the skew part of stress is eliminated from the functional. The finite
elements derived from the variational formulations are then benchmarked against existing
elements.

Much of the work presented in this chapter is summarised in the journal article:

• C.S. Long, P.W. Loveday, and A.A. Groenwold. Planar four node piezoelectric ele-
ments with drilling degrees of freedom. International Journal for Numerical Methods
in Engineering, 65:1802–1830, 2006.

However, due to space limitations in the journal article, not all variational formulations are
given in detail and only two of the eight elements presented in this chapter are evaluated.
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Figure 1.3: Schematic of thesis layout.

Here, the complete compilation of variational formulations, as well as a numerical evaluation
of all eight elements (with and without assumed stress and electric flux density) are presented.

Chapter 4 explores the application of modified (5- and 8-point) integration schemes in
higher order Q8 and Q9 elements. Reduced integration schemes are often employed to
enhance element accuracy. Application of a 4-point reduced integration rule in quadratic
elements however, results in spurious zero energy modes. The application of modified in-
tegration rules in elemental calculations of Q8 and Q9 elements is shown to suppress these
spurious modes while, maintaining element accuracy comparable to that of their under-
integrated counterparts.

The journal article resulting from this work is

• C.S. Long and A.A. Groenwold. Reduced modified quadrature for quadratic membrane
finite elements. International Journal for Numerical Methods in Engineering, 61:837–
855, 2004.

Chapter 5 explores the use of elements with drilling DOFs in developing new schemes to
prevent checkerboarding, one-node connected hinges and diagonal members. As an appli-
cation, topology optimization is applied to the design of a piezoelectrically driven mirror
scanning device. The new method to deal with one-node connected hinges and diagonal
members is employed in order to improve upon the designs achieved using conventional Q4
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elements and filter strategies.

The presentation in this chapter is largely adapted from work that was presented at the 5th

and 6th World Congress of Structural and Multidisciplinary Optimization (WCSMO5 and
WCSMO6). For further details, the reader is referred to the articles:

• C.S. Long, P.W. Loveday, and A.A. Groenwold. On membrane elements with drilling
degrees of freedom in topology optimization. In Proc. Fifth World Congress on
Structural and Multidisciplinary Optimization, Lido di Jesolo, Venice, Italy, May 2003.
Paper no. 83.

• C.S. Long, P.W. Loveday, and A.A. Groenwold. Design of a piezoelectric mirror
scanning device using topology optimization. In Proc. Sixth World Congress on
Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 2005. Paper
no. 4031.

Chapter 6 deals with generally curved shell problems in topology optimization. The differ-
ences in optimal topologies obtained when employing ad hoc versus mathematically sound
methods to include in-plane rotations, are investigated. The sensitivity of optimal topologies
to the parameter γ, studied in Chapter 2, for membrane and shell problems is quantified.
Furthermore, the effect of the plate component of flat shell elements on optimal topologies
is determined. Differences between the popular Discrete Kirchhoff Quadrilateral (DKQ)
elements, and two frequently employed Mindlin Reissner plate elements, are presented.

Parts of this work were presented at the Second International Conference on Structural
Engineering, Mechanics and Computation held in Cape Town

• C.S. Long, A.A. Groenwold, and P.W. Loveday. Implications of finite element formu-
lation in optimal topology design. In A. Zingoni, editor, Progress in Structural En-
gineering, Mechanics and Computation, pages 1015–1019, Cape Town, South Africa,
July 2004.

Furthermore, the work in this chapter is to form the basis of an article:

• C.S. Long, A.A. Groenwold, and P.W. Loveday. Effect of element formulation on mem-
brane, plate and shell topology optimization problems. Finite Elements in Analysis
and Design, 2007. To be submitted.

Chapter 7 reports on the application of reduced order integration schemes in topology
optimization. It is widely known that a patch of elements, with material distributed in a
checkerboard pattern, exhibits artificially high stiffness. This is generally accepted as the
cause of checkerboarding, a phenomena characterised by significant areas of ‘optimal’ topolo-
gies in which material is distributed in a checkerboard-like pattern. Therefore, particular
attention is paid to the effect of reduced order integration on the stiffness of higher order
(Q8 and Q9) checkerboard patches.

A journal article summarising this work is in preparation:
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• C.S. Long, A.A. Groenwold, and P.W. Loveday. Effect of reduced order integration
schemes on checkerboard patterns in topology optimization. Structural and Multidis-
ciplinary Optimization, 2007. To be submitted.

Finally, in Chapter 8 a retrospective summary of the work is offered. Some concluding
remarks regarding the study are offered, as well as recommendations for future work.

In Appendix A a brief introduction to topology optimization is offered, while Appendix
B presents some additional topology optimization results not included in Chapter 6.
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